101
|
Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 2014; 10:e1004553. [PMID: 25503469 PMCID: PMC4263765 DOI: 10.1371/journal.ppat.1004553] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.
Collapse
|
102
|
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol 2014; 14:796-810. [PMID: 25421701 PMCID: PMC6190593 DOI: 10.1038/nri3763] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Collapse
Affiliation(s)
- Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, University of Massachusetts School of Medicine, Worcester, Massachusetts 01605, USA
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
103
|
Soares ZG, Gonçalves ANA, de Oliveira KPV, Marques JT. Viral RNA recognition by the Drosophila small interfering RNA pathway. Microbes Infect 2014; 16:1013-21. [DOI: 10.1016/j.micinf.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
104
|
Mosquito immunity against arboviruses. Viruses 2014; 6:4479-504. [PMID: 25415198 PMCID: PMC4246235 DOI: 10.3390/v6114479] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector.
Collapse
|
105
|
Bronkhorst AW, van Cleef KWR, Venselaar H, van Rij RP. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response. Nucleic Acids Res 2014; 42:12237-48. [PMID: 25274730 PMCID: PMC4231766 DOI: 10.1093/nar/gku910] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
106
|
Sytnikova YA, Rahman R, Chirn GW, Clark JP, Lau NC. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures. Genome Res 2014; 24:1977-90. [PMID: 25267525 PMCID: PMC4248314 DOI: 10.1101/gr.178129.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.
Collapse
Affiliation(s)
- Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Josef P Clark
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
107
|
Abstract
UNLABELLED Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.
Collapse
|
108
|
A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway. J Virol 2014; 88:13447-59. [PMID: 25210176 DOI: 10.1128/jvi.02144-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼ 56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of MoNV is that, unlike other nodaviruses, it expresses two subgenomic RNAs (sgRNAs). One of the sgRNAs expresses a protein that counteracts antiviral defense of its mosquito host, whereas the function of the other sgRNA remains unknown. Our results show that complete genome segments can be exchanged beyond the species level and suggest that insects harbor a large repertoire of exceptional viruses.
Collapse
|
109
|
Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, Lewis SH, McFarlane M, Bell-Sakyi L, Barry G, Weisheit S, Best SM, Kuhn RJ, Pijlman GP, Chase-Topping ME, Gould EA, Grubhoffer L, Fazakerley JK, Kohl A. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res 2014; 42:9436-46. [PMID: 25053841 PMCID: PMC4132761 DOI: 10.1093/nar/gku657] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.
Collapse
Affiliation(s)
- Esther Schnettler
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mayuri Sharma
- Markey Centre for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette IN 47907, USA
| | - Mark G Sterken
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Darren J Obbard
- Institute of Evolutionary Biology and Centre for Infection Immunity and Evolution, University of Edinburgh, EH9 3JT, UK
| | - Samuel H Lewis
- Institute of Evolutionary Biology and Centre for Infection Immunity and Evolution, University of Edinburgh, EH9 3JT, UK
| | - Melanie McFarlane
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK
| | - Lesley Bell-Sakyi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Gerald Barry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Sonja M Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Richard J Kuhn
- Markey Centre for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette IN 47907, USA
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | - Ernest A Gould
- Unité des Virus Emergents, Faculté de Médicine Timone, 13385 Marseille Cedex 05, France Centre for Hydrology and Ecology, Maclean Building, Oxon OX10 8BB, UK
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Alain Kohl
- MRC - University of Glasgow Centre for Virus Research, Glasgow G11 5JR, UK The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
110
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|
111
|
van Cleef KWR, van Mierlo JT, Miesen P, Overheul GJ, Fros JJ, Schuster S, Marklewitz M, Pijlman GP, Junglen S, van Rij RP. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi. Nucleic Acids Res 2014; 42:8732-44. [PMID: 24939903 PMCID: PMC4117760 DOI: 10.1093/nar/gku528] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.
Collapse
Affiliation(s)
- Koen W R van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joël T van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Susan Schuster
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Str. 25, 53127 Bonn, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
112
|
Gantier MP. Processing of Double-Stranded RNA in Mammalian Cells: A Direct Antiviral Role? J Interferon Cytokine Res 2014; 34:469-77. [DOI: 10.1089/jir.2014.0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael P. Gantier
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
113
|
Cullen BR, Cherry S, tenOever BR. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? Cell Host Microbe 2014; 14:374-8. [PMID: 24139396 DOI: 10.1016/j.chom.2013.09.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While RNA interference (RNAi) functions as an antiviral response in plants, nematodes, and arthropods, a similar antiviral role in mammals has remained controversial. Three recent papers provide evidence that either favors or challenges this hypothesis. Here, we discuss these new findings in the context of previous research.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
114
|
Swevers L, Kolliopoulou A, Li Z, Daskalaki M, Verret F, Kalantidis K, Smagghe G, Sun J. Transfection of BmCPV genomic dsRNA in silkmoth-derived Bm5 cells: stability and interactions with the core RNAi machinery. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:21-9. [PMID: 24636911 DOI: 10.1016/j.jinsphys.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
While several studies have been conducted to investigate the stability of dsRNA in the extracellular medium (hemolymph, gut content, saliva), little is known regarding the persistence of dsRNA once it has been introduced into the cell. Here, we investigate the stability of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) genomic dsRNA fragments after transfection into Bombyx-derived Bm5 cells. Using RT-PCR as a detection method, we found that dsRNA could persist for long periods (up to 8 days) in the intracellular environment. While the BmCPV genomic dsRNA was processed by the RNAi machinery, its presence had no effects on other RNAi processes, such as the silencing of a luciferase reporter by dsLuc. We also found that transfection of BmCPV genomic dsRNA could not establish a viral infection in the Bm5 cells, even when co-transfections were carried out with dsRNAs targeting Dicer and Argonaute genes, suggesting that the neutralization by RNAi does not play a role in the establishment of an in vitro culture system. The mechanism of the dsRNA stability in Bm5 cells is discussed, as well as the implications for the establishment for an in vitro culture system for BmCPV.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou & Neapoleos Str, Aghia Paraskevi Attikis, 153 42 Athens, Greece.
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou & Neapoleos Str, Aghia Paraskevi Attikis, 153 42 Athens, Greece
| | - Zheng Li
- Guangdong Engineering Research Center of Subtropical Sericulture and Mulberry Resources Protection and Safety, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Maria Daskalaki
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Frederic Verret
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jingchen Sun
- Guangdong Engineering Research Center of Subtropical Sericulture and Mulberry Resources Protection and Safety, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
115
|
Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 2014; 7:19-28. [PMID: 24732439 DOI: 10.1016/j.coviro.2014.03.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/03/2023]
Abstract
The host RNA interference (RNAi) pathway of insects senses virus infection and induces an antiviral response to restrict virus replication. Dicer-2 detects viral double-stranded RNA, produced by RNA and DNA viruses, and generates viral small interfering RNAs (vsiRNAs). Recent small RNA profiling studies provided new insights into the viral RNA substrates that trigger vsiRNA biogenesis. The importance of the antiviral RNAi pathway is underscored by the observation that viruses have evolved sophisticated mechanisms to counteract this small RNA-based immune response. More recently, it was proposed that another small RNA silencing mechanism, the piRNA pathway, also processes viral RNAs in Drosophila and mosquitoes. Here, we review recent insights into the mechanism of antiviral RNAi, viral small RNA profiles, and viral counter-defense mechanisms in insects.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
116
|
Mann KS, Dietzgen RG. Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch Virol 2014; 159:1889-900. [DOI: 10.1007/s00705-014-2029-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
|
117
|
Allen WJ, Wiley MR, Myles KM, Adelman ZN, Bevan DR. Steered molecular dynamics identifies critical residues of the Nodamura virus B2 suppressor of RNAi. J Mol Model 2014; 20:2092. [PMID: 24549790 DOI: 10.1007/s00894-014-2092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
Abstract
Nearly all RNA viruses produce double-stranded RNA (dsRNA) during their replication cycles--an important pathogen-associated molecular pattern recognized by the RNA interference (RNAi) pathway in invertebrates and plants. Nodamura virus (NoV) encodes a suppressor of RNA silencing termed B2, which binds to dsRNA and prevents the initiation of RNAi as well as the loading of silencing complexes. Using the published crystal structure of NoV-B2, we performed a series of molecular dynamics (MD) simulations to determine the relative electrostatic and van der Waals contributions of various residues in binding dsRNA, identifying four novel potential interactors: R56, E48, P68 and R69. Additionally, steered MD was used to simulate the binding affinity of NoV-B2 sequences bearing substitutions at positions F49, R56 or R59 to dsRNA, with F49S and R56L/R59L substitutions found to have a significant negative impact on the ability of NoV-B2 to bind dsRNA. NoV RNA1 variants were tested for self-directed replication in both vertebrate (RNAi⁻) and invertebrate (RNAi⁺) cultured cells. Consistent with a role in dsRNA binding, NoV replication in F49C and F49S variant constructs was affected negatively only in RNAi⁺ cells. Thus, we used a combination of MD simulations and experimental mutagenesis to further characterize residues important for NoV-dsRNA interactions.
Collapse
Affiliation(s)
- William J Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061-0308, USA,
| | | | | | | | | |
Collapse
|
118
|
Flores O, Kennedy EM, Skalsky RL, Cullen BR. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res 2014; 42:4629-39. [PMID: 24464996 PMCID: PMC3985621 DOI: 10.1093/nar/gkt1393] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.
Collapse
Affiliation(s)
- Omar Flores
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
119
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
120
|
de Faria IJDS, Olmo RP, Silva EG, Marques JT. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. J Interferon Cytokine Res 2013; 33:239-53. [PMID: 23656598 DOI: 10.1089/jir.2013.0026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Host defense systems often rely on direct and indirect pattern recognition to sense the presence of invading pathogens. Patterns can be molecules directly produced by the pathogen or indirectly generated by changes in host parameters as a consequence of infection. Viruses are intracellular pathogens that hijack the cellular machinery to synthesize their own molecules making direct recognition of viral molecules a great challenge. Antiviral systems in prokaryotes and eukaryotes commonly exploit aberrant nucleic acid sensing to recognize virus infection as host and viral nucleic acid metabolism can greatly differ. Indeed, the generation of dsRNA is often associated with viral infection. In this review, we discuss current knowledge on the mechanisms of viral dsRNA sensing utilized by 2 important antiviral defense systems, RNA interference (RNAi) and the vertebrate immune system. The major viral sensors of the vertebrate immune systems are RIG-like receptors, while RNAi pathways depend on Dicer proteins. These 2 families of sensors share a similar helicase domain with high specificity for dsRNA, which is necessary, but not sufficient for efficient recognition by these receptors. Additional intrinsic features to the dsRNA molecule are also necessary for activation of antiviral systems. Studies utilizing synthetic ligands, in vitro biochemistry and reporter systems have greatly helped increase our knowledge on intrinsic features of dsRNA recognition. However, characteristics such as subcellular localization are extrinsic to the dsRNA itself, but certainly influence the recognition in vivo. Thus, mechanisms of viral dsRNA recognition must address how cellular sensors are recruited to nucleic acids or vice versa. Accessory proteins are likely important for in vivo recognition of extrinsic features of viral RNA, but have mostly remained undiscovered due to the limitations of previous strategies. Hence, the identification of novel components of antiviral systems must take into account the complexities involved in viral recognition in vivo.
Collapse
|
121
|
Cook S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, Culverwell CL, Glücksman E, Wang H, Brown TDK, Gould EA, Harbach RE, de Lamballerie X, Firth AE. Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 2013; 8:e80720. [PMID: 24260463 PMCID: PMC3832450 DOI: 10.1371/journal.pone.0080720] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.
Collapse
Affiliation(s)
- Shelley Cook
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (SC); (AEF)
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Gregory Moureau
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Shuoya Tang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erica McAlister
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | | | - Edvard Glücksman
- Department of General Botany, University Duisburg-Essen, Essen, Germany
| | - Hui Wang
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - T. David K. Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ernest A. Gould
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Ralph E. Harbach
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xavier de Lamballerie
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SC); (AEF)
| |
Collapse
|
122
|
Li Y, Lu J, Han Y, Fan X, Ding SW. RNA interference functions as an antiviral immunity mechanism in mammals. Science 2013; 342:231-4. [PMID: 24115437 DOI: 10.1126/science.1241911] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.
Collapse
Affiliation(s)
- Yang Li
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
123
|
Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. Antiviral RNA interference in mammalian cells. Science 2013; 342:235-8. [PMID: 24115438 DOI: 10.1126/science.1241930] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.
Collapse
Affiliation(s)
- P V Maillard
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
124
|
Xu Y, Huang L, Wang Z, Fu S, Che J, Qian Y, Zhou X. Identification of Himetobi P virus in the small brown planthopper by deep sequencing and assembly of virus-derived small interfering RNAs. Virus Res 2013; 179:235-40. [PMID: 24239755 DOI: 10.1016/j.virusres.2013.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 02/08/2023]
Abstract
Profiling and assembly of virus-derived small interfering RNAs (siRNAs) using next-generation sequencing technologies have been very useful for identification and diagnosis of a number of plant and invertebrate viruses. In this work, we have conducted high-throughput pyrosequencing and bioinformatic analysis of the small brown planthopper (SBPH, Laodelphax striatellus), and these analyses unexpectedly showed that the Himetobi P virus (HiPV) was present in our laboratory cultures. HiPV was also found to infect our brown planthopper (BPH, Nilaparvata lugens) and the white-backed planthopper (WBPH, Sogatella furcifera) cultures. The majority of the HiPV-derived siRNAs (Hd-siRNAs) were 21 and 22 nucleotides in length and nearly two-thirds of the siRNAs originated from the HiPV genomic RNA strand. The Hd-siRNAs were evenly distributed across the genome and this indicates that the HiPV genome contributes uniformly to production of Hd-siRNAs. Although HiPV infection appeared to be innocuous to the SBPH, alterations of gene expressions involved in reproduction, cytoskeleton structure and defense responses such as RNA interference pathways (RNAi) genes were observed. Furthermore, we demonstrated that silencing Agronaute 2 in L. striatellus enhanced HiPV accumulation, and this observation provides evidence for the existence of RNAi defenses against HiPV in the SBPH.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Lingzhe Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhencheng Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Che
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
125
|
Swevers L, Vanden Broeck J, Smagghe G. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 2013; 4:319. [PMID: 24204347 PMCID: PMC3817476 DOI: 10.3389/fphys.2013.00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/15/2013] [Indexed: 11/13/2022] Open
Abstract
RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," Athens, Greece
| | | | | |
Collapse
|
126
|
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36. [PMID: 24120681 DOI: 10.1016/j.jmb.2013.10.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.
Collapse
|
127
|
Cytoplasmic granule formation and translational inhibition of nodaviral RNAs in the absence of the double-stranded RNA binding protein B2. J Virol 2013; 87:13409-21. [PMID: 24089564 DOI: 10.1128/jvi.02362-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3' end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.
Collapse
|
128
|
Liu Y, Zhao Y, Zhang Y, Chen H. Crystallization and preliminary crystallographic analysis of a viral RNA-silencing suppressor encoded by Wuhan nodavirus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1147-50. [PMID: 24100569 DOI: 10.1107/s1744309113024184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
Wuhan nodavirus (WhNV), which is a new member of the Nodaviridae family, encodes a viral protein, B2, that suppresses RNA silencing and host-cell RNA interference (RNAi)-mediated immunity. Although Flock House virus (FHV), another member of the Nodaviridae family, also produces a B2 protein with a similar function, the primary sequences of the B2 proteins from WhNV and FHV have no similarity. To gain a better understanding of the structural details and the mechanism of suppression of RNA silencing by WhNV B2 and to compare it with FHV B2, recombinant WhNV B2 protein has been overexpressed in Escherichia coli, purified and crystallized at 291 K using PEG 4000 as a precipitant. A 2.8 Å resolution data set has been collected from a single crystal at 100 K. This crystal belonged to space group P2₁2₁2₁, with unit-cell parameters a=27.3, b=45.6, c=133.9 Å, α=β=γ=90°. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient is 2.2 Å3 Da(-1).
Collapse
Affiliation(s)
- Yuanyuan Liu
- Burn and Plastic Surgery Department, Tangshan Gongren Hospital, Tangshan, Heibei 063000, People's Republic of China
| | | | | | | |
Collapse
|
129
|
Phetrungnapha A, Ho T, Udomkit A, Panyim S, Ongvarrasopone C. Molecular cloning and functional characterization of Argonaute-3 gene from Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2013; 35:874-882. [PMID: 23823130 DOI: 10.1016/j.fsi.2013.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/08/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Argonaute (Ago) proteins play a crucial role in the shrimp RNA interference pathway. In this study, we identified and characterized a novel Ago gene from black tiger shrimp, Penaeus monodon. The complete open reading frame of P. monodon Ago3 (PmAgo3) consisted of 2559 nucleotides encoding a polypeptide of 852 amino acids with a predicted molecular weight of 97 kDa and an isoelectric point of 9.42. Analysis of the deduced amino acid sequence of PmAgo3 revealed the presence of two signature domains of the proteins in Argonaute family including PAZ and PIWI. Phylogenetic analysis indicated that PmAgo3 is classified into Ago subfamily and shared the highest amino acid sequence identity (83%) with Litopenaeus vannamei Ago2. Monitoring of the PmAgo3 expression by quantitative real-time PCR revealed that this gene was significantly up-regulated following dsRNA administration, while no significant difference in its expression was observed following yellow head virus (YHV) challenge. In contrast, inhibition of YHV mRNA expression was observed in PmAgo3-knockdown shrimp. These data imply that PmAgo3 is involved in the dsRNA-mediated gene silencing mechanism and plays an important role in YHV replication in the black tiger shrimp.
Collapse
Affiliation(s)
- Amnat Phetrungnapha
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | | | | | | | | |
Collapse
|
130
|
Marques JT, Wang JP, Wang X, de Oliveira KPV, Gao C, Aguiar ERGR, Jafari N, Carthew RW. Functional specialization of the small interfering RNA pathway in response to virus infection. PLoS Pathog 2013; 9:e1003579. [PMID: 24009507 PMCID: PMC3757037 DOI: 10.1371/journal.ppat.1003579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 01/04/2023] Open
Abstract
In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) cofactor called Loquacious (Loqs-PD). siRNAs are then loaded onto Argonaute-2 (Ago2) by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA) biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response. The RNA interference (RNAi) pathway utilizes small non-coding RNAs to silence gene expression. In insects, RNAi regulates endogenous genes and functions as an RNA-based immune system against viral infection. Here we have uncovered details of how RNAi is triggered by RNA viruses. Double-stranded RNA (dsRNA) generated as a replication intermediate or from transcription of the RNA virus can be used as substrate for the biogenesis of virus-derived small interfering RNAs (vsiRNAs). Unlike other dsRNAs, virus RNA processing involves Dicer but not its canonical partner protein Loqs-PD. Thus, vsiRNA biogenesis is mechanistically different from biogenesis of endogenous siRNAs or siRNAs derived from other exogenous RNA sources. Our results suggest a specialization of the pathway dedicated to silencing of RNA viruses versus other types of RNAi silencing. The understanding of RNAi mechanisms during viral infection could have implications for the control of insect-borne viruses and the use of siRNAs to treat viral infections in humans.
Collapse
Affiliation(s)
- Joao Trindade Marques
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (JTM); (RWC)
| | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, Illinois, United States of America
| | - Xiaohong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Karla Pollyanna Vieira de Oliveira
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Gao
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Eric Roberto Guimaraes Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nadereh Jafari
- Genomics Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (JTM); (RWC)
| |
Collapse
|
131
|
Bronkhorst AW, Miesen P, van Rij RP. Small RNAs tackle large viruses: RNA interference-based antiviral defense against DNA viruses in insects. Fly (Austin) 2013; 7:216-23. [PMID: 23974177 DOI: 10.4161/fly.25708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antiviral RNA interference (RNAi) pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNA) that guide the recognition and cleavage of complementary viral target RNAs. In RNA virus infections, viral replication intermediates, dsRNA genomes or viral structured RNAs have been implicated as Dicer-2 substrates. In a recent publication, we demonstrated that a double-stranded DNA virus, Invertebrate iridescent virus 6, is a target of the Drosophila RNAi machinery, and we proposed that overlapping converging transcripts base pair to form the dsRNA substrates for vsiRNA biogenesis. Here, we discuss the role of RNAi in antiviral defense to DNA viruses in Drosophila and other invertebrate model systems.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| |
Collapse
|
132
|
Vijayendran D, Airs PM, Dolezal K, Bonning BC. Arthropod viruses and small RNAs. J Invertebr Pathol 2013; 114:186-95. [PMID: 23932976 DOI: 10.1016/j.jip.2013.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 01/09/2023]
Abstract
The recently characterized small RNAs provide a new paradigm for physiological studies. These molecules have been shown to be integral players in processes as diverse as development and innate immunity against bacteria and viruses in eukaryotes. Several of the well-characterized small RNAs including small interfering RNAs, microRNAs and PIWI-interacting RNAs are emerging as important players in mediating arthropod host-virus interactions. Understanding the role of small RNAs in arthropod host-virus molecular interactions will facilitate manipulation of these pathways for both management of arthropod pests of agricultural and medical importance, and for protection of beneficial arthropods such as honey bees and shrimp. This review highlights recent research on the role of small RNAs in arthropod host-virus interactions with reference to other host-pathogen systems.
Collapse
|
133
|
Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus. PLoS One 2013; 8:e66007. [PMID: 23776591 PMCID: PMC3679040 DOI: 10.1371/journal.pone.0066007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.
Collapse
|
134
|
Lambrechts L, Quillery E, Noël V, Richardson JH, Jarman RG, Scott TW, Chevillon C. Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2. Proc Biol Sci 2013. [PMID: 23193131 DOI: 10.1098/rspb.2012.2437] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In contrast to the prevailing view that invertebrate immunity relies on broad-spectrum recognition and effector mechanisms, intrinsic genetic compatibility between invertebrate hosts and their pathogens is often highly specific in nature. Solving this puzzle requires a better understanding of the molecular basis underlying observed patterns of invertebrate host-pathogen genetic specificity, broadly referred to as genotype-by-genotype interactions. Here, we identify an invertebrate immune gene in which natural polymorphism is associated with isolate-specific resistance to an RNA virus. Dicer-2 (dcr2) encodes a key protein upstream of the RNA interference (RNAi) pathway, a major antiviral component of innate immunity in invertebrates. We surveyed allelic polymorphism at the dcr2 locus in a wild-type outbred population and in three derived isofemale families of the mosquito Aedes aegypti that were experimentally exposed to several, genetically distinct isolates of dengue virus. We found that dcr2 genotype was associated with resistance to dengue virus in a virus isolate-specific manner. By contrast, no such association was found for genotypes at two control loci flanking dcr2, making it likely that dcr2 contains the yet-unidentified causal polymorphism(s). This result supports the idea that host-pathogen compatibility in this system depends, in part, on a genotype-by-genotype interaction between dcr2 and the viral genome, and points to the RNAi pathway as a potentially important determinant of intrinsic insect-virus genetic specificity.
Collapse
Affiliation(s)
- Louis Lambrechts
- Insects and Infectious Diseases, Institut Pasteur, CNRS URA 3012, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
RNA interference (RNAi) is an ancient process by which non-coding RNAs regulate gene expression in a sequence-specific manner. The core components of RNAi are small regulatory RNAs, approximately 21-30 nucleotides in length, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). The past two decades have seen considerable progress in our understanding of the molecular mechanisms underlying the biogenesis of siRNAs and miRNAs. Recent advances have also revealed the crucial regulatory roles played by small RNAs in such diverse processes as development, homeostasis, innate immunity, and oncogenesis. Accumulating evidence indicates that RNAi initially evolved as a host defense mechanism against viruses and transposons. The ability of the host small RNA biogenesis machinery to recognize viral double-stranded RNA replication intermediates and transposon transcripts is critical to this process, as is small RNA-guided targeting of RNAs via complementary base pairing. Collectively, these properties confer unparalleled specificity and precision to RNAi-mediated gene silencing as an effective antiviral mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
136
|
Sabin LR, Cherry S. Small creatures use small RNAs to direct antiviral defenses. Eur J Immunol 2013; 43:27-33. [PMID: 23322691 DOI: 10.1002/eji.201243201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 11/27/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
Abstract
Antiviral RNA silencing has been recognized as an important defense mechanism in arthropods against RNA viruses. However, the role of this pathway in DNA virus infection remains largely unexplored. A report in this issue of the European Journal of Immunology provides new insight into the role of RNA silencing in antiviral defense against DNA viruses. Huang and Zhang [Eur. J. Immunol. 2013. 137-146] found that the dsDNA virus white spot syndrome virus, an agriculturally important pathogen of shrimp, is targeted by the shrimp RNA-silencing machinery via the production of virus-derived siRNAs. Furthermore, the authors show that the RNA-silencing pathway, and crucially, Dicer-2, is important for restricting viral infection. This study provides novel insights not only into shrimp antiviral defenses but also potentially into antiviral immunity against DNA viruses in a larger spectrum of hosts, as discussed in this Commentary. Furthermore, this study may contribute to the future development of immune-based therapeutics to combat viral pathogens, not only in aquaculture, but also in insect vectors of human diseases.
Collapse
Affiliation(s)
- Leah R Sabin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
137
|
Characterization of virus-encoded RNA interference suppressors in Caenorhabditis elegans. J Virol 2013; 87:5414-23. [PMID: 23468484 DOI: 10.1128/jvi.00148-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In fungi, plants, and invertebrates, antiviral RNA interference (RNAi) directed by virus-derived small interfering RNAs (siRNAs) represents a major antiviral defense that the invading viruses have to overcome in order to establish infection. As a counterdefense mechanism, viruses of these hosts produce diverse classes of proteins capable of suppressing the biogenesis and/or function of viral siRNAs. This RNA-directed viral immunity (RDVI) in the nematode Caenorhabditis elegans is known to exhibit some unique features. Currently, little is known about viral suppression of RNAi in C. elegans. Here, we show that ectopic expression of the B2 protein encoded by Flock House virus (FHV) suppresses RNAi induced by either long double-stranded RNA (dsRNA) or an FHV-based replicon and facilitates the natural infection of C. elegans by Orsay virus but is not active against RNA silencing mediated by microRNAs. We report the development of an assay for the identification of viral suppressor of RNAi (VSR) in C. elegans based on the suppression of a viral replicon-triggered RDVI by ectopic expression of candidate proteins. No VSR activity was detected for either of the two Orsay viral proteins proposed previously as VSRs. We detected, among the known heterologous VSRs, VSR activity for B2 of Nodamura virus but not for 2b of tomato aspermy virus, p29 of fungus-infecting hypovirus, or p19 of tomato bushy stunt virus. We further show that, unlike that in plants and insects, FHV B2 suppresses worm RDVI mainly by interfering with the function of virus-derived primary siRNAs.
Collapse
|
138
|
Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2013; 34:729-743. [PMID: 23276883 DOI: 10.1016/j.fsi.2012.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Aquatic animal diseases are one of the most significant constraints to the development and management of aquaculture worldwide. As a result, measures to combat diseases of fish and shellfish have assumed a high priority in many aquaculture-producing countries. RNA interference (RNAi), a natural mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as a powerful tool not only to investigate the function of specific genes, but also to suppress infection or replication of many pathogens that cause severe economic losses in aquaculture. However, despite the enormous potential as a novel therapeutical approach, many obstacles must still be overcome before RNAi therapy finds practical application in aquaculture, largely due to the potential for off-target effects and the difficulties in providing safe and effective delivery of RNAi molecules in vivo. In the present review, we discuss the current knowledge of RNAi as an experimental tool, as well as the concerns and challenges ahead for the application of such technology to combat infectious disease of farmed aquatic animals.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Marine and Atmospheric Research, C/-CSIRO Livestock Industries, QBP, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
139
|
Phetrungnapha A, Panyim S, Ongvarrasopone C. Penaeus monodon Tudor staphylococcal nuclease preferentially interacts with N-terminal domain of Argonaute-1. FISH & SHELLFISH IMMUNOLOGY 2013; 34:875-884. [PMID: 23333357 DOI: 10.1016/j.fsi.2012.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/17/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi) plays a crucial role as an antiviral defense in several organisms including plants and invertebrates. An understanding of RNAi machineries especially protein components of the RNA-induced silencing complex (RISC) is essential for prior to applying RNAi as a tool for viral protective immunity in shrimp. Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved protein and is one of the RISC components. In previous study, suppression of Penaeus monodon TSN (PmTSN) by double-stranded RNA (dsRNA) resulted in decreasing dsRNA-mediated gene silencing activity. To elucidate the functional significance of PmTSN in shrimp RNAi pathway, interactions between PmTSN and three Argonaute proteins (PmAgo) were characterized by yeast two-hybrid and in vitro pull-down assays. The results demonstrated that PmTSN interacted with PmAgo1, but not with PmAgo2 or PmAgo3. The interaction between PmAgo and PmTSN was mediated through the N-terminal domain of PmAgo1 and the SN1-2 domains of PmTSN. Analysis of the nuclease activity of the recombinant PmTSN indicated that PmTSN possessed calcium-dependent nuclease activity specific to single-stranded RNA (ssRNA), but not dsRNA and DNA. Knockdown of PmAgo1 and PmTSN diminished the ability of dsRNA-Rab7 to knockdown PmRab7 expression, indicating the involvement of PmAgo1 and PmTSN in shrimp RNAi pathway. Taken together, the results imply that PmTSN is one of the components of PmAgo1-RISC, thus providing new insights in the RNAi-based mechanism in shrimp.
Collapse
Affiliation(s)
- Amnat Phetrungnapha
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), 25/25 Phutthamonthon 4 Road, Salaya, Phutthamonthon District, Nakhon Pathom 73170, Thailand
| | | | | |
Collapse
|
140
|
Sabin LR, Zheng Q, Thekkat P, Yang J, Hannon GJ, Gregory BD, Tudor M, Cherry S. Dicer-2 processes diverse viral RNA species. PLoS One 2013; 8:e55458. [PMID: 23424633 PMCID: PMC3570552 DOI: 10.1371/journal.pone.0055458] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/28/2012] [Indexed: 12/24/2022] Open
Abstract
RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi) is mediated by small interfering RNAs (siRNAs), which are liberated from double-stranded (ds)RNA precursors by Dicer and guide the RNA-induced silencing complex (RISC) to targets. Although principles governing small RNA sorting into RISC have been uncovered, the spectrum of RNA species that can be targeted by Dicer proteins, particularly the viral RNAs present during an infection, are poorly understood. Dicer-2 potently restricts viral infection in insects by generating virus-derived siRNAs from viral RNA. To better characterize the substrates of Dicer-2, we examined the virus-derived siRNAs produced during the Drosophila antiviral RNAi response to four different viruses using high-throughput sequencing. We found that each virus was uniquely targeted by the RNAi pathway; dicing substrates included dsRNA replication intermediates and intramolecular RNA stem loops. For instance, a putative intergenic RNA hairpin encoded by Rift Valley Fever virus generates abundant small RNAs in both Drosophila and mosquito cells, while repetitive sequences within the genomic termini of Vaccinia virus, which give rise to abundant small RNAs in Drosophila, were found to be transcribed in both insect and mammalian cells. Moreover, we provide evidence that the RNA species targeted by Dicer-2 can be modulated by the presence of a viral suppressor of RNAi. This study uncovered several novel, heavily targeted features within viral genomes, offering insight into viral replication, viral immune evasion strategies, and the mechanism of antiviral RNAi.
Collapse
MESH Headings
- Animals
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/virology
- Genome, Viral/genetics
- Genomics
- Inverted Repeat Sequences
- RNA Helicases/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA Viruses/genetics
- RNA, Double-Stranded/biosynthesis
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease III/metabolism
Collapse
Affiliation(s)
- Leah R. Sabin
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qi Zheng
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pramod Thekkat
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jamie Yang
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Brian D. Gregory
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MT); (BDG); (SC)
| | - Matthew Tudor
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MT); (BDG); (SC)
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MT); (BDG); (SC)
| |
Collapse
|
141
|
Libri V, Miesen P, van Rij RP, Buck AH. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci 2013; 70:3525-44. [PMID: 23354060 PMCID: PMC3771402 DOI: 10.1007/s00018-012-1257-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.
Collapse
Affiliation(s)
- Valentina Libri
- Centre for Immunity, Infection and Evolution, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
142
|
Nayak A, Tassetto M, Kunitomi M, Andino R. RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates. Curr Top Microbiol Immunol 2013; 371:183-200. [DOI: 10.1007/978-3-642-37765-5_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
143
|
Abstract
Cellular organisms have evolved related pathways for the biogenesis and function of small interfering RNAs (siRNAs), microRNAs and PIWI-interacting RNAs (piRNAs). These distinct classes of small RNAs guide specific gene silencing at both transcriptional and posttranscriptional levels by serving as specificity determinants. Small RNAs of virus and host origins have been found to modulate virus–host interactions by RNA interference (RNAi), leading to antiviral immunity or viral pathogenesis. Deep sequencing-based profiling of virus-derived small RNAs as products of host immune recognition not only allowed us to gain insight into the expansion and functional specialization of host factors involved in the antiviral immunity but also made it possible to identify new viruses in a culture-independent manner. Here we review recent developments on the characterization and function of virus-derived siRNAs and piRNAs in eukaryotic hosts.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Plant Pathology & Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| | | |
Collapse
|
144
|
The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 2012; 109:E3604-13. [PMID: 23151511 DOI: 10.1073/pnas.1207213109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response, in which viral replication intermediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus infections are controlled by the RNAi pathway remains to be determined. Here, we analyzed the role of RNAi in DNA virus infection using Drosophila melanogaster infected with Invertebrate iridescent virus 6 (IIV-6) as a model. We show that Dcr-2 and Argonaute-2 mutant flies are more sensitive to virus infection, suggesting that vsiRNAs contribute to the control of DNA virus infection. Indeed, small RNA sequencing of IIV-6-infected WT and RNAi mutant flies identified abundant vsiRNAs that were produced in a Dcr-2-dependent manner. We observed a highly uneven distribution with strong clustering of vsiRNAs to small defined regions (hotspots) and modest coverage at other regions (coldspots). vsiRNAs mapped in similar proportions to both strands of the viral genome, suggesting that long dsRNA derived from convergent overlapping transcripts serves as a substrate for Dcr-2. In agreement, strand-specific RT-PCR and Northern blot analyses indicated that antisense transcripts are produced during infection. Moreover, we show that vsiRNAs are functional in silencing reporter constructs carrying fragments of the IIV-6 genome. Together, our data indicate that RNAi provides antiviral defense against dsDNA viruses in animals. Thus, RNAi is the predominant antiviral defense mechanism in insects that provides protection against all major classes of viruses.
Collapse
|
145
|
RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J Virol 2012; 86:13729-34. [PMID: 23055564 DOI: 10.1128/jvi.02041-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In insects, the RNA interference (RNAi) pathway plays a major role in antiviral responses, as shown against many RNA viruses. The response includes the cleavage of double-stranded RNA genome or intermediates, produced during replication, into viral short interfering RNAs (v-siRNAs). Using deep sequencing, we found that a large number of small reads of ∼20 nucleotides from Helicoverpa armigera larvae infected with Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) were mapped to certain open reading frames in the viral genome (hot spots) that are mostly structural and auxiliary late genes. After excluding the possibility of these small RNAs being microRNAs, it was determined that Dicer-2, the main enzyme implicated in the RNAi response in insects, is involved in the generation of v-siRNAs. In Dicer-2- but not Dicer-1-silenced cells, higher transcript levels of the hot spot genes were detected, and as a consequence the virus replicated more efficiently. The results suggest that the viral transcripts are degraded by the RNAi response of the host. This may, however, be to the advantage of the virus by preventing overreplication of the virus, which may otherwise lead to the premature death of the host cells.
Collapse
|
146
|
Bernhardt SA, Simmons MP, Olson KE, Beaty BJ, Blair CD, Black WC. Rapid intraspecific evolution of miRNA and siRNA genes in the mosquito Aedes aegypti. PLoS One 2012; 7:e44198. [PMID: 23028502 PMCID: PMC3448618 DOI: 10.1371/journal.pone.0044198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022] Open
Abstract
RNA silencing, or RNA interference (RNAi) in metazoans mediates development, reduces viral infection and limits transposon mobility. RNA silencing involves 21-30 nucleotide RNAs classified into microRNA (miRNA), exogenous and endogenous small interfering RNAs (siRNA), and Piwi-interacting RNA (piRNA). Knock-out, silencing and mutagenesis of genes in the exogenous siRNA (exo-siRNA) regulatory network demonstrate the importance of this RNAi pathway in antiviral immunity in Drosophila and mosquitoes. In Drosophila, genes encoding components for processing exo-siRNAs are among the fastest evolving 3% of all genes, suggesting that infection with pathogenic RNA viruses may drive diversifying selection in their host. In contrast, paralogous miRNA pathway genes do not evolve more rapidly than the genome average. Silencing of exo-siRNA pathway genes in mosquitoes orally infected with arboviruses leads to increased viral replication, but little is known about the comparative patterns of molecular evolution among the exo-siRNA and miRNA pathways genes in mosquitoes. We generated nearly complete sequences of all exons of major miRNA and siRNA pathway genes dicer-1 and dicer-2, argonaute-1 and argonaute-2, and r3d1 and r2d2 in 104 Aedes aegypti mosquitoes collected from six distinct geographic populations and analyzed their genetic diversity. The ratio of replacement to silent amino acid substitutions was 1.4 fold higher in dicer-2 than in dicer-1, 27.4 fold higher in argonaute-2 than in argonaute-1 and similar in r2d2 and r3d1. Positive selection was supported in 32% of non-synonymous sites in dicer-1, in 47% of sites in dicer-2, in 30% of sites in argonaute-1, in all sites in argonaute-2, in 22% of sites in r3d1 and in 55% of sites in r2d2. Unlike Drosophila, in Ae. aegypti, both exo-siRNA and miRNA pathway genes appear to be undergoing rapid, positive, diversifying selection. Furthermore, refractoriness of mosquitoes to infection with dengue virus was significantly positively correlated for nucleotide diversity indices in dicer-2.
Collapse
Affiliation(s)
- Scott A Bernhardt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | | | | | | | | |
Collapse
|
147
|
van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström JO, Heestermans M, Hultmark D, Antoniewski C, van Rij RP. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog 2012; 8:e1002872. [PMID: 22916019 PMCID: PMC3420963 DOI: 10.1371/journal.ppat.1002872] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/08/2012] [Indexed: 12/05/2022] Open
Abstract
RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense. Multi-cellular organisms require a potent immune response to ensure survival under the ongoing assault by microbial pathogens. Co-evolution of virus and host shapes the genome of both pathogen and host. Using Drosophila melanogaster as a model, we study virus-host interactions in infections by Nora virus, a non-lethal natural pathogen of fruit flies. Insects depend on the RNA interference (RNAi) pathway for antiviral defense. A hallmark of the antiviral RNAi response is the production of viral small RNAs during infection. We detected Nora virus small RNAs during infection of Drosophila, demonstrating that Nora virus is a target of the antiviral RNAi pathway. Furthermore, we show that Nora virus viral protein 1 (VP1) inhibits the catalytic activity of Argonaute-2, a key protein of the RNAi pathway. The 1A protein of Cricket paralysis virus suppresses RNAi via a similar mechanism. Importantly, whereas Nora virus persistently infects Drosophila, Cricket paralysis virus induces a lethal infection. Our findings thus indicate that two distantly related viruses independently evolved an RNAi suppressor protein that targets the Argonaute-2 protein. Altogether, our results emphasize the critical role of Argonaute-2 in insect antiviral defense, both in lethal and persistent infections.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Alfred W. Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | | | | | - Marco Heestermans
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics, Université Pierre et Marie Curie Paris VI, CNRS UMR 7622 - Biologie du Développement, Paris, France
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
148
|
Abstract
Innate immunity represents the foremost barrier to viral infection. In order to infect a cell efficiently, viruses need to evade innate immune effectors such as interferons and inflammatory cytokines. Pattern recognition receptors can detect viral components or pathogen-associated molecular patterns. These receptors then elicit innate immune responses that result in the generation of type I interferons and proinflammatory cytokines. Organized by the Society for General Microbiology, one session of this conference focused on the current state-of-the-art knowledge on innate barriers to infection of different RNA and DNA viruses. Experts working on innate immunity in the context of viral infection provided insight into different aspects of innate immune recognition and also discussed areas for future research. Here, we provide an overview of the session on innate barriers to infection.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
149
|
Living with the enemy: viral persistent infections from a friendly viewpoint. Curr Opin Microbiol 2012; 15:531-7. [PMID: 22770658 DOI: 10.1016/j.mib.2012.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 01/21/2023]
Abstract
Persistent infection is a situation of metastability in which the pathogen and the host coexist. A common outcome for viral infections, persistence is a widespread phenomenon through all kingdoms. With a clear benefit for the virus and/or the host at the population level, persistent infections act as modulators of the ecosystem. The origin of persistence being long time elusive, here we explore the concept of 'endogenization' of viral sequences with concomitant activation of the host immune pathways, as a main way to establish and maintain viral persistent infections. Current concepts on viral persistence mechanisms and biological role are discussed.
Collapse
|
150
|
Adelman ZN, Anderson MAE, Liu M, Zhang L, Myles KM. Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2012; 21:357-68. [PMID: 22458920 PMCID: PMC3386798 DOI: 10.1111/j.1365-2583.2012.01141.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small RNA regulatory pathways are used to control the activity of transposons, regulate gene expression and resist infecting viruses. We examined the biogenesis of mRNA-derived endogenous short-interfering RNAs (endo-siRNAs) in the disease vector mosquito Aedes aegypti. Under standard conditions, mRNA-derived endo-siRNAs were produced from the bidirectional transcription of tail-tail overlapping gene pairs. Upon infection with the alphavirus, Sindbis virus (SINV), another class of mRNA-derived endo-siRNAs was observed. Genes producing SINV-induced endo-siRNAs were not enriched for overlapping partners or nearby genes, but were enriched for transcripts with long 3' untranslated regions. Endo-siRNAs from this class derived uniformly from the entire length of the target transcript, and were found to regulate the transcript levels of the genes from which they were derived. Strand-specific quantitative PCR experiments demonstrated that antisense strands of targeted mRNA genes were produced to exonic, but not intronic regions. Finally, small RNAs mapped to both sense and antisense strands of exon-exon junctions, suggesting double-stranded RNA precursors to SINV-induced endo-siRNAs may be synthesized from mature mRNA templates. These results suggest additional complexity in small RNA pathways and gene regulation in the presence of an infecting virus in disease vector mosquitoes.
Collapse
Affiliation(s)
- Z N Adelman
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|