101
|
Kang Z, Sun SY, Cao L. Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma. ISRN ONCOLOGY 2012; 2012:395952. [PMID: 22577581 PMCID: PMC3345273 DOI: 10.5402/2012/395952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. However, the ability to induce apoptosis via the death receptor-dependent extrinsic pathway remains largely intact in tumors with p53 mutations. This paper focuses on activating extrinsic apoptosis as a therapeutic strategy for RMS by targeting the death receptor DR5 with a recombinant TRAIL ligand or agonistic antibodies directed against DR5.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
102
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
103
|
Körner C, Riesner K, Krämer B, Eisenhardt M, Glässner A, Wolter F, Berg T, Müller T, Sauerbruch T, Nattermann J, Spengler U, Nischalke HD. TRAIL receptor I (DR4) polymorphisms C626G and A683C are associated with an increased risk for hepatocellular carcinoma (HCC) in HCV-infected patients. BMC Cancer 2012; 12:85. [PMID: 22401174 PMCID: PMC3372437 DOI: 10.1186/1471-2407-12-85] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
Background Tumour surveillance via induction of TRAIL-mediated apoptosis is a key mechanism, how the immune system prevents malignancy. To determine if gene variants in the TRAIL receptor I (DR4) gene affect the risk of hepatitis C virus (HCV)-induced liver cancer (HCC), we analysed DR4 mutations C626G (rs20575) and A683C (rs20576) in HCV-infected patients with and without HCC. Methods Frequencies of DR4 gene polymorphisms were determined by LightSNiP assays in 159 and 234 HCV-infected patients with HCC and without HCC, respectively. 359 healthy controls served as reference population. Results Distribution of C626G and A683C genotypes were not significantly different between healthy controls and HCV-positive patients without HCC. DR4 variants 626C and 683A occurred at increased frequencies in patients with HCC. The risk of HCC was linked to carriage of the 626C allele and the homozygous 683AA genotype, and the simultaneous presence of the two risk variants was confirmed as independent HCC risk factor by Cox regression analysis (Odds ratio 1.975, 95% CI 1.205-3.236; p = 0.007). Furthermore HCV viral loads were significantly increased in patients who simultaneously carried both genetic risk factors (2.69 ± 0.36 × 106 IU/ml vs. 1.81 ± 0.23 × 106 IU/ml, p = 0.049). Conclusions The increased prevalence of patients with a 626C allele and the homozygous 683AA genotype in HCV-infected patients with HCC suggests that these genetic variants are a risk factor for HCC in chronic hepatitis C.
Collapse
Affiliation(s)
- Christian Körner
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Str, 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ifeadi V, Garnett-Benson C. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One 2012; 7:e31762. [PMID: 22389673 PMCID: PMC3289623 DOI: 10.1371/journal.pone.0031762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/18/2012] [Indexed: 01/01/2023] Open
Abstract
Background Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-XL and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. Conclusions/Significance Irradiation of tumor cells can overcome Fas and TRAIL resistance that is long lasting. Overall, results of these investigations suggest that non-lethal doses of radiation can be used to make human tumors more amenable to attack by anti-tumor effector molecules and cells.
Collapse
Affiliation(s)
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
105
|
Hwang MK, Ryu BJ, Kim SH. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules. Amino Acids 2012; 43:1679-87. [PMID: 22354145 DOI: 10.1007/s00726-012-1249-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.
Collapse
Affiliation(s)
- Mi-Kyung Hwang
- Laboratory of Chemical Genomics, Pharmacology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea
| | | | | |
Collapse
|
106
|
|
107
|
Oh YT, Yue P, Zhou W, Balko JM, Black EP, Owonikoko TK, Khuri FR, Sun SY. Oncogenic Ras and B-Raf proteins positively regulate death receptor 5 expression through co-activation of ERK and JNK signaling. J Biol Chem 2011; 287:257-267. [PMID: 22065586 DOI: 10.1074/jbc.m111.304006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncogenic mutations of ras and B-raf frequently occur in many cancer types and are critical for cell transformation and tumorigenesis. Death receptor 5 (DR5) is a cell surface pro-apoptotic death receptor for tumor necrosis factor-related apoptosis-inducing ligand and has been targeted in cancer therapy. The current study has demonstrated induction of DR5 expression by the oncogenic proteins Ras and B-Raf and revealed the underlying mechanisms. We demonstrated that both Ras and B-Raf induce DR5 expression by enforced expression of oncogenic Ras (e.g. H-Ras12V or K-Ras12V) or B-Raf (i.e. V600E) in cells and by analyzing gene expression array data generated from cancer cell lines and from human cancer tissues. This finding is further supported by our results that knockdown of endogenous K-Ras or B-Raf (V600E) reduced the expression of DR5. Importantly, we have elucidated that Ras induces DR5 expression through co-activation of ERK/RSK and JNK signaling pathways and subsequent cooperative effects among the transcriptional factors CHOP, Elk1, and c-Jun to enhance DR5 gene transcription. Moreover, we found that the majority of cancer cell lines highly sensitive to the DR5 agonistic antibody AMG655 have either Ras or B-Raf mutations. Our findings warrant further study on the biology of DR5 regulation by Ras and B-Raf, which may provide new insight into the biology of Ras and B-Raf, and on the potential impact of Ras or B-Raf mutations on the outcome of DR5-targeted cancer therapy.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Justin M Balko
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Esther P Black
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia 30322.
| |
Collapse
|
108
|
Piras V, Hayashi K, Tomita M, Selvarajoo K. Enhancing apoptosis in TRAIL-resistant cancer cells using fundamental response rules. Sci Rep 2011; 1:144. [PMID: 22355661 PMCID: PMC3216625 DOI: 10.1038/srep00144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022] Open
Abstract
The tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis in malignant cells, while leaving other cells mostly unharmed. However, several carcinomas remain resistant to TRAIL. To investigate the resistance mechanisms in TRAIL-stimulated human fibrosarcoma (HT1080) cells, we developed a computational model to analyze the temporal activation profiles of cell survival (IκB, JNK, p38) and apoptotic (caspase-8 and -3) molecules in wildtype and several (FADD, RIP1, TRAF2 and caspase-8) knock-down conditions. Based on perturbation-response approach utilizing the law of information (signaling flux) conservation, we derived response rules for population-level average cell response. From this approach, i) a FADD-independent pathway to activate p38 and JNK, ii) a crosstalk between RIP1 and p38, and iii) a crosstalk between p62 and JNK are predicted. Notably, subsequent simulations suggest that targeting a novel molecule at p62/sequestosome-1 junction will optimize apoptosis through signaling flux redistribution. This study offers a valuable prospective to sensitive TRAIL-based therapy.
Collapse
Affiliation(s)
- Vincent Piras
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
- These authors contributed equally to this work
| | - Kentaro Hayashi
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
- These authors contributed equally to this work
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
| | - Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University,
Tsuruoka, 997-0035, Japan
- Systems Biology Program, Graduate School of Media and
Governance, Keio University, Fujisawa, 252-8520,
Japan
| |
Collapse
|
109
|
Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 2011; 258:72-81. [PMID: 22027265 DOI: 10.1016/j.taap.2011.10.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 02/01/2023]
Abstract
We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 μg/ml) and melittin (0.5-2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway.
Collapse
|
110
|
Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein-Barr virus+ (EBV+) B cell lymphomas. J Biol Chem 2011; 286:37368-78. [PMID: 21908615 DOI: 10.1074/jbc.m111.255125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
B cell lymphoma survival requires tonic or ligand-independent signals through activation of Syk by the B cell receptor. The Epstein-Barr virus (EBV) protein latent membrane 2a (LMP2a), a mimic of the B cell receptor, provides constitutive survival signals for latently infected cells through Syk activation; however, the precise downstream mechanisms coordinating this survival response in EBV+ B cell lymphomas remain to be elucidated. Herein, we assess the mechanism of Syk survival signaling in EBV+ B cell lymphomas from post-transplant lymphoproliferative disorder (PTLD) to discover virally controlled therapeutic targets involved in lymphomagenesis and tumor progression. Using small molecule inhibition and siRNA strategies, we show that Syk inhibition reduces proliferation and induces apoptosis of PTLD-derived EBV+ B cell lines. Syk inhibition also reduces autocrine IL-10 production. Although Syk inhibition attenuates signaling through both the PI3K/Akt and Erk pathways, only PI3K/Akt inhibition causes apoptosis of PTLD-derived cell lines. Loss of the endogenous caspase inhibitor XIAP is observed after Syk or PI3K/Akt inhibition. The loss of XIAP and apoptosis that results from Syk or PI3K/Akt inhibition is reversed by inhibition of the mitochondrial protease HtrA2. Thus, Syk drives EBV+ B cell lymphoma survival through PI3K/Akt activation, which prevents the HtrA2-dependent loss of XIAP. Syk, Akt, and XIAP antagonists may present potential new therapeutic strategies for PTLD through targeting of EBV-driven survival signals.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis, and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).
Collapse
|
112
|
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a death receptor ligand that has the ability to preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. TRAIL-based therapeutics, including recombinant TRAIL, TRAIL-receptor agonistic antibodies and TRAIL gene therapy, have now entered clinical trials. Although these therapeutics are promising, concerns regarding TRAIL resistance are causing research efforts to shift towards the identification of effective combination therapies. Small-molecule inhibitors, natural compounds, and drugs approved for treatment of diseases other than cancer have been shown to affect TRAIL receptors, antiapoptotic proteins and survival pathways in prostate, bladder and renal cell lines and in preclinical models. Changes in endogenous TRAIL and TRAIL receptor expression during the development of genitourinary malignancies and the way in which the expression pattern is affected by treatment are of great interest, and understanding the biological consequences of such changes will be important to maximize the potential of TRAIL-based therapeutics.
Collapse
|
113
|
Lee CH, Park KJ, Kim SJ, Kwon O, Jeong KJ, Kim A, Kim YS. Generation of bivalent and bispecific kringle single domains by loop grafting as potent agonists against death receptors 4 and 5. J Mol Biol 2011; 411:201-19. [PMID: 21664362 DOI: 10.1016/j.jmb.2011.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/11/2011] [Accepted: 05/25/2011] [Indexed: 01/17/2023]
Abstract
Bivalent or bispecific binding activity of proteins has been mainly achieved by assembling two or more domains in a single molecule. Here we report bivalent/bispecific single-domain proteins based on the kringle domain (KD), which has a cystine knot structural motif and is highly tolerant of sequence modifications. KD has seven loops protruding from the core fold into two largely opposite directions, dubbed loop cluster regions (LCRs) 1 and 2. Mutational analysis of previously isolated agonistic KD variants against human death receptors (DRs) 4 and 5 revealed that they can simultaneously recognize two target molecules of DR4 and/or DR5 via the two independent binding sites of LCR1 and LCR2. Binding loop mapping of yeast-surface-displayed KD mutants identified high-affinity target binding loops in LCR2, which were then grafted into conformationally compatible loops located on the opposite side of LCR1 within the same or different KD variants to generate bivalent/bispecific KD variants against DR4 and/or DR5 with improved affinity. The loop-grafted bivalent/bispecific KD variants showed enhanced cell-death-inducing activity of tumor cells compared with their monovalent/monospecific and bivalent/monospecific counterparts, demonstrating an advantage of bispecific targeting to both DR4 and DR5 over the targeting of only one of the two pro-apoptotic receptors. Our results suggest that the KD with the two independent binding surfaces for target recognition is an appropriate scaffold for the development of bivalency and/or bispecificity by loop grafting on the single domain, which offers a distinct advantage over other protein scaffolds with a single binding surface.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea
| | | | | | | | | | | | | |
Collapse
|
114
|
Unterkircher T, Cristofanon S, Vellanki SHK, Nonnenmacher L, Karpel-Massler G, Wirtz CR, Debatin KM, Fulda S. Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res 2011; 17:4019-30. [PMID: 21525171 DOI: 10.1158/1078-0432.ccr-11-0075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Searching for novel approaches to sensitize glioblastoma for cell death, we investigated the proteasome inhibitor bortezomib. EXPERIMENTAL DESIGN The effect of bortezomib on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures, and in an in vivo model. RESULTS Bortezomib and TRAIL synergistically trigger cell death and reduce colony formation of glioblastoma cells (combination index < 0.1). Investigations into the underlying molecular mechanisms reveal that bortezomib and TRAIL act in concert to cause accumulation of tBid, the active cleavage product of Bid. Also, the stability of TRAIL-derived tBid markedly increases on proteasome inhibition. Notably, knockdown of Bid significantly decreases bortezomib- and TRAIL-mediated cell death. By comparison, silencing of Noxa, which is also upregulated by bortezomib, does not confer protection. Coinciding with tBid accumulation, the activation of Bax/Bak and loss of mitochondrial membrane potential are strongly increased in cotreated cells. Overexpression of Bcl-2 significantly reduces mitochondrial perturbations and cell death, underscoring the functional relevance of the mitochondrial pathway. In addition, bortezomib cooperates with TRAIL to reduce colony formation of glioblastoma cells, showing an effect on long-term survival. Of note, bortezomib profoundly enhances TRAIL-triggered cell death in primary cultured glioblastoma cells and in patient-derived glioblastoma stem cells, underlining the clinical relevance. Importantly, bortezomib cooperates with TRAIL to suppress tumor growth in an in vivo glioblastoma model. CONCLUSION These findings provide compelling evidence that the combination of bortezomib and TRAIL presents a promising novel strategy to trigger cell death in glioblastoma, including glioblastoma stem cells, which warrants further investigation.
Collapse
|
115
|
Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, Li Y, Pitti R, Totpal K, Yee S, Ross S, Vernes JM, Lu Y, Adams C, Offringa R, Kelley B, Hymowitz S, Daniel D, Meng G, Ashkenazi A. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011; 19:101-13. [PMID: 21251615 DOI: 10.1016/j.ccr.2010.11.012] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/08/2010] [Accepted: 11/03/2010] [Indexed: 01/14/2023]
Abstract
Antibodies to cell-surface antigens trigger activatory Fcγ receptor (FcγR)-mediated retrograde signals in leukocytes to control immune effector functions. Here, we uncover an FcγR mechanism that drives antibody-dependent forward signaling in target cells. Agonistic antibodies to death receptor 5 (DR5) induce cancer-cell apoptosis and are in clinical trials; however, their mechanism of action in vivo is not fully defined. Interaction of the DR5-agonistic antibody drozitumab with leukocyte FcγRs promoted DR5-mediated tumor-cell apoptosis. Whereas the anti-CD20 antibody rituximab required activatory FcγRs for tumoricidal function, drozitumab was effective in the context of either activatory or inhibitory FcγRs. A CD40-agonistic antibody required similar FcγR interactions to stimulate nuclear factor-κB activity in B cells. Thus, FcγRs can drive antibody-mediated receptor signaling in target cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Apoptosis/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- CD40 Antigens/agonists
- CD40 Antigens/immunology
- Cell Line, Tumor
- Female
- HCT116 Cells
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Killer Cells, Natural/immunology
- Leukocytes/immunology
- Leukocytes/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Mutation/immunology
- Myeloid Cells/immunology
- NF-kappa B/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Polymorphism, Single Nucleotide/genetics
- Polymorphism, Single Nucleotide/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Receptor Aggregation/immunology
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists
- Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Signal Transduction/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Nicholas S Wilson
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|