101
|
Del Vecchio D, Abdallah H, Qian Y, Collins JJ. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate. Cell Syst 2017; 4:109-120.e11. [PMID: 28065574 DOI: 10.1016/j.cels.2016.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/18/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells.
Collapse
Affiliation(s)
- Domitilla Del Vecchio
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA.
| | - Hussein Abdallah
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Yili Qian
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Synthetic Biology Center, MIT, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
102
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
103
|
Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proc Natl Acad Sci U S A 2016; 113:E8257-E8266. [PMID: 27930301 DOI: 10.1073/pnas.1611142114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.
Collapse
|
104
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
105
|
Yang J, Liu P. MLL1: the thin red line divides naïve and primed pluripotency. Stem Cell Investig 2016; 3:63. [PMID: 27868045 DOI: 10.21037/sci.2016.09.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| |
Collapse
|
106
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
107
|
Genome-wide piggyBac transposon mediated screening reveals genes related to reprogramming. Protein Cell 2016; 8:134-139. [PMID: 27761808 PMCID: PMC5291772 DOI: 10.1007/s13238-016-0332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
108
|
Perez-Carrasco R, Guerrero P, Briscoe J, Page KM. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches. PLoS Comput Biol 2016; 12:e1005154. [PMID: 27768683 PMCID: PMC5074595 DOI: 10.1371/journal.pcbi.1005154] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively alter developmental patterning. The bistable switch, a common regulatory sub-network, is found in many biological processes. It consists of cross-repressing components that generate a switch-like transition between two possible states. In developing tissues, bistable switches, created by cross-repressing transcriptional determinants, are often controlled by gradients of secreted signalling molecules—morphogens. These provide a mechanism to convert a morphogen gradient into stripes of gene expression that determine the arrangement of distinct cell types. Here we use mathematical models to analyse the temporal response of such a system. We find that the behaviour is highly dependent on the intrinsic fluctuations that result from the stochastic nature of gene expression. This noise has a marked effect on both patterning time and the location of the stripe boundary. One of the techniques we use, Minimum Action Path theory, identifies key features of the switch without computationally expensive calculations. The results reveal a noise driven switching wave that propels the stripe boundary away from the morphogen source to eventually settle, at steady state, further from the morphogen source than in the deterministic description. Together the analysis highlights the importance dynamics in patterning and demonstrates a set of mathematical tools for studying this problem.
Collapse
Affiliation(s)
- Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
- * E-mail:
| | - Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Karen M. Page
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
109
|
Fournier M, Bourriquen G, Lamaze FC, Côté MC, Fournier É, Joly-Beauparlant C, Caron V, Gobeil S, Droit A, Bilodeau S. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells. Sci Rep 2016; 6:34962. [PMID: 27739523 PMCID: PMC5064413 DOI: 10.1038/srep34962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.
Collapse
Affiliation(s)
- Michèle Fournier
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Gaëlle Bourriquen
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Fabien C. Lamaze
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Maxime C. Côté
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Éric Fournier
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | | | - Vicky Caron
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Stéphane Gobeil
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
- Département de médecine moléculaire, Faculté de Médecine, Université Laval, Québec, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
- Département de médecine moléculaire, Faculté de Médecine, Université Laval, Québec, Canada
| | - Steve Bilodeau
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
110
|
Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 2016; 48:475-87. [DOI: 10.1016/j.tice.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
|
111
|
Hong S, Jo J, Kim HJ, Lee JE, Shin DH, Lee SG, Baek A, Shim SH, Lee DR. RuvB-Like Protein 2 (Ruvbl2) Has a Role in Directing the Neuroectodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cells Dev 2016; 25:1376-85. [DOI: 10.1089/scd.2016.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soomin Hong
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Junghyun Jo
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Hyung Joon Kim
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | | | - Dong Hyuk Shin
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Sung-Geum Lee
- CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Ahmi Baek
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Fertility Center, CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
- CHA Stem Cell Institute, CHA University, Seoul, Korea
| |
Collapse
|
112
|
Zhao T, Li Y, Deng H. Cell fate conversion-from the viewpoint of small molecules and lineage specifiers. Diabetes Obes Metab 2016; 18 Suppl 1:3-9. [PMID: 27615126 DOI: 10.1111/dom.12717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
Mammalian development was generally considered a naturally unidirectional and irreversible process. However, pioneering work of recent decades has highlighted the plasticity of mammalian cells and implied the possibilities of manipulating cell fate in vitro. Pluripotent stem cells, which hold great potential for regenerative medicine, have been shown to be reprogrammed from differentiated cells either by somatic cell nuclear transfer or by ectopic expression of pluripotency factors. Nevertheless, it remained unknown whether the reprogramming could be accomplished without pluripotency genes. Recent studies show that lineage specifiers play an important role in orchestrating the process of restoring pluripotency by replacing pluripotency-associated transcription factors. Moreover, a combination of small molecules enables the acquisition of pluripotency from somatic cells without any transgenes, offering a tractable platform to precisely dissect the induction and maintenance of cell identity. Here, we will discuss recent scientific advances regarding the cell fate conversion mediated by small molecules or lineage specifiers, especially in the chemically induced somatic cell reprogramming process, and will provide new insights into the intermediate plastic state and "seesaw model" established by chemical approaches during reprogramming.
Collapse
Affiliation(s)
- T Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Sciences, Peking University, Beijing, China
| | - Y Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - H Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
113
|
Heemskerk I, Warmflash A. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Dev Dyn 2016; 245:976-90. [PMID: 27404482 DOI: 10.1002/dvdy.24432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
In vivo studies have identified the signaling pathways and transcription factors involved in patterning the vertebrate embryo, but much remains unknown about how these are organized in space and time to orchestrate embryogenesis. Recently, embryonic stem cells have been established as a platform for studying spatial pattern formation and differentiation dynamics in the early mammalian embryo. The ease of observing and manipulating stem cell systems promises to fill gaps in our understanding of developmental dynamics and identify aspects that are uniquely human. Developmental Dynamics 245:976-990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of Biosciences, Rice University, Houston, Texas
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas. .,Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
114
|
Okawa S, Nicklas S, Zickenrott S, Schwamborn JC, Del Sol A. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers. Stem Cell Reports 2016; 7:307-315. [PMID: 27546532 PMCID: PMC5034562 DOI: 10.1016/j.stemcr.2016.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/16/2022] Open
Abstract
Identification of cell-fate determinants for directing stem cell differentiation remains a challenge. Moreover, little is known about how cell-fate determinants are regulated in functionally important subnetworks in large gene-regulatory networks (i.e., GRN motifs). Here we propose a model of stem cell differentiation in which cell-fate determinants work synergistically to determine different cellular identities, and reside in a class of GRN motifs known as feedback loops. Based on this model, we develop a computational method that can systematically predict cell-fate determinants and their GRN motifs. The method was able to recapitulate experimentally validated cell-fate determinants, and validation of two predicted cell-fate determinants confirmed that overexpression of ESR1 and RUNX2 in mouse neural stem cells induces neuronal and astrocyte differentiation, respectively. Thus, the presented GRN-based model of stem cell differentiation and computational method can guide differentiation experiments in stem cell research and regenerative medicine. A network-based method for predicting lineage specifiers and key network motifs A computational guidance to stem cell differentiation experiments Overexpression of ESR1 in mNSCs induces neuronal differentiation Overexpression of RUNX2 in mNSCs induces astrocyte differentiation
Collapse
Affiliation(s)
- Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Sarah Nicklas
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Sascha Zickenrott
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
115
|
Geng Y, Feng B. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells. Heliyon 2016; 2:e00133. [PMID: 27512727 PMCID: PMC4971129 DOI: 10.1016/j.heliyon.2016.e00133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/21/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bradley Feng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
116
|
Espinosa Angarica V, del Sol A. Modeling heterogeneity in the pluripotent state: A promising strategy for improving the efficiency and fidelity of stem cell differentiation. Bioessays 2016; 38:758-68. [PMID: 27321053 PMCID: PMC5094535 DOI: 10.1002/bies.201600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pluripotency can be considered a functional characteristic of pluripotent stem cells (PSCs) populations and their niches, rather than a property of individual cells. In this view, individual cells within the population independently adopt a variety of different expression states, maintained by different signaling, transcriptional, and epigenetics regulatory networks. In this review, we propose that generation of integrative network models from single cell data will be essential for getting a better understanding of the regulation of self-renewal and differentiation. In particular, we suggest that the identification of network stability determinants in these integrative models will provide important insights into the mechanisms mediating the transduction of signals from the niche, and how these signals can trigger differentiation. In this regard, the differential use of these stability determinants in subpopulation-specific regulatory networks would mediate differentiation into different cell fates. We suggest that this approach could offer a promising avenue for the development of novel strategies for increasing the efficiency and fidelity of differentiation, which could have a strong impact on regenerative medicine.
Collapse
Affiliation(s)
- Vladimir Espinosa Angarica
- Luxembourg Center for Systems Biomedicine (LCSB)University of Luxembourg, Campus BelvalBelvauxLuxembourg
| | - Antonio del Sol
- Luxembourg Center for Systems Biomedicine (LCSB)University of Luxembourg, Campus BelvalBelvauxLuxembourg
| |
Collapse
|
117
|
Jolly MK, Jia D, Boareto M, Mani SA, Pienta KJ, Ben-Jacob E, Levine H. Coupling the modules of EMT and stemness: A tunable 'stemness window' model. Oncotarget 2016; 6:25161-74. [PMID: 26317796 PMCID: PMC4694822 DOI: 10.18632/oncotarget.4629] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
Metastasis of carcinoma involves migration of tumor cells to distant organs and initiate secondary tumors. Migration requires a complete or partial Epithelial-to-Mesenchymal Transition (EMT), and tumor-initiation requires cells possessing stemness. Epithelial cells (E) undergoing a complete EMT to become mesenchymal (M) have been suggested to be more likely to possess stemness. However, recent studies suggest that stemness can also be associated with cells undergoing a partial EMT (hybrid E/M phenotype). Therefore, the correlation between EMT and stemness remains elusive. Here, using a theoretical framework that couples the core EMT and stemness modules (miR-200/ZEB and LIN28/let-7), we demonstrate that the positioning of ‘stemness window’ on the ‘EMT axis’ need not be universal; rather it can be fine-tuned. Particularly, we present OVOL as an example of a modulating factor that, due to its coupling with miR-200/ZEB/LIN28/let-7 circuit, fine-tunes the EMT-stemness interplay. Coupling OVOL can inhibit the stemness likelihood of M and elevate that of the hybrid E/M (partial EMT) phenotype, thereby pulling the ‘stemness window’ away from the M end of ‘EMT axis’. Our results unify various apparently contradictory experimental findings regarding the interconnection between EMT and stemness, corroborate the emerging notion that partial EMT associates with stemness, and offer new testable predictions.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth J Pienta
- The James Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Biosciences, Rice University, Houston, TX 77005-1827, USA.,School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA.,Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| |
Collapse
|
118
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
Collapse
Affiliation(s)
- Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| |
Collapse
|
119
|
Xiao X, Li N, Zhang D, Yang B, Guo H, Li Y. Generation of Induced Pluripotent Stem Cells with Substitutes for Yamanaka's Four Transcription Factors. Cell Reprogram 2016; 18:281-297. [PMID: 27696909 DOI: 10.1089/cell.2016.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) share many characteristics with embryonic stem cells, but lack ethical controversy. They provide vast opportunities for disease modeling, pathogenesis understanding, therapeutic drug development, toxicology, organ synthesis, and treatment of degenerative disease. However, this procedure also has many potential challenges, including a slow generation time, low efficiency, partially reprogrammed colonies, as well as somatic coding mutations in the genome. Pioneered by Shinya Yamanaka's team in 2006, iPSCs were first generated by introducing four transcription factors: Oct 4, Sox 2, Klf 4, and c-Myc (OSKM). Of those factors, Klf 4 and c-Myc are oncogenes, which are potentially a tumor risk. Therefore, to avoid problems such as tumorigenesis and low throughput, one of the key strategies has been to use other methods, including members of the same subgroup of transcription factors, activators or inhibitors of signaling pathways, microRNAs, epigenetic modifiers, or even differentiation-associated factors, to functionally replace the reprogramming transcription factors. In this study, we will mainly focus on the advances in the generation of iPSCs with substitutes for OSKM. The identification and combination of novel proteins or chemicals, particularly small molecules, to induce pluripotency will provide useful tools to discover the molecular mechanisms governing reprogramming and ultimately lead to the development of new iPSC-based therapeutics for future clinical applications.
Collapse
Affiliation(s)
- Xiong Xiao
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China .,2 Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Nan Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Dapeng Zhang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Bo Yang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Hongmei Guo
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Yuemin Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| |
Collapse
|
120
|
Zhang X, Su J, Jeong M, Ko M, Huang Y, Park HJ, Guzman A, Lei Y, Huang YH, Rao A, Li W, Goodell MA. DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nat Genet 2016; 48:1014-23. [PMID: 27428748 PMCID: PMC4957136 DOI: 10.1038/ng.3610] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the epigenetic modifiers DNMT3A and TET2 non-randomly co-occur in lymphoma and leukemia despite their epistasis in the methylation-hydroxymethylation pathway. Using Dnmt3a and Tet2 double knock-out (DKO) mice in which malignancy development is accelerated, we show that the DKO methylome reflects regions of independent, competitive and cooperative activity. Expression of lineage-specific transcription factors, including the erythroid regulator Klf1 is upregulated in DKO HSCs. DNMT3A and TET2 both repress Klf1 suggesting a model of cooperative inhibition by the epigenetic modifiers. These data demonstrate a dual role for TET2 in promoting and inhibiting HSC differentiation, loss of which, along with DNMT3A, obstructs differentiation leading to transformation.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jianzhong Su
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Myunggon Ko
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Hyun Jung Park
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Lei
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
121
|
Yamakawa T, Sato Y, Matsumura Y, Kobayashi Y, Kawamura Y, Goshima N, Yamanaka S, Okita K. Screening of Human cDNA Library Reveals Two differentiation-Related Genes, HHEX and HLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Stem Cells 2016; 34:2661-2669. [PMID: 27335261 DOI: 10.1002/stem.2436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 11/09/2022]
Abstract
Gene screenings have identified a number of reprogramming factors that induce pluripotency from somatic cells. However, the screening methods have mostly considered only factors that maintain pluripotency in embryonic stem cells, ignoring a potentially long list of other contributing factors involved. To expand the search, we developed a new screening method that examined 2,008 human genes in the generation of human induced pluripotent stem cells (iPSCs), including not only pluripotent genes but also differentiation-related genes that suppress pluripotency. We found the top 100 genes that increased reprogramming efficiency and discovered they contained many differentiation-related genes and homeobox genes. We selected two, HHEX and HLX, for further analysis. These genes enhanced the appearance of premature reprograming cells in the early phase of human iPSC induction, but had inhibitory effect on the late phase. In addition, when expressed in human iPSCs, HHEX and HLX interfered with the pluripotent state, indicating inverse effects on somatic reprograming and pluripotent maintenance. These results demonstrate that our screening is useful for identifying differentiation-related genes in somatic reprograming. Stem Cells 2016;34:2661-2669.
Collapse
Affiliation(s)
- Tatsuya Yamakawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoshiko Sato
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuko Matsumura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yukiko Kobayashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
122
|
Guo C, Xue Y, Yang G, Yin S, Shi W, Cheng Y, Yan X, Fan S, Zhang H, Zeng F. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells. Cell Biol Int 2016; 40:847-60. [PMID: 26289635 DOI: 10.1002/cbin.10539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Abstract
Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs.
Collapse
Affiliation(s)
- Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shang Yin
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wansheng Shi
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cheng
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoshuang Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shuyue Fan
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Zhang
- Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
123
|
Induced pluripotent stem cells in Alzheimer's disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener 2016; 11:39. [PMID: 27184028 PMCID: PMC4869261 DOI: 10.1186/s13024-016-0106-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology may provide a promising platform to create reliable models, not only for better understanding the etiopathological process of AD, but also for efficient anti-AD drugs screening. More importantly, human-sourced iPSCs may also provide a beneficial tool for cell-replacement therapy against AD. Although considerable progress has been achieved, a number of key challenges still require to be addressed in iPSCs research, including the identification of robust disease phenotypes in AD modeling and the clinical availabilities of iPSCs-based cell-replacement therapy in human. In this review, we highlight recent progresses of iPSCs research and discuss the translational challenges of AD patients-derived iPSCs in disease modeling and cell-replacement therapy.
Collapse
|
124
|
Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med 2016; 22:657-65. [PMID: 27183216 PMCID: PMC4899256 DOI: 10.1038/nm.4109] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/13/2016] [Indexed: 01/18/2023]
Abstract
There are controversial claims that the embryonic stem cell (ESC) pluripotency factor OCT4 is activated in somatic cells, but there is no evidence it plays a functional role in these cells. Herein we demonstrate that smooth muscle cell (SMC)-specific conditional knockout of Oct4 within Apoe−/− mice resulted in increased lesion size and changes consistent with decreased plaque stability including a thinner fibrous cap, increased necrotic core, and increased intra-plaque hemorrhage. Results of SMC-lineage tracing studies showed that these changes were likely due to marked reductions in SMC number within lesions including impaired SMC migration and investment within the fibrous cap. Re-activation of Oct4 within SMCs was associated with hydroxymethylation of the Oct4 promoter and was HIF1α- and KLF4-dependent. Results provide the first direct evidence that OCT4 plays a functional role in somatic cells and highlight the importance of further investigation of possible OCT4 functions in normal and diseased somatic cells.
Collapse
|
125
|
Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors. Stem Cell Reports 2016; 6:873-884. [PMID: 27161365 PMCID: PMC4911493 DOI: 10.1016/j.stemcr.2016.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
We previously reported the generation of integration-free induced pluripotent stem cells from adult peripheral blood (PB) with an improved episomal vector (EV) system, which uses the spleen focus-forming virus U3 promoter and an extra factor BCL-XL (B). Here we show an ∼100-fold increase in efficiency by optimizing the vector combination. The two most critical factors are: (1) equimolar expression of OCT4 (O) and SOX2 (S), by using a 2A linker; (2) a higher and gradual increase in the MYC (M) to KLF4 (K) ratio during the course of reprogramming, by using two individual vectors to express M and K instead of one. The combination of EV plasmids (OS + M + K + B) is comparable with Sendai virus in reprogramming efficiency but at a fraction of the cost. The generated iPSCs are indistinguishable from those from our previous approach in pluripotency and phenotype. This improvement lays the foundation for broad applications of episomal vectors in PB reprogramming. Expression of MYC and KLF4 with two episomal vectors is critical for PB reprogramming Optimized episomal vector combination shows an ∼100-fold increase in reprogramming This system is comparable with Sendai virus in generating integration-free iPSCs
Collapse
|
126
|
|
127
|
Tian Z, Guo F, Biswas S, Deng W. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. Int J Mol Sci 2016; 17:E594. [PMID: 27104529 PMCID: PMC4849048 DOI: 10.3390/ijms17040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, the Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
128
|
Wang LZ, Su RQ, Huang ZG, Wang X, Wang WX, Grebogi C, Lai YC. A geometrical approach to control and controllability of nonlinear dynamical networks. Nat Commun 2016; 7:11323. [PMID: 27076273 PMCID: PMC4834635 DOI: 10.1038/ncomms11323] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.
Collapse
Affiliation(s)
- Le-Zhi Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287-5706, USA
| | - Ri-Qi Su
- School of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287-5706, USA
| | - Zi-Gang Huang
- School of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287-5706, USA.,Institute of Computational Physics and Complex Systems, Lanzhou University, 222 S. Tianshui Road, Lanzhou, Gansu 730000, China
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, 621 E. Tyler Mall, Tempe, Arizona 85287-9709, USA
| | - Wen-Xu Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287-5706, USA.,School of Systems Science, Beijing Normal University, 19 Xinjiekou Outer Street, Beijing, 100875, China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King's College, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, 650 E. Tyler Mall, Tempe, Arizona 85287-5706, USA.,Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK.,Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, Arizona 85287-1504, USA
| |
Collapse
|
129
|
Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA. Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol 2016; 26:272-288. [DOI: 10.1016/j.tcb.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
|
130
|
Jang J, Wang Y, Lalli MA, Guzman E, Godshalk SE, Zhou H, Kosik KS. Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate. Cell 2016; 165:410-20. [PMID: 27020754 DOI: 10.1016/j.cell.2016.02.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 11/16/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
Under defined differentiation conditions, human embryonic stem cells (hESCs) can be directed toward a mesendoderm (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with lineage-specific G1 lengthening, a divergent ciliation pattern emerged within the first 24 hr of induced lineage specification, and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2 and thereby relieved transcriptional activation of OCT4 and NANOG. Nrf2 binds directly to upstream regions of these pluripotency genes to promote their expression and repress NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events had been initiated did neural precursor markers get expressed at day 4. Thus, we have identified a primary cilium-autophagy-Nrf2 (PAN) control axis coupled to cell-cycle progression that directs hESCs toward NE.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yidi Wang
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew A Lalli
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sirie E Godshalk
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
131
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
132
|
Parenti A, Halbisen MA, Wang K, Latham K, Ralston A. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:447-455. [PMID: 26947975 PMCID: PMC4834035 DOI: 10.1016/j.stemcr.2016.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023] Open
Abstract
The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming.
Collapse
Affiliation(s)
- Anthony Parenti
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael A Halbisen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kai Wang
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Keith Latham
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
133
|
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M. Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle 2016; 14:1596-610. [PMID: 25928475 DOI: 10.1080/15384101.2015.1026485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
Collapse
Affiliation(s)
- Mehdi Pirouz
- a Department of Molecular Cell Biology ; Max Planck Institute for Biophysical Chemistry ; Goettingen ; Germany
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
Collapse
|
135
|
Onichtchouk D, Driever W. Zygotic Genome Activators, Developmental Timing, and Pluripotency. Curr Top Dev Biol 2016; 116:273-97. [PMID: 26970624 DOI: 10.1016/bs.ctdb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transcription factors Pou5f1, Sox2, and Nanog are central regulators of pluripotency in mammalian ES and iPS cells. In vertebrate embryos, Pou5f1/3, SoxB1, and Nanog control zygotic genome activation and participate in lineage decisions. We review the current knowledge of the roles of these genes in developing vertebrate embryos from fish to mammals and suggest a model for pluripotency gene regulatory network functions in early development.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| | - Wolfgang Driever
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
136
|
Menendez JA, Corominas-Faja B, Cuyàs E, García MG, Fernández-Arroyo S, Fernández AF, Joven J, Fraga MF, Alarcón T. Oncometabolic Nuclear Reprogramming of Cancer Stemness. Stem Cell Reports 2016; 6:273-83. [PMID: 26876667 PMCID: PMC4788754 DOI: 10.1016/j.stemcr.2015.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells. Oncometabolites facilitate the reprogramming process evoked by stemness factors Oncometabolites lower the epigenetic barriers to nuclear reprogramming Cancer stem-like states arise through oncometabolic nuclear reprogramming phenomena Oncometabolic regulation of epigenetics can drive stemness in cancer tissues
Collapse
Affiliation(s)
- Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Edifici M2, E-17190 Salt, Girona, Spain.
| | - Bruna Corominas-Faja
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain
| | - María G García
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, 43201 Reus, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, 43201 Reus, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain; Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940 San Martín del Rey Aurelio, Spain
| | - Tomás Alarcón
- Institució Catalana d'Estudis i Recerca Avançats (ICREA), 08010 Barcelona, Spain; Computational & Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), 08193 Barcelona, Spain; Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Barcelona Graduate School of Mathematics (BGSMath), 08193 Barcelona, Spain; Centre de Recerca Matemàtica (CRM), Office 29 (C3b/140), Edifici C, Campus de Bellaterra, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
137
|
Abstract
During development, cells transition from a pluripotent to a differentiated state, generating all the different types of cells in the body. Development is generally considered an irreversible process, meaning that a differentiated cell is thought to be unable to return to the pluripotent state. However, it is now possible to reprogram mature cells to pluripotency. It is generally thought that reprogramming is accomplished by reversing the natural developmental differentiation process, suggesting that the two mechanisms are closely related. Therefore, a detailed study of cell reprogramming has the potential to shed light on unexplained developmental mechanisms and, conversely, a better understanding of developmental differentiation can help improve cell reprogramming. However, fundamental differences between reprogramming processes and multi-lineage specification during early embryonic development have also been uncovered. In addition, there are multiple routes by which differentiated cells can re-enter the pluripotent state. In this Review, we discuss the connections and disparities between differentiation and reprogramming, and assess the degree to which reprogramming can be considered as a simple reversal of development.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| |
Collapse
|
138
|
Abstract
After a spermatozoon enters an oocyte, maternal factors accumulated in the oocyte reprogram the genomes of the terminally differentiated oocyte and spermatozoon epigenetically and turn the zygote into a totipotent cell, with the capacity to differentiate into all types of somatic cells in a highly organized manner and generate the entire organism, a feature referred to as totipotency. Differentiation of the first lineage begins after three cleavages, when the early embryo compacts and becomes polarized, followed by segregation of the first lineages--the inner cell mass (ICM) and the trophectoderm (TE). To date, a full understanding of the molecular mechanisms that underlie the establishment of totipotency and the ICM/TE lineage segregation remains unclear. In this review, we discuss recent findings in the mechanism of transcriptional regulation networks and signaling pathways in the first lineage separation in the totipotent mouse embryo.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
139
|
Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 2015; 26:34-45. [PMID: 26704449 DOI: 10.1038/cr.2015.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. However, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demonstrate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differentiation capacity, and germline transmission competency. Interestingly, the pluripotency gene Sall4 is expressed at the initial stage in the chemical reprogramming process from different cell types, and the same core small molecules are required for the reprogramming, suggesting conservation in the molecular mechanism underlying chemical reprogramming from these diverse cell types. Our analysis also shows that the use of these small molecules should be fine-tuned to meet the requirement of reprogramming from different cell types. Together, these findings demonstrate that full chemical reprogramming approach can be applied in cells of different tissue origins and suggest that chemical reprogramming is a promising strategy with the potential to be extended to more initial types.
Collapse
Affiliation(s)
- Junqing Ye
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Ge
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xu Zhang
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Cheng
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengyuan Zhang
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shan He
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuping Wang
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hua Lin
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weifeng Yang
- BeijingVitalstar Biotechnology Co., Ltd., Beijing 100012, China
| | - Junfang Liu
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhao
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongkui Deng
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
140
|
Abstract
The direct lineage reprogramming of one specialized cell type into another using defined factors has fundamentally re-shaped traditional concepts regarding the epigenetic stability of differentiated cells. With the rapid increase in cell types generated through direct conversion in recent years, this strategy has become a promising approach for producing functional cells. Here, we review recent advances in lineage reprogramming, including the identification of novel reprogramming factors, underlying molecular mechanisms, strategies for generating functionally mature cells, and assays for characterizing induced cells. We also discuss progress toward the application of lineage reprogramming and the major future challenges for this strategy.
Collapse
|
141
|
Abstract
Somatic cells can be reprogrammed into pluripotent stem cells via either expression of transcription factors or addition of small molecule chemicals only. Zhao et al. reveal a unique intermediate state during chemical reprogramming allowing a significant improvement in its efficiency and kinetics.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
142
|
Zhao Y, Zhao T, Guan J, Zhang X, Fu Y, Ye J, Zhu J, Meng G, Ge J, Yang S, Cheng L, Du Y, Zhao C, Wang T, Su L, Yang W, Deng H. A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell 2015; 163:1678-91. [PMID: 26686652 DOI: 10.1016/j.cell.2015.11.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/24/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023]
Abstract
Somatic cells can be reprogrammed into pluripotent stem cells (PSCs) by using pure chemicals, providing a different paradigm to study somatic reprogramming. However, the cell fate dynamics and molecular events that occur during the chemical reprogramming process remain unclear. We now show that the chemical reprogramming process requires the early formation of extra-embryonic endoderm (XEN)-like cells and a late transition from XEN-like cells to chemically-induced (Ci)PSCs, a unique route that fundamentally differs from the pathway of transcription factor-induced reprogramming. Moreover, precise manipulation of the cell fate transition in a step-wise manner through the XEN-like state allows us to identify small-molecule boosters and establish a robust chemical reprogramming system with a yield up to 1,000-fold greater than that of the previously reported protocol. These findings demonstrate that chemical reprogramming is a promising approach to manipulate cell fates.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China.
| | - Ting Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingyang Guan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xu Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Yao Fu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Junqing Ye
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jialiang Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Gaofan Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jian Ge
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Susu Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Lin Cheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Yaqin Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Chaoran Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Linlin Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Weifeng Yang
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100012, China
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Center for Molecular and Translational Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
143
|
Becker JS, Nicetto D, Zaret KS. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends Genet 2015; 32:29-41. [PMID: 26675384 DOI: 10.1016/j.tig.2015.11.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining cell identity depends on the proper regulation of gene expression, as specified by transcription factors and reinforced by epigenetic mechanisms. Among the epigenetic mechanisms, heterochromatin formation is crucial for the preservation of genome stability and the cell type-specific silencing of genes. The heterochromatin-associated histone mark H3K9me3, although traditionally associated with the noncoding portions of the genome, has emerged as a key player in repressing lineage-inappropriate genes and shielding them from activation by transcription factors. Here we describe the role of H3K9me3 heterochromatin in impeding the reprogramming of cell identity and the mechanisms by which H3K9me3 is reorganized during development and cell fate determination.
Collapse
Affiliation(s)
- Justin S Becker
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
144
|
Krause MN, Sancho-Martinez I, Izpisua Belmonte JC. Understanding the molecular mechanisms of reprogramming. Biochem Biophys Res Commun 2015; 473:693-7. [PMID: 26655812 DOI: 10.1016/j.bbrc.2015.11.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
Abstract
Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called "Pioneer TFs", play an important role during the stochastic phase of iPSC reprogramming [2-6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes.
Collapse
Affiliation(s)
- Marie N Krause
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA; University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg, Germany
| | - Ignacio Sancho-Martinez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA, USA.
| |
Collapse
|
145
|
Rraklli V, Södersten E, Nyman U, Hagey DW, Holmberg J. Elevated levels of ZAC1 disrupt neurogenesis and promote rapid in vivo reprogramming. Stem Cell Res 2015; 16:1-9. [PMID: 26610203 DOI: 10.1016/j.scr.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
The zinc finger transcription factor Zac1 is expressed in dividing progenitors of the nervous system with expression levels negatively controlled by genomic imprinting. To explore the consequences of elevated ZAC1 levels during neurogenesis we overexpressed it in the developing CNS. Increased levels of ZAC1 rapidly promoted upregulation of CDK inhibitors P57 and P27 followed by cell cycle exit. Surprisingly this was accompanied by stalled neuronal differentiation. Genome wide expression analysis of cortical cells overexpressing Zac1 revealed a decrease in neuronal gene expression and an increased expression of imprinted genes, factors regulating mesoderm formation as well as features of differentiated muscle. In addition, we observed a rapid induction of several genes regulating pluripotency. Taken together, our data suggests that expression levels of Zac1 need to be kept under strict control to avoid premature cell cycle exit, disrupted neurogenesis and aberrant expression of non-neuronal genes including pluripotency associated factors.
Collapse
Affiliation(s)
- Vilma Rraklli
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Nobels väg 3, 171 77, Stockholm, Sweden
| | - Erik Södersten
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Nobels väg 3, 171 77, Stockholm, Sweden
| | - Ulrika Nyman
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Nobels väg 3, 171 77, Stockholm, Sweden
| | - Daniel W Hagey
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Nobels väg 3, 171 77, Stockholm, Sweden
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Nobels väg 3, 171 77, Stockholm, Sweden.
| |
Collapse
|
146
|
Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:10. [PMID: 26566431 PMCID: PMC4642739 DOI: 10.1186/s13619-015-0024-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells are powerful tools for disease modeling, drug screening, and cell transplantation therapies. These cells can be generated directly from somatic cells by ectopic expression of defined factors through a reprogramming process. However, pluripotent reprogramming is an inefficient process because of various defined and unidentified barriers. Recent studies dissecting the molecular mechanisms of reprogramming have methodically improved the quality, ease, and efficiency of reprogramming. Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16(Ink4a)/p19(Arf), Mbd3, etc.), overexpression of enhancing genes (e.g., FOXH1, C/EBP alpha, UTF1, and GLIS1), and administration of certain cytokines and small molecules. The current review provides an in-depth overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency and strategies to enhance reprogramming efficiency. By incorporating the mechanistic insights from these recent findings, a combined method of inhibition of roadblocks and application of enhancing factors may yield the most reliable and effective approach in pluripotent reprogramming.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
147
|
Benchetrit H, Herman S, van Wietmarschen N, Wu T, Makedonski K, Maoz N, Yom Tov N, Stave D, Lasry R, Zayat V, Xiao A, Lansdorp PM, Sebban S, Buganim Y. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells. Cell Stem Cell 2015; 17:543-56. [PMID: 26412562 DOI: 10.1016/j.stem.2015.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/25/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023]
Abstract
Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often yields incompletely reprogrammed, functionally compromised cells, raising the question of whether pluripotency is required to achieve a high degree of nuclear reprogramming. Here, we show that transient expression of Gata3, Eomes, and Tfap2c in mouse fibroblasts induces stable, transgene-independent trophoblast stem-like cells (iTSCs). iTSCs possess transcriptional profiles highly similar to blastocyst-derived TSCs, with comparable methylation and H3K27ac patterns and genome-wide H2A.X deposition. iTSCs generate trophoectodermal lineages upon differentiation, form hemorrhagic lesions, and contribute to developing placentas in chimera assays, indicating a high degree of nuclear reprogramming, with no evidence of passage through a transient pluripotent state. Together, these data demonstrate that extensive nuclear reprogramming can be achieved independently of pluripotency.
Collapse
Affiliation(s)
- Hana Benchetrit
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shay Herman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, AV Groningen 9713, the Netherlands
| | - Tao Wu
- Yale Stem Cell Center and Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noam Maoz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nataly Yom Tov
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Danielle Stave
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Valery Zayat
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Andrew Xiao
- Yale Stem Cell Center and Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, AV Groningen 9713, the Netherlands; Skolkovo Institute of Science and Technology (Skoltech), Novaya str. 100, Skolkovo Moscow Region 143025, Russia
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
148
|
Molecular cloning and production of caprine recombinant Oct4 protein for generation induced pluripotent stem cells. Mol Biol Rep 2015; 42:1583-91. [DOI: 10.1007/s11033-015-3926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/28/2014] [Indexed: 10/22/2022]
|
149
|
Hao Q, An JQ, Hao F, Yang C, Lu T, Qu TY, Zhao LR, Duan WM. Inducible Lentivirus-Mediated Expression of theOct4Gene Affects Multilineage Differentiation of Adult Human Bone Marrow–Derived Mesenchymal Stem Cells. Cell Reprogram 2015; 17:347-59. [DOI: 10.1089/cell.2015.0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Qiang Hao
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Jia-Qiang An
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Fei Hao
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Chun Yang
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Tao Lu
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Ting-Yu Qu
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612
| | - Li-Ru Zhao
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY, 13210
| | - Wei-Ming Duan
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
150
|
Shi J, Chen Q, Li X, Zheng X, Zhang Y, Qiao J, Tang F, Tao Y, Zhou Q, Duan E. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development 2015; 142:3468-77. [PMID: 26395495 DOI: 10.1242/dev.123950] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction.
Collapse
Affiliation(s)
- Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiudeng Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jie Qiao
- Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, 100871 Beijing, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, 100871 Beijing, China
| | - Yi Tao
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|