101
|
Allen GM, Lim WA. Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nat Rev Cancer 2022; 22:693-702. [PMID: 36175644 DOI: 10.1038/s41568-022-00505-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
In the past several decades, the development of cancer therapeutics has largely focused on precision targeting of single cancer-associated molecules. Despite great advances, such targeted therapies still show incomplete precision and the eventual development of resistance due to target heterogeneity or mutation. However, the recent development of cell-based therapies such as chimeric antigen receptor (CAR) T cells presents a revolutionary opportunity to reframe strategies for targeting cancers. Immune cells equipped with synthetic circuits are essentially living computers that can be programmed to recognize tumours based on multiple signals, including both tumour cell-intrinsic and microenvironmental. Moreover, cells can be programmed to launch broad but highly localized therapeutic responses that can limit the potential for escape while still maintaining high precision. Although these emerging smart cell engineering capabilities have yet to be fully implemented in the clinic, we argue here that they will become much more powerful when combined with machine learning analysis of genomic data, which can guide the design of therapeutic recognition programs that are the most discriminatory and actionable. The merging of cancer analytics and synthetic biology could lead to nuanced paradigms of tumour recognition, more akin to facial recognition, that have the ability to more effectively address the complex challenges of treating cancer.
Collapse
Affiliation(s)
- Greg M Allen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Cell Design Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wendell A Lim
- Cell Design Institute, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
102
|
Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022; 13:1063303. [PMID: 36483551 PMCID: PMC9723254 DOI: 10.3389/fimmu.2022.1063303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of cellular immunotherapy in the clinic has entirely redrawn the treatment landscape for a growing number of human cancers. Genetically reprogrammed immune cells, including chimeric antigen receptor (CAR)-modified immune effector cells as well as T cell receptor (TCR) therapy, have demonstrated remarkable responses across different hard-to-treat patient populations. While these novel treatment options have had tremendous success in providing long-term remissions for a considerable fraction of treated patients, a number of challenges remain. Limited in vivo persistence and functional exhaustion of infused immune cells as well as tumor immune escape and on-target off-tumor toxicities are just some examples of the challenges which restrain the potency of today's genetically engineered cell products. Multiple engineering strategies are being explored to tackle these challenges.The advent of multiplexed precision genome editing has in recent years provided a flexible and highly modular toolkit to specifically address some of these challenges by targeted genetic interventions. This class of next-generation cellular therapeutics aims to endow engineered immune cells with enhanced functionality and shield them from immunosuppressive cues arising from intrinsic immune checkpoints as well as the hostile tumor microenvironment (TME). Previous efforts to introduce additional genetic modifications into immune cells have in large parts focused on nuclease-based tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive platforms including base and prime editors have recently emerged and promise a potentially safer route to rewriting genetic sequences and introducing large segments of transgenic DNA without inducing double-strand breaks (DSBs). In this review, we discuss how these two exciting and emerging fields-cellular immunotherapy and precision genome editing-have co-evolved to enable a dramatic expansion in the possibilities to engineer personalized anti-cancer treatments. We will lay out how various engineering strategies in addition to nuclease-dependent and nuclease-inactive precision genome editing toolkits are increasingly being applied to overcome today's limitations to build more potent cellular therapeutics. We will reflect on how novel information-rich unbiased discovery approaches are continuously deepening our understanding of fundamental mechanisms governing tumor biology. We will conclude with a perspective of how multiplexed-engineered and gene edited cell products may upend today's treatment paradigms as they evolve into the next generation of more potent cellular immunotherapies.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medicine III, Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gohar Shahwar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
103
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
104
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
105
|
Lee S, Khalil AS, Wong WW. Recent progress of gene circuit designs in immune cell therapies. Cell Syst 2022; 13:864-873. [PMID: 36395726 PMCID: PMC9681026 DOI: 10.1016/j.cels.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The success of chimeric antigen receptor (CAR) T cell therapy against hematological cancers has convincingly demonstrated the potential of using genetically engineered cells as therapeutic agents. Although much progress has been achieved in cell therapy, more beneficial capabilities have yet to be fully explored. One of the unique advantages afforded by cell therapies is the possibility to implement genetic control circuits, which enables diverse signal sensing and logical processing for optimal response in the complex tumor microenvironment. In this perspective, we will first outline design considerations for cell therapy control circuits that address clinical demands. We will compare and contrast key design features in some of the latest control circuits developments and conclude by discussing potential future directions.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
106
|
Li HS, Wong NM, Tague E, Ngo JT, Khalil AS, Wong WW. High-performance multiplex drug-gated CAR circuits. Cancer Cell 2022; 40:1294-1305.e4. [PMID: 36084652 PMCID: PMC9669166 DOI: 10.1016/j.ccell.2022.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/09/2023]
Abstract
Chimeric antigen receptor (CAR) T cells can revolutionize cancer medicine. However, overactivation, lack of tumor-specific surface markers, and antigen escape have hampered CAR T cell development. A multi-antigen targeting CAR system regulated by clinically approved pharmaceutical agents is needed. Here, we present VIPER CARs (versatile protease regulatable CARs), a collection of inducible ON and OFF switch CAR circuits engineered with a viral protease domain. We established their controllability using FDA-approved antiviral protease inhibitors in a xenograft tumor and a cytokine release syndrome mouse model. Furthermore, we benchmarked VIPER CARs against other drug-gated systems and demonstrated best-in-class performance. We showed their orthogonality in vivo using the ON VIPER CAR and OFF lenalidomide-CAR systems. Finally, we engineered several VIPER CAR circuits by combining various CAR technologies. Our multiplexed, drug-gated CAR circuits represent the next progression in CAR design capable of advanced logic and regulation for enhancing the safety of CAR T cell therapy.
Collapse
Affiliation(s)
- Hui-Shan Li
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Nicole M Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Elliot Tague
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - John T Ngo
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
107
|
Watchmaker PB, Colton M, Pineo-Cavanaugh PL, Okada H. Future development of chimeric antigen receptor T cell therapies for patients suffering from malignant glioma. Curr Opin Oncol 2022; 34:661-669. [PMID: 35855503 PMCID: PMC9560977 DOI: 10.1097/cco.0000000000000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy has been successful in some haematologic malignancies, but the central nervous system (CNS) presents unique obstacles to its use against tumours arising therein. This review discusses recent improvements in the delivery and design of these cells to improve the efficacy and safety of this treatment against malignant gliomas. RECENT FINDINGS The immunosuppressive environment of the CNS affects the functionality of CAR T cells, but recent developments using metabolic manipulation and cytokine delivery have shown that the performance of CAR T cells can be improved in this environment. Emerging techniques can improve the delivery of CAR T cells to the CNS parenchyma, which is normally well protected from peripheral immune cells. The implementation of novel antigens and CAR-expression regulation strategies will improve the specificity and efficacy of these cells. Finally, although autologous T cells have historically been the standard, recent developments have made the use of allogeneic T cells or natural killer (NK) cells more clinically feasible. SUMMARY The discoveries highlighted in this review will aid the development of CAR cells that are safer, more resilient against immunosuppressive signals in the CNS, and able to specifically target intracranial tumour cells.
Collapse
Affiliation(s)
| | - Maggie Colton
- Department of Neurosurgery, University of California, San Francisco
| | | | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy
| |
Collapse
|
108
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
109
|
Lontos K, Wang Y, Colbert M, Kumar A, Joshi S, Philbin M, Wang Y, Frisch A, Lohmueller J, Rivadeneira DB, Delgoffe GM. Fully murine CD105-targeted CAR-T cells provide an immunocompetent model for CAR-T cell biology. Oncoimmunology 2022; 11:2131229. [PMID: 36275862 PMCID: PMC9586682 DOI: 10.1080/2162402x.2022.2131229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
The modeling of chimeric antigen receptor (CAR) T cell therapies has been mostly focused on immunodeficient models. However, there are many advantages in studying CAR-T cell biology in an immunocompetent setting. We generated a fully murine CAR targeting CD105 (endoglin), a component of the TGFβ receptor expressed on the surface of certain solid tumors and acute leukemias. CD105-targeted CAR-T cells can be grown from various murine backgrounds, tracked in vivo by congenic marks, and be activated by CD105 in isolation or expressed by tumor cells. CD105-targeted CAR-T cells were toxic at higher doses but proved safe in lower doses and modestly effective in treating wild-type B16 melanoma-bearing mice. CAR-T cells infiltrating the tumor expressed high levels of exhaustion markers and exhibited metabolic insufficiencies. We also generated a human CD105 CAR, which was efficacious in treating human melanoma and acute myeloid leukemia in vivo. Our work details a new murine model of CAR-T cell therapy that can be used from immunologists to further our understanding of CAR-T cell biology. We also set the foundation for further exploration of CD105 as a possible human CAR-T cell target.
Collapse
Affiliation(s)
- Konstantinos Lontos
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, UPMC, Pittsburgh, PA, USA
| | - Yiyang Wang
- School of Medicine, Tsinghua University, Beijing, Peking, China
| | - Mason Colbert
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Kumar
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Supriya Joshi
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Philbin
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Yupeng Wang
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, Peking, China
| | - Andrew Frisch
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jason Lohmueller
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dayana B. Rivadeneira
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M. Delgoffe
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
110
|
Abstract
Natural killer (NK) cells comprise a unique population of innate lymphoid cells endowed with intrinsic abilities to identify and eliminate virally infected cells and tumour cells. Possessing multiple cytotoxicity mechanisms and the ability to modulate the immune response through cytokine production, NK cells play a pivotal role in anticancer immunity. This role was elucidated nearly two decades ago, when NK cells, used as immunotherapeutic agents, showed safety and efficacy in the treatment of patients with advanced-stage leukaemia. In recent years, following the paradigm-shifting successes of chimeric antigen receptor (CAR)-engineered adoptive T cell therapy and the advancement in technologies that can turn cells into powerful antitumour weapons, the interest in NK cells as a candidate for immunotherapy has grown exponentially. Strategies for the development of NK cell-based therapies focus on enhancing NK cell potency and persistence through co-stimulatory signalling, checkpoint inhibition and cytokine armouring, and aim to redirect NK cell specificity to the tumour through expression of CAR or the use of engager molecules. In the clinic, the first generation of NK cell therapies have delivered promising results, showing encouraging efficacy and remarkable safety, thus driving great enthusiasm for continued innovation. In this Review, we describe the various approaches to augment NK cell cytotoxicity and longevity, evaluate challenges and opportunities, and reflect on how lessons learned from the clinic will guide the design of next-generation NK cell products that will address the unique complexities of each cancer.
Collapse
Affiliation(s)
- Tamara J Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
111
|
Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects. Cell Oncol (Dordr) 2022; 45:755-777. [PMID: 35943716 DOI: 10.1007/s13402-022-00700-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly prevalent solid cancer with a high-rise infiltration of immune cells, turning it into a significant candidate for tumor-specific immunotherapies. Chimeric antigen receptor (CAR)-T cells are emerging as immunotherapeutic tools with genetically engineered receptors to efficiently recognize and attack tumor cells that express specific target antigens. Technological advancements in CAR design have provided five generations of CAR-T cells applicable to a wide range of cancer patients while boosting CAR-T cell therapy safety. However, CAR-T cell therapy is ineffective against breast cancer because of the loss of specified antigens, the immunosuppressive nature of the tumor and CAR-T cell-induced toxicities. Next-generation CAR-T cells actively pass through the tumor vascular barriers, persist for extended periods and disrupt the tumor microenvironment (TME) to block immune escape. CONCLUSION CAR-T cell therapy embodies advanced immunotherapy for BC, but further pre-clinical and clinical assessments are recommended to achieve maximized efficiency and safety.
Collapse
|
112
|
Peng H, Nerreter T, Mestermann K, Wachter J, Chang J, Hudecek M, Rader C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022; 41:4104-4114. [PMID: 35859167 PMCID: PMC9398970 DOI: 10.1038/s41388-022-02416-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023]
Abstract
The success of chimeric antigen receptor T cell (CAR-T) therapy in the treatment of hematologic malignancies has prompted the development of numerous CAR-T technologies, including switchable CAR-T (sCAR-T) systems that combine a universal CAR-T with bispecific adapter proteins. Owing to their controllability and versatility, sCAR-Ts have received considerable attention. To explore the therapeutic utility of sCAR-Ts targeting the receptor tyrosine kinase ROR1, which is expressed in hematologic and solid malignancies, and to identify bispecific adaptor proteins that efficiently mediate universal CAR-T engagement, a panel of switches based on ROR1-targeting Fabs with different epitopes and affinities was compared in in vitro and in vivo models of ROR1-expressing cancers. For switches targeting overlapping or identical epitopes, potency correlated with affinity. Surprisingly, however, we identified a switch targeting a unique epitope with low affinity but mediating potent and selective antitumor activity in vitro and in vivo. Converted to a conventional CAR-T, the same anti-ROR1 mAb (324) outperformed a clinically investigated conventional CAR-T that is based on an anti-ROR1 mAb (R12) with ~200-fold higher affinity. Thus, demonstrating therapeutic utility on their own, sCAR-Ts also facilitate higher throughput screening for the identification of conventional CAR-T candidates for preclinical and clinical studies.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jakob Wachter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
113
|
Ren P, Zhang C, Li W, Wang X, Liang A, Yang G, Xu H, Ma P. CAR-T Therapy in Clinical Practice: Technical Advances and Current Challenges. Adv Biol (Weinh) 2022; 6:e2101262. [PMID: 35652169 DOI: 10.1002/adbi.202101262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/22/2022] [Indexed: 01/28/2023]
Abstract
Chimeric antigen receptors (CAR) redirect T cells to specifically recognize and eliminate tumor cells. CAR-T therapy has achieved successful clinical outcomes, and it has been transformed into commercially available products to treat acute lymphoblastic leukemia and B cell lymphoma. These breakthroughs have motivated hundreds of CAR-T clinical trials initiated each year, with ≈900 cases registered on the ClinicalTrials website till 2021. Accumulating clinical experiences have highlighted some limitations of this strategy, e.g., relapse after complete response, poor efficacy in solid tumors, on-target off-tumor toxicities, lack of persistence, and tumor resistance. These challenges limit the therapeutic application of CAR-T cells. Multidisciplinary approaches are actively investigated to address these issues. In this review, the antigens, CAR designs, and cell sources are summarized in clinical trials from 2020 to 2021. The innovative modular and programmable designs in CAR-T cells, including advances in signaling domains, antigen-recognition domains, T cell engineering, and cell resources, are further discussed. Integrative genetic and chemical engineering strategies are promising to improve the versatility, antitumor efficacy, persistence, and safety of CAR-T cells. In the future, the next generation of CAR-T cell therapies will offer more options for patients who are refractory to standard tumor therapies.
Collapse
Affiliation(s)
- Ping Ren
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chuyue Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xian Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Aibing Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Zhejiang Laboratory, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
114
|
Developing ROR1 Targeting CAR-T Cells against Solid Tumors in Preclinical Studies. Cancers (Basel) 2022; 14:cancers14153618. [PMID: 35892876 PMCID: PMC9331269 DOI: 10.3390/cancers14153618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T-cells (CAR-T) have demonstrated promising clinical benefits against B-cell malignancies. Yet, its application for solid tumors is still facing challenges. Unlike haematological cancers, solid tumors often lack good targets, which are ideally expressed on the tumor cells, but not by the normal healthy cells. Fortunately, receptor tyrosine kinase-like orphan receptor 1 (ROR1) is among a few good cancer targets that is aberrantly expressed on various tumors but has a low expression on normal tissue, suggesting it as a good candidate for CAR-T therapy. Here, we constructed two ROR1 CARs with the same antigen recognition domain that was derived from Zilovertamab but differing in hinge regions. Both CARs target ROR1+ cancer cells specifically, but CAR with a shorter IgG4 hinge exhibits a higher surface expression and better in vitro functionality. We further tested the ROR1 CAR-T in three human solid tumor xenografted mouse models. Our ROR1 CAR-T cells controlled the solid tumor growth without causing any severe toxicity. Our results demonstrated that ROR1 CAR-T derived from Zilovertamab is efficacious and safe to suppress ROR1+ solid tumors in vitro and in vivo, providing a promising therapeutic option for future clinical application.
Collapse
|
115
|
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H. The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Front Immunol 2022; 13:887471. [PMID: 35935930 PMCID: PMC9354605 DOI: 10.3389/fimmu.2022.887471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive cell therapy, which could modify and redirect T cells to specific tumor cells. Since CAR-T cell therapy was first approved for B cell-derived malignancies in 2017, it has yielded unprecedented progress in hematological tumors and has dramatically reshaped the landscape of cancer therapy in recent years. Currently, cumulative evidence has demonstrated that CAR-T cell therapy could be a viable therapeutic strategy for solid cancers. However, owing to the immunosuppressive tumor microenvironment (TME) and heterogenous tumor antigens, the application of CAR-T cell therapy against solid cancers requires circumventing more challenging obstacles. Breast cancer is characterized by a high degree of invasiveness, malignancy, and poor prognosis. The review highlights the underlying targets of CAR-T cell therapy in breast cancer, summarizes the challenges associated with CAR-T cell therapy, and proposes the strategies to overcome these challenges, which provides a novel approach to breast cancer treatment.
Collapse
|
116
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C, Wang Y, Huang R, Li K, Lei Y, Huang Y. Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Front Immunol 2022; 13:871661. [PMID: 35911706 PMCID: PMC9334018 DOI: 10.3389/fimmu.2022.871661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
117
|
Yu T, Yu SK, Xiang Y, Lu KH, Sun M. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Front Immunol 2022; 13:936496. [PMID: 35903099 PMCID: PMC9315443 DOI: 10.3389/fimmu.2022.936496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have enormous potentials for clinical therapies. The CAR-T therapy has been approved for treating hematological malignancies. However, their application is limited in solid tumors owing to antigen loss and mutation, physical barriers, and an immunosuppressive tumor microenvironment. To overcome the challenges of CAR-T, increasing efforts are put into developing CAR-T to expand its applied ranges. Varied receptors are utilized for recognizing tumor-associated antigens and relieving immunosuppression. Emerging co-stimulatory signaling is employed for CAR-T activation. Furthermore, other immune cells such as NK cells and macrophages have manifested potential for delivering CAR. Hence, we collected and summarized the last advancements of CAR engineering from three aspects, namely, the ectodomains, endogenous domains, and immune cells, aiming to inspire the design of next-generation adoptive immunotherapy for treating solid tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| |
Collapse
|
118
|
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Rev Med Virol 2022; 32:e2325. [PMID: 35037732 DOI: 10.1002/rmv.2325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has made improvements due to the advances in chimaeric antigen receptor (CAR) T cell development, offering a promising treatment option for patients who have failed to respond to traditional treatments. In light of the successful use of adoptive CAR T cell therapy for cancer, researchers have been inspired to develop CARs for the treatment of other diseases beyond cancers such as viral infectious diseases. Nonetheless, various obstacles limit the efficacy of CAR T cell therapies and prevent their widespread usage. Severe toxicities, poor in vivo persistence, antigen escape, and heterogeneity, as well as off-target effect, are key challenges that must all be addressed to broaden the application of CAR T cells to a wider spectrum of diseases. The key advances in CAR T cell treatment for cancer and viral infections are reviewed in this article. We will also discuss revolutionary CAR T cell products developed to improve and enhance the therapeutic advantages of these treatments.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, The Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
119
|
Erickson TA, Shih YP, Fass J, Jang M, Tran E. T Cells Engineered to Express Immunoreceptors Targeting the Frequently Expressed Medullary Thyroid Cancer Antigens Calcitonin, CEA, and RET M918T. Thyroid 2022; 32:789-798. [PMID: 35587601 DOI: 10.1089/thy.2022.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Medullary thyroid cancer (MTC) is a rare malignancy originating from the calcitonin-producing C cells of the thyroid. Despite recent therapeutic advances, metastatic MTC remains incurable. Adoptive cell therapy (ACT) using genetically engineered T cells targeting either tissue-restricted tumor-associated antigens or mutated neoantigens has led to durable remissions in other metastatic solid tumors. The majority of MTC express the tumor-associated antigens calcitonin and carcinoembryonic antigen (CEA), and ∼40% of MTC harbor the RET M918T oncogenic driver mutation. Methods: We developed and characterized three immunoreceptors that recognize extracellular CEA, a calcitonin epitope presented by HLA-A*24:02, or an RET M918T neoepitope restricted by HLA-DPB1*04:01/02. The chimeric antigen receptor (CAR) targeting CEA was synthetically designed, while the T cell receptors (TCRs) targeting calcitonin and RET M918T were isolated from a transgenic mouse and patient with MTC, respectively. These immunoreceptors were genetically engineered into peripheral blood T cells and tested for antigen specificity and antitumor activity. Results: T cells expressing the anti-CEA CAR or the calcitonin-reactive TCR produced effector cytokines and displayed cytotoxicity against cell lines expressing their cognate antigen in vitro. In immunodeficient mice harboring a human MTC cell line, the adoptive transfer of T cells engineered to express the anti-CEA CAR or calcitonin-reactive TCR led to complete tumor regression. T cells expressing the HLA-DPB1*04:01/02-restricted TCR targeting RET M918T, which was cloned from peripheral blood CD4+ T cells of a patient with MTC, demonstrated specific reactivity against cells pulsed with the mutated peptide and MTC tumor cells that expressed HLA-DPB1*04:01 and RET M918T. Conclusion: The preclinical data presented herein demonstrate the potential of using genetically engineered T cells targeting CEA, calcitonin, and/or RET M918T to treat metastatic MTC.
Collapse
Affiliation(s)
- Tim Andrew Erickson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Yi-Ping Shih
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Joseph Fass
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Myungkyu Jang
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Eric Tran
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
120
|
Current Status and Perspectives of Dual-Targeting Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133230. [PMID: 35805001 PMCID: PMC9265066 DOI: 10.3390/cancers14133230] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
Single-targeted chimeric antigen receptor (CAR) T cells tremendously improve outcomes for patients with relapsed/refractory hematological malignancies and are considered a breakthrough therapy. However, over half of treated patients experience relapse or refractory disease, with antigen escape being one of the main contributing mechanisms. Dual-targeting CAR T-cell therapy is being developed to minimize the risk of relapse or refractory disease. Preclinical and clinical data on five categories of dual-targeting CAR T-cell therapies and approximately fifty studies were summarized to offer insights and support the development of dual-targeting CAR T-cell therapy for hematological malignancies. The clinical efficacy (durability and survival) is validated and the safety profiles of dual-targeting CAR T-cell therapy are acceptable, although there is still room for improvement in the bispecific CAR structure. It is one of the best approaches to optimize the bispecific CAR structure by boosting T-cell transduction efficiency and leveraging evidence from preclinical activity and clinical efficacy.
Collapse
|
121
|
Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines 2022; 10:biomedicines10071493. [PMID: 35884798 PMCID: PMC9313317 DOI: 10.3390/biomedicines10071493] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs. Other immune cell types, including natural killer (NK) cells and macrophages, have also been engineered to express CARs to treat cancer. Additionally, CAR technology has been adapted in novel approaches to treating autoimmune disease and other conditions and diseases. In this article, we review these recent advancements in alternative CAR therapies and design, as well as their mechanisms of action, challenges in application, and potential future directions.
Collapse
|
122
|
Benzaoui M, Taylor N, Shah NN. A SNIPpet of safety: a Goldilocks approach in CAR-T therapy. Cell Res 2022; 32:603-604. [PMID: 35739237 DOI: 10.1038/s41422-022-00682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mehdi Benzaoui
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. .,Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
123
|
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F, Savai R. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13:903562. [PMID: 35720364 PMCID: PMC9201083 DOI: 10.3389/fimmu.2022.903562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present treatments for lung cancer include surgical resection, radiation, chemotherapy, targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of lung cancer has not been substantially improved in recent years. Chimeric antigen receptor (CAR)-T cell immunotherapy has attracted growing interest in the treatment of various malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option with promising results in refractory and relapsed leukemia, many challenges limit its therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have identified several obstacles to the effective use of CAR-T cell therapy including antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities; and discuss strategies to improve therapeutic efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Prameela Kandra
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Visakhapatnam, India
| | - Rajender Nandigama
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Bastian Eul
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Member of the Deutsches Zentrum für Lungenforschung (DZL), University Hospital Munich, Munich, Germany.,German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Munich, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
124
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
125
|
Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and Prospect of Immunotherapy for Triple-Negative Breast Cancer. Front Oncol 2022; 12:919072. [PMID: 35795050 PMCID: PMC9251310 DOI: 10.3389/fonc.2022.919072] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer (estimated 2.3 million new cases in 2020) and the leading cause of cancer death (estimated 685,000 deaths in 2020) in women globally. Breast cancers have been categorized into four major molecular subtypes based on the immunohistochemistry (IHC) expression of classic hormone and growth factor receptors including the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), as well as a proliferation marker Ki-67 protein expression. Triple-negative breast cancer (TNBC), a breast cancer subtype lacking ER, PR, and HER2 expression, is associated with a high metastatic potential and poor prognosis. TNBC accounts for approximately only 15%-20% of new breast cancer diagnoses; it is responsible for most breast cancer-related deaths due to the lack of targeted treatment options for this patient population, and currently, systemic chemotherapy, radiation, and surgical excision remain the major treatment modalities for these patients with TNBC. Although breast cancer patients in general do not have a robust response to the immunotherapy, a subset of TNBC has been demonstrated to have high tumor mutation burden and high tumor-infiltrating lymphocytes, resembling the features observed on melanoma or lung cancers, which can benefit from the treatment of immune checkpoint inhibitors (ICIs). Therefore, the immunogenic nature of this aggressive disease has presented an opportunity for the development of TNBC-targeting immunotherapies. The recent US Food and Drug Administration approval of atezolizumab in combination with the chemotherapeutic agent nab-paclitaxel for the treatment of PD-L1-positive unresectable, locally advanced, or metastatic TNBC has led to a new era of immunotherapy in TNBC treatment. In addition, immunotherapy becomes an active research area, both in the cancer biology field and in the oncology field. In this review, we will extend our coverage on recent discoveries in preclinical research and early results in clinical trials from immune molecule-based therapy including cytokines, monoclonal antibodies, antibody-drug conjugates, bi-specific or tri-specific antibodies, ICIs, and neoantigen cancer vaccines; oncolytic virus-based therapies and adoptive immune cell transfer-based therapies including TIL, chimeric antigen receptor-T (CAR-T), CAR-NK, CAR-M, and T-cell receptor-T. In the end, we will list a series of the challenges and opportunities in immunotherapy prospectively and reveal novel technologies such as high-throughput single-cell sequencing and CRISPR gene editing-based screening to generate new knowledges of immunotherapy.
Collapse
Affiliation(s)
- Chenyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute of Beijing University of Chinese Medicine, Shenzhen, China
| | - Peipei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute of Beijing University of Chinese Medicine, Shenzhen, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute of Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
126
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
127
|
Gao TA, Chen YY. Engineering Next-Generation CAR-T Cells: Overcoming Tumor Hypoxia and Metabolism. Annu Rev Chem Biomol Eng 2022; 13:193-216. [PMID: 35700528 DOI: 10.1146/annurev-chembioeng-092120-092914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) have shown remarkable success in treating B-cell malignancies, reflected by multiple US Food and Drug Administration-approved CAR-T cell products currently on the market. However, various obstacles have thus far limited the use of approved products and constrained the efficacy of CAR-T cell therapy against solid tumors. Overcoming these obstacles will necessitate multidimensional CAR-T cell engineering approaches and better understanding of the intricate tumor microenvironment (TME). Key challenges include treatment-related toxicity, antigen escape and heterogeneity, and the highly immunosuppressive profile of the TME. Notably, the hypoxic and nutrient-deprived nature of the TME severely attenuates CAR-T cell fitness and efficacy, highlighting the need for more sophisticated engineering strategies. In this review, we examine recent advances in protein- and cell-engineering strategies to improve CAR-T cell safety and efficacy, with an emphasis on overcoming immunosuppression induced by tumor metabolism and hypoxia.
Collapse
Affiliation(s)
- Torahito A Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; , .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.,Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
128
|
Designer protein circuits enable safe cancer immunotherapy. Nature 2022; 606:868-869. [PMID: 35654967 DOI: 10.1038/d41586-022-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
130
|
Labanieh L, Majzner RG, Klysz D, Sotillo E, Fisher CJ, Vilches-Moure JG, Pacheco KZB, Malipatlolla M, Xu P, Hui JH, Murty T, Theruvath J, Mehta N, Yamada-Hunter SA, Weber EW, Heitzeneder S, Parker KR, Satpathy AT, Chang HY, Lin MZ, Cochran JR, Mackall CL. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 2022; 185:1745-1763.e22. [PMID: 35483375 PMCID: PMC9467936 DOI: 10.1016/j.cell.2022.03.041] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robbie G Majzner
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris J Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kaithlen Zen B Pacheco
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica H Hui
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
131
|
DiAndreth B, Hamburger AE, Xu H, Kamb A. The Tmod cellular logic gate as a solution for tumor-selective immunotherapy. Clin Immunol 2022; 241:109030. [PMID: 35561999 DOI: 10.1016/j.clim.2022.109030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Immune cells that are engineered with receptors to integrate signals from multiple antigens offer a promising route to achieve the elusive property of therapeutic selectivity in cancer patients. Several types of multi-signal integrators have been described, among them mechanisms that pair activating and inhibitory receptors which are termed NOT gates by analogy to logical operations performed by machines. Here we review one such NOT-gated signal integrator called the Tmod system which is being developed for patients with solid tumors. Coupled with rigorous selection for patients with defined lesions in their tumor genomes (loss of heterozygosity), the Tmod approach presents an unusual opportunity to create truly selective therapies for certain cancer patients. Several of these agents are advancing toward the clinic, supported by a large body of quantitative preclinical data.
Collapse
Affiliation(s)
| | | | - Han Xu
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA 91301, USA
| | - Alexander Kamb
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA 91301, USA.
| |
Collapse
|
132
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
133
|
Liu J, Tu X, Liu L, Fang W. Advances in CAR-T cell therapy for malignant solid tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:175-184. [PMID: 36161290 DOI: 10.3724/zdxbyxb-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
T cells modified by chimeric antigen receptor (CAR) have the advantage of major histocompatibility complex-independent recognition of tumor-associated antigens, so can achieve efficient response to tumor targets. Chimeric antigen receptor (CAR) T cell therapy has shown a good therapeutic effect in hematological malignancies; however, its efficacy is generally not satisfactory for solid tumors. The reasons include the lack of tumor specific antigen target on solid tumors, the uncertainty of homing ability of engineered T cells and the inhibitory immune microenvironment of tumors. In clinical trials, the targets of CAR-T cell therapy for solid tumors are mainly disialoganglioside (GD2), claudin-18 isoform 2 (CLDN18.2), mesenchymal, B7 homolog 3 (B7H3), glypican (GPC) 3 and epidermal growth factor receptor variant Ш (EGFRvШ)Ⅲ. Combination of CAR-T cells with oncolytic viruses, tyrosine kinase inhibitors, and programmed death ligand-1 monoclonal antibodies may increase its efficacy. The CAR-T cell therapy for solid tumors can be optimized through gene editing to enhance the activity of CAR-T cells, adding corresponding regulatory components to make the activation of CAR-T cells safer and more controllable, and enhancing the persistence of CAR-T cells. In this article, we review the latest advances of CAR-T cell therapy in solid tumors to provide new insights for clinical application.
Collapse
Affiliation(s)
- Jiao Liu
- 1. Department of General Medicine, People's Hospital of Changshan County, Quzhou 324200, Zhejiang Province, China
| | - Xiaoxuan Tu
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| | - Lulu Liu
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| | - Weijia Fang
- 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China
| |
Collapse
|
134
|
Zhu I, Liu R, Garcia JM, Hyrenius-Wittsten A, Piraner DI, Alavi J, Israni DV, Liu B, Khalil AS, Roybal KT. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 2022; 185:1431-1443.e16. [PMID: 35427499 PMCID: PMC9108009 DOI: 10.1016/j.cell.2022.03.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Raymond Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Axel Hyrenius-Wittsten
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Divya V Israni
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Bin Liu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94110, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA; UCSF Cell Design Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
135
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
136
|
Shaffer JM, Greenwald I. SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction in vivo. Dev Cell 2022; 57:930-944.e6. [PMID: 35413239 PMCID: PMC9473748 DOI: 10.1016/j.devcel.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Notch-mediated lateral specification is a fundamental mechanism to resolve stochastic cell fate choices by amplifying initial differences between equivalent cells. To study how stochastic events impact Notch activity, we developed a biosensor, SALSA (sensor able to detect lateral signaling activity), consisting of an amplifying "switch"-Notch tagged with TEV protease-and a "reporter"-GFP fused to a nuclearly localized red fluorescent protein, separated by a TEVp cut site. When ligand activates Notch, TEVp enters the nucleus and releases GFP from its nuclear tether, allowing Notch activation to be quantified based on the changes in GFP subcellular localization. We show that SALSA accurately reports Notch activity in different signaling paradigms in Caenorhabditis elegans and use time-lapse imaging to test hypotheses about how stochastic elements ensure a reproducible and robust outcome in a canonical lin-12/Notch-mediated lateral signaling paradigm. SALSA should be generalizable to other experimental systems and be adaptable to increase options for bespoke "SynNotch" applications.
Collapse
Affiliation(s)
- Justin M Shaffer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
137
|
Miao L, Zhang J, Huang B, Zhang Z, Wang S, Tang F, Teng M, Li Y. Special Chimeric Antigen Receptor (CAR) Modifications of T Cells: A Review. Front Oncol 2022; 12:832765. [PMID: 35392217 PMCID: PMC8981721 DOI: 10.3389/fonc.2022.832765] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) -T cell therapy has become one of the hot topics in tumor immunity research in recent years. Although CAR-T cell therapy is highly effective in treating hematological malignancies, there are numerous obstacles that prevent CAR-T cells from having anti-tumor effects. Traditional CARs, from the first to the fourth generation, are incapable of completely overcoming these challenges. Therefore, identifying ways to boost the efficacy of CAR-T cells by utilizing the limited tumor surface antigens has become an urgent area of research. Certain special CARs that have special structures, special systems, or are greatly improved on the basis of traditional CARs, such as tandem CAR, dual-signaling CARs, AND-gate CARs, inhibitory CAR, AND-NOT CARs, CARs with three scFvs, ON/OFF-switch CARs, and universal CARs have been introduced. This study aims to use these special CARs to improve the anti-tumor ability, accuracy, and safety of CAR-T cells. In addition to summarizing various special CARs of T cells, this paper also expounds some of our own conjectures, aiming to provide reference and inspiration for CARs researchers.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Juan Zhang
- Department of Hematology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Muzhou Teng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China.,Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China.,Lanzhou University, Lanzhou, China
| |
Collapse
|
138
|
Abbott RC, Hughes-Parry HE, Jenkins MR. To go or not to go? Biological logic gating engineered T cells. J Immunother Cancer 2022; 10:jitc-2021-004185. [PMID: 35379738 PMCID: PMC8981284 DOI: 10.1136/jitc-2021-004185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/22/2022] Open
Abstract
Genetically engineered T cells have been successfully used in the treatment of hematological malignancies, greatly increasing both progression-free and overall survival in patients. However, the outcomes of patients treated with Chimeric Antigen Receptor (CAR) T cells targeting solid tumors have been disappointing. There is an unmet clinical need for therapies which are specifically designed to overcome the challenges associated with solid tumors such as tumor heterogeneity and antigen escape. Genetic engineering employing the use of biological logic gating in T cells is an emerging and cutting-edge field that may address these issues. The advantages of logic gating include localized secretion of anti-tumor proteins into the tumor microenvironment, multi antigen targeting of tumors and a potential increase in safety when targeting tumor antigens which may not be exclusively tumor specific. In this review, we introduce the concept of biological logic gating and how this technology addresses some of the challenges of current CAR T treatment. We outline the types of logic gating circuits and finally discuss the application of this new technology to engineered T cells, in the treatment of cancer.
Collapse
Affiliation(s)
- Rebecca C Abbott
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hannah E Hughes-Parry
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Misty R Jenkins
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
139
|
Ruppel KE, Fricke S, Köhl U, Schmiedel D. Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Front Immunol 2022; 13:822298. [PMID: 35371071 PMCID: PMC8971283 DOI: 10.3389/fimmu.2022.822298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapies utilize the capabilities of the immune system to efficiently target malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed promising results against B cell lymphomas. Autologous CAR-T cells require patient-specific manufacturing and thus extensive production facilities, resulting in high priced therapies. Along with potentially severe side effects, these are the major drawbacks of CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped immune cells. Since NK cells can be safely transferred from healthy donors to cancer patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy. However, administration of activated NK cells in cancer therapy has until now shown poor anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and improving clinical efficacy. Although the cell biology of T and NK cells deviates in many aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we underline the unique properties of NK cells and their potential in CAR therapies. First, we summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-specific CAR designs promise superior efficacy compared to designs developed for T cells. We summarize current findings and developments in the CAR-NK landscape: different CAR formats and modifications to optimize signaling, to target a broader pool of antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell engineering, including expansion and manufacturing, that need to be addressed to pave the way for CAR-NK therapies from the bench to the clinics.
Collapse
Affiliation(s)
- Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for GMP Process Development & ATMP Design, Leipzig, Germany
- *Correspondence: Dominik Schmiedel,
| |
Collapse
|
140
|
Chen L, Chen F, Li J, Pu Y, Yang C, Wang Y, Lei Y, Huang Y. CAR-T cell therapy for lung cancer: Potential and perspective. Thorac Cancer 2022; 13:889-899. [PMID: 35289077 PMCID: PMC8977151 DOI: 10.1111/1759-7714.14375] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the highest incidence and mortality of all cancers around the world. In the present immunotherapy era, an increasing number of immunotherapeutic agents including monoclonal antibody‐targeted drugs have been used in the clinical treatment of malignancy, but it still has many limitations. Chimeric antigen receptor‐modified T (CAR‐T) cells, a novel adoptive immunotherapy strategy, have not only been used successfully against hematological tumors, but have also opened up new avenues for immunotherapy of solid tumors, including lung cancer. However, targeting lung cancer‐specific antigens using engineered CAR‐T cells is complicated by the lack of proper tumor‐specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR‐T cell infiltration into tumor tissues, along with off‐target effect, etc. Simultaneously, the clinical application of CAR‐T cells remains limited because of many challenges such as tumor lysis syndrome, neurotoxicity syndrome, and cytokine release syndrome. In this review, we outline the basic structure and generation characteristic of CAR‐T cells and summarize the common tumor‐associated antigens in clinical trials of CAR‐T cell therapy for lung cancer, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for the pre‐clinical experiments and clinical trials of CAR‐T cell therapy in lung cancer.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
141
|
Sandberg ML, Wang X, Martin AD, Nampe DP, Gabrelow GB, Li CZ, McElvain ME, Lee WH, Shafaattalab S, Martire S, Fisher FA, Ando Y, Liu E, Ju D, Wong LM, Xu H, Kamb A. A carcinoembryonic antigen-specific cell therapy selectively targets tumor cells with HLA loss of heterozygosity in vitro and in vivo. Sci Transl Med 2022; 14:eabm0306. [PMID: 35235342 DOI: 10.1126/scitranslmed.abm0306] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CEACAM5 gene product [carcinoembryonic antigen (CEA)] is an attractive target for colorectal cancer because of its high expression in virtually all colorectal tumors and limited expression in most healthy adult tissues. However, highly active CEA-directed investigational therapeutics have been reported to be toxic, causing severe colitis because CEA is expressed on normal gut epithelial cells. Here, we developed a strategy to address this toxicity problem: the Tmod dual-signal integrator. CEA Tmod cells use two receptors: a chimeric antigen receptor (CAR) activated by CEA and a leukocyte Ig-like receptor 1 (LIR-1)-based inhibitory receptor triggered by human leukocyte antigen (HLA)-A*02. CEA Tmod cells exploit instances of HLA heterozygous gene loss in tumors to protect the patient from on-target, off-tumor toxicity. CEA Tmod cells potently killed CEA-expressing tumor cells in vitro and in vivo. But in contrast to a traditional CEA-specific T cell receptor transgenic T cell, Tmod cells were highly selective for tumor cells even when mixed with HLA-A*02-expressing cells. These data support further development of the CEA Tmod construct as a therapeutic candidate for colorectal cancer.
Collapse
Affiliation(s)
- Mark L Sandberg
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Xueyin Wang
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Aaron D Martin
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Daniel P Nampe
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Grant B Gabrelow
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Chuck Z Li
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Michele E McElvain
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Wen-Hua Lee
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Sanam Shafaattalab
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | | | - Fernando A Fisher
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Yuta Ando
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Edwin Liu
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - David Ju
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Lu Min Wong
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Han Xu
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Alexander Kamb
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| |
Collapse
|
142
|
Wu Y, Huang Z, Harrison R, Liu L, Zhu L, Situ Y, Wang Y. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022; 6:011502. [PMID: 35071966 PMCID: PMC8769768 DOI: 10.1063/5.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T therapy one step closer to safer and wider applications, especially for solid tumors.
Collapse
Affiliation(s)
- Yiqian Wu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ziliang Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Harrison
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yinglin Situ
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
143
|
Manhas J, Edelstein HI, Leonard JN, Morsut L. The evolution of synthetic receptor systems. Nat Chem Biol 2022; 18:244-255. [PMID: 35058646 PMCID: PMC9041813 DOI: 10.1038/s41589-021-00926-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell's interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved-a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a 'metric-enabled approach for synthetic receptor engineering' (MEASRE).
Collapse
Affiliation(s)
- Janvie Manhas
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
144
|
Luginbuehl V, Abraham E, Kovar K, Flaaten R, Müller AMS. Better by design: What to expect from novel CAR-engineered cell therapies? Biotechnol Adv 2022; 58:107917. [PMID: 35149146 DOI: 10.1016/j.biotechadv.2022.107917] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptor (CAR) technology, and CAR-T cells in particular, have emerged as a new and powerful tool in cancer immunotherapy since demonstrating efficacy against several hematological malignancies. However, despite encouraging clinical results of CAR-T cell therapy products, a significant proportion of patients do not achieve satisfactory responses, or relapse. In addition, CAR-T cell applications to solid tumors is still limited due to the tumor microenvironment and lack of specifically targetable tumor antigens. All current products on the market, as well as most investigational CAR-T cell therapies, are autologous, using the patient's own peripheral blood mononuclear cells as starting material to manufacture a patient-specific batch. Alternative cell sources are, therefore, under investigation (e.g. allogeneic cells from an at least partially human leukocyte antigen (HLA)-matched healthy donor, universal "third-party" cells from a non-HLA-matched donor, cord blood-derived cells, immortalized cell lines or cells differentiated from induced pluripotent stem cells). However, genetic modifications of CAR-engineered cells, bioprocesses used to expand cells, and improved supply chains are still complex and costly. To overcome drawbacks associated with CAR-T technologies, novel CAR designs have been used to genetically engineer cells derived from alpha beta (αβ) T cells, other immune cells such as natural killer (NK) cells, gamma delta (γδ) T cells, macrophages or dendritic cells. This review endeavours to trigger ideas on the next generation of CAR-engineered cell therapies beyond CAR-T cells and, thus, will enable effective, safe and affordable therapies for clinical management of cancer. To achieve this, we present a multidisciplinary overview, addressing a wide range of critical aspects: CAR design, development and manufacturing technologies, pharmacological concepts and clinical applications of CAR-engineered cell therapies. Each of these fields employs a large number of ground-breaking scientific advances, where coordinated and complex process and product development occur at their interfaces.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Novartis Oncology, Cell & Gene Therapy, Novartis Pharma Schweiz AG, Rotkreuz, Switzerland.
| | - Eytan Abraham
- Personalized Medicine Lonza Pharma&Biotech, Lonza Ltd., Walkersville, MD, USA
| | | | - Richard Flaaten
- Novartis Oncology, Cell & Gene Therapy, Novartis Norge AS, Oslo, Norway
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
145
|
Simon S, Bugos G, Salter AI, Riddell SR. Synthetic receptors for logic gated T cell recognition and function. Curr Opin Immunol 2022; 74:9-17. [PMID: 34571290 PMCID: PMC8901444 DOI: 10.1016/j.coi.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 02/03/2023]
Abstract
Adoptive cell therapy with T cells engineered with customized receptors that redirect antigen specificity to cancer cells has emerged as an effective therapeutic approach for many malignancies. Toxicity due to on target or off target effects, antigen heterogeneity on cancer cells, and acquired T cell dysfunction have been identified as barriers that can hinder successful therapy. This review will discuss recent advances in T cell engineering that have enabled the application of logic gates in T cells that can mimic the integration of natural signaling pathways and act in a cell intrinsic or extrinsic fashion to precisely target tumor cells and regulate effector functions, potentially overcoming these barriers to effective therapy.
Collapse
Affiliation(s)
- Sylvain Simon
- Fred Hutchinson Cancer Research Center, University of Washington
| | - Grace Bugos
- Fred Hutchinson Cancer Research Center, University of Washington,Department of Immunology, University of Washington
| | - Alex I. Salter
- Fred Hutchinson Cancer Research Center, University of Washington,Department of Medicine, University of Washington, Seattle WA
| | - Stanley R. Riddell
- Fred Hutchinson Cancer Research Center, University of Washington,Department of Immunology, University of Washington,Department of Medicine, University of Washington, Seattle WA
| |
Collapse
|
146
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
147
|
Hanssens H, Meeus F, De Veirman K, Breckpot K, Devoogdt N. The antigen-binding moiety in the driver's seat of CARs. Med Res Rev 2022; 42:306-342. [PMID: 34028069 PMCID: PMC9292017 DOI: 10.1002/med.21818] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.
Collapse
Affiliation(s)
- Heleen Hanssens
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fien Meeus
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Kim De Veirman
- Laboratory of Hematology and ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging LaboratoryVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
148
|
Tan ZC, Orcutt-Jahns BT, Meyer AS. A quantitative view of strategies to engineer cell-selective ligand binding. Integr Biol (Camb) 2021; 13:269-282. [PMID: 34931243 DOI: 10.1093/intbio/zyab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only expressed at subtly different levels relative to off-target cells. More complex binding strategies have been developed to overcome this limitation, including multi-specific and multivalent molecules, creating a combinatorial explosion of design possibilities. Guiding strategies for developing cell-specific binding are critical to employ these tools. Here, we employ a uniquely general multivalent binding model to dissect multi-ligand and multi-receptor interactions. This model allows us to analyze and explore a series of mechanisms to engineer cell selectivity, including mixtures of molecules, affinity adjustments, valency changes, multi-specific molecules and ligand competition. Each of these strategies can optimize selectivity in distinct cases, leading to enhanced selectivity when employed together. The proposed model, therefore, provides a comprehensive toolkit for the model-driven design of selectively binding therapies.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA
| | - Brian T Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90024, USA.,Department of Bioengineering, University of California, Los Angeles, CA 90024, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
149
|
Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246157. [PMID: 34944782 PMCID: PMC8699597 DOI: 10.3390/cancers13246157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Allogeneic hematopoietic cell transplantation (allo-HCT) has been the only potentially curative treatment for the majority of patients. The ability of chimeric antigen receptor (CAR)-modified T-cell therapy directed against the CD19 antigen to induce durable remissions in patients with acute lymphoblastic leukemia (ALL) has provided optimism that this novel treatment paradigm can be extrapolated to AML. In this review, we provide an overview of candidate target antigens for CAR-T-cells in AML, an update on recent progress in preclinical and clinical development of investigational CAR-T-cell products, and discuss challenges for the clinical implementation of CAR-T-cell therapy in AML. Abstract Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.
Collapse
|
150
|
Cucchiaro B, Weekes CE. Systematic review of nutrition support interventions in adult haematology and oncology patients receiving CAR T cell therapy. Clin Nutr ESPEN 2021; 46:60-65. [PMID: 34857249 DOI: 10.1016/j.clnesp.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS Chimeric Antigen Receptor (CAR) T cell therapy is a novel adoptive immunotherapy that is revolutionising the treatment of haematological malignancies and solid tumours. Maintaining a patient's nutritional status and implementing nutrition support interventions have been shown to improve certain patient outcomes in standard anti-cancer therapies; however, guidance for nutrition support interventions in CAR T cell therapy are lacking. The primary aim of this review was to determine the impact of nutrition support interventions on patient-centred outcomes for adult CAR T cell therapy haematology and oncology patients. The patient-centred outcomes of interest included nutritional status and dietary intake, morbidity, functional status, and mortality. Our secondary aim was to describe the nutrition implications that have been acknowledged (but not fully evaluated) in CAR T cell therapy, and to guide future research and practice. METHODS Four electronic databases (CENTRAL, Embase, MEDLINE and CINAHL) were searched to January 2021, with additional records identified through handsearching and snowballing. Studies considered eligible for inclusion were randomised control trials (RCT), quasi-RCTs, cohort and observational studies, assessing nutrition support interventions (oral, enteral and/or parenteral) in adult haematology and oncology patients receiving CAR T cell therapy or adoptive immunotherapy. No publication status, year or language restrictions were applied. RESULTS Two authors reviewed the title and abstracts of 1181 retrieved records; however no studies were eligible for inclusion in this systematic review. CONCLUSIONS We are currently unable to identify if there is an association between nutrition support interventions and outcomes in CAR T cell therapy for adults with haematological malignancies or solid tumours. Lower quality clinical studies and animal models were identified that permitted us to qualitatively describe the risks for poor nutritional status in this population. This empty review confirms the need for research into the potential impact of nutrition support in CAR T cell therapy, including well-designed RCTs.
Collapse
Affiliation(s)
- B Cucchiaro
- Nutrition and Dietetics Department, University College London Hospitals NHS Foundation Trust, 3rd Floor East, 250 Euston Road, London NW1 2PG United Kingdom.
| | - C E Weekes
- Nutrition and Dietetics Department, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH United Kingdom
| |
Collapse
|