101
|
Tassara M, De Ponti A, Barzizza L, Zambelli M, Parisi C, Milani R, Santoleri L. Autologous conditioned serum (ACS) for intra-articular treatment in Osteoarthritis: Retrospective report of 28 cases. Transfus Apher Sci 2018; 57:573-577. [PMID: 30131208 DOI: 10.1016/j.transci.2018.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/14/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Autologous conditioned serum (ACS) is a novel blood product developed for intra-articular injection as a novel therapy for Osteoarthritis (OA). This study is a retrospective evaluation of 28 cases (25 Knee-OA and 3 hip-OA) treated with ACS between November 2013 and February 2016. MATERIALS AND METHODS ACS was prepared according to standards in an accredited Cell Manipulation Lab, and applied by an expert clinician (2 ml injection once weekly over 4 weeks). At any injection visit (Timepoints 1-4), and after a follow-up of 1 (Timepoint 5) and 6 months (Timepoint 6), patients were asked to describe the intensity of their pain with the VAS (visual analog scale) psychometric scale, and the objective parameter ROM (Range Of Motion) was recorded in case of injection in the knee. RESULTS Pain (VAS) reduced in all cases since the first injection up to Timepoint 5. A significant improvement was observed in VAS between Timepoint 1 and 6 (primary objective), with a median VAS decrease of 60 mm (range 20-100, p < 0.01). A significant difference was also recorded in ROM between Timepoint 1 and 6 (secondary objective), with a median increase of 25° (range 5-40, p < 0.01). Ten out of 14 patients (71%) who were undergoing a chronic therapy to relieve pain were able to interrupt it. No serious adverse events were recorded. CONCLUSIONS Treatment with ACS produced a rapid decline in pain, accompanied by a large improvement in ROM. These results suggest that ACS is a valid option for the treatment of OA.
Collapse
Affiliation(s)
- Michela Tassara
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy.
| | | | - Lorena Barzizza
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Matilde Zambelli
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Parisi
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Luca Santoleri
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
102
|
Barbon S, Stocco E, Grandi F, Rajendran S, Borean A, Pirola I, Capelli S, Bagno A, Tavano R, Contran M, Macchi V, De Caro R, Parnigotto PP, Porzionato A, Grandi C. Biofabrication of a novel leukocyte-fibrin-platelet membrane as a cells and growth factors delivery platform for tissue engineering applications. J Tissue Eng Regen Med 2018; 12:1891-1906. [PMID: 29956492 DOI: 10.1002/term.2713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Autologous platelet-rich hemocomponents have emerged as potential biologic tools for regenerative purpose, but their therapeutic efficacy still remains controversial. This work represents the characterization study of an innovative autologous leukocyte-fibrin-platelet membrane (LFPm), which we prepared according to a novel protocol involving multiple cycles of apheresis. The high content in fibrinogen gave to our hemocomponent the appearance of a manipulable and suturable membrane with high elasticity and deformation capacity. Moreover, being highly enriched with platelets, leukocytes, and monocytes/macrophages, the LFPm sustained the local release of bioactive molecules (platelet derived growth factor, vascular endothelial growth factor, interleukin-10, and tumour necrosis factor alpha). In parallel, the evaluation of stemness potential highlighted also that the LFPm contained cells expressing pluripotency and multipotency markers both at the messenger ribonucleic acid (NANOG, SOX2, THY1, NT5E, and ENG) and surface-protein level (CD44high /CD73+ /CD34+ /CD117+ /CD31+ ). Finally, biodegradation analysis interestingly showed a good stability of the membrane for at least 3 weeks in vitro and 1 week in vivo. In both cases, biodegradation was associated with progressive exposure of fibrin scaffold, loss/migration of cellular elements, and release of growth factors. Overall, collected evidence could shed some light on the regenerative effect that LFPms may exert after the autologous implant on a defect site.
Collapse
Affiliation(s)
- Silvia Barbon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Padua, Italy
| | - Elena Stocco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.,Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Padua, Italy
| | - Francesca Grandi
- Department of Women's and Children's Health, Pediatric Surgery, University of Padua, Padua, Italy
| | - Senthilkumar Rajendran
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Alessio Borean
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital Belluno, Belluno, Italy
| | - Ivan Pirola
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital Belluno, Belluno, Italy
| | - Stefano Capelli
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital Belluno, Belluno, Italy
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padua, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padua, Padua, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padua, Padua, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padua, Padua, Italy
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
103
|
kızıltoprak M, uslu MÖ. HISTORICAL DEVELOPMENT AND PROPERTIES OF PLATELET CONCENTRATES IN DENTISTRY. CUMHURIYET DENTAL JOURNAL 2018. [DOI: 10.7126/cumudj.381546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
104
|
Kihara H, Kim DM, Nagai M, Nojiri T, Nagai S, Chen CY, Lee C, Hatakeyama W, Kondo H, Da Silva J. Epithelial cell adhesion efficacy of a novel peptide identified by panning on a smooth titanium surface. Int J Oral Sci 2018; 10:21. [PMID: 29961761 PMCID: PMC6026594 DOI: 10.1038/s41368-018-0022-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/24/2018] [Accepted: 04/01/2018] [Indexed: 01/27/2023] Open
Abstract
Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide (A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide (PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL (stained by Ln5) with pericellular junctions (stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.
Collapse
Affiliation(s)
- Hidemichi Kihara
- Harvard School of Dental Medicine, Boston, MA, USA.
- School of Dental Medicine, Iwate Medical University, Iwate, Japan.
| | - David M Kim
- Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | - Chia-Yu Chen
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Cliff Lee
- University of California, San Francisco, CA, USA
| | - Wataru Hatakeyama
- Harvard School of Dental Medicine, Boston, MA, USA
- School of Dental Medicine, Iwate Medical University, Iwate, Japan
| | - Hisatomo Kondo
- School of Dental Medicine, Iwate Medical University, Iwate, Japan
| | | |
Collapse
|
105
|
Meimandi-Parizi A, Oryan A, Gholipour H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connect Tissue Res 2018; 59:332-344. [PMID: 29035127 DOI: 10.1080/03008207.2017.1387541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Different biomaterials have been used in orthopedic surgery. Evaluation of biomaterials for bone healing promotion has been a wide area of research of the orthopedic field. Sixty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 30 rats. The animals were randomly divided into six equal groups as empty defect, autograft, nanohydroxyapatite (nHA), Gelatin (Gel)-nHA, fibrin-platelet glue (FPG)-nHA, and Gel-FPG-nHA groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy, and biomechanical testing. All the treated defects demonstrated significantly superior new bone formation, remodeling, and bone tissue volume. Moreover, the defects treated with FPG-nHA showed significantly higher ultimate load, yield load, and stiffness. The Gel-FPG-nHA moderately improved bone regeneration that was not close to the autograft in some parameters, whereas FPG-nHA significantly improved bone healing closely comparable with the autograft group in most parameters. In conclusion, although all the nHA-containing scaffolds had some beneficial effects on bone regeneration, the FPG-nHA scaffold was more effective in improving the structural and functional properties of the newly formed bone and was more osteoinductive than the Gel and was comparable to the autograft. Therefore, the FPG can be regarded as a promising option to be used in conjunction with mineral scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Abdolhamid Meimandi-Parizi
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ahmad Oryan
- b Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Hojjat Gholipour
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
106
|
Bari E, Perteghella S, Marrubini G, Sorrenti M, Catenacci L, Tripodo G, Mastrogiacomo M, Mandracchia D, Trapani A, Faragò S, Gaetani P, Torre ML. In vitro efficacy of silk sericin microparticles and platelet lysate for intervertebral disk regeneration. Int J Biol Macromol 2018; 118:792-799. [PMID: 29959012 DOI: 10.1016/j.ijbiomac.2018.06.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Intervertebral disk degeneration is an oxidative and inflammatory pathological condition that induces viability and functionality reduction of Nucleus Pulposus cells (NPs). Cellular therapies were previously proposed to repair and substitute the herniated disk but low proliferative index and pathological conditions of NPs dramatically reduced the efficacy of this approach. To overcome these problems we proposed, for the first time, a therapeutic system based on the association of silk sericin microparticles and platelet-derived products. Silk sericin (SS) is a bioactive protein with marked antioxidant properties, while platelet lysate (PL) and platelet poor plasma (PPP) represent a source of growth factors able to support cell viability and to promote tissue regeneration. We demonstrated that the mixture PL + PPP promoted NPs proliferation with a significant reduction of cellular doubling time. SS microparticles, alone or in combination with PPP, presented the higher ROS-scavenging activity while, SS microparticles and PL resulted as the best association able to protect NPs against oxidative stress induce by hydroxide peroxide. Based on these results, the authors are confident that, with the ever increasing need of efficacious tools for regenerative medicine purposes, SS microparticles and PL + PPP association could represent an effective approach for the development of low impact and non-invasive therapies.
Collapse
Affiliation(s)
- Elia Bari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; Pharmaexceed srl, 27100 Pavia, Italy.
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari, 70125 Bari, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari, 70125 Bari, Italy
| | - Silvio Faragò
- Silk Division, Innovhub, Stazioni Sperimentali per l'Industria, 20133 Milan, Italy
| | - Paolo Gaetani
- Pharmaexceed srl, 27100 Pavia, Italy; U.O. Chirurgia Vertebrale, Istituto Clinico Città di Pavia, Gruppo San Donato, 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; Pharmaexceed srl, 27100 Pavia, Italy
| |
Collapse
|
107
|
Martinello T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedictis GM, Ferro S, Zuin M, Martines E, Brun P, Maccatrozzo L, Chiers K, Spaas JH, Patruno M. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res 2018; 14:202. [PMID: 29940954 PMCID: PMC6019727 DOI: 10.1186/s12917-018-1527-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. RESULTS At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. CONCLUSION Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa.
Collapse
Affiliation(s)
- T. Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - C. Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - A. Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - I. Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - F. Gemignani
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - G. M. DeBenedictis
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | | | | | - P. Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - L. Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| | - K. Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, University of Gent, Ghent, Belgium
| | - J. H. Spaas
- Global Stem cell Technology-ANACURA group, Noorwegenstraat 4, 9940 Evergem, Belgium
| | - M. Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020, Legnaro – Agripolis, Padua, Italy
| |
Collapse
|
108
|
Baigger A, Eicke D, Yuzefovych Y, Pogozhykh D, Blasczyk R, Figueiredo C. Characterization of induced pluripotent stem cell-derived megakaryocyte lysates for potential regenerative applications. J Cell Mol Med 2018; 22:4545-4549. [PMID: 29893509 PMCID: PMC6111809 DOI: 10.1111/jcmm.13698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, platelet‐derived growth factors present in lysates became an extreme interest in the field of regenerative medicine such as in wound healing and as substitutes to foetal bovine serum in xeno‐free cell culture systems. However, the generation of such platelet lysates completely depends on the availability of platelet donors. In this study, the possibility to use in vitro‐generated megakaryocytes derived from induced pluripotent stem cells (iPSCs) as a cell source for typical platelet growth factors was investigated. Therefore, the presence and levels of those factors were characterized in in vitro‐produced megakaryocytes. In comparison with platelets, in vitro‐generated megakaryocytes showed a multifold increased content in transcript and protein levels of typical platelet growth factors including platelet‐derived growth factors (PDGFs), transforming growth factor (TGF)‐1β, vascular endothelial cell factor (VEGF)‐A, epidermal growth factor (EGF), insulin‐like growth factor (IGF)‐1 and tissue factor (TF). Hence, iPSC‐derived megakaryocytes may serve as an efficient cell source for a donor‐independent generation of growth factor‐rich lysates with a broad application potential in innovative cell culture systems and regenerative therapies.
Collapse
Affiliation(s)
- Anja Baigger
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Dorothee Eicke
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Yuliia Yuzefovych
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
109
|
Ouyang QQ, Hu Z, Lin ZP, Quan WY, Deng YF, Li SD, Li PW, Chen Y. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol 2018; 112:1191-1198. [DOI: 10.1016/j.ijbiomac.2018.01.217] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022]
|
110
|
Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018; 23:934-943. [DOI: 10.1016/j.drudis.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
111
|
Gasparro R, Qorri E, Valletta A, Masucci M, Sammartino P, Amato A, Marenzi G. Non-Transfusional Hemocomponents: From Biology to the Clinic-A Literature Review. Bioengineering (Basel) 2018; 5:bioengineering5020027. [PMID: 29614717 PMCID: PMC6027172 DOI: 10.3390/bioengineering5020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Non-transfusional hemocomponents for surgical use are autogenous products prepared through the centrifugation of a blood sample from a patient. Their potential beneficial outcomes include hard and soft tissue regeneration, local hemostasis, and the acceleration of wound healing. Therefore, they are suitable for application in different medical fields as therapeutic options and in surgical practices that require tissue regeneration.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Neuroscience, Reproductive Science and Dental Science, University of Naples Federico II, 80131 Naples, Italy.
| | - Erda Qorri
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Albanian University, 1000 Tirana, Albania.
| | - Alessandra Valletta
- Department of Neuroscience, Reproductive Science and Dental Science, University of Naples Federico II, 80131 Naples, Italy.
| | - Michele Masucci
- Department of Neuroscience, Reproductive Science and Dental Science, University of Naples Federico II, 80131 Naples, Italy.
| | - Pasquale Sammartino
- Multidisciplinary Department of medical-Surgical and Dental Specialities, University of Naples "Luigi Vanvitelli", 80136 Italy.
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dental Science, University of Naples Federico II, 80131 Naples, Italy.
| | - Gaetano Marenzi
- Department of Neuroscience, Reproductive Science and Dental Science, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
112
|
Mahmoudian-Sani MR, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J Cosmet Dermatol 2018; 17:650-659. [PMID: 29504236 DOI: 10.1111/jocd.12512] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. EVIDENCE SYNTHESIS For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. CONCLUSION In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing.
Collapse
Affiliation(s)
| | - Fatemeh Rafeei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Amini
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
113
|
Di Liddo R, Bertalot T, Borean A, Pirola I, Argentoni A, Schrenk S, Cenzi C, Capelli S, Conconi MT, Parnigotto PP. Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine. J Cell Mol Med 2018; 22:1840-1854. [PMID: 29314633 PMCID: PMC5824368 DOI: 10.1111/jcmm.13468] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Alessio Borean
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Ivan Pirola
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Alberto Argentoni
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Department of Chemistry and Technology of DrugsSapienza University of RomeItaly
| | - Stefano Capelli
- Department of Immunohematology and Transfusion MedicineSan Martino HospitalBellunoItaly
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative MedicineTissue Engineering and Signaling (TES) ONLUSPadovaItaly
| |
Collapse
|
114
|
Costa-Almeida R, Franco AR, Pesqueira T, Oliveira MB, Babo PS, Leonor IB, Mano JF, Reis RL, Gomes ME. The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomater 2018; 68:29-40. [PMID: 29341933 DOI: 10.1016/j.actbio.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. STATEMENT OF SIGNIFICANCE Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications.
Collapse
|
115
|
Drew VJ, Tseng CL, Seghatchian J, Burnouf T. Reflections on Dry Eye Syndrome Treatment: Therapeutic Role of Blood Products. Front Med (Lausanne) 2018. [PMID: 29527528 PMCID: PMC5829051 DOI: 10.3389/fmed.2018.00033] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dry eye syndrome (DES) is a multifactorial, frequent, pathology characterized by deficient tear production or increased evaporation of tears and associated with ocular surface alteration and inflammation. It mostly affects, but not exclusively, older individuals and leads to varying degrees of discomfort and decreased quality of life. Although the typical treatments of DES rely on using artificial tears, polyunsaturated fatty acids, integrin antagonists, anti-inflammatory agents, or on performing punctal occlusion, recently, standardized blood-derived serum eye drops (SED) are generating much interest as a new physiological treatment option. The scientific rationale in using SED for treating or releasing the symptoms of DES is thought to lie in its composition in multiple factors that resembles that of tears and contributes to the healing and protection of the ocular surface. This manuscript seeks to provide relevant background information on the management of DES, and on the increasing role that various types of SED or platelet lysates, from autologous or allogeneic origins, are playing in the improved therapeutic management of this pathology. The increasing role played by blood establishments in producing better-standardized SED is also addressed.
Collapse
Affiliation(s)
- Victor J Drew
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | | | - Thierry Burnouf
- International PhD Program of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
116
|
An optimised protocol for platelet-rich plasma preparation to improve its angiogenic and regenerative properties. Sci Rep 2018; 8:1513. [PMID: 29367608 PMCID: PMC5784112 DOI: 10.1038/s41598-018-19419-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/02/2018] [Indexed: 01/13/2023] Open
Abstract
Although platelet-rich plasma (PRP) is used as a source of growth factors in regenerative medicine, its effectiveness remains controversial, partially due to the absence of PRP preparation protocols based on the regenerative role of platelets. Here, we aimed to optimise the protocol by analysing PRP angiogenic and regenerative properties. Three optimising strategies were evaluated: dilution, 4 °C pre-incubation, and plasma cryoprecipitate supplementation. Following coagulation, PRP releasates (PRPr) were used to induce angiogenesis in vitro (HMEC-1 proliferation, migration, and tubule formation) and in vivo (chorioallantoic membrane), as well as regeneration of excisional wounds on mouse skin. Washed platelet releasates induced greater angiogenesis than PRPr due to the anti-angiogenic effect of plasma, which was decreased by diluting PRPr with saline. Angiogenesis was also improved by both PRP pre-incubation at 4 °C and cryoprecipitate supplementation. A combination of optimising variables exerted an additive effect, thereby increasing the angiogenic activity of PRPr from healthy donors and diabetic patients. Optimised PRPr induced faster and more efficient mouse skin wound repair compared to that induced by non-optimised PRPr. Acetylsalicylic acid inhibited angiogenesis and tissue regeneration mediated by PRPr; this inhibition was reversed following optimisation. Our findings indicate that PRP pre-incubation at 4 °C, PRPr dilution, and cryoprecipitate supplementation improve the angiogenic and regenerative properties of PRP compared to the obtained by current methods.
Collapse
|
117
|
Papait A, Cancedda R, Mastrogiacomo M, Poggi A. Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment, putatively fostering wound healing. J Tissue Eng Regen Med 2018; 12:30-43. [PMID: 27863082 DOI: 10.1002/term.2361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022]
Abstract
Autologous platelet-rich plasma (PRP) is used clinically to induce repair of different tissues through the release of bioactive molecules. In some patients, the production of efficient autologous PRP is unfeasible due to their compromised health. Allogeneic PRP mismatched for AB0 and Rh antigens was developed. The effect of allogeneic PRP on immune response should be defined to use it in clinical practice avoiding side effects. Thus, whether PRP affects the differentiation of peripheral blood monocytes to dendritic cells upon stimulation with granulocyte monocyte colony stimulating factor and interleukin-4 was investigated. Indeed, these cells are the main players of immune response and tissue repair. PRP inhibited the differentiation of monocytes to CD1a+ dendritic cells and favoured the expansion of phagocytic CD163+ CD206+ fibrocyte-like cells. These cells produced interleukin-10 and prostaglandin-E2 , but not interferon-γ, upon stimulation with lipopolysaccharides. Moreover, they promoted the expansion of regulatory CD4+ CD25+ FoxP3+ T cells upon allostimulation or antigen specific priming. Finally, the conditioned medium harvested from monocytes differentiated with PRP triggered a strong chemotactic effect on mesenchymal cells in both scratch and transwell migration assays. These results strongly suggest that allogeneic PRP can foster the differentiation of monocytes to a regulatory anti-inflammatory population, possibly favouring wound healing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Biorigen Srl, Genoa, Italy
| | | | - Alessandro Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS San Martino Hospital-IST- National Institute for Cancer Research, Genoa, Italy
| |
Collapse
|
118
|
The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation. Cell Tissue Bank 2017; 19:341-356. [PMID: 29264693 DOI: 10.1007/s10561-017-9679-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
Fibrin-platelet glue (FPG) is a blood derivative, in which platelets and fibrinogen are concentrated in a small plasma volume, by differential centrifugation and precipitation. It can form a three-dimensional and biocompatible fibrin scaffold with a myriad of growth factors and proteins that are released progressively to the local environment and contribute to the accelerated postoperative bone healing. Gelatin (Gel) is a derivative of collagen and can promote cell adhesion and proliferation due to its unique sequence of amino acids, so it is suitable for bone tissue applications. This study examined the effects of Gel, FPG and their combinations as bone scaffold on the healing of surgically created critical-size defects in rat radius. Fifty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 25 rats. The animals were randomly divided into five equal groups as empty defect, autograft, Gel, FPG and Gel-FPG groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury to evaluate bone formation, union and remodeling of the defect. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy (SEM) and biomechanical testing. The results of present study showed that the Gel alone did not significantly affect bone healing and regeneration; however, the Gel treated defects promoted healing more than those that were left untreated (negative control). Furthermore, the FPG-enhanced grafts provided a good scaffold containing numerous growth factors for proliferation of osteoinduction and was effective in improving the structural and functional properties of the newly formed bone more than that of the untreated and also the Gel treated groups. Incorporation of Gel into the FPG scaffold improved healing potential of the FPG scaffold; however, it was still inferior to the autograft (positive control). Although the Gel-FPG scaffolds had best effectiveness during bone regeneration, it still needs to be further enhanced by incorporation of the ceramic and osteoinductive biomaterials.
Collapse
|
119
|
Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson's disease. Biomaterials 2017; 142:77-89. [DOI: 10.1016/j.biomaterials.2017.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
|
120
|
Anitua E, Pino A, Orive G. Opening new horizons in regenerative dermatology using platelet-based autologous therapies. Int J Dermatol 2017; 56:247-251. [PMID: 28181224 DOI: 10.1111/ijd.13510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/26/2016] [Accepted: 10/17/2016] [Indexed: 01/14/2023]
Abstract
Biological therapeutic therapies are gaining the attention of scientists and medical doctors. Accumulating evidence suggests that blood-derived autologous therapies are safe and effective treatments for skin repair and wound healing. The fibrin network formed after plasmatic activation and the autologous growth factors released when platelets degranulate constitute a real biological medicine that has been shown to promote cell recruitment, stimulate new blood vessel formation, reduce inflammation as well as protect from local infections. This perspective highlights recent basic and clinical results published on blood-derived autologous therapies in the field of regenerative dermatology and discusses potential challenges and future prospects.
Collapse
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain
| | - Ander Pino
- BTI - Biotechnology Institute, Vitoria, Spain
| | - Gorka Orive
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Vitoria, Spain
| |
Collapse
|
121
|
Comparison of three human platelet lysates used as supplements for in vitro expansion of corneal endothelium cells. Transfus Apher Sci 2017; 56:769-773. [PMID: 28939367 DOI: 10.1016/j.transci.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human platelet lysates (HPLs) are emerging as the new gold standard supplement of growth media for ex vivo expansion of cells for transplant. However, variations do exist in the way how HPLs are prepared. In particular, uncertainties still exist regarding the type of HPL most suitable for corneal endothelium cells (CEC) expansion, especially as these cells have limited proliferative capacity. MATERIAL AND METHODS Three distinct HPL preparations were produced, with or without calcium chloride/glass beads activation, and with or without heat treatment at 56°C for 30min. These HPLs were used to supplement basal D-MEM growth medium, each at a protein concentration equivalent to that of 10% fetal bovine serum (FBS; control). Impact on CEC (BCE C/D-1b cells) in vitro morphology, viability and capacity to express Zonula occludens-1 (ZO-1) tight junction marker was assessed by Western blotting. RESULTS BCE C/D-1b cells grown in all HPL supplements exhibited four of essential characteristic properties: adhesion capacity, microscopic morphology and viability similar to that observed when using 10% FBS. In addition, Western blots analysis revealed an expression of the ZO-1 marker by BCE C/D-1b cells in all conditions of culture. CONCLUSION CECs can expand ex vivo in a basal medium supplemented with the three HPLs without noticeable difference compared to FBS supplement. These data support further studies to evaluate the potential to use HPLs as a clinical-grade xeno-free supplement of CEC for corneal transplant.
Collapse
|
122
|
Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3105780. [PMID: 28835892 PMCID: PMC5556995 DOI: 10.1155/2017/3105780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and monocyte chemotactic protein-1 (MCP-1) in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation) assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.
Collapse
|
123
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
124
|
Mi FL, Burnouf T, Lu SY, Lu YJ, Lu KY, Ho YC, Kuo CY, Chuang EY. Self-Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 28722819 DOI: 10.1002/adhm.201700181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/07/2017] [Indexed: 11/07/2022]
Abstract
Cancer cells exhibit specific physiological differences compared to normal cells. Most surface membranes of cancer cells are characterized by high expression of given protein receptors, such as albumin, transferrin, and growth factors that are also present in the plasma of patients themselves, but are lacking on the surface of normal cells. These distinct features between cancer and normal cells can serve as a niche for developing specific treatment strategies. Near-infrared (NIR)-light-triggered therapy platforms are an interesting novel avenue for use in clinical nanomedicine. As a photothermal agent, conducting polymer nanoparticles, such as polypyrrole (PPy), of great NIR light photothermal effects and good biocompatibility, show promising applications in cancer treatments through the hyperthermia mechanism. Autologous plasma proteins coated PPy nanoparticles for hyperthermia therapy as a novel core technology platform to treat cancers through secreted protein acid and rich in cysteine targeting are developed here. This approach can provide unique features of specific targeting toward cancer cell surface markers and immune transparency to avoid recognition and attack by defense cells and achieve prolonged circulation half-life. This technology platform unveils new clinical options for treatment of cancer patients, supporting the emergence of innovative clinical products.
Collapse
Affiliation(s)
- Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, 33302, Taiwan, Republic of China
| | - Kun-Ying Lu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Yi-Cheng Ho
- Department of BioAgricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, Republic of China
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| |
Collapse
|
125
|
Abstract
There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.' We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.
Collapse
Affiliation(s)
- Olivier Garraud
- GIMAP-EA3064, Faculty of medicine of Saint-Etienne, University of Lyon, 42023, Saint-Etienne, France.
- National Institute for Blood Transfusion, 75015, Paris, France.
| | - Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Badr
- Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
126
|
Cabaro S, D'Esposito V, Gasparro R, Borriello F, Granata F, Mosca G, Passaretti F, Sammartino JC, Beguinot F, Sammartino G, Formisano P, Riccitiello F. White cell and platelet content affects the release of bioactive factors in different blood-derived scaffolds. Platelets 2017. [PMID: 28635382 DOI: 10.1080/09537104.2017.1319046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Platelet-derived factors are biomaterials that might accelerate healing process in oral, maxillofacial, and several other applications. Release of specific factors by platelet concentrates is critical to achieving a successful outcome. Here, we have shown that platelet-rich fibrin (PRF) clots were beneficial sources of leukocytes, which may directly affect the release of chemokines and growth factors. When compared with the standard leukocyte-PRF (L-PRF), the experimental low-force modified procedure [defined as advanced-PRF (A-PRF)] entrapped the same content of viable leukocytes, released a similar amount of inflammatory cytokines, but secreted 3-, 1.6-, 3-, and 1.2-fold higher levels of Eotaxin, CCL5, platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF), respectively. A leukocyte-free scaffold, such as plasma rich in growth factors (PRGF), released only platelet-specific factors and, in particular, the F3 fraction, the richest in growth factors, secreted higher amount of CCL5 and PDGF compared to F1 and F2 fractions. In conclusion, different procedures and leukocyte content affect cytokine, chemokines, and growth factor release from platelet derivatives, which may be helpful in different clinical settings.
Collapse
Affiliation(s)
- S Cabaro
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - V D'Esposito
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - R Gasparro
- c Department of Neurosciences, Reproductive Sciences and Odontostomatology , Federico II University of Naples , Naples , Italy
| | - F Borriello
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,d Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy
| | - F Granata
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,d Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy
| | - G Mosca
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - F Passaretti
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - J C Sammartino
- c Department of Neurosciences, Reproductive Sciences and Odontostomatology , Federico II University of Naples , Naples , Italy
| | - F Beguinot
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - G Sammartino
- c Department of Neurosciences, Reproductive Sciences and Odontostomatology , Federico II University of Naples , Naples , Italy
| | - P Formisano
- a Department of Translational Medicine , Federico II University of Naples , Naples , Italy.,b URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology , National Council of Research (CNR) , Naples , Italy
| | - F Riccitiello
- c Department of Neurosciences, Reproductive Sciences and Odontostomatology , Federico II University of Naples , Naples , Italy
| |
Collapse
|
127
|
Fawzy RM, Hashaad NI, Mansour AI. Decrease of serum biomarker of type II Collagen degradation (Coll2-1) by intra-articular injection of an autologous plasma-rich-platelet in patients with unilateral primary knee osteoarthritis. Eur J Rheumatol 2017. [PMID: 28638679 DOI: 10.5152/eurjrheum.2017.160076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the effect of one dose of intra-articular injection of (PRP) in the knee joint on a specific osteoarthritis (OA) serum biomarker of cartilage degeneration, Collagen 2-1 (Coll2-1), over a short period of 3 months. The aim extended to clarify the effect of PRP on the functional status of the osteoarthritic knee joint. MATERIAL AND METHODS Sixty patients with primary unilateral knee OA were enrolled in this study. They were subdivided according to Kellgren-Lawrence grading scale (KL) into (Group I): including patients with KL grade < 3 and (Group II): including patients with KL grade ≥3. Patients were asked to complete the Western Ontario and McMaster Universities Arthritis Index (WOMAC) Score. PRP was prepared and injected immediately into the affected knee. Serum Coll2-1 (S.Coll2-1) concentration was measured by enzyme-linked immunosorbent assay (ELISA) kit pre and 3 months after PRP injection. RESULTS Significant reduction in S.Coll2-1 concentration in primary knee OA patients; (p<0.001) and (p<0.05) in group I and group II respectively as well as significant improvements in WOMAC total and WOMAC sub-scores values were noted after single intra-articular PRP injection with maximal functional improvements were achieved after 3 months (p<0.001). Mild cases experienced favorable results with no remarkable adverse reactions were observed. CONCLUSION Reduction in specific OA biomarker S.Coll2-1 following intra-articular PRP injection emphasize that PRP could be a promising safe and tolerable effective therapeutic option which improves function from basal states in primary knee OA patients.
Collapse
Affiliation(s)
- Rasha Mohamed Fawzy
- Department of Rheumatology, Rehabilitation & Physical Medicine, Benha University School of Medicine, Benha, Egypt
| | - Nashwa Ismail Hashaad
- Department of Rheumatology, Rehabilitation & Physical Medicine, Benha University School of Medicine, Benha, Egypt
| | - Amira Ibrahim Mansour
- Department of Clinical and Chemical Pathology, Benha University School of Medicine, Benha, Egypt
| |
Collapse
|
128
|
Huang Y, Zhang Y, Feng L, He L, Guo R, Xue W. Synthesis of N-alkylated chitosan and its interactions with blood. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:544-550. [DOI: 10.1080/21691401.2017.1328687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuchen Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yi Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institute, Department of Biochemistry and Molecular Biology, Guangzhou, China
| |
Collapse
|
129
|
Huang Y, Bornstein MM, Lambrichts I, Yu HY, Politis C, Jacobs R. Platelet-rich plasma for regeneration of neural feedback pathways around dental implants: a concise review and outlook on future possibilities. Int J Oral Sci 2017; 9:1-9. [PMID: 28282030 PMCID: PMC5379164 DOI: 10.1038/ijos.2017.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 02/05/2023] Open
Abstract
Along with the development of new materials, advanced medical imaging and surgical techniques, osseointegrated dental implants are considered a successful and constantly evolving treatment modality for the replacement of missing teeth in patients with complete or partial edentulism. The importance of restoring the peripheral neural feedback pathway and thus repairing the lack of periodontal mechanoreceptors after tooth extraction has been highlighted in the literature. Nevertheless, regenerating the nerve fibers and reconstructing the neural feedback pathways around osseointegrated implants remain a challenge. Recent studies have provided evidence that platelet-rich plasma (PRP) therapy is a promising treatment for musculoskeletal injuries. Because of its high biological safety, convenience and usability, PRP therapy has gradually gained popularity in the clinical field. Although much remains to be learned, the growth factors from PRP might play key roles in peripheral nerve repair mechanisms. This review presents known growth factors contributing to the biological efficacy of PRP and illustrates basic and (pre-)clinical evidence regarding the use of PRP and its relevant products in peripheral nerve regeneration. In addition, the potential of local application of PRP for structural and functional recovery of injured peripheral nerves around dental implants is discussed.
Collapse
Affiliation(s)
- Yan Huang
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael M Bornstein
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Section of Dental Radiology and Stomatology, Department of Oral Surgery and Stomatology, University of Bern, Bern, Switzerland.,Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Constantinus Politis
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
130
|
Faillace V, Tambella AM, Fratini M, Paggi E, Dini F, Laus F. Use of autologous platelet-rich plasma for a delayed consolidation of a tibial fracture in a young donkey. J Vet Med Sci 2017; 79:618-622. [PMID: 28190827 PMCID: PMC5383186 DOI: 10.1292/jvms.16-0400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 9-month-old filly donkey was referred for a comminuted diaphyseal fracture of the right tibia. Surgical osteosynthesis, with multiple lag screws and a neutralization plate, was performed for anatomical reconstruction. Despite a good gait condition, delayed bone consolidation and a bone gap were evident on follow up radiographic evaluations. Due to delayed healing, autologous platelet-rich plasma (PRP) was injected on the surface of the tibia. Increased bone consolidation was evident on radiographs one month after the PRP injection. Progressive filling of both the fracture lines and bone gap continued during the six-month follow up. Clinical outcome was excellent. Autologous PRP should be considered as a practical adjuvant therapy in bone healing process in donkeys.
Collapse
Affiliation(s)
- Vanessa Faillace
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione, 93/95, 62024 Matelica, MC, Italy
| | | | | | | | | | | |
Collapse
|
131
|
Hattori H, Ishihara M. Feasibility of improving platelet-rich plasma therapy by using chitosan with high platelet activation ability. Exp Ther Med 2017; 13:1176-1180. [PMID: 28450960 DOI: 10.3892/etm.2017.4041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
Platelet-rich plasma (PRP) is blood plasma containing a high number of platelets that release growth factors for wound healing and tissue regeneration. In the present study, the feasibility of improving PRP therapy by using chitosan that exhibits high platelet activation ability was investigated. A total of 13 chitosan samples with different molecular weight (Mw) and degree of deacetylation (DDA) were individually added to blood samples of rats and the amount of growth factors, albumin and fibrinogen in plasma was measured. To examine the influence of plasma activated by chitosan on the proliferation of fibroblasts and adipose tissue-derived stromal cells (ASCs), the plasma was added to the culture medium of human fibroblasts and adipose tissue-derived stromal cells. Chitosan with a DDA of >75% increased the release of platelet factor 4 into the plasma. The amount of growth factors released into the plasma and platelet activation varied depending on the Mw and DDA, while albumin and fibrinogen were hardly affected. The proliferation rate was highest when using plasma activated by chitosan with a DDA of 75-85% and an Mw of 50,000-190,000 Da. These results suggested that the effectiveness of PRP therapy may be improved by using chitosan with a DDA of 75-85% and an Mw of 50,000-190,000 Da.
Collapse
Affiliation(s)
- Hidemi Hattori
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
132
|
Menter DG, Davis JS, Tucker SC, Hawk E, Crissman JD, Sood AK, Kopetz S, Honn KV. Platelets: “First Responders” in Cancer Progression and Metastasis. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017:1111-1132. [DOI: 10.1007/978-3-319-47462-5_74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
133
|
Castro AB, Meschi N, Temmerman A, Pinto N, Lambrechts P, Teughels W, Quirynen M. Regenerative potential of leucocyte- and platelet-rich fibrin. Part A: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and meta-analysis. J Clin Periodontol 2017; 44:67-82. [PMID: 27783851 PMCID: PMC5248642 DOI: 10.1111/jcpe.12643] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/20/2022]
Abstract
AIM To analyse the regenerative potential of leucocyte- and platelet-rich fibrin (L-PRF) during periodontal surgery. MATERIALS AND METHODS An electronic and hand search were conducted in three databases. Only randomized clinical trials were selected and no follow-up limitation was applied. Pocket depth (PD), clinical attachment level (CAL), bone fill, keratinized tissue width (KTW), recession reduction and root coverage (%) were considered as outcome. When possible, meta-analysis was performed. RESULTS Twenty-four articles fulfilled the inclusion and exclusion criteria. Three subgroups were created: intra-bony defects (IBDs), furcation defects and periodontal plastic surgery. Meta-analysis was performed in all the subgroups. Significant PD reduction (1.1 ± 0.5 mm, p < 0.001), CAL gain (1.2 ± 0.6 mm, p < 0.001) and bone fill (1.7 ± 0.7 mm, p < 0.001) were found when comparing L-PRF to open flap debridement (OFD) in IBDs. For furcation defects, significant PD reduction (1.9 ± 1.5 mm, p = 0.01), CAL gain (1.3 ± 0.4 mm, p < 0.001) and bone fill (1.5 ± 0.3 mm, p < 0.001) were reported when comparing L-PRF to OFD. When L-PRF was compared to a connective tissue graft, similar outcomes were recorded for PD reduction (0.2 ± 0.3 mm, p > 0.05), CAL gain (0.2 ± 0.5 mm, p > 0.05), KTW (0.3 ± 0.4 mm, p > 0.05) and recession reduction (0.2 ± 0.3 mm, p > 0.05). CONCLUSIONS L-PRF enhances periodontal wound healing.
Collapse
Affiliation(s)
- Ana B. Castro
- Department of Oral Health Sciences, PeriodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| | - Nastaran Meschi
- Department of Oral Health Sciences, EndodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| | - Andy Temmerman
- Department of Oral Health Sciences, PeriodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| | - Nelson Pinto
- Department of Oral Health Sciences, PeriodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
- Faculty of DentistryPostgraduate Implant ProgramUniversity of the AndesSantiagoChile
| | - Paul Lambrechts
- Department of Oral Health Sciences, EndodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| | - Wim Teughels
- Department of Oral Health Sciences, PeriodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| | - Marc Quirynen
- Department of Oral Health Sciences, PeriodontologyKU Leuven & Dentistry, University Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
134
|
Mundy L. Platelet-rich plasma: a case study for the identification of disinvestment opportunities using horizon scanning. AUST HEALTH REV 2017; 41:33-37. [DOI: 10.1071/ah15075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Objective
This paper discusses the potential for horizon scanning to identify low-value, inappropriate clinical practices that deliver minimal benefit to patients and represent a considerable financial burden on the health system.
Methods
Platelet-rich plasma (PRP) was identified by routine horizon scanning as a potentially innovative treatment alternative for osteoarthritis of the knee. A rapid, non-systematic assessment of the evidence pertaining to the safety and effectiveness of PRP compared with nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of osteoarthritis of the knee was conducted.
Results
The evidence base supporting the use of PRP for the treatment of osteoarthritis was poor. No comparative studies were identified that compared the use of PRP to NSAIDs, the current treatment option for osteoarthritis of the knee in Australia. Despite the lack of effectiveness evidence, the use of PRP injections was rapidly increasing in the private sector using an inappropriate Medicare Benefits Schedule item number.
Conclusions
This assessment highlights the potential of using established horizon scanning methodologies to identify targets for full or partial disinvestment of ineffective, inefficient or harmful clinical practices.
What is known about the topic?
PRP is rapidly diffusing in the private health system in Australia, however the use of a Medicare Benefits Schedule item number meant that this practice was being subsidised by the public reimbursement of treatment fees.
What does this paper add?
Traditional horizon scanning tends to identify technologies for health systems to invest in. The evidence on the effectiveness of PRP was examined with the purpose of exploring investment in an innovative treatment that may have reduced the number of invasive procedures being performed in the public hospital system. The current evidence base does not support the use of PRP injections for the treatment of osteoarthritis. It does, however, support the use of horizon scanning as an inexpensive methodology to identify possible disinvestment targets associated with potential patient harm and high health service expenditure.
What are the implications for practitioners?
Practitioners should be aware that public funding for the injection of PRP should not be used for the treatment of osteoarthritis.
Collapse
|
135
|
Efficacy of Autologous Platelet-rich Plasma Glue in Weight Loss Sequelae Surgery and Breast Reduction: A Prospective Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e871. [PMID: 27975003 PMCID: PMC5142469 DOI: 10.1097/gox.0000000000000823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/19/2016] [Indexed: 12/05/2022]
Abstract
Background: Seroma and hematoma formations are the most common complications after plastic
surgery. The aim of this study was to assess the efficacy of autologous
platelet-rich plasma (A-PRP) glue to reduce postoperative wound complications and
improve surgical outcomes. Methods: Fifty-four patients were included in this study. They underwent breast reduction
surgery, abdominoplasty, or limb lifting with A-PRP glue application on the entire
surface of the subcutaneous tissue at the time of suture. Retrospective data were
used for the control group. The primary endpoint was the incidence of
postoperative seroma or hematoma. The secondary endpoint was the Patient and
Observer Scar Assessment Scale score. Results: Demographics and clinical characteristics were not statistically different between
the A-PRP glue group and the control group regarding age, sex ratio, and body mass
index. After abdominoplasty, 37.5% of patients (3/8) in the control group
experienced seroma and hematoma complications versus 12.5% of patients (2/16) in
the A-PRP glue group (P = 0.55 and P = 0.25,
respectively). After limb lifting, 50% of patients experienced postoperative
complications in the control group versus no patient in the A-PRP glue group
(P = 0.03*; * indicates that the
P value is significant). After breast reduction, no patient
experienced complication in the A-PRP glue group versus 25% of patients in the
control group who experienced hematoma (P = 0.04*). The
scar quality assessed 12 months after surgery showed no statistical differences
between the groups. Conclusions: A-PRP glue seems effective to prevent seroma formation after limb lifting and
hematoma formation after breast reduction. Wound-healing quality did not seem to
be improved.
Collapse
|
136
|
D'Esposito V, Passaretti F, Perruolo G, Ambrosio MR, Valentino R, Oriente F, Raciti GA, Nigro C, Miele C, Sammartino G, Beguinot F, Formisano P. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function. J Cell Biochem 2016; 116:2408-18. [PMID: 26012576 PMCID: PMC5042100 DOI: 10.1002/jcb.25235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/14/2015] [Indexed: 12/12/2022]
Abstract
Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Federica Passaretti
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Giuseppe Perruolo
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | | | - Rossella Valentino
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy
| | - Gregory A Raciti
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Cecilia Nigro
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Claudia Miele
- Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II, University of Naples, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
137
|
Garcia-Alegria E, Iluit M, Stefanska M, Silva C, Heeg S, Kimber SJ, Kouskoff V, Lacaud G, Vijayaraghavan A, Batta K. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep 2016; 6:25917. [PMID: 27197878 PMCID: PMC4873758 DOI: 10.1038/srep25917] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Maria Iluit
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Claudio Silva
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Sebastian Heeg
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Susan J. Kimber
- Faculty of Life Sciences, Michael Smith Building, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | | | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
138
|
Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 2016; 54:309-18. [PMID: 27179926 DOI: 10.1016/j.transci.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
139
|
Red blood cell ghosts as promising drug carriers to target wound infections. Med Eng Phys 2016; 38:877-84. [PMID: 27062487 DOI: 10.1016/j.medengphy.2016.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/01/2016] [Accepted: 02/28/2016] [Indexed: 11/24/2022]
Abstract
Autologous red blood cell ghosts (RBC ghosts) can carry cytokines to the sites of inflammation. The targeting moiety of the RBC ghosts is associated with the nature of purulent inflammation, where the erythrocytes are phagocyted and encapsulated drugs are released. In the present study we have investigated the healing potential of RBC ghosts loaded with cytokine IL-1β and antibiotic. Additionally, the pharmacokinetic properties of RBC ghosts loaded with IL-1β were studied. 35 Male Wistar rats (250-300g) were used in the pharmacokinetic study and in a wound infection model where a suspension of Staphylococcus aureus was placed into a surgical cut of the skin and subcutaneous tissue in the femoral region. In order to monitor progression of the wound repair processes, wound swabs or aspiration biopsies were taken for analyses on the 1st-6th days. Wound repair dynamics assessment was based on suppression of S. aureus growth, signs of pain, time of disappearance of pus and infiltration around the wound. Visual observations, as well as microbiological and cytological analysis of wound exudates demonstrated a significant acceleration of healing processes in a group of animals treated with a local injection of IL-1β and ceftriaxone encapsulated into RBC ghosts when compared to the animals treated either with a local or IM injection of free drugs. For the pharmacokinetic study, single IV injections of either free or encapsulated IL-1β were made and the concentration of IL-1β in serum samples and tissue homogenates were determined. Encapsulation in RBC ghosts improved pharmacokinetic profiles of IL-1β by increasing the half-life, reducing its clearance, and increasing the deposition of the drug in the liver, spleen and lungs. These data suggest that RBC ghosts are effective drug carriers for targeted delivery of cytokines to the sites of inflammation, and have a potential for improving the treatment outcomes of purulent diseases.
Collapse
|
140
|
Otero-Viñas M, Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv Wound Care (New Rochelle) 2016; 5:149-163. [PMID: 27076993 PMCID: PMC4817558 DOI: 10.1089/wound.2015.0627] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
Significance: Almost 7 million Americans have chronic cutaneous wounds and billions of dollars are spent on their treatment. The number of patients with nonhealing wounds keeps increasing worldwide due to an ever-aging population, increasing number of obese and diabetic patients, and cardiovascular disease. Recent Advances: Advanced treatments for difficult wounds are needed. Therapy with mesenchymal stem cells (MSCs) is attractive due to their differentiating potential, their immunomodulating properties, and their paracrine effects. Critical Issues: New technologies (including growth factors and skin substitutes) are now widely used for stimulating wound healing. However, in spite of these advances, the percentage of complete wound closure in most clinical situations is around 50-60%. Moreover, there is a high rate of wound recurrence. Future Directions: Recently, it has been demonstrated that MSCs speed up wound healing by decreasing inflammation, by promoting angiogenesis, and by decreasing scarring. However, there are some potential limitations to successful MSC therapy. These limitations include the need to improve cell delivery methods, cell viability, heterogeneity in MSC preparations, and suboptimal wound bed preparation. Further large, controlled clinical trials are needed to establish the safety of MSCs before widespread clinical application.
Collapse
Affiliation(s)
- Marta Otero-Viñas
- Dermatology Department, Boston University School of Medicine, Boston, Massachusetts
- The Tissue Repair and Regeneration Laboratory, Department of Systems Biology, Universitat de Vic—Universitat Central de Catalunya, Vic, Spain
| | - Vincent Falanga
- Dermatology Department, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
141
|
Thomsen K, Trøstrup H, Christophersen L, Lundquist R, Høiby N, Moser C. The phagocytic fitness of leucopatches may impact the healing of chronic wounds. Clin Exp Immunol 2016; 184:368-77. [PMID: 26830371 DOI: 10.1111/cei.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic non-healing wounds are significantly bothersome to patients and can result in severe complications. In addition, they are increasing in numbers, and a challenging problem to the health-care system. Handling of chronic, non-healing wounds can be discouraging due to lack of improvement, and a recent explanation can be the involvement of biofilm infections in the pathogenesis of non-healing wounds. Therefore, new treatment alternatives to improve outcome are continuously sought-after. Autologous leucopatches are such a new, adjunctive treatment option, showing promising clinical effects. However, the beneficial effect of the patches are not understood fully, although a major contribution is believed to be from the release of stimulating growth factors from activated thrombocytes within the leucopatch. Because the leucopatches also contain substantial numbers of leucocytes, the aim of the present study was to investigate the activity of the polymorphonuclear neutrophils (PMNs) within the leucopatch. By means of burst assay, phagocytosis assay, migration assay, biofilm killing assay and fluorescence in-situ hybridization (FISH) assay we showed significant respiratory burst in PMNs, active phagocytosis and killing of Pseudomonas aeruginosa by the leucopatch. In addition, bacterial-induced migration of PMNs from the leucopatch was shown, as well as uptake of P. aeruginosa by PMNs within the leucopatch. The present study substantiated that at least part of the beneficial clinical effect in chronic wounds by leucopatches is attributed to the activity of the PMNs in the leucopatch.
Collapse
Affiliation(s)
- K Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - H Trøstrup
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - L Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | | | - N Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - C Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| |
Collapse
|
142
|
Seghatchian J, Espinosa A, Burnouf T. Quality, safety and sustained therapeutic efficacy of blood-derived serum eye drops to treat dry eye syndrome: R&D road map for future progress. Transfus Apher Sci 2016; 54:168-9. [DOI: 10.1016/j.transci.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
143
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
144
|
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2015; 76:371-87. [PMID: 26561934 DOI: 10.1016/j.biomaterials.2015.10.065] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Mickey B C Koh
- Blood Services Group, Health Sciences Authority, Singapore; Department for Hematology, St George's Hospital and Medical School, London, UK
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
145
|
Martínez CE, Smith PC, Palma Alvarado VA. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol 2015; 6:290. [PMID: 26539125 PMCID: PMC4611136 DOI: 10.3389/fphys.2015.00290] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023] Open
Abstract
Platelet degranulation allows the release of a large amount of soluble mediators, is an essential step for wound healing initiation, and stimulates clotting, and angiogenesis. The latter process is one of the most critical biological events observed during tissue repair, increasing the growth of blood vessels in the maturing wound. Angiogenesis requires the action of a variety of growth factors that act in an appropriate physiological ratio to assure functional blood vessel restoration. Platelets release main regulators of angiogenesis: Vascular Endothelial Growth Factors (VEGFs), basic fibroblast growth factor (FGF-2), and Platelet derived growth factors (PDGFs), among others. In order to stimulate tissue repair, platelet derived fractions have been used as an autologous source of growth factors and biomolecules, namely Platelet Rich Plasma (PRP), Platelet Poor Plasma (PPP), and Platelet Rich Fibrin (PRF). The continuous release of these growth factors has been proposed to promote angiogenesis both in vitro and in vivo. Considering the existence of clinical trials currently evaluating the efficacy of autologous PRP, the present review analyses fundamental questions regarding the putative role of platelet derived fractions as regulators of angiogenesis and evaluates the possible clinical implications of these formulations.
Collapse
Affiliation(s)
- Constanza E Martínez
- Dentistry Academic Unit, Laboratory of Periodontal Biology and Regeneration, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Patricio C Smith
- Dentistry Academic Unit, Laboratory of Periodontal Biology and Regeneration, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Verónica A Palma Alvarado
- Laboratory of Stem Cells and Development, Faculty of Science, FONDAP Center for Genome Regulation, University of Chile Santiago, Chile
| |
Collapse
|
146
|
Piraino F, Selimović Š. A Current View of Functional Biomaterials for Wound Care, Molecular and Cellular Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:403801. [PMID: 26509154 PMCID: PMC4609773 DOI: 10.1155/2015/403801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023]
Abstract
The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM) with enzymes, cytokines, and growth factors. Distinct stages characterize the mammalian response to tissue injury: hemostasis, inflammation, new tissue formation, and tissue remodeling. Hemostasis and inflammation start right after the injury, while the formation of new tissue, along with migration and proliferation of cells within the wound site, occurs during the first week to ten days after the injury. In this review paper, we discuss approaches in tissue engineering and regenerative medicine to address each of these processes through the application of biomaterials, either as support to the native microenvironment or as delivery vehicles for functional hemostatic, antibacterial, or anti-inflammatory agents. Molecular therapies are also discussed with particular attention to drug delivery methods and gene therapies. Finally, cellular treatments are reviewed, and an outlook on the future of drug delivery and wound care biomaterials is provided.
Collapse
Affiliation(s)
- Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Šeila Selimović
- American Association for the Advancement of Science, Washington, DC 20520, USA
| |
Collapse
|
147
|
Tseng CL, Seghatchian J, Burnouf T. Animal models to assess the therapeutic efficacy of human serum and serum-converted platelet lysates for dry eye syndrome: Seeing is believing. Transfus Apher Sci 2015; 53:95-8. [DOI: 10.1016/j.transci.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
148
|
Reviakine I. New horizons in platelet research: Understanding and harnessing platelet functional diversity. Clin Hemorheol Microcirc 2015; 60:133-52. [DOI: 10.3233/ch-151942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
149
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
150
|
Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology 2015; 103:126-35. [DOI: 10.1007/s10266-015-0209-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
|