101
|
Lin H, Zhao Z, Hao Y, He J, He J. Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol 2020; 98:284-292. [PMID: 31626739 DOI: 10.1139/bcb-2019-0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as vital regulators in various physiological and pathological processes. It was recently found that lncRNA HIF1A-AS2 could play oncogenic roles in several cancers. However, the function and regulatory mechanism of lncRNA HIF1A-AS2 in osteosarcoma (OS) remain largely unclear. In this study, we demonstrated that HIF1A-AS2 was overexpressed in OS tissues and cells. Downregulation of HIF1A-AS2 significantly affects multiple biological functions in OS cells, including cell proliferation, cell cycle progression, cell apoptosis, cell migration, and cell invasiveness. Mechanistic investigations demonstrated that HIF1A-AS2 can interact with miR-33b-5p and negatively regulate its expression, thereby upregulating the protein expression of miR-33b-5p's target SIRT6. Additionally, in vivo experiments using a xenograft tumor mouse model revealed that downregulation of HIF1A-AS2 suppresses tumor growth in OS. Taken together, a newly identified regulatory mechanism for the lncRNA HIF1A-AS2-miR-33b-5p-SIRT6 axis was systematically studied in OS, which could be a promising target for the treatment of OS.
Collapse
Affiliation(s)
- Hang Lin
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Zhenxu Zhao
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Yi Hao
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Jun He
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
- Department of Orthopedics, Zhejiang Hospital, Ward No. 15, No. 12 Lingyin Road, Xihu district, Hangzhou City, Zhejiang Province, 310012, China
| |
Collapse
|
102
|
Dong Z, Cui H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel) 2020; 12:E736. [PMID: 32244981 PMCID: PMC7140112 DOI: 10.3390/cancers12030736] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a grade IV glioma that is the most malignant brain tumor type. Currently, there are no effective and sufficient therapeutic strategies for its treatment because its pathological mechanism is not fully characterized. With the fast development of the Next Generation Sequencing (NGS) technology, more than 170 kinds of covalent ribonucleic acid (RNA) modifications are found to be extensively present in almost all living organisms and all kinds of RNAs, including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs). RNA modifications are also emerging as important modulators in the regulation of biological processes and pathological progression, and study of the epi-transcriptome has been a new area for researchers to explore their connections with the initiation and progression of cancers. Recently, RNA modifications, especially m6A, and their RNA-modifying proteins (RMPs) such as methyltransferase like 3 (METTL3) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), have also emerged as important epigenetic mechanisms for the aggressiveness and malignancy of GBM, especially the pluripotency of glioma stem-like cells (GSCs). Although the current study is just the tip of an iceberg, these new evidences will provide new insights for possible GBM treatments. In this review, we summarize the recent studies about RNA modifications, such as N6-methyladenosine (m6A), N6,2'O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), N1-methyladenosine (m1A), inosine (I) and pseudouridine (ψ) as well as the corresponding RMPs including the writers, erasers and readers that participate in the tumorigenesis and development of GBM, so as to provide some clues for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
103
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
104
|
Klomp J, Hyun J, Klomp JE, Pajcini K, Rehman J, Malik AB. Comprehensive transcriptomic profiling reveals SOX7 as an early regulator of angiogenesis in hypoxic human endothelial cells. J Biol Chem 2020; 295:4796-4808. [PMID: 32071080 DOI: 10.1074/jbc.ra119.011822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Indexed: 01/24/2023] Open
Abstract
Endothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia. We observed that hypoxia modulates the expression levels of approximately one-third of the EC transcriptome. Intriguingly, expression of the gene encoding the developmental transcription factor SOX7 (SRY-box transcription factor 7) rapidly and transiently increased during hypoxia. Transcriptomic and functional analyses of ECs following SOX7 depletion established its critical role in regulating hypoxia-induced angiogenesis. We also observed that depletion of the hypoxia-inducible factor (HIF) genes, HIF1A (encoding HIF-1α) and endothelial PAS domain protein 1 (EPAS1 encoding HIF-2α), inhibited both distinct and overlapping transcriptional programs. Our results indicated a role for HIF-1α in down-regulating mitochondrial metabolism while concomitantly up-regulating glycolytic genes, whereas HIF-2α primarily up-regulated the angiogenesis transcriptional program. These results identify the concentration and time dependence of the endothelial transcriptomic response to hypoxia and an early key role for SOX7 in mediating angiogenesis.
Collapse
Affiliation(s)
- Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - James Hyun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jennifer E Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Kostandin Pajcini
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612 .,Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612
| |
Collapse
|
105
|
Abstract
Long non-coding RNAs (lncRNAs) are regulators of cellular machinery that are commonly dysregulated in genitourinary malignancies. Accordingly, the investigation of lncRNAs is improving our understanding of genitourinary cancers, from development to progression and dissemination. lncRNAs are involved in major oncogenic events in genitourinary malignancies, including androgen receptor (AR) signalling in prostate cancer, hypoxia-inducible factor (HIF) pathway activation in renal cell carcinoma and invasiveness in bladder cancer, as well as multiple other proliferation and survival mechanisms. In line with their putative oncogenic roles, new lncRNA-based classifications are emerging as potent predictors of prognosis. In clinical practice, detection of oncogenic lncRNAs in serum or urine might enable early cancer detection, and lncRNAs might also be promising therapeutic targets for patients with genitourinary cancer. Furthermore, as predictors of sensitivity to anticancer treatments, lncRNAs could be integrated into future precision medicine strategies. Overall, lncRNAs are promising new candidates for molecular studies and for discovery of innovative biomarkers and are putative therapeutic targets in genitourinary oncology.
Collapse
|
106
|
Tang J, Yu B, Li Y, Zhang W, Alvarez AA, Hu B, Cheng S, Feng H. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep 2019; 20:e48170. [PMID: 31599491 PMCID: PMC6893290 DOI: 10.15252/embr.201948170] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators in cancer. However, the involvement of lncRNAs in TGF-β-regulated tumorigenicity is still unclear. Here, we identify TGF-β-activated lncRNA LINC00115 as a critical regulator of glioma stem-like cell (GSC) self-renewal and tumorigenicity. LINC00115 is upregulated by TGF-β, acts as a miRNA sponge, and upregulates ZEB1 by competitively binding of miR-200s, thereby enhancing ZEB1 signaling and GSC self-renewal. LINC00115 also promotes ZNF596 transcription by preventing binding of miR-200s to the 5'-UTR of ZNF596, resulting in augmented ZNF596/EZH2/STAT3 signaling and GBM tumor growth. Inhibition of EZH2 by genetic approaches or a small molecular inhibitor markedly suppresses LINC00115-driven GSC self-renewal and tumorigenicity. Moreover, LINC00115 is highly expressed in GBM, and LINC00115 expression or correlated co-expression with ZEB1 or ZNF596 is prognostic for clinical GBM survival. Our work defines a critical role of LINC00115 in GSC self-renewal and tumorigenicity, and suggests LINC00115 as a potential target for GBM treatment.
Collapse
Affiliation(s)
- Jianming Tang
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Yu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of HealthDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Angel A Alvarez
- Department of NeurologyNorthwestern Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Bo Hu
- Department of NeurologyNorthwestern Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Shi‐Yuan Cheng
- Department of NeurologyNorthwestern Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
107
|
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 2019; 20:E5758. [PMID: 31744051 PMCID: PMC6888455 DOI: 10.3390/ijms20225758] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has a high metastasis and reoccurrence rate. Long noncoding RNAs (lncRNAs) play an important role in CRC growth and metastasis. Recent studies revealed that lncRNAs participate in CRC progression by coordinating with microRNAs (miRNAs) and protein-coding mRNAs. LncRNAs function as competitive endogenous RNAs (ceRNAs) by competitively occupying the shared binding sequences of miRNAs, thus sequestering the miRNAs and changing the expression of their downstream target genes. Such ceRNA networks formed by lncRNA/miRNA/mRNA interactions have been found in a broad spectrum of biological processes in CRC, including liver metastasis, epithelial to mesenchymal transition (EMT), inflammation formation, and chemo-/radioresistance. In this review, we summarize typical paradigms of lncRNA-associated ceRNA networks, which are involved in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the competitive crosstalk among RNA transcripts and the novel targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| | | | | | | | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| |
Collapse
|
108
|
Ghosal S, Das S, Pang Y, Gonzales MK, Huynh TT, Yang Y, Taieb D, Crona J, Shankavaram UT, Pacak K. Long intergenic noncoding RNA profiles of pheochromocytoma and paraganglioma: A novel prognostic biomarker. Int J Cancer 2019; 146:2326-2335. [PMID: 31469413 DOI: 10.1002/ijc.32654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Many long intergenic noncoding RNAs (lincRNAs) serve as cancer biomarkers for diagnosis or prognostication. To understand the role of lincRNAs in the rare neuroendocrine tumors pheochromocytoma and paraganglioma (PCPG), we performed first time in-depth characterization of lincRNA expression profiles and correlated findings to clinical outcomes of the disease. RNA-Seq data from patients with PCPGs and 17 other tumor types from The Cancer Genome Atlas and other published sources were obtained. Differential expression analysis and a machine-learning model were used to identify transcripts specific to PCPGs, as well as established PCPG molecular subtypes. Similarly, lincRNAs specific to aggressive PCPGs were identified, and univariate and multivariate analysis was performed for metastasis-free survival. The results were validated in independent samples using RT-PCR. From a pan-cancer context, PCPGs had a specific and unique lincRNA profile. Among PCPGs, five different molecular subtypes were identified corresponding to the established molecular classification. Upregulation of 13 lincRNAs was found to be associated with aggressive/metastatic PCPGs. RT-PCR validation confirmed the overexpression of four lincRNAs in metastatic compared to non-metastatic PCPGs. Kaplan-Meier analysis identified five lincRNAs as prognostic markers for metastasis-free survival of patients in three subtypes of PCPGs. Stratification of PCPG patients with a risk-score formulated using multivariate analysis of lincRNA expression profiles, presence of key driver mutations, tumor location, and hormone secretion profiles showed significant differences in metastasis-free survival. PCPGs thus exhibit a specific lincRNA expression profile that also corresponds to the established molecular subgroups and can be potential marker for the aggressive/metastatic PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ying Pang
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yanqin Yang
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France.,European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Joakim Crona
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
109
|
Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh YBRD. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2019; 723:144126. [PMID: 31589963 DOI: 10.1016/j.gene.2019.144126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India.
| | - Karthikeyan Divyapriya
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Sarwareddy Kartik Kumar
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Y B R D Rajesh
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
110
|
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl Med 2019; 10:10/446/eaar5987. [PMID: 29925637 DOI: 10.1126/scitranslmed.aar5987] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennie Lin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amber Weiner
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Liu
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yumiao Han
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Sager Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie Hachet
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
111
|
Tang X, Liu S, Liu Y, Lin X, Zheng T, Liu X, Qiu J, Hua K. Circulating serum exosomal aHIF is a novel prognostic predictor for epithelial ovarian cancer. Onco Targets Ther 2019; 12:7699-7711. [PMID: 31571921 PMCID: PMC6756917 DOI: 10.2147/ott.s220533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Exosomes are key mediators of cellular communication by transporting molecules, including long noncoding RNAs (lncRNAs), and have been regarded as promising non-invasive biomarkers. This study aimed to evaluate the expression pattern and clinical significance of serum exosomal lncRNA antisense hypoxia inducible factor (aHIF) in epithelial ovarian cancer (EOC). Patients and methods Sixty-two EOC patients in Obstetrics and Gynecology Hospital of Fudan University were enrolled. The expression levels of aHIF in tissues and serum exosomes were examined by RT-qPCR. The origin of serum exosomal aHIF was explored in vitro and in vivo. Univariate and multivariate Cox regression analyses were used to evaluate the prognostic factors of EOC. A prognostic predictive nomogram was formulated in R software. Results We isolated exosomes, identified exosomal aHIF in the serum of EOC patients. The expression of serum exosomal aHIF was higher in EOC patients and was correlated with the aHIF level in EOC tissues. In vitro and in vivo, the results indicated that serum exosomal aHIF was derived from tumor cells. Kaplan-Meier survival analysis demonstrated that EOC patients with higher serum exosomal aHIF expression had poorer overall survival. Cox multivariate regression model revealed that FIGO stage, residual tumor size, and serum exosomal aHIF level were independent prognostic factors of EOC. Based on the prognostic value of serum exosomal aHIF, we established a nomogram model that showed a good predictive ability for EOC patients. Conclusion Serum exosomal aHIF is overexpressed in EOC and can serve as a noninvasive predictive biomarker for unfavorable prognosis.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Songping Liu
- Department of Obstetrics and Gynecology, Zhenjiang Maternal and Child Health Hospital, Zhenjiang, Jiangsu 212001, People's Republic of China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xin Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
112
|
The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun 2019; 10:3979. [PMID: 31484926 PMCID: PMC6726650 DOI: 10.1038/s41467-019-11910-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.
Collapse
|
113
|
Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biol Open 2019; 8:8/8/bio042937. [PMID: 31371307 PMCID: PMC6737980 DOI: 10.1242/bio.042937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melanoma with rapid progression towards metastasis has become the deadliest form of skin cancer. However, the mechanism of melanoma growth and metastasis is still unclear. Here, we found that miRNA-138 was lowly expressed and hypoxia-inducible factor 1α (HIF1α) was highly expressed in patients’ melanoma tissue compared with the paracancerous tissues, and they had a significant negative correlation (r=−0.877, P<0.001). Patients with miRNA-138low/HIF1αhigh signatures were predominant in late stage III/IV of melanoma. Further, bioinformatic analysis demonstrated that miRNA-138 directly targeted HIF1α. We found that the introduction of pre-miRNA-138 sequences to A375 cells reduced HIF1α mRNA expression and suppressed cell proliferation, migration and invasion. Overexpression of miRNA-138 or inhibition of HIF1α significantly suppressed the growth and metastasis of melanoma in vivo. Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis. Summary: Our study demonstrates the role and clinical relevance of miRNA-138 and HIF1α in melanoma cell growth and metastasis, providing a novel therapeutic target for suppression of melanoma growth and metastasis.
Collapse
Affiliation(s)
- Haijiang Qiu
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Fangchao Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| | - Minjun Chen
- Department of Rheumatology & Immunology, the Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
114
|
Regulation of CCL2 expression in human vascular endothelial cells by a neighboring divergently transcribed long noncoding RNA. Proc Natl Acad Sci U S A 2019; 116:16410-16419. [PMID: 31350345 PMCID: PMC6697820 DOI: 10.1073/pnas.1904108116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Controlling vascular inflammation is critical for limiting the progression of chronic vascular diseases such as atherosclerosis. Although poorly studied in the context of human vascular inflammation, long noncoding RNAs (lncRNAs) have the potential to regulate their neighboring genes. However, what constitutes a neighboring lncRNA is currently not well defined. In this study, we took an innovative approach to define IL-1β−regulated neighboring mRNA−lncRNA pairs based on colocalization within the same chromatin neighborhood and divergent transcriptional orientation. This approach led to the discovery of lncRNA-CCL2, which positively regulates its neighboring gene, CCL2, an important player in atherogenesis. Furthermore, lncRNA-CCL2 is relevant to human disease, as it is elevated in human atherosclerotic plaques, and, given its regulatory role, it may contribute to atherogenesis. Atherosclerosis is a chronic inflammatory disease that is driven, in part, by activation of vascular endothelial cells (ECs). In response to inflammatory stimuli, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway orchestrates the expression of a network of EC genes that contribute to monocyte recruitment and diapedesis across the endothelium. Although many long noncoding RNAs (lncRNAs) are dysregulated in atherosclerosis, they remain poorly characterized, especially in the context of human vascular inflammation. Prior studies have illustrated that lncRNAs can regulate their neighboring protein-coding genes via interaction with protein complexes. We therefore identified and characterized neighboring interleukin-1β (IL-1β)−regulated messenger RNA (mRNA)−lncRNA pairs in ECs. We found these pairs to be highly correlated in expression, especially when located within the same chromatin territory. Additionally, these pairs were predominantly divergently transcribed and shared common gene regulatory elements, characterized by active histone marks and NF-κB binding. Further analysis was performed on lncRNA-CCL2, which is transcribed divergently to the gene, CCL2, encoding a proatherosclerotic chemokine. LncRNA-CCL2 and CCL2 showed coordinate up-regulation in response to inflammatory stimuli, and their expression was correlated in unstable symptomatic human atherosclerotic plaques. Knock-down experiments revealed that lncRNA-CCL2 positively regulated CCL2 mRNA levels in multiple primary ECs and EC cell lines. This regulation appeared to involve the interaction of lncRNA-CCL2 with RNA binding proteins, including HNRNPU and IGF2BP2. Hence, our approach has uncovered a network of neighboring mRNA−lncRNA pairs in the setting of inflammation and identified the function of an lncRNA, lncRNA-CCL2, which may contribute to atherogenesis in humans.
Collapse
|
115
|
PTB-AS, a Novel Natural Antisense Transcript, Promotes Glioma Progression by Improving PTBP1 mRNA Stability with SND1. Mol Ther 2019; 27:1621-1637. [PMID: 31253583 DOI: 10.1016/j.ymthe.2019.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/31/2023] Open
Abstract
Glioma, the most common primary malignancy in the brain, has high recurrence and lethality rates, and thus, elucidation of the molecular mechanisms of this incurable disease is urgently needed. Poly-pyrimidine tract binding protein (PTBP1, also known as hnRNP I), an RNA-binding protein, has various mechanisms to promote gliomagenesis. However, the mechanisms regulating PTBP1 expression are unclear. Herein, we report a novel natural antisense noncoding RNA, PTB-AS, whose expression correlated positively with PTBP1 mRNA. We found that PTB-AS significantly promoted the proliferation and migration in vivo and in vitro of glioma cells. PTB-AS substantially increased the PTBP1 level by directly binding to its 3' UTR and stabilizing the mRNA. Furthermore, staphylococcal nuclease domain-containing 1 (SND1) dramatically increased the binding capacity between PTB-AS and PTBP1 mRNA. Mechanistically, PTB-AS could mask the binding site of miR-9 in the PTBP1-3' UTR; miR-9 negatively regulates PTBP1. To summarize, we revealed that PTB-AS, which maintains the PTBP1 level through extended base pairing to the PTBP1 3' UTR with the assistance of SND1, could significantly promote gliomagenesis.
Collapse
|
116
|
Ando A, Hashimoto N, Sakamoto K, Omote N, Miyazaki S, Nakahara Y, Imaizumi K, Kawabe T, Hasegawa Y. Repressive role of stabilized hypoxia inducible factor 1α expression on transforming growth factor β-induced extracellular matrix production in lung cancer cells. Cancer Sci 2019; 110:1959-1973. [PMID: 31004547 PMCID: PMC6549927 DOI: 10.1111/cas.14027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of transforming growth factor β (TGF‐β) combined with persistent hypoxia often affects the tumor microenvironment. Disruption of cadherin/catenin complexes induced by these stimulations yields aberrant extracellular matrix (ECM) production, characteristics of epithelial‐mesenchymal transition (EMT). Hypoxia‐inducible factors (HIF), the hallmark of the response to hypoxia, play differential roles during development of diseases. Recent studies show that localization of cadherin/catenin complexes at the cell membrane might be tightly regulated by protein phosphatase activity. We aimed to investigate the role of stabilized HIF‐1α expression by protein phosphatase activity on dissociation of the E‐cadherin/β‐catenin complex and aberrant ECM expression in lung cancer cells under stimulation by TGF‐β. By using lung cancer cells treated with HIF‐1α stabilizers or carrying doxycycline‐dependent HIF‐1α deletion or point mutants, we investigated the role of stabilized HIF‐1α expression on TGF‐β‐induced EMT in lung cancer cells. Furthermore, the underlying mechanisms were determined by inhibition of protein phosphatase activity. Persistent stimulation by TGF‐β and hypoxia induced EMT phenotypes in H358 cells in which stabilized HIF‐1α expression was inhibited. Stabilized HIF‐1α protein expression inhibited the TGF‐β‐stimulated appearance of EMT phenotypes across cell types and species, independent of de novo vascular endothelial growth factor A (VEGFA) expression. Inhibition of protein phosphatase 2A activity abrogated the HIF‐1α‐induced repression of the TGF‐β‐stimulated appearance of EMT phenotypes. This is the first study to show a direct role of stabilized HIF‐1α expression on inhibition of TGF‐β‐induced EMT phenotypes in lung cancer cells, in part, through protein phosphatase activity.
Collapse
Affiliation(s)
- Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihito Omote
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Miyazaki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshio Nakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and Allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
117
|
Ma CP, Liu H, Yi-Feng Chang I, Wang WC, Chen YT, Wu SM, Chen HW, Kuo YP, Shih CT, Li CY, Tan BCM. ADAR1 promotes robust hypoxia signaling via distinct regulation of multiple HIF-1α-inhibiting factors. EMBO Rep 2019; 20:e47107. [PMID: 30948460 PMCID: PMC6500999 DOI: 10.15252/embr.201847107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets. In particular, two negative regulators of HIF-1A-the natural antisense transcript HIF1A-AS2 and the ubiquitin ligase scaffold LIMD1-are directly but differentially modulated by ADAR1. We show that HIF1A-AS2 antagonizes the expression of HIF-1A in the immediate-early phase of hypoxic challenge, likely through a convergent transcription competition in cis ADAR1 in turn suppresses transcriptional progression of the antisense gene. In contrast, ADAR1 affects LIMD1 expression post-transcriptionally, by interfering with the cytoplasmic translocation of LIMD1 mRNA and thus protein translation. This multi-tier regulation coordinated by ADAR1 promotes robust and timely accumulation of HIF-1α upon oxygen depletion and reinforces target gene induction and downstream angiogenesis. Our results pinpoint ADAR1-HIF-1α axis as a hitherto unrecognized key regulator in hypoxia.
Collapse
Affiliation(s)
- Chung-Pei Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Min Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Wen Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ping Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Tien Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
118
|
Wu D, Yang N, Xu Y, Wang S, Zhang Y, Sagnelli M, Hui B, Huang Z, Sun L. lncRNA HIF1A Antisense RNA 2 Modulates Trophoblast Cell Invasion and Proliferation through Upregulating PHLDA1 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:605-615. [PMID: 31085354 PMCID: PMC6517652 DOI: 10.1016/j.omtn.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in various human diseases, and increasing studies have revealed that lncRNAs can play a vital role in preeclampsia (PE). In our study, lncRNA hypoxia-inducible factor 1 alpha (HIF1A) antisense RNA 2 (HIF1A-AS2) was found to be significantly downregulated in placenta tissues of PE patients by quantitative real-time PCR analysis. Moreover, Cell Counting Kit-8 (CCK-8) assays showed that downregulation of HIF1A-AS2 can impede cell proliferation of HTR-8/SVneo and JAR trophoblasts cells. Ectopic overexpression of HIF1A-AS2 can increase the function of trophoblasts cell migration and invasion in vitro. RNA-sequencing (RNA-seq), RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) experiments showed that HIF1A-AS2 can recruit lysine-specific demethylase 1 (LSD1) and epigenetically repress pleckstrin homology-like domain, family A, member 1 (PHLDA1) transcription in human trophoblasts cells. In summary, our findings suggest that downregulated HIF1A-AS2 may play a role in the pathogenesis and progression of PE, and has potential as a novel prognostic marker in PE.
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna 17177, Sweden
| | - Nana Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingqing Hui
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Zhenyao Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
119
|
Fu X, Wang Y, Wu G, Zhang W, Xu S, Wang W. Long noncoding RNA PURPL promotes cell proliferation in liver cancer by regulating p53. Mol Med Rep 2019; 19:4998-5006. [PMID: 31059022 DOI: 10.3892/mmr.2019.10159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that long noncoding RNAs (lncRNAs) serve a key role in malignant transformation, tumor progression and metastasis. Increased expression of lncRNA p53 upregulated regulator of P53 levels (PURPL) has been reported to promote tumorigenicity in colorectal cancer; however, the role and potential mechanisms of PURPL in the development of liver cancer remain unclear. We employed reverse transcription‑quantitative polymerase chain reaction to detect PURPL and p53 mRNA expression in liver cancer tissues and cell lines. Cell Counting Kit‑8 and colony‑forming assays were used to examine the cell proliferation; whereas, flow cytometry was applied to detect apoptosis and cell cycle progression. p53 expression was detected by western blotting. The results revealed that PURPL was significantly upregulated in liver cancer tissues compared with in paracancerous tissues, and was associated with tumor differentiation stage and tumor size. PURPL was also upregulated in various liver cancer cell lines. Silencing of PURPL inhibited liver cancer cells proliferation, blocked cell cycle progression, and promoted apoptosis. Most importantly, PURPL expression was negatively correlated with p53 mRNA expression. In summary, lncRNA‑PURPL was proposed to promote cell proliferation in liver cancer by regulating the p53 gene. As such, it could serve as a potential therapeutic target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Xueyan Fu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yawei Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Gang Wu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wanchuan Zhang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shaolin Xu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenqing Wang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
120
|
MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy. Noncoding RNA 2019; 5:ncrna5010025. [PMID: 30875963 PMCID: PMC6468936 DOI: 10.3390/ncrna5010025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Malignant glioblastoma (GBM, glioma) is the most common and aggressive primary adult brain tumor. The prognosis of GBM patients remains poor, despite surgery, radiation and chemotherapy. The major obstacles for successful remedy are invasiveness and therapy resistance of GBM cells. Invasive glioma cells leave primary tumor core and infiltrate surrounding normal brain leading to inevitable recurrence, even after surgical resection, radiation and chemotherapy. Therapy resistance allowing for selection of more aggressive and resistant sub-populations including GBM stem-like cells (GSCs) upon treatment is another serious impediment to successful treatment. Through their regulation of multiple genes, microRNAs can orchestrate complex programs of gene expression and act as master regulators of cellular processes. MicroRNA-based therapeutics could thus impact broad cellular programs, leading to inhibition of invasion and sensitization to radio/chemotherapy. Our data show that miR-451 attenuates glioma cell migration in vitro and invasion in vivo. In addition, we have found that miR-451 sensitizes glioma cells to conventional chemo- and radio-therapy. Our data also show that miR-451 is regulated in vivo by AMPK pathway and that AMPK/miR-451 loop has the ability to switch between proliferative and migratory pattern of glioma cells behavior. We therefore postulate that AMPK/miR-451 negative reciprocal feedback loop allows GBM cells/GSCs to adapt to tumor “ecosystem” by metabolic and behavioral flexibility, and that disruption of such a loop reduces invasiveness and diminishes therapy resistance.
Collapse
|
121
|
Mazor G, Levin L, Picard D, Ahmadov U, Carén H, Borkhardt A, Reifenberger G, Leprivier G, Remke M, Rotblat B. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis 2019; 10:246. [PMID: 30867410 PMCID: PMC6416247 DOI: 10.1038/s41419-019-1477-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiform (GBM) is the most common brain tumor characterized by a dismal prognosis. GBM cancer stem cells (gCSC) or tumor-initiating cells are the cell population within the tumor-driving therapy resistance and recurrence. While temozolomide (TMZ), an alkylating agent, constitutes the first-line chemotherapeutic significantly improving survival in GBM patients, resistance against this compound commonly leads to GBM recurrence and treatment failure. Although the roles of protein-coding transcripts, proteins and microRNA in gCSC, and therapy resistance have been comprehensively investigated, very little is known about the role of long noncoding RNAs (lncRNAs) in this context. Using nonoverlapping, independent RNA sequencing and gene expression profiling datasets, we reveal that TP73-AS1 constitutes a clinically relevant lncRNA in GBM. Specifically, we demonstrate significant overexpression of TP73-AS1 in primary GBM samples, which is particularly increased in the gCSC. More importantly, we demonstrate that TP73-AS1 comprises a prognostic biomarker in glioma and in GBM with high expression identifying patients with particularly poor prognosis. Using CRISPRi to downregulate our candidate lncRNA in gCSC, we demonstrate that TP73-AS1 promotes TMZ resistance in gCSC and is linked to regulation of the expression of metabolism- related genes and ALDH1A1, a protein known to be expressed in cancer stem cell markers and protects gCSC from TMZ treatment. Taken together, our results reveal that high TP73-AS1 predicts poor prognosis in primary GBM cohorts and that this lncRNA promotes tumor aggressiveness and TMZ resistance in gCSC.
Collapse
Affiliation(s)
- Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Ulvi Ahmadov
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
122
|
Xian J, Zhang Q, Guo X, Liang X, Liu X, Feng Y. A prognostic signature based on three non-coding RNAs for prediction of the overall survival of glioma patients. FEBS Open Bio 2019; 9:682-692. [PMID: 30984542 PMCID: PMC6443874 DOI: 10.1002/2211-5463.12602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies have identified certain non‐coding RNAs (ncRNAs) as biomarkers of disease progression. Glioma is the most common primary intracranial cancer, with high mortality. Here, we developed a prognostic signature for prediction of overall survival (OS) of glioma patients by analyzing ncRNA expression profiles. We downloaded gene expression profiles of glioma patients along with their clinical information from the Gene Expression Omnibus and extracted ncRNA expression profiles via a microarray annotation file. Correlations between ncRNAs and glioma patients’ OS were first evaluated through univariate Cox regression analysis and a permutation test, followed by random survival forest analysis for further screening of valuable ncRNA signatures. Prognostic signatures could be established as a risk score formula by including ncRNA signature expression values weighted by their estimated regression coefficients. Patients could be divided into high risk and low risk subgroups by using the median risk score as cutoff. As a result, glioma patients with a high risk score tended to have shorter OS than those with low risk scores, which was confirmed by analyzing another set of glioma patients in an independent dataset. Additionally, gene set enrichment analysis showed significant enrichment of cancer development‐related biological processes and pathways. Our study may provide further insights into the evaluation of glioma patients’ prognosis.
Collapse
Affiliation(s)
- Junmin Xian
- Department of Neurosurgery The Affiliated Hospital of Qingdao University China.,Department of Neurosurgery Heze Municipal Hospital China
| | | | - Xiwen Guo
- Department of Neurosurgery Heze Municipal Hospital China
| | - Xiankun Liang
- Department of Neurosurgery Heze Municipal Hospital China
| | - Xinhua Liu
- School of Biomedical Engineering Tianjin Medical University China
| | - Yugong Feng
- Department of Neurosurgery The Affiliated Hospital of Qingdao University China
| |
Collapse
|
123
|
Qiu JJ, Lin XJ, Zheng TT, Tang XY, Zhang Y, Hua KQ. The Exosomal Long Noncoding RNA aHIF is Upregulated in Serum From Patients With Endometriosis and Promotes Angiogenesis in Endometriosis. Reprod Sci 2019; 26:1590-1602. [PMID: 30808247 DOI: 10.1177/1933719119831775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The transfer of long noncoding RNAs (lncRNAs) via exosomes to modulate recipient cells represents an important mechanism for disease progression. Antisense hypoxia-inducible factor (aHIF) is a well-known angiogenesis-related lncRNA. Here, we aimed to investigate the clinical implications of aHIF and exosomal aHIF in endometriosis and the involvement of exosome-shuttled aHIF in endometriosis angiogenesis. STUDY DESIGN The distribution and expression of aHIF in ectopic, eutopic, and normal endometria was evaluated. Serum exosomal aHIF levels in patients with endometriosis were tested. The correlation between serum exosomal aHIF and aHIF expression in ectopic endometria was analyzed. Endometriotic cyst stromal cells (ECSCs)-derived exosomes were characterized. The internalization of exosomes by human umbilical vein endothelial cells (HUVECs) was observed. A series of in vitro assays were conducted to investigate the roles and mechanisms of exosomal aHIF in endometriosis angiogenesis. RESULTS Clinically, aHIF was highly expressed in ectopic endometria and serum exosomes in patients with endometriosis. Serum exosomal aHIF was significantly correlated to aHIF expression in matched ectopic endometria. In vitro, PKH67-labeled exosomes derived from aHIF high expression ECSCs were effectively internalized by recipient HUVECs. Notably, exosome-shuttled aHIF was transferred from ECSCs to HUVECs, which in turn elicited proangiogenic behavior in HUVECs by activating vascular endothelial growth factor (VEGF)-A, VEGF-D, and basic fibroblast growth factor, thereby facilitating endometriosis angiogenesis. CONCLUSION Our study illustrates a potential cell-cell communication between ECSCs and HUVECs in an ectopic environment, provides a novel mechanistic model explaining how ECSCs induce angiogenesis from the perspective of the "exosomal transfer of aHIF," and highlights the clinical value of circulating exosomal aHIF in endometriosis.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Jing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ting-Ting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiao-Yan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ying Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ke-Qin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
124
|
MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer. Noncoding RNA 2019; 5:ncrna5010020. [PMID: 30813461 PMCID: PMC6468660 DOI: 10.3390/ncrna5010020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian brain is made up of billions of neurons and supporting cells (glial cells), intricately connected. Molecular perturbations often lead to neurodegeneration by progressive loss of structure and malfunction of neurons, including their death. On the other side, a combination of genetic and cellular factors in glial cells, and less frequently in neurons, drive oncogenic transformation. In both situations, microenvironmental niches influence the progression of diseases and therapeutic responses. Dynamic changes that occur in cellular transcriptomes during the progression of developmental lineages and pathogenesis are controlled through a variety of regulatory networks. These include epigenetic modifications, signaling pathways, and transcriptional and post-transcriptional mechanisms. One prominent component of the latter is small non-coding RNAs, including microRNAs, that control the vast majority of these networks including genes regulating neural stemness, differentiation, apoptosis, projection fates, migration and many others. These cellular processes are also profoundly dependent on the microenvironment, stemness niche, hypoxic microenvironment, and interactions with associated cells including endothelial and immune cells. Significantly, the brain of all other mammalian organs expresses the highest number of microRNAs, with an additional gain in expression in the early stage of neurodegeneration and loss in expression in oncogenesis. However, a mechanistic explanation of the concept of an apparent inverse correlation between the odds of cancer and neurodegenerative diseases is only weakly developed. In this review, we thus will discuss widespread de-regulation of microRNAome observed in these two major groups of brain pathologies. The deciphering of these intricacies is of importance, as therapeutic restoration of pre-pathological microRNA landscape in neurodegeneration must not lead to oncogenesis and vice versa. We thus focus on microRNAs engaged in cellular processes that are inversely regulated in these diseases. We also aim to define the difference in microRNA networks between pro-survival and pro-apoptotic signaling in the brain.
Collapse
|
125
|
Wu XL, Lu RY, Wang LK, Wang YY, Dai YJ, Wang CY, Yang YJ, Guo F, Xue J, Yang DD. Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2. J Cell Biochem 2019; 120:1221-1231. [PMID: 30335892 DOI: 10.1002/jcb.27079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
Colon cancer is one of the most life-threatening malignancies worldwide. Long noncoding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) is a cancer-associated biomarker involved in the metastasis and prognosis of several cancers. However, whether and how HOTAIR affects colon cancer progression is still unclear. Consequently, we used RNA interference to knock down HOTAIR to explore its effects on human colon cancer cells. The dual luciferase reporter gene assay was initially used for testify the regulating relationship between lncRNA HOTAIR and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). We determined the expressions of HOTAIR, IGF2BP2, E-cadherin, and vimentin. Meanwhile, cell growth, cycle and apoptosis, migration, and invasion were assayed. LoVo cells were transplanted into nude mice, and tumor formation and microvessel density were evaluated. LncRNA HOTAIR positively regulated IGF2BP2. Besides, the expressions of HOTAIR and E-cadherin and the apoptosis were increased, while the expressions of IGF2BP2 and vimentin, the growth, invasion and migration of LoVo cells, the average tumor weight, and microvessel density value were decreased. Of importance, overexpressed IGF2BP2 could reverse the above impacts. Taken together, the current study indicates that silencing of HOTAIR could inhibit the invasion, proliferation, and migration, and promote apoptosis of colon cancer LoVo cells through suppressing IGF2BP2 and the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Xue-Liang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Rui-Yun Lu
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Kun Wang
- Department of Ultrasound, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuan-Yuan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-Jun Dai
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen-Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yong-Jiang Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fei Guo
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Dong-Dong Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
126
|
Olmez I, Love S, Xiao A, Manigat L, Randolph P, McKenna BD, Neal BP, Boroda S, Li M, Brenneman B, Abounader R, Floyd D, Lee J, Nakano I, Godlewski J, Bronisz A, Sulman EP, Mayo M, Gioeli D, Weber M, Harris TE, Purow B. Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro Oncol 2019; 20:192-202. [PMID: 29048560 DOI: 10.1093/neuonc/nox119] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The mesenchymal phenotype in glioblastoma (GBM) and other cancers drives aggressiveness and treatment resistance, leading to therapeutic failure and recurrence of disease. Currently, there is no successful treatment option available against the mesenchymal phenotype. Methods We classified patient-derived GBM stem cell lines into 3 subtypes: proneural, mesenchymal, and other/classical. Each subtype's response to the inhibition of diacylglycerol kinase alpha (DGKα) was compared both in vitro and in vivo. RhoA activation, liposome binding, immunoblot, and kinase assays were utilized to elucidate the novel link between DGKα and geranylgeranyltransferase I (GGTase I). Results Here we show that inhibition of DGKα with a small-molecule inhibitor, ritanserin, or RNA interference preferentially targets the mesenchymal subtype of GBM. We show that the mesenchymal phenotype creates the sensitivity to DGKα inhibition; shifting GBM cells from the proneural to the mesenchymal subtype increases ritanserin activity, with similar effects in epithelial-mesenchymal transition models of lung and pancreatic carcinoma. This enhanced sensitivity of mesenchymal cancer cells to ritanserin is through inhibition of GGTase I and downstream mediators previously associated with the mesenchymal cancer phenotype, including RhoA and nuclear factor-kappaB. DGKα inhibition is synergistic with both radiation and imatinib, a drug preferentially affecting proneural GBM. Conclusions Our findings demonstrate that a DGKα-GGTase I pathway can be targeted to combat the treatment-resistant mesenchymal cancer phenotype. Combining therapies with greater activity against each GBM subtype may represent a viable therapeutic option against GBM.
Collapse
Affiliation(s)
- Inan Olmez
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Shawn Love
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Aizhen Xiao
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Laryssa Manigat
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Peyton Randolph
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Brian D McKenna
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Brian P Neal
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Salome Boroda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Ming Li
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Breanna Brenneman
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Desiree Floyd
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama, Birmingham, Alabama
| | - Jakub Godlewski
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Agnieszka Bronisz
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Erik P Sulman
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Marty Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Michael Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
127
|
Wang Y, Zhang G, Han J. HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J Cell Biochem 2019; 120:10513-10518. [PMID: 30635931 DOI: 10.1002/jcb.28337] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 01/23/2023]
Abstract
The aberrant expression of hypoxia-inducible factor 1 alpha (HIF1A)-antisense RNA 2 (HIF1A-AS2) was found in various human cancers including breast cancer. The aim of this study was to present more evidence about the role HIF1A-AS2 on triple-negative breast cancer (TNBC). In our results, HIF1A-AS2 was also found to be upregulated in TNBC tissues compared with non-TNBC tissues or adjacent normal tissues. Besides, HIF1A-AS2 expression was also elevated in TNBC cell lines compared with the normal breast epithelial cell line. Moreover, high expression of HIF1A-AS2 was associated with lymph node metastasis, distant metastasis and unfavorable histological grade in TNBC patients. Survival analysis showed a TNBC patient with high HIF1A-AS2 expression had shorter overall survival than patients with low HIF1A-AS2 expression, and HIF1A-AS2 high expression acted as an independent poor prognostic factor for overall survival in TNBC patients. The cell migration and invasion assays suggested inhibition of HIF1A-AS2 obviously depressed TNBC cell migration and invasion. In conclusion, HIF1A-AS2 serves as a novel biomarker for predicting clinical progression and prognosis in TNBC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
128
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
129
|
Wu R, Ruan J, Sun Y, Liu M, Sha Z, Fan C, Wu Q. Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells (ASCs) osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway. Stem Cell Res Ther 2018; 9:348. [PMID: 30545407 PMCID: PMC6293597 DOI: 10.1186/s13287-018-1082-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study was aimed to investigate the role and specific molecular mechanism of HIF1A-AS2/miR-665/IL6 axis in regulating osteogenic differentiation of adipose-derived stem cells (ASCs) via the PI3K/Akt signaling pathway. Methods RNAs’ expression profile in normal/osteogenic differentiation-induced ASCs (osteogenic group) was from the Gene Expression Omnibus database. The analysis was carried out using Bioconductor of R. Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes dataset were applied to identify up- and downregulated signaling pathways. Co-expression network of specific lncRNAs and mRNAs was structured by Cytoscape, while binding sites amongst lncRNA, mRNA, and miRNA were predicted by TargetScan and miRanda. ASCs were derived from human adipose tissue and were authenticated by flow cytometry. ASC cell function was surveyed by alizarin red and alkaline phosphatase (ALP) staining. Molecular mechanism of HIF1A-AS2/miR-665/IL6 axis was investigated by RNAi, cell transfection, western blot, and qRT-PCR. RNA target relationships were validated by dual-luciferase assay. Results HIF1A-AS2 and IL6 were highly expressed while miR-665 was lowly expressed in induced ASCs. HIF1A-AS2 and IL6 improved the expression level of osteoblast markers Runx2, Osterix, and Osteocalcin and also accelerated the formation of calcium nodule and ALP activity, yet miR-665 had opposite effects. HIF1A-AS2 directly targeted miR-665, whereas miR-665 repressed IL6 expression. Moreover, the HIF1A-AS2/miR-665/IL6 regulating axis activated the PI3K/Akt signaling pathway. Conclusions LncRNA HIF1A-AS2 could sponge miR-665 and hence upregulate IL6, activate the PI3K/Akt signaling pathway, and ultimately promote ASC osteogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-018-1082-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jihao Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yongjin Sun
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Qingkai Wu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China. .,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
130
|
Li J, Zhu Y, Wang H, Ji X. Targeting Long Noncoding RNA in Glioma: A Pathway Perspective. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:431-441. [PMID: 30388617 PMCID: PMC6202792 DOI: 10.1016/j.omtn.2018.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate extensively in biological processes of various cancers. The majority of these transcripts are uniquely expressed in differentiated tissues or specific cancer types. lncRNAs are aberrantly expressed in gliomas and exert diverse functions. In this article, we provided an overview of how lncRNAs regulate cellular processes in glioma, enumerated the lncRNAs that may act as glioma biomarkers, and showed their potential clinical implications.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
131
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
132
|
Chen X, Liu M, Meng F, Sun B, Jin X, Jia C. The long noncoding RNA HIF1A-AS2 facilitates cisplatin resistance in bladder cancer. J Cell Biochem 2018; 120:243-252. [PMID: 30216500 DOI: 10.1002/jcb.27327] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Chemotherapy drug resistance frequently happens in more than 50% of bladder cancer patients and is the major obstacle for the bladder cancer therapy. Recent studies have shown that long noncoding RNA (lncRNA) is involved in the development of chemoresistance. In this study, we reported hypoxia inducible factor 1α-antisense RNA 2 (HIF1A-AS2), as a subtype-specific hypoxia inducible lncRNA, is upregulated in bladder cancer cells and tissue after cisplatin (Cis) treatment. The induction of HIF1A-AS2 in bladder cancer cells rendered resistance to Cis-induced apoptosis. Silencing HIF1A-AS2 in Cis-resistant bladder cancer cells was re-sensitized to Cis-induced apoptosis. Mechanically, we found that HIF1A-AS2 suppressed the transcription activity of p53 family proteins by promoting the expression of high-mobility group A1 (HMGA1). The induction of HMGA1 physically interacts with p53, p63, and p73, and therefore constrains their transcriptional activity on Bax. Knockdown of HIF1A-AS2 or HMGA1 rescued the expression of Bax, which therefore enhanced the killing effect of Cis. Furthermore, we also found that the expression of HIF1A-AS2 was higher in the human bladder tumor tissues after Cis treatment, and was positive correlated to the expression of HIF1α and HMGA1. This study suggests that upregulated HIF1A-AS2 hampers the p53 family proteins dependent apoptotic pathway to promote Cis resistance in bladder cancer. Our data suggested that HIF1A-AS2 plays oncogenic roles and can be used as a therapeutic target for treating human bladder cancer.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Meihan Liu
- Department of ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Fanping Meng
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xuefei Jin
- Department of Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chunshu Jia
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
133
|
Wang Q, Cai J, Fang C, Yang C, Zhou J, Tan Y, Wang Y, Li Y, Meng X, Zhao K, Yi K, Zhang S, Zhang J, Jiang C, Zhang J, Kang C. Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-β pathway. Theranostics 2018; 8:4733-4749. [PMID: 30279734 PMCID: PMC6160778 DOI: 10.7150/thno.26550] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022] Open
Abstract
Rationale: Competitive endogenous RNA (ceRNA) networks play important roles in posttranscriptional regulation. Their dysregulation is common in cancer. However, ceRNA signatures have been poorly examined in the invasive and aggressive phenotypes of mesenchymal glioblastoma (GBM). This study aims to characterize mesenchymal glioblastoma at the mRNA-miRNA level and identify the mRNAs in ceRNA networks (micNET) markers and their mechanisms in tumorigenesis. Methods: The mRNAs in ceRNA networks (micNETs) of glioblastoma were investigated by constructing a GBM ceRNA network followed by integration with a STRING protein interaction network. The prognostic micNET markers of mesenchymal GBM were identified and validated across multiple datasets. ceRNA interactions were identified between micNETs and miR181 family members. LY2109761, an inhibitor of TGFBR2, demonstrated tumor-suppressive effects on both primary cultured cells and a patient-derived xenograft intracranial model. Results: We characterized mesenchymal glioblastoma at the mRNA-miRNA level and reported a ceRNA network that could separate the mesenchymal subtype from other subtypes. Six genes (TGFBR2, RUNX1, PPARG, ACSL1, GIT2 and RAP1B) that interacted with each other in both a ceRNA-related manner and in terms of their protein functions were identified as markers of the mesenchymal subtype. The coding sequence (CDS) and 3'-untranslated region (UTR) of TGFBR2 upregulated the expression of these genes, whereas TGFBR2 inhibition by siRNA or miR-181a/d suppressed their expression levels. Furthermore, mesenchymal subtype-related genes and the invasion phenotype could be reversed by suppressing the six mesenchymal marker genes. Conclusions: This study suggests that the micNETs may have translational significance in the diagnosis of mesenchymal GBM and may be novel therapeutic targets.
Collapse
Affiliation(s)
- Qixue Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jinquan Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chuan Fang
- Department of Neurosurgery, Hebei University Affiliated Hospital, Baoding 071000, China
| | - Chao Yang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Junhu Zhou
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Medical College of Hebei University, Baoding, Hebei 071000, China
| | - Yunfei Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yansheng Li
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Xiangqi Meng
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Kai Zhao
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Kaikai Yi
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Sijing Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jianning Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Jing Zhang
- Institute for Cancer Genetics, Columbia University Medical Center, Columbia University, New York, New York 10032, USA
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| |
Collapse
|
134
|
Pop S, Enciu AM, Necula LG, Tanase C. Long non-coding RNAs in brain tumours: Focus on recent epigenetic findings in glioma. J Cell Mol Med 2018; 22:4597-4610. [PMID: 30117678 PMCID: PMC6156469 DOI: 10.1111/jcmm.13781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma biology is a major focus in tumour research, primarily due to the aggressiveness and high mortality rate of its most aggressive form, glioblastoma. Progress in understanding the molecular mechanisms behind poor prognosis of glioblastoma, regardless of treatment approaches, has changed the classification of brain tumours after nearly 100 years of relying on anatomopathological criteria. Expanding knowledge in genetic, epigenetic and translational medicine is also beginning to contribute to further elucidating molecular dysregulation in glioma. Long non‐coding RNAs (lncRNAs) and their main representatives, large intergenic non‐coding RNAs (lincRNAs), have recently been under scrutiny in glioma research, revealing novel mechanisms of pathogenesis and reinforcing others. Among those confirmed was the reactivation of events significant for foetal brain development and neuronal commitment. Novel mechanisms of tumour suppression and activation of stem‐like behaviour in tumour cells have also been examined. Interestingly, these processes involve lncRNAs that are present both during normal brain development and in brain malignancies and their reactivation might be explained by epigenetic mechanisms, which we discuss in detail in the present review. In addition, the review discusses the lncRNAs‐induced changes, as well as epigenetic changes that are consequential for tumour formation, affecting, in turn, the expression of various types of lncRNAs.
Collapse
Affiliation(s)
- Sevinci Pop
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura G Necula
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Stefan N. Nicolau" National Institute of Virology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristiana Tanase
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| |
Collapse
|
135
|
Wu F, Zhao Z, Chai R, Liu Y, Wang K, Wang Z, Li G, Huang R, Jiang H, Zhang K. Expression profile analysis of antisense long non-coding RNA identifies WDFY3-AS2 as a prognostic biomarker in diffuse glioma. Cancer Cell Int 2018; 18:107. [PMID: 30069164 PMCID: PMC6064140 DOI: 10.1186/s12935-018-0603-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence has shown that long non-coding RNAs (lncRNAs) are important prognostic biomarkers and epigenetic regulators with critical roles in cancer initiation and progression. However, the expression and clinical prognostic value of antisense lncRNAs in diffuse glioma patients remain unknown. METHODS Here, we profiled differentially expressed antisense lncRNAs in glioma using RNA sequencing data from Chinese Glioma Genome Atlas database. Cox regression was performed to evaluate the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were used for functional analysis of antisense LncRNAs. RESULTS Expression profiling identified 169 aberrantly expressed antisense lncRNAs between lower grade glioma (LGG) (grade II and III) and glioblastoma multiforme (GBM), 113 antisense lncRNAs between LGG IDH-wt and IDH-mut samples, and 70 antisense lncRNAs between GBM IDH-wt and IDH-mut samples, respectively. Among them, three antisense lncRNAs (WDFY3-AS2, MCM3AP-AS1 and LBX2-AS1) were significantly associated with prognosis and malignant progression of patients. WDFY3-AS2, the top one of downregulated antisense lncRNAs in GBM with fold change of 0.441 (P < 0.001), showed specific decreased expression in classical, mesenchymal, LGG IDH-wt, GBM IDH-wt or MGMT promoter unmethylated stratified patients. Chi square test found that WDFY3-AS2 was significantly associated with the clinical and molecular features of glioma. Univariate and multivariate Cox regression analysis indicated that WDFY3-AS2 was independently correlated with overall survival (OS) of patients. Kaplan-Meier analysis found that patients with high WDFY3-AS2 expression had longer OS than the low expression ones in the stratified cohorts. Additionally, GO and GSEA showed that gene sets correlated with WDFY3-AS2 expression were involved in regulation of synaptic transmission, glutamate receptor and TNF signaling pathway. CONCLUSION Our findings provided convincing evidence that WDFY3-AS2 is a novel valuable prognostic biomarker for diffuse glioma.
Collapse
Affiliation(s)
- Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
- No. 6, Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kuanyu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Haoyu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
136
|
Cai J, Zhang J, Wu P, Yang W, Ye Q, Chen Q, Jiang C. Blocking LINC00152 suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-κB pathway. J Neurooncol 2018; 140:225-236. [DOI: 10.1007/s11060-018-2951-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/22/2018] [Indexed: 12/19/2022]
|
137
|
Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, Smith KA, Lankerovich M, Bertagnolli D, Bickley K, Boe AF, Brouner K, Butler S, Caldejon S, Chapin M, Datta S, Dee N, Desta T, Dolbeare T, Dotson N, Ebbert A, Feng D, Feng X, Fisher M, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Hejazinia N, Hohmann J, Hothi P, Howard R, Joines K, Kriedberg A, Kuan L, Lau C, Lee F, Lee H, Lemon T, Long F, Mastan N, Mott E, Murthy C, Ngo K, Olson E, Reding M, Riley Z, Rosen D, Sandman D, Shapovalova N, Slaughterbeck CR, Sodt A, Stockdale G, Szafer A, Wakeman W, Wohnoutka PE, White SJ, Marsh D, Rostomily RC, Ng L, Dang C, Jones A, Keogh B, Gittleman HR, Barnholtz-Sloan JS, Cimino PJ, Uppin MS, Keene CD, Farrokhi FR, Lathia JD, Berens ME, Iavarone A, Bernard A, Lein E, Phillips JW, Rostad SW, Cobbs C, Hawrylycz MJ, Foltz GD. An anatomic transcriptional atlas of human glioblastoma. Science 2018; 360:660-663. [PMID: 29748285 PMCID: PMC6414061 DOI: 10.1126/science.aaf2666] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ralph B Puchalski
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Nameeta Shah
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA.
- Mazumdar Shaw Center for Translational Research, Bangalore 560099, India
| | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Steve R Nomura
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Jae-Guen Yoon
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Michael Lankerovich
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Kris Bickley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Andrew F Boe
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Suvro Datta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xu Feng
- Radia Inc., Lynnwood, WA 98036, USA
| | - Michael Fisher
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garrett Gee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Guangyu Gu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - John Hohmann
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Parvinder Hothi
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kevin Joines
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ali Kriedberg
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chris Lau
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hwahyung Lee
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Fuhui Long
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Naveed Mastan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Erika Mott
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chantal Murthy
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eric Olson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zack Riley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Rosen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Sandman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Andrew Sodt
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Don Marsh
- White Marsh Forests, Seattle, WA 98119, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chinh Dang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Allan Jones
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Haley R Gittleman
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Megha S Uppin
- Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael E Berens
- TGen, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Charles Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Greg D Foltz
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| |
Collapse
|
138
|
Del Vecchio F, Lee GH, Hawezi J, Bhome R, Pugh S, Sayan E, Thomas G, Packham G, Primrose J, Pichler M, Mirnezami A, Calin G, Bullock M. Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Lett 2018; 421:94-102. [PMID: 29458141 DOI: 10.1016/j.canlet.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA transcripts which have limited protein coding potential. They perform a variety of cellular functions in health, but have also been implicated during malignant transformation. A further theme in recent years is the critical role of the tumour microenvironment and the dynamic interactions between cancer and stromal cells in promoting invasion and disease progression. Whereas the contribution of deregulated lncRNAs within cancer cells has received considerable attention, their significance within the tumour microenvironment is less well understood. The tumour microenvironment consists of cancer-associated stromal cells and structural extracellular components which interact with one another and with the transformed epithelium via complex extracellular signalling pathways. LncRNAs are directly and indirectly involved in tumour/stroma cross-talk and help stimulate a permissive tumour microenvironment which is more conducive for invasive tumour growth. Furthermore, lncRNAs play key roles in determining the phenotype of cancer associated stromal cells and contribute to angiogenesis and immune evasion pathways, extracellular-matrix (ECM) turnover and the response to hypoxic stress. Here we explore the multifaceted roles of lncRNAs within the tumour microenvironment and their putative pathophysiological effects.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gui Han Lee
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Joamir Hawezi
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Rahul Bhome
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Sian Pugh
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Emre Sayan
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Gareth Thomas
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Graham Packham
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK
| | - John Primrose
- Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Mirnezami
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Marc Bullock
- Cancer Sciences Unit, University of Southampton School of Medicine, Somers Building, University Hospital Southampton, Tremona Road, Southampton, UK; Academic Surgery, South Academic Block, University Hospital Southampton, Tremona Road, Southampton, UK.
| |
Collapse
|
139
|
Tu L, Huang Q, Fu S, Liu D. Aberrantly expressed long noncoding RNAs in hypertrophic scar fibroblasts in vitro: A microarray study. Int J Mol Med 2018; 41:1917-1930. [PMID: 29393369 PMCID: PMC5810216 DOI: 10.3892/ijmm.2018.3430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
A hypertrophic scar is the result of abnormal repair of the body after trauma. Histopathologically, it is mostly the result of the excessive proliferation of fibroblasts and the accumulation of extracellular matrix. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) have a critical role in the regulation of gene expression and in the pathogenesis of diseases. However, the roles of lncRNAs in hypertrophic scars have remained elusive. The present study investigated the profiles of differentially expressed lncRNAs between fibroblasts derived from a hypertrophic scar and normal skin, and explored the possible mechanisms underlying the development of hypertrophic scars. Microarray data indicated that 6,104 lncRNAs and 2,952 mRNAs were differentially expressed. A set of differentially expressed transcripts as confirmed by reverse transcription‑quantitative polymerase chain reaction. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to determine the principal functions of the significantly deregulated genes. Furthermore, associated expression networks, including subgroup analysis, competing endogenous RNAs (ceRNAs) and coding‑noncoding co‑expression networks were constructed using bioinformatics methods. The homology between differentially expressed lncRNAs and mRNAs was assessed and two exon lncRNA were selected to explore their regulatory mechanisms. The ceRNA network inferred that NR_125715 acted as a competing endogenous RNA, bound to microRNA (miR)‑141‑3p, miR‑200a‑3p and miR‑29 to regulate the expression of the miRs' targets, including transforming growth factor β2 (TGFB2). Similarly, NR_046402 acted as a competing endogenous RNA, which bound to miR‑133a‑3p.1 and miR‑4469 to then regulate the expression of the miRs' targets, including DNA polymerase δ1, catalytic subunit (POLD1). In addition, co‑expression analysis indicated that the expression of lncRNAs NR_125715 and NR_046402 was correlated with that of TGFB2 and POLD1 mRNA. The identification of these differentially expressed lncRNAs in the hypertrophic scar‑derived fibroblasts in the present study, may provide novel insight into the functional interactions of lncRNA, miRNA and mRNA, and lead to novel theories for the pathogenesis and treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Longxiang Tu
- Institute of Burn Injuries, The First Affiliated Hospital of Nanchang University
| | - Qi Huang
- Department of Nursing, Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shangfeng Fu
- Institute of Burn Injuries, The First Affiliated Hospital of Nanchang University
| | - Dewu Liu
- Institute of Burn Injuries, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
140
|
Li J, Ji X, Wang H. Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma. Neoplasia 2018; 20:456-466. [PMID: 29574252 PMCID: PMC5915996 DOI: 10.1016/j.neo.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/07/2023] Open
Abstract
Emergent evidences revealed that long noncoding RNAs (lncRNAs) participate in neoplastic progression. HMMR is an oncogene that is highly expressed in glioblastoma (GBM) and supports GBM growth. Whether lncRNAs regulate HMMR in GBM remains unknown. Herein, we identify that an HMMR antisense lncRNA, HMMR-AS1, is hyperexpressed in GBM cell lines and stabilizes HMMR mRNA. Knockdown of HMMR-AS1 reduces HMMR expression; inhibits cell migration, invasion, and mesenchymal phenotypes; and suppresses GBM cell growth both in vitro and in vivo. Moreover, knockdown of HMMR-AS1 radiosensitizes GBM by reducing DNA repair proteins ATM, RAD51, and BMI1. Our data demonstrate a mechanism of sense-antisense interference between HMMR and HMMR-AS1 in GBM and suggest that targeting HMMR-AS1 is a potential strategy for GBM treatment.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
141
|
The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells. Stem Cells Int 2018; 2018:4217259. [PMID: 29736175 PMCID: PMC5874980 DOI: 10.1155/2018/4217259] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. The insulin-like growth factor (IGF) 2 mRNA-binding protein (IGF2BP, IMP) family comprises three RBPs, IGF2BP1, IGF2BP2, and IGF2BP3, capable of associating with IGF2 and other transcripts and mediating their processing. IGF2BP2 represents the least understood member of this family of RBPs; however, it has been reported to participate in a wide range of physiological processes, such as embryonic development, neuronal differentiation, and metabolism. Its dysregulation is associated with insulin resistance, diabetes, and carcinogenesis and may potentially be a powerful biomarker and candidate target for relevant diseases. This review summarizes the structural features, regulation, and functions of IGF2BP2 and their association with cancer and cancer stem cells.
Collapse
|
142
|
Rooj AK, Ricklefs F, Mineo M, Nakano I, Chiocca EA, Bronisz A, Godlewski J. MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Rep 2018; 19:2026-2032. [PMID: 28591575 DOI: 10.1016/j.celrep.2017.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/09/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale transcriptomic profiling of glioblastoma (GBM) into subtypes has provided remarkable insight into the pathobiology and heterogeneous nature of this disease. The mechanisms of speciation and inter-subtype transitions of these molecular subtypes require better characterization to facilitate the development of subtype-specific targeting strategies. The deregulation of microRNA expression among GBM subtypes and their subtype-specific targeting mechanisms are poorly understood. To reveal the underlying basis of microRNA-driven complex subpopulation dynamics within the heterogeneous intra-tumoral ecosystem, we characterized the expression of the subtype-enriched microRNA-128 (miR-128) in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells. Because microRNAs are capable of re-arranging the molecular landscape in a cell-type-specific manner, we argue that alterations in miR-128 levels are a potent mechanism of bidirectional transitions between GBM subpopulations, resulting in intermediate hybrid stages and emphasizing highly intricate intra-tumoral networking.
Collapse
Affiliation(s)
- Arun K Rooj
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franz Ricklefs
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marco Mineo
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35243, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Bronisz
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jakub Godlewski
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
143
|
Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun 2018; 496:712-718. [PMID: 29360452 DOI: 10.1016/j.bbrc.2018.01.109] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022]
Abstract
The long non-coding RNA SNHG7 (small nucleolar RNA host gene 7) has been reported to be involved in various cancers as a potential oncogene. However, the functions and molecular mechanisms of SNHG7 in glioblastoma (GBM) are largely unknown. In the present study, we showed that the expression of SNHG7 was significantly upregulated in GBM tissues and cell lines compared with non-cancerous brain tissues. Furthermore, we found that SNHG7 knockdown remarkably suppressed the proliferation, migration and invasion of A172 and U87 cells while inducing their apoptosis. Subsequently, we showed that SNHG7 knockdown significantly inhibited tumor growth and metastasis in vivo by using xenograft experiments in nude mice. In terms of mechanism, we found that SNHG7 directly inhibited miR-5095, which targeted the 3' UTR of CTNNB1 mRNA and subsequently downregulated the Wnt/β-catenin signaling pathway in GBM. Using rescue experiments, we demonstrated that SNHG7 promoted the proliferation, migration and invasion of GBM cells through the inhibition of miR-5095 and concomitant activation of Wnt/β-catenin signaling pathway. Taken together, the SNHG7/miR-5095 axis might be a potential target for the development of effective GBM therapy.
Collapse
|
144
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 587] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
145
|
Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y, Wen A. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 2017; 96:165-172. [DOI: 10.1016/j.biopha.2017.09.113] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022] Open
|
146
|
Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2. Clin Cancer Res 2017; 24:684-695. [PMID: 29138341 DOI: 10.1158/1078-0432.ccr-17-0605] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/04/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Qun Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| | - Jinquan Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| | - Qixue Wang
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junhu Zhou
- Glioma Cooperative Group (CGCG), Beijing, China
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Glioma Cooperative Group (CGCG), Beijing, China.
- Department of Neurosurgery, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Li
- Department of Medicine, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Chuanlu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
- Glioma Cooperative Group (CGCG), Beijing, China
| |
Collapse
|
147
|
Abstract
The EGLN (also called PHD) prolyl hydroxylase enzymes and their canonical targets, the HIFα subunits, represent the core of an ancient oxygen-monitoring machinery used by metazoans. In this review, we highlight recent progress in understanding the overlapping versus specific roles of EGLN enzymes and HIF isoforms and discuss how feedback loops based on recently identified noncoding RNAs introduce additional layers of complexity to the hypoxic response. Based on novel interactions identified upstream and downstream of EGLNs, an integrated network connecting oxygen-sensing functions to metabolic and signaling pathways is gradually emerging with broad therapeutic implications.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - William G Kaelin
- Howard Hughes Medical Institute, Boston, MA 02215, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
148
|
Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci 2017; 24:53. [PMID: 28789687 PMCID: PMC5547530 DOI: 10.1186/s12929-017-0358-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a classic feature of the tumor microenvironment with a profound impact on cancer progression and therapeutic response. Activation of complex hypoxia pathways orchestrated by the transcription factor HIF (hypoxia-inducible factor) contributes to aggressive phenotypes and metastasis in numerous cancers. Over the past few decades, exponentially growing research indicated the importance of the non-coding genome in hypoxic tumor regions. Recently, key roles of long non coding RNAs (lncRNAs) in hypoxia-driven cancer progression have begun to emerge. These hypoxia-responsive lncRNAs (HRLs) play pivotal roles in regulating hypoxic gene expression at chromatic, transcriptional, and post-transcriptional levels by acting as effectors of the indirect response to HIF or direct modulators of the HIF-transcriptional cascade. Notably, the aberrant expression of HRLs significantly correlates with poor outcomes in cancer patients, showing promise for future utility as a tumor marker or therapeutic target. Here we address the latest advances made toward understanding the functional relevance of HRLs, the involvement of these transcripts in hypoxia response and the underlying action mechanisms, highlighting their specific roles in HIF-1 signaling regulation and hypoxia-associated malignant transformation.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 350, Taiwan
| |
Collapse
|
149
|
Ge X, Wang Y, Nie J, Li Q, Tang L, Deng X, Wang F, Xu B, Wu X, Zhang X, You Q, Miao L. The diagnostic/prognostic potential and molecular functions of long non-coding RNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget 2017; 8:69995-70005. [PMID: 29050258 PMCID: PMC5642533 DOI: 10.18632/oncotarget.19547] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy associated with unfavorable prognosis, and it’s difficult to diagnose and no effective treatments are available. Long non-coding RNAs (lncRNAs) play important roles in tumorigenesis and metastasis. Intact lncRNAs from exosomes have sparked much interest as potential biomarker for the non-invasive analysis of disease. Here, via exosome sequencing on lncRNAs, GO analysis, KEGG pathway and co-expression analysis, receiver operating characteristic curve and survival analyses, we found that, compared with control group, lncRNAs of ENST00000588480.1 and ENST00000517758.1 showed significantly increased expressions in CCA group. Moreover, area under the curve (AUC) was increased to 0.709 when combined the two lncRNAs, they had a sensitivity and specificity of 82.9% and 58.9% respectively. Further, the higher levels of the two lncRNAs showed a significantly increasing trend with the advancement of cancer TNM stages, and prognosticated a poor survival. In addition, KEGG pathway analysis showed that the most significant difference term was “p53 signaling pathway” (KEGG ID: hsa04115, p: 0.001). The altered lncRNAs and their target genes were included to reconstruct a co-expression network. These altered lncRNAs were mainly related to cellular processes, environmental information processing and organismal systems, etc. Collectively, our findings provided the potential roles of lncRNAs of ENST00000588480.1 and ENST00000517758.1 in CCA, and implicated these lncRNAs as potential diagnostic and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Xianxiu Ge
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youli Wang
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing, China
| | - Junjie Nie
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingyu Tang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Boming Xu
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochao Wu
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuhua Zhang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
150
|
Tanimoto K. Genetics of the hypoxia-inducible factors in human cancers. Exp Cell Res 2017; 356:166-172. [DOI: 10.1016/j.yexcr.2017.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
|