101
|
Tamuhla T, Raubenheimer P, Dave JA, Tiffin N. Routine health data describe adherence and persistence patterns for oral diabetes medication for a virtual cohort in the Khayelitsha sub-district of Cape Town, South Africa. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002730. [PMID: 38127875 PMCID: PMC10734983 DOI: 10.1371/journal.pgph.0002730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is managed with combined lifestyle modifications and antidiabetic drugs, but people on treatment often fail to reach glycaemic control. Adherence is important for achieving optimal glycaemic control, and management of diabetes with drugs is a lifelong process, so understanding adherence through analysis of longitudinal medications data is important. Using retrospective routine health data and metformin dispensing records as a proxy for medication use, we describe longitudinal persistence and adherence to oral diabetes medication in a virtual cohort of 10541 people with diabetes (PLWD) in Khayelitsha subdistrict, Cape Town. Adherence was measured in 120-day sliding windows over two years and used to estimate metformin adherence trajectories. Multinomial logistic regression identified factors influencing these trajectories. Analysis of pharmacy dispensing records showed varying medication refill patterns: while some PLWD refilled prescriptions consistently, others had treatment gaps with periods of non-persistence and multiple treatment episodes-from one to five per individual across two years. There was a general trend of decreasing adherence over time across all sliding windows in the two-year period, with only 25% of the study population achieved medication adherence (> = 80% adherence) after two years. Four adherence trajectories; 'low adherence gradual decline (A), 'high adherence rapid decline' (B), 'low adherence gradual increase (C) and 'adherent' (D) were identified. Only trajectory D represented participants who were adherent at treatment start and remained adherent after two years. Taking HIV antiretroviral treatment before or concurrently with diabetes treatment and taking metformin in combination with sulphonylurea and/or insulin were associated with the long-term adherence (trajectory D). Routine data shows real life medication implementation patterns which might not be seen under controlled study conditions. This study illustrates the utility of these data in describing longitudinal adherence patterns at both an individual and population level.
Collapse
Affiliation(s)
- Tsaone Tamuhla
- Division of Computational Biology, Integrative Biomedical Sciences Department, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Peter Raubenheimer
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Cape Town (UCT), Cape Town, South Africa
| | - Joel A. Dave
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Cape Town (UCT), Cape Town, South Africa
| | - Nicki Tiffin
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
102
|
Yang C, Xie Z, Liu H, Wang X, Zhang Z, Du L, Xie C. Efficacy and mechanism of Shenqi Compound in inhibiting diabetic vascular calcification. Mol Med 2023; 29:168. [PMID: 38093172 PMCID: PMC10720156 DOI: 10.1186/s10020-023-00767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Ziyan Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hanyu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xueru Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zehua Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
103
|
Zhang X, Deng X, Zhang L, Wang P, Tong X, Mo Y, Zhang Y, Zhang Y, Mo C, Zhang L. Single-cell RNA sequencing analysis of lung cells in COVID-19 patients with diabetes, hypertension, and comorbid diabetes-hypertension. Front Endocrinol (Lausanne) 2023; 14:1258646. [PMID: 38144556 PMCID: PMC10748394 DOI: 10.3389/fendo.2023.1258646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Background There is growing evidence that the lung is a target organ for injury in diabetes and hypertension. There are no studies on the status of the lungs, especially cellular subpopulations, and related functions in patients with diabetes, hypertension, and hypertension-diabetes after combined SARS-CoV-2 infection. Method Using single-cell meta-analysis in combination with bulk-RNA analysis, we identified three drug targets and potential receptors for SARS-CoV-2 infection in lung tissues from patients with diabetes, hypertension, and hypertension-diabetes, referred to as "co-morbid" patients. Using single-cell meta-analysis analysis in combination with bulk-RNA, we identified drug targets and potential receptors for SARS-CoV-2 infection in the three co-morbidities. Results The single-cell meta-analysis of lung samples from SARS-CoV-2-infected individuals with diabetes, hypertension, and hypertension-diabetes comorbidity revealed an upregulation of fibroblast subpopulations in these disease conditions associated with a predictive decrease in lung function. To further investigate the response of fibroblasts to therapeutic targets in hypertension and diabetes, we analyzed 35 upregulated targets in both diabetes and hypertension. Interestingly, among these targets, five specific genes were upregulated in fibroblasts, suggesting their potential association with enhanced activation of endothelial cells. Furthermore, our investigation into the underlying mechanisms driving fibroblast upregulation indicated that KREMEN1, rather than ACE2, could be the receptor responsible for fibroblast activation. This finding adds novel insights into the molecular processes involved in fibroblast modulation in the context of SARS-CoV-2 infection within these comorbid conditions. Lastly, we compared the efficacy of Pirfenidone and Nintedanib as therapeutic interventions targeting fibroblasts prone to pulmonary fibrosis. Our findings suggest that Nintedanib may be a more suitable treatment option for COVID-19 patients with diabetes and hypertension who exhibit fibrotic lung lesions. Conclusion In the context of SARS-CoV-2 infections, diabetes, hypertension, and their coexistence predominantly lead to myofibroblast proliferation. This phenomenon could be attributed to the upregulation of activated endothelial cells. Moreover, it is noteworthy that therapeutic interventions targeting hypertension-diabetes demonstrate superior efficacy. Regarding treating fibrotic lung conditions, Nintedanib is a more compelling therapeutic option.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University (The First People’s Hospital of Shuangliu District, Chengdu), Chengdu, China
| | - Xiaoqian Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangliang Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Pengbo Wang
- School of Professional Studies, Columbia University, New York, NY, United States
| | - Xia Tong
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University (The First People’s Hospital of Shuangliu District, Chengdu), Chengdu, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Yuansheng Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lanlan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
104
|
Mita T, Katakami N, Okada Y, Yoshii H, Osonoi T, Nishida K, Shiraiwa T, Kurozumi A, Taya N, Wakasugi S, Sato F, Ishii R, Gosho M, Shimomura I, Watada H. Continuous glucose monitoring-derived time in range and CV are associated with altered tissue characteristics of the carotid artery wall in people with type 2 diabetes. Diabetologia 2023; 66:2356-2367. [PMID: 37750893 PMCID: PMC10627957 DOI: 10.1007/s00125-023-06013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
AIMS/HYPOTHESIS Previous studies have suggested that glucose variability may accelerate atherosclerosis progression in people with type 2 diabetes. Current guidelines recommend assessing glycaemic control using continuous glucose monitoring (CGM), which provides a comprehensive glycaemic profile to supplement HbA1c measurement. However, the association between CGM-derived metrics and atherosclerosis progression is not entirely clear. METHODS This exploratory study used baseline data and data obtained after 104 weeks from an ongoing prospective, multicentre, observational study. Six hundred study participants with type 2 diabetes and no apparent history of symptomatic cardiovascular disease underwent CGM and ultrasonographic atherosclerosis measurements of the carotid arteries, including the intima-media thickness (IMT) and grey-scale median (GSM), at baseline and 104 weeks. Non-invasive ultrasonic tissue characterisation of the carotid artery wall or plaque using the GSM reflects vascular composition. Multivariate regression models were used to analyse the association between CGM-derived indices, mainly time in range (TIR) and CV, and changes in carotid atherosclerosis index values. RESULTS Over the 104-week study period, there were modest increases in mean IMT (from 0.759±0.153 to 0.773±0.152 mm, p<0.001) and thickened-lesion GSM (from 43.5±19.5 to 53.9±23.5 units, p<0.001), but no significant changes in common carotid artery maximum-IMT (from 1.109±0.442 to 1.116±0.469 mm, p=0.453) or mean GSM (from 48.7±19.3 to 49.8±20.8 units, p=0.092). In a linear regression model with adjustment for possible atherosclerotic risk factors, including HbA1c, TIR and CV at baseline were significantly associated with the annual change in mean GSM (regression coefficient per 10% increase in TIR 0.52; 95% CI 0.06, 0.98; Hochberg-adjusted p value 0.038; regression coefficient per 1% increase in CV -0.12; 95% CI -0.22, -0.02; Hochberg-adjusted p value 0.038). TIR and CV at baseline were also significantly associated with the annual change in thickened-lesion GSM (regression coefficient per 10% increase in TIR 0.95; 95% CI 0.12, 1.79; Hochberg-adjusted p value 0.038; regression coefficient per 1% increase in CV -0.19; 95% CI -0.36, -0.01; Hochberg-adjusted p value 0.038). Participants who achieved target CGM-derived metrics at baseline, as proposed by an international consensus, showed significant annual changes in mean GSM compared with those who did not (0.94±6.88 vs -0.21±6.19 units/year, p=0.007). CONCLUSIONS/INTERPRETATION TIR and CV were significantly associated with changes in the tissue characteristics of the carotid artery wall. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry, number UMIN000032325.
Collapse
Affiliation(s)
- Tomoya Mita
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Okada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidenori Yoshii
- Department of Medicine, Diabetology & Endocrinology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | | | | | | | - Akira Kurozumi
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satomi Wakasugi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiya Sato
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiko Gosho
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
105
|
Gianesini S, De Luca L, Feodor T, Taha W, Bozkurt K, Lurie F. Cardiovascular Insights for the Appropriate Management of Chronic Venous Disease: A Narrative Review of Implications for the Use of Venoactive Drugs. Adv Ther 2023; 40:5137-5154. [PMID: 37768506 PMCID: PMC10611621 DOI: 10.1007/s12325-023-02657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Evidence suggests that chronic venous disease (CVD) may be a cardiovascular disorder, as patients with CVD are prone to developing arterial (atherosclerosis) and venous (thromboembolism) diseases. This may be partly explained by shared risk factors. Thus, patients with CVD or cardiovascular disease require careful history-taking and physical assessment to identify coexisting pathologies and risk factors. This article summarises a symposium at the XIX World Congress of the International Union of Phlebology held in Istanbul, Turkey, in September 2022. Common pathophysiological features of CVD and cardiovascular disease are endothelial injury, hypercoagulability and systemic inflammation. In CVD, inflammation primarily affects the microcirculation, with changes in capillary permeability, vein wall and valve remodelling and increase in oxidative stress. Once patients develop symptoms/signs of CVD, they tend to reduce their physical activity, which may contribute to increased risk of cardiovascular disease. Data show that the presence of CVD is associated with an increased risk of cardiovascular disease, including peripheral arterial disease and heart failure (HF), and the risk of adverse cardiovascular events increases with CVD severity. In addition, patients with cardiovascular disease, particularly those with HF, are at increased risk of venous thromboembolism (VTE) and should be assessed for VTE risk if they are hospitalised with cardiovascular disease. Therefore, CVD management must include a multi-specialty approach to assess risk factors associated with both the venous and arterial systems. Ideally, treatment should focus on the resolution of endothelial inflammation to control both CVD and cardiovascular disease. International guidelines recommend various conservative treatments, including venoactive drugs (VADs), to improve the symptoms/signs of CVD. Micronized purified flavonoid fraction (MPFF) is a VAD, with high-quality evidence supporting its use in relieving symptoms/signs of CVD and improving quality of life. Moreover, in large-scale observational studies, MPFF has shown superior effectiveness in real-world populations compared with other VADs. Video Abstract. (MP4 97173 kb).
Collapse
Affiliation(s)
- Sergio Gianesini
- Translational Medicine Department, University of Ferrara, Via Porta a Mare 11, 45100, Ferrara, Rovigo, Italy.
| | - Leonardo De Luca
- Division of Cardiology, Department of Cardio-Thoracic and Vascular Medicine and Surgery, A.O. San Camillo-Forlanini, Rome, Italy
| | - Toni Feodor
- Medical Center for Diagnosis, Ambulatory Treatment and Medical Prevention, Surgery Clinic 'Sf. Nicolae', Bucharest, Romania
| | - Wassila Taha
- Non-Invasive Vascular Laboratory, AlSalam Hospital Mohandessin, Cairo, Egypt
| | - Kursat Bozkurt
- Department of Cardiovascular Surgery, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Fedor Lurie
- Jobst Vascular Institute, Toledo, OH, USA
- Division of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
106
|
González-Salvatierra S, García-Fontana C, Lacal J, Andújar-Vera F, Martínez-Heredia L, Sanabria-de la Torre R, Ferrer-Millán M, Moratalla-Aranda E, Muñoz-Torres M, García-Fontana B. Cardioprotective function of sclerostin by reducing calcium deposition, proliferation, and apoptosis in human vascular smooth muscle cells. Cardiovasc Diabetol 2023; 22:301. [PMID: 37919715 PMCID: PMC10623848 DOI: 10.1186/s12933-023-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Sclerostin is an inhibitor of the Wnt/b-catenin pathway, which regulates bone formation, and can be expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD) and increased serum and tissue expression of sclerostin. However, whether the role of sclerostin is detrimental or protective in the development of CVD is unknown. Therefore, our aims are to determine the level of sclerostin in T2D patients with/without CVD and in controls, both at serum and vascular tissue, and to analyze the role of sclerostin in VSMCs under calcified environments. METHODS Cross-sectional study including 121 controls and 139 T2D patients with/without CVD (48/91). Sclerostin levels in serum were determined by ELISA, and sclerostin expression was analyzed by RT-qPCR and immunohistochemistry in calcified and non-calcified artery of lower limb from T2D patients (n = 7) and controls (n = 3). In vitro experiments were performed in VSMCs (mock and sclerostin overexpression) under calcifying conditions analyzing the sclerostin function by determination of calcium and phosphate concentrations, and quantification of calcium deposits by Alizarin Red. Proliferation and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The regulation of the expression of genes involved in bone metabolism was determined by RT-qPCR. RESULTS A significant increase in serum sclerostin levels in T2D patients with CVD compared to T2D patients without CVD and controls (p < 0.001) was observed. Moreover, higher circulating sclerostin levels were independently associated with CVD in T2D patients. Increased sclerostin expression was observed in calcified arteries of T2D patients compared to non-calcified arteries of controls (p = 0.003). In vitro experiments using VSMCs under calcified conditions, revealed that sclerostin overexpression reduced intracellular calcium (p = 0.001), calcium deposits (p < 0.001), cell proliferation (p < 0.001) and promoted cell survival (p = 0.015). Furthermore, sclerostin overexpression exhibited up-regulation of ALPL (p = 0.009), RUNX2 (p = 0.001) and COX2 (p = 0.003) and down-regulation of inflammatory genes, such as, IL1β (p = 0.005), IL6 (p = 0.001) and IL8 (p = 0.003). CONCLUSIONS Sclerostin could play a protective role in the development of atherosclerosis in T2D patients by reducing calcium deposits, decreasing proliferation and inflammation, and promoting cell survival in VSMCs under calcifying conditions. Therefore, considering the bone-vascular axis, treatment with anti-sclerostin for bone disease should be used with caution.
Collapse
Affiliation(s)
- Sheila González-Salvatierra
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, 18071, Spain
| | - Cristina García-Fontana
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain.
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, 18016, Spain.
- Institute of Health Carlos III, CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, 28029, Spain.
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Francisco Andújar-Vera
- Bioinformatic Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, 18071, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, 18014, Spain
| | | | - Raquel Sanabria-de la Torre
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María Ferrer-Millán
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
| | - Enrique Moratalla-Aranda
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
- Nuclear Medicine Unit, University Hospital Clínico San Cecilio, Granada, 18016, Spain
| | - Manuel Muñoz-Torres
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain.
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, 18016, Spain.
- Institute of Health Carlos III, CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, 28029, Spain.
- Department of Medicine, University of Granada, Granada, 18016, Spain.
| | - Beatriz García-Fontana
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, 18012, Spain
- Institute of Health Carlos III, CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, 28029, Spain
- Department of Cell Biology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
107
|
Conning-Rowland M, Cubbon RM. Molecular mechanisms of diabetic heart disease: Insights from transcriptomic technologies. Diab Vasc Dis Res 2023; 20:14791641231205428. [PMID: 38116627 PMCID: PMC10734343 DOI: 10.1177/14791641231205428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Over half a billion adults across the world have diabetes mellitus (DM). This has a wide-ranging impact on their health, including more than doubling their risk of major cardiovascular events, in comparison to age-sex matched individuals without DM. Notably, the risk of heart failure is particularly increased, even when coronary artery disease and hypertension are not present. Macro- and micro-vascular complications related to endothelial cell (EC) dysfunction are a systemic feature of DM and can affect the heart. However, it remains unclear to what extent these and other factors underpin myocardial dysfunction and heart failure linked with DM. Use of unbiased 'omics approaches to profile the molecular environment of the heart offers an opportunity to identify novel drivers of cardiac dysfunction in DM. Multiple transcriptomics studies have characterised the whole myocardium or isolated cardiac ECs. We present a systematic summary of relevant studies, which identifies common themes including alterations in both myocardial fatty acid metabolism and inflammation. These findings prompt further research focussed on these processes to validate potentially causal factors for prioritisation into therapeutic development pipelines.
Collapse
Affiliation(s)
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
108
|
Bhargava A, Mahakalkar C, Kshirsagar S. Understanding Gangrene in the Context of Peripheral Vascular Disease: Prevalence, Etiology, and Considerations for Amputation-Level Determination. Cureus 2023; 15:e49026. [PMID: 38116352 PMCID: PMC10728580 DOI: 10.7759/cureus.49026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
Gangrene is a grave complication of peripheral vascular disease (PVD), characterised by tissue necrosis due to inadequate blood supply. This review article comprehensively explores gangrene in PVD, encompassing its prevalence, aetiology, clinical presentation, diagnostic modalities, management strategies, prognosis, and future directions. Key factors influencing outcomes, including the timeliness of intervention and the choice between limb salvage and amputation, are identified. Moreover, this review underscores the importance of early detection and multidisciplinary care, emphasising the significance of patient-centred approaches. It also calls for increased awareness, continued research, and innovative solutions to improve the lives of individuals grappling with gangrene in the context of PVD.
Collapse
Affiliation(s)
- Abhilasha Bhargava
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Chandrashekhar Mahakalkar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shivani Kshirsagar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
109
|
Knuuti J, Tuisku J, Kärpijoki H, Iida H, Maaniitty T, Latva-Rasku A, Oikonen V, Nesterov SV, Teuho J, Jaakkola MK, Klén R, Louhi H, Saunavaara V, Nuutila P, Saraste A, Rinne J, Nummenmaa L. Quantitative Perfusion Imaging with Total-Body PET. J Nucl Med 2023; 64:11S-19S. [PMID: 37918848 DOI: 10.2967/jnumed.122.264870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.
Collapse
Affiliation(s)
- Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland;
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Jouni Tuisku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Henri Kärpijoki
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland; and
| | - Aino Latva-Rasku
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Sergey V Nesterov
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Riku Klén
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Louhi
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
110
|
Zherebtsov EA, Zharkikh EV, Loktionova YI, Zherebtsova AI, Sidorov VV, Rafailov EU, Dunaev AV. Wireless Dynamic Light Scattering Sensors Detect Microvascular Changes Associated With Ageing and Diabetes. IEEE Trans Biomed Eng 2023; 70:3073-3081. [PMID: 37171930 DOI: 10.1109/tbme.2023.3275654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This article presents clinical results of wireless portable dynamic light scattering sensors that implement laser Doppler flowmetry signal processing. It has been verified that the technology can detect microvascular changes associated with diabetes and ageing in volunteers. Studies were conducted primarily on wrist skin. Wavelet continuous spectrum calculation was used to analyse the obtained time series of blood perfusion recordings with respect to the main physiological frequency ranges of vasomotions. In patients with type 2 diabetes, the area under the continuous wavelet spectrum in the endothelial, neurogenic, myogenic, and cardio frequency ranges showed significant diagnostic value for the identification of microvascular changes. Aside from spectral analysis, autocorrelation parameters were also calculated for microcirculatory blood flow oscillations. The groups of elderly volunteers and patients with type 2 diabetes, in comparison with the control group of younger healthy volunteers, showed a statistically significant decrease of the normalised autocorrelation function in time scales up to 10 s. A set of identified parameters was used to test machine learning algorithms to classify the studied groups of young controls, elderly controls, and diabetic patients. Our conclusion describes and discusses the classification metrics that were found to be most effective.
Collapse
|
111
|
González-Salvatierra S, García-Fontana B, Martínez-Heredia L, Lacal J, Andújar-Vera F, Sanabria-de la Torre R, Moratalla-Aranda E, Lozano-Alonso S, García-Fontana C, Muñoz-Torres M. Exploring the role of osteoglycin in type 2 diabetes: implications for insulin resistance and vascular pathophysiology. Am J Physiol Endocrinol Metab 2023; 325:E649-E660. [PMID: 37819194 PMCID: PMC10874653 DOI: 10.1152/ajpendo.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Osteoglycin, a fundamental proteoglycan within the vascular extracellular matrix, is expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with cardiovascular disease (CVD) but the role of osteoglycin in the development of CVD is controversial to date. Therefore, our aims are to determine and compare the level of osteoglycin in T2D patients with/without CVD versus control subjects both at serum and vascular tissue and to analyze in vitro role of osteoglycin in VSMCs under calcified conditions. For this, serum osteoglycin levels were determined by enzyme-linked immunosorbent assay (ELISA) in 117 controls and 129 patients with T2D (46 with CVD and 83 without CVD), revealing a significant increase in patients with T2D compared with controls. Osteoglycin level was not an estimator of CVD but correlated with markers of insulin resistance (triglycerides and triglycerides/high-density lipoprotein cholesterol index) in patients with T2D. At the vascular level, osteoglycin expression was assessed by RT-qPCR and immunohistochemistry, and no significant differences were observed between calcified arteries from patients with T2D and noncalcified arteries from controls. In vitro experiments using VSMCs (mock and overexpressing osteoglycin) under calcifying conditions were performed to analyze the osteoglycin function. The overexpression of osteoglycin in VMSCs under calcifying conditions revealed an increase of cell proliferation without effect on apoptosis and an upregulation of the expression of autotaxin (ATX) involved in inflammatory processes. In conclusion, osteoglycin could play a role in glycemic homeostasis, being a potential biomarker of insulin resistance in patients with T2D. Furthermore, osteoglycin could indirectly participate in the development of atherosclerosis through its regulatory effect on ATX and by proliferating VSMCs.NEW & NOTEWORTHY This study uncovers an increase of serum osteoglycin levels in patients with type 2 diabetes, which does not appear to be associated with the development of atherosclerosis, but rather with insulin resistance in this population. Overexpression of osteoglycin increased proliferation and upregulated the expression of autotaxin in vascular smooth muscle cells within calcified environments. Osteoglycin could be a biomarker of insulin resistance for type 2 diabetes and could be indirectly involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- Sheila González-Salvatierra
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Beatriz García-Fontana
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Institute of Health Carlos III, Madrid, Spain
- Department of Cell Biology, University of Granada, Granada, Spain
| | | | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Francisco Andújar-Vera
- Bioinformatic Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
| | - Raquel Sanabria-de la Torre
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Enrique Moratalla-Aranda
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Nuclear Medicine Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Silvia Lozano-Alonso
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Angiology and Vascular Surgery Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Cristina García-Fontana
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Institute of Health Carlos III, Madrid, Spain
| | - Manuel Muñoz-Torres
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES) Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
112
|
Hussain A, Ashique S, Afzal O, Altamimi MA, Malik A, Kumar S, Garg A, Sharma N, Farid A, Khan T, Altamimi ASA. A correlation between oxidative stress and diabetic retinopathy: An updated review. Exp Eye Res 2023; 236:109650. [PMID: 37734426 DOI: 10.1016/j.exer.2023.109650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Nidhi Sharma
- Graduate Assistant, Department of Biomedical Engineering University of Connecticut, UCONN, Storrs Campus, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I. Khan, KPK, Pakistan
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| |
Collapse
|
113
|
Sapoznik KA, Gast TJ, Carmichael-Martins A, Walker BR, Warner RL, Burns SA. Retinal Arteriolar Wall Remodeling in Diabetes Captured With AOSLO. Transl Vis Sci Technol 2023; 12:16. [PMID: 37962539 PMCID: PMC10653262 DOI: 10.1167/tvst.12.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose Adaptive optics scanning laser ophthalmoscopy (AOSLO) enables the visualization and measurement of the retinal microvasculature structure in humans. We investigated the hypothesis that diabetes mellitus (DM) induces remodeling to the wall structure in small retinal arterioles. These alterations may allow better understanding of vascular remodeling in DM. Methods We imaged retinal arterioles in one eye of 48 participants (26 with DM and 22 healthy controls) with an AOSLO. Structural metrics of 274 arteriole segments (203 with DM and 71 healthy controls) ≤ 50 µm in outer diameter (OD) were quantified and we compared differences in wall thickness (WT), wall-to-lumen ratio (WLR), inner diameter (ID), OD, and arteriolar index ratio (AIR) between controls and participants with DM. We also compared the individual AIR (iAIR) in groups of individuals. Results The WLR, WT, and AIRs were significantly different in the arteriole segments of DM participants (P < 0.001). The iAIR was significantly deviated in the DM group (P < 0.001) and further division of the participants with DM into groups revealed that there was an effect of the presence of diabetic retinopathy (DR) on the iAIR (P < 0.001). Conclusions DM induces remodeling of wall structure in small retinal arterioles and in groups of individuals. The use of AIR allows us to assess remodeling independently of vessel size in the retina and to compute an index for each individual subject. Translational Relevance High-resolution retinal imaging allows noninvasive assessment of small retinal vessel remodeling in DM that can improve our understanding of DM and DR in living humans.
Collapse
Affiliation(s)
- Kaitlyn A. Sapoznik
- School of Optometry, Indiana University, Bloomington, IN, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Thomas J. Gast
- School of Optometry, Indiana University, Bloomington, IN, USA
| | | | | | - Raymond L. Warner
- School of Optometry, Indiana University, Bloomington, IN, USA
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
114
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
115
|
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, Potel KN, Setyaningsih WAW, Margariti A. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies. Stem Cell Res Ther 2023; 14:292. [PMID: 37817281 PMCID: PMC10566155 DOI: 10.1186/s13287-023-03521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding mechanisms and manifestations of cardiovascular risk factors, including diabetes, on vascular cells such as endothelial cells, pericytes, and vascular smooth muscle cells, remains elusive partly due to the lack of appropriate disease models. Therefore, here we explore different aspects for the development of advanced 3D in vitro disease models that recapitulate human blood vessel complications using patient-derived induced pluripotent stem cells, which retain the epigenetic, transcriptomic, and metabolic memory of their patient-of-origin. In this review, we highlight the superiority of 3D blood vessel organoids over conventional 2D cell culture systems for vascular research. We outline the key benefits of vascular organoids in both health and disease contexts and discuss the current challenges associated with organoid technology, providing potential solutions. Furthermore, we discuss the diverse applications of vascular organoids and emphasize the importance of incorporating all relevant cellular components in a 3D model to accurately recapitulate vascular pathophysiology. As a specific example, we present a comprehensive overview of diabetic vasculopathy, demonstrating how the interplay of different vascular cell types is critical for the successful modelling of complex disease processes in vitro. Finally, we propose a strategy for creating an organ-specific diabetic vasculopathy model, serving as a valuable template for modelling other types of vascular complications in cardiovascular diseases by incorporating disease-specific stressors and organotypic modifications.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Koray Niels Potel
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Wiwit Ananda Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
116
|
Yachmaneni A, Jajoo S, Mahakalkar C, Kshirsagar S, Dhole S. A Comprehensive Review of the Vascular Consequences of Diabetes in the Lower Extremities: Current Approaches to Management and Evaluation of Clinical Outcomes. Cureus 2023; 15:e47525. [PMID: 38022307 PMCID: PMC10664734 DOI: 10.7759/cureus.47525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes mellitus is a global health concern characterized by chronic hyperglycemia, and its vascular consequences in the lower extremities pose significant challenges for individuals living with the condition. This comprehensive review delves into the multifaceted landscape of diabetes-related vascular complications in the lower limbs, with a primary focus on current strategies for management and the evaluation of clinical outcomes. This review achieves several critical objectives by synthesizing existing knowledge and research findings. It elucidates the intricate pathophysiological mechanisms underpinning these complications, shedding light on the cellular and molecular processes involved. Additionally, it outlines clinical assessment and diagnostic strategies used to identify and stratify risk, ranging from cutting-edge imaging techniques to clinical examinations. The review comprehensively examines current management strategies, encompassing lifestyle modifications, pharmacological interventions, surgical procedures, and wound care practices. Moreover, it assesses and analyzes clinical outcomes, including limb salvage rates, amputation rates, and overall quality of life for individuals undergoing treatment. In addressing the challenges faced in managing these complications, this review aims to contribute to improved patient care. It proposes future research directions to enhance the management and outcomes of diabetes-related vascular consequences in the lower extremities.
Collapse
Affiliation(s)
- Akanksha Yachmaneni
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Suhas Jajoo
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Chandrashekhar Mahakalkar
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivani Kshirsagar
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Simran Dhole
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
117
|
Prajjwal P, Shree A, Das S, Inban P, Ghosh S, Senthil A, Gurav J, Kundu M, Marsool Marsool MD, Gadam S, Marsool Marsoo AD, Vora N, Amir Hussin O. Vascular multiple sclerosis: addressing the pathogenesis, genetics, pro-angiogenic factors, and vascular abnormalities, along with the role of vascular intervention. Ann Med Surg (Lond) 2023; 85:4928-4938. [PMID: 37811110 PMCID: PMC10553029 DOI: 10.1097/ms9.0000000000001177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction in the epithelium, breakdown of the blood-brain barrier, and consequent leukocyte and T-cell infiltration into the central nervous system define Vascular Multiple Sclerosis. Multiple sclerosis (MS) affects around 2.5 million individuals worldwide, is the leading cause of neurological impairment in young adults, and can have a variety of progressions and consequences. Despite significant discoveries in immunology and molecular biology, the root cause of MS is still not fully understood, as do the immunological triggers and causative pathways. Recent research into vascular anomalies associated with MS suggests that a vascular component may be pivotal to the etiology of MS, and there can be actually a completely new entity in the already available classification of MS, which can be called 'vascular multiple sclerosis'. Unlike the usual other causes of MS, vascular MS is not dependent on autoimmune pathophysiologic mechanisms, instead, it is caused due to the blood vessels pathology. This review aims to thoroughly analyze existing information and updates about the scattered available findings of genetics, pro-angiogenetic factors, and vascular abnormalities in this important spectrum, the vascular facets of MS.
Collapse
Affiliation(s)
| | - Anagha Shree
- SGT Medical College Hospital and Research Institute, Gurgaon
| | - Soumyajit Das
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai
| | | | | | | | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | | | - Srikanth Gadam
- Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neel Vora
- Internal Medicine, B.J. Medical College, Ahmedabad, India
| | | |
Collapse
|
118
|
Seecheran NA, Rafeeq S, Maharaj N, Swarath S, Seecheran V, Seecheran R, Seebalack V, Jagdeo CL, Seemongal-Dass R, Quert AYL, Giddings S, Ramlackhansingh A, Sandy S, Motilal S, Seemongal-Dass R. Correlation of RETINAL Artery Diameter with Coronary Artery Disease: The RETINA CAD Pilot Study-Are the Eyes the Windows to the Heart? Cardiol Ther 2023; 12:499-509. [PMID: 37318673 PMCID: PMC10423171 DOI: 10.1007/s40119-023-00320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION This study aimed to determine whether there was any correlation between coronary artery disease (CAD) and retinal artery diameter at an academic tertiary medical center in Trinidad and Tobago. METHODS This prospective study evaluated patients (n = 77) with recent invasive coronary angiography (CAG) and the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score who subsequently underwent optical coherence tomography-angiography (OCT-A) at the Eric Williams Medical Sciences Complex (EWMSC) from January 2021 to March 2021. Routine medical history and cardiovascular medications were also recorded. Spearman's rank correlation coefficient and Mann-Whitney U-tests were used to compare correlations and medians between groups. RESULTS The average patient age was 57.8 years old, with the majority being male [n = 55 (71.4%)] and of South Asian ethnicity [n = 53 (68.8%)]. Retinal artery diameter was negatively correlated with the SYNTAX score (-0.332 for the right eye, p = 0.003 and -0.237 for the left eye, p = 0.038). A statistically significant relationship was also demonstrated in females and diabetic patients. There were no serious adverse events (SAEs). CONCLUSION A significantly negative correlation was observed between retinal artery diameter and SYNTAX score. This study alludes to the practical use of optical coherence tomography-angiography (OCT-A) as a noninvasive diagnostic modality for patients with cardiovascular disease (CVD). Further large-scale, multicentric studies are required to confirm these exploratory findings. TRIAL REGISTRATION NUMBER NCT04233619.
Collapse
Affiliation(s)
- Naveen Anand Seecheran
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
- Faculty of Medical Sciences, The University of the West Indies, 2nd Floor, Building #67, Eric Williams Medical Sciences Complex, Mt. Hope, West Indies, Trinidad and Tobago.
| | - Salma Rafeeq
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Nicole Maharaj
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Steven Swarath
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Valmiki Seecheran
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Rajeev Seecheran
- Department of Medicine, Kansas University Medical Center, Wichita, KS, USA
| | - Victoria Seebalack
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Cathy-Lee Jagdeo
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | - Rajiv Seemongal-Dass
- Department of Medicine, North Central Regional Health Authority, Mt. Hope, Trinidad and Tobago
| | | | - Stanley Giddings
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Anil Ramlackhansingh
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sherry Sandy
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Shastri Motilal
- Department of Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Robin Seemongal-Dass
- Department of Clinical Surgical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
119
|
Urashima SH, Kimura M, Morisaku T, Yui H. Local elasticity evaluation of acid-denatured collagen by photoacoustic spectroscopy. ANAL SCI 2023; 39:1567-1574. [PMID: 37432528 DOI: 10.1007/s44211-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 07/12/2023]
Abstract
While there are various analytical methods for elasticity evaluation, those with micrometer-order spatial resolution are still under developing. As some of biological tissues such as capillary vessels and cochlea are very small and/or highly heterogeneous, development of analytical techniques with such high spatial resolution has been desired for biological and medical purposes. Especially, the elasticity of capillary vessels (several micrometer in diameter) would be an important indicator to find out early diseases. To measure the local elasticity for such small and/or heterogeneous samples, we have proposed an approach based on a temporal waveform of photoacoustic (PA) signal, i.e., time-domain PA. As the time-domain PA contains both the vibrating frequency and the sound propagation time after the excitation, it provides the information on the local elasticity (from the frequency) at a specific depth (from the propagation time) of samples. In the present study, the signal from collagen sheets were obtained and analyzed as models of blood vessel walls and scaffolds for regenerative medicine. In contrast to previous studies using the agarose gel which showed a single frequency peak, the signal from the collagen sheets was mainly composed of two frequency peaks, assignable to surface and bulk vibration. Further, the bulk vibration was found to sensitively reflect the elasticity of the samples. Since the PA effect can be induced only at the position where the light absorber exists, the analytical method proposed here would allow us to measure the local elasticity and its spatial distribution in blood vessels and other tissues.
Collapse
Affiliation(s)
- Shu-Hei Urashima
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Maiko Kimura
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Toshinori Morisaku
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
- Department of Surgery, School of Medicine, Keio University, Shinanomachi 35, Shinjuku, Tokyo, Japan
| | - Hiroharu Yui
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
- Water Frontier Research Center, Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan.
| |
Collapse
|
120
|
Gozdalski J, Nowicki TK, Kwarciany M, Kowalczyk K, Narkiewicz K, Gasecki D. Aortic Stiffness Is Independently Associated with Intracranial Carotid Artery Calcification in Patients with Ischemic Stroke. Cerebrovasc Dis 2023; 53:216-223. [PMID: 37591226 DOI: 10.1159/000533510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Intracranial carotid artery calcification (ICAC), as a strong contributor to the occurrence of ischemic stroke, might be present in the medial or intimal arterial layer. Traditional cardiovascular risk factors (CVRFs) are associated with ICAC; however, its association with new markers of vascular function is less understood. The paper aimed to evaluate the relationship between carotid-femoral pulse wave velocity (CF-PWV) and ICAC subtypes. METHODS We enrolled 65 patients with ischemic stroke. CF-PWV, systolic, diastolic, mean blood pressure, and pulse pressure were measured within 6 ± 2 days after stroke onset, and CT was performed within 24 h. ICAC on the stroke site was classified by two methods: volume and score based. Tertiles of ICAC volume were determined, and low-grade ICAC (T1) was regarded as a reference. According to the score-based method, (dominant) medial and (dominant) intimal ICAC subtypes were determined. Data were analyzed with multivariate logistic regression. RESULTS Medial and intimal ICAC subtypes were found in 34 (52%) and 24 (37%) patients, respectively. In 11% of patients, no ICAC calcifications were found. CF-PWV was higher in patients with high-grade ICAC (OR = 1.56, 95% CI = 1.03-2.35, p = 0.035). CF-PWV was higher in patients with the medial ICAC subtype (OR = 1.60, 95% CI = 1.00-2.55, p = 0.049) after adjustment for traditional CVRFs. CONCLUSION Our study demonstrates that among patients with ischemic stroke, aortic stiffness is independently associated with ICAC and that medial ICAC, compared with intimal ICAC, is accompanied by more advanced aortic stiffness.
Collapse
Affiliation(s)
| | - Tomasz K Nowicki
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
- 2nd Department of Radiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Kwarciany
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Kamil Kowalczyk
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Narkiewicz
- Division of Hypertension & Diabetology, Department of Hypertension and Diabetology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Gasecki
- Department of Adult Neurology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
121
|
Saadi A, Bedoui MA, Zaghbib S, Boussaffa H, Mokaddem S, Nacef IB, Ayed H, Derouiche A, Khiari K, Chakroun M, Ben Slama R. Predictors of successful outcome after adrenalectomy for unilateral primary aldosteronism. Front Endocrinol (Lausanne) 2023; 14:1205988. [PMID: 37635962 PMCID: PMC10454906 DOI: 10.3389/fendo.2023.1205988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Unilateral primary aldosteronism (UPA) is the most frequent surgically curable form of endocrine hypertension. Adrenalectomy is the cornerstone of treatment for UPA, but outcomes after surgery are variable. The cause of resistant hypertension after surgery is still a matter of debate. Our aim was to investigate cure rates after surgery and to evaluate preoperative factors that might influence the surgical outcome. Methods Between 2000 and 2021, the charts of 71 Tunisian patients who underwent laparoscopic adrenalectomy for UPA were retrospectively reviewed. Preoperative medical records were collected and follow-up data (1-158 months) were registered. Antihypertensive medication doses were calculated using defined daily doses (DDD) and postoperative outcomes were assessed using the Primary Aldosteronism Surgical Outcome (PASO) criterion. Results Of 91 enrolled patients, 71 (59% women, mean age 46 years, median length of follow-up 21 months) were suitable for evaluation. Thirty-four patients (48%) had complete clinical success according to the PASO criteria. The most relevant factors associated with complete clinical success on univariate analysis were: absence of diabetes (p= 0.007), low body mass index (BMI) (p= 0.001), lower preoperative DDD (p= 0.01), preoperatively controlled blood pressure (p= 0.024), higher plasma aldosterone to renin ratio (ARR) (p= 0.001), adenoma subtyping (p <0.001) and aldosteronoma resolution score (ARS) (p= 0.002). Multivariate regression analysis showed that the major predictors of complete clinical success were absence of diabetes (OR: 5.205), a BMI < 30 (OR: 4.930), a plasma ARR > 332 (OR: 4.554) and an ARS ≥ 3 (OR: 2.056). Conclusion Complete and partial clinical response rates were achieved in respectively 48 and 43% of cases. The main predictors of complete resolution of hypertension were absence of diabetes, low BMI, high plasma ARR and high ARS. Taking these factors into account may help identify patients at risk of persistent postoperative hypertension who may require long-term surveillance and medication.
Collapse
Affiliation(s)
- Ahmed Saadi
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Ali Bedoui
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Selim Zaghbib
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hamza Boussaffa
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Seif Mokaddem
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ibtissem Ben Nacef
- Department of Endocrinology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Haroun Ayed
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Karima Khiari
- Department of Endocrinology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Marouene Chakroun
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| | - Riadh Ben Slama
- Department of Urology, University of Medicine of Tunis, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
122
|
Afsharan H, Silva D, Joo C, Cense B. Non-Invasive Retinal Blood Vessel Wall Measurements with Polarization-Sensitive Optical Coherence Tomography for Diabetes Assessment: A Quantitative Study. Biomolecules 2023; 13:1230. [PMID: 37627295 PMCID: PMC10452597 DOI: 10.3390/biom13081230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetes affects the structure of the blood vessel walls. Since the blood vessel walls are made of birefringent organized tissue, any change or damage to this organization can be evaluated using polarization-sensitive optical coherence tomography (PS-OCT). In this paper, we used PS-OCT along with the blood vessel wall birefringence index (BBI = thickness/birefringence2) to non-invasively assess the structural integrity of the human retinal blood vessel walls in patients with diabetes and compared the results to those of healthy subjects. PS-OCT measurements revealed that blood vessel walls of diabetic patients exhibit a much higher birefringence while having the same wall thickness and therefore lower BBI values. Applying BBI to diagnose diabetes demonstrated high accuracy (93%), sensitivity (93%) and specificity (93%). PS-OCT measurements can quantify small changes in the polarization properties of retinal vessel walls associated with diabetes, which provides researchers with a new imaging tool to determine the effects of exercise, medication, and alternative diets on the development of diabetes.
Collapse
Affiliation(s)
- Hadi Afsharan
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia;
| | - Dilusha Silva
- Microelectronics Research Group, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia;
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Barry Cense
- Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009, Australia;
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
123
|
Bruzzese GL, McKenna S. Surgical Ulcer Debridement in a Patient With Spina Bifida Complicated by Osteomyelitis, Obesity, and Diabetes. Cureus 2023; 15:e43470. [PMID: 37588133 PMCID: PMC10425705 DOI: 10.7759/cureus.43470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
The combination of obesity, diabetes mellitus (DM), and reduced mobility due to spina bifida can contribute to an increased risk of osteomyelitis. Spina bifida, a congenital defect of the spinal cord, causes vertebral column deformities and neurological impairment. Obesity can lead to increased pressure and stress on the bones and joints, as well as poor circulation and immune dysfunction, including neutrophil migration disorders. Similarly, DM can also contribute to poor circulation and inadequate immune function. These changes can increase the risk of neuropathic ulcerations and osteomyelitis. We report a case of a 59-year-old man who presented for surgical consultation at the inpatient care unit. He had a nonhealing sacral ulcer on the left buttock that persisted for a year. He had a history of spina bifida, type 2 DM, and anemia, and his body mass index was 57.6 kg/m2. Physical examination revealed an unstageable left buttock pressure ulcer. The patient was afebrile, and his laboratory findings and imaging results indicated osteomyelitis. Despite intravenous antibiotic treatment, healing of the sacral ulcer remained poor, and the patient experienced chronic pain. Subsequent surgical intervention in the operating room involved debridement of the skin and soft tissue using high-powered water via the VERSAJET™ Hydrosurgery System (Smith & Nephew, London, UK). Ulcerated and necrotic skin and subcutaneous tissue extending deeper than the muscles and bones were observed. Loop colostomy was performed after determining that the wound would not heal owing to its proximity to the rectum and the inevitable contamination with stool. Postoperatively, sacral bone biopsy confirmed osteomyelitis. Alternative treatment options remained limited, as several other treatment methods failed prior to surgical debridement and colostomy placement. Although repeated debridement improved tissue viability, loop colostomy was performed to divert stool and prevent contamination of the ulcer.
Collapse
Affiliation(s)
- Gabriella L Bruzzese
- Department of General Surgery, Frederick Health Hospital, Frederick, USA
- Department of Anatomy, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Stephen McKenna
- Department of General Surgery, Frederick Health Hospital, Frederick, USA
| |
Collapse
|
124
|
Belosludtsev KN, Serov DA, Ilzorkina AI, Starinets VS, Dubinin MV, Talanov EY, Karagyaur MN, Primak AL, Belosludtseva NV. Pharmacological and Genetic Suppression of VDAC1 Alleviates the Development of Mitochondrial Dysfunction in Endothelial and Fibroblast Cell Cultures upon Hyperglycemic Conditions. Antioxidants (Basel) 2023; 12:1459. [PMID: 37507997 PMCID: PMC10376467 DOI: 10.3390/antiox12071459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Prolonged hyperglycemia related to diabetes and its complications leads to multiple cellular disorders, the central one being the dysfunction of mitochondria. Voltage-dependent anion channels (VDAC) of the outer mitochondrial membrane control the metabolic, ionic, and energy cross-talk between mitochondria and the rest of the cell and serve as the master regulators of mitochondrial functions. Here, we have investigated the effect of pharmacological suppression of VDAC1 by the newly developed inhibitor of its oligomerization, VBIT-4, in the primary culture of mouse lung endotheliocytes and downregulated expression of VDAC1 in human skin fibroblasts on the progression of mitochondrial dysfunction upon hyperglycemic stress. The cells were grown in high-glucose media (30 mM) for 36 h. In response to hyperglycemia, the mRNA level of VDAC1 increased in endotheliocytes and decreased in human skin fibroblasts. Hyperglycemia induced overproduction of mitochondrial ROS, an increase in the susceptibility of the organelles to mitochondrial permeability transition (MPT) pore opening and a drop in mitochondrial membrane potential, which was accompanied by a decrease in cell viability in both cultures. Treatment of endotheliocytes with 5 µM VBIT-4 abolished the hyperglycemia-induced increase in susceptibility to spontaneous opening of the MPT pore and ROS generation in mitochondria. Silencing of VDAC1 expression in human skin fibroblasts exposed to high glucose led to a less pronounced manifestation of all the signs of damage to mitochondria. Our data identify a mitochondria-related response to pharmacological and genetic suppression of VDAC activity in vascular cells in hyperglycemia and suggest the potential therapeutic value of targeting these channels for the treatment of diabetic vasculopathies.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Vlada S. Starinets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| | - Maxim N. Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia;
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Alexandra L. Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.I.I.); (V.S.S.); (E.Y.T.); (N.V.B.)
| |
Collapse
|
125
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
126
|
Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish. Molecules 2023; 28:5350. [PMID: 37513223 PMCID: PMC10385844 DOI: 10.3390/molecules28145350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - A. R. Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia;
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India; (G.S.); (A.C.); (A.R.S.); (S.M.)
| |
Collapse
|
127
|
Chen C, Lin LY, Chen JW, Chang TT. CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus. Cardiovasc Diabetol 2023; 22:172. [PMID: 37420254 PMCID: PMC10329364 DOI: 10.1186/s12933-023-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Higher chemokine C-X-C motif ligand 5 (CXCL5) level was observed in type 2 diabetes mellitus (DM) patients; however, its role in diabetic vasculopathy was not clarified. This study aimed to explore the impacts and mechanistic insights of CXCL5 in neovasculogenesis and wound healing in DM. METHODS Endothelial progenitor cells (EPCs) and human aortic endothelial cells (HAECs) were used in vitro. Streptozotocin-induced diabetic mice and Leprdb/JNarl mice were used as type 1 and type 2 DM models. Moreover, CXCL5 knockout mice were used to generate diabetic mice. Hindlimb ischemia surgery, aortic ring assays, matrigel plug assay, and wound healing assay were conducted. RESULTS CXCL5 concentrations were increased in plasma and EPCs culture medium from type 2 DM patients. CXCL5 neutralizing antibody upregulated vascular endothelial growth factor (VEGF)/stromal cell-derived factor-1 (SDF-1) and promoted cell function in EPCs from type 2 DM patients and high glucose-treated EPCs from non-DM subjects as well as HAECs. CXCL5 directly up-regulated interleukin (IL)-1β/IL-6/tumor necrosis factor-α and down-regulated VEGF/SDF-1 via ERK/p65 activation through chemokine C-X-C motif receptor 2 (CXCR2). CXCL5 neutralizing antibody recovered the blood flow after hindlimb ischemia, increased circulating EPC number, and enhanced VEGF and SDF-1 expression in ischemic muscle. CXCL5 suppression promoted neovascularization and wound healing in different diabetic animal models. The above observation could also be seen in streptozotocin-induced CXCL5 knockout diabetic mice. CONCLUSIONS CXCL5 suppression could improve neovascularization and wound healing through CXCR2 in DM. CXCL5 may be regarded as a potential therapeutic target for vascular complications of DM.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
128
|
Leis AM, Mathis MR, Kheterpal S, Zawistowski M, Mukherjee B, Pace N, O'Reilly-Shah VN, Smith JA, Karvonen-Gutierrez CA. Cardiometabolic disease and obesity patterns differentially predict acute kidney injury after total joint replacement: a retrospective analysis. Br J Anaesth 2023; 131:37-46. [PMID: 37188560 PMCID: PMC10308436 DOI: 10.1016/j.bja.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a frequent yet understudied postoperative total joint arthroplasty complication. This study aimed to describe cardiometabolic disease co-occurrence using latent class analysis, and associated postoperative AKI risk. METHODS This retrospective analysis examined patients ≥18 years old undergoing primary total knee or hip arthroplasties within the US Multicenter Perioperative Outcomes Group of hospitals from 2008 to 2019. AKI was defined using modified Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Latent classes were constructed from eight cardiometabolic diseases including hypertension, diabetes, and coronary artery disease, excluding obesity. A mixed-effects logistic regression model was constructed for the outcome of any AKI and the exposure of interaction between latent class and obesity status adjusting for preoperative and intraoperative covariates. RESULTS Of 81 639 cases, 4007 (4.9%) developed AKI. Patients with AKI were more commonly older and non-Hispanic Black, with more significant comorbidity. A latent class model selected three groups of cardiometabolic patterning, labelled 'hypertension only' (n=37 223), 'metabolic syndrome (MetS)' (n=36 503), and 'MetS+cardiovascular disease (CVD)' (n=7913). After adjustment, latent class/obesity interaction groups had differential risk of AKI compared with those in 'hypertension only'/non-obese. Those 'hypertension only'/obese had 1.7-fold increased odds of AKI (95% confidence interval [CI]: 1.5-2.0). Compared with 'hypertension only'/non-obese, those 'MetS+CVD'/obese had the highest odds of AKI (odds ratio 3.1, 95% CI: 2.6-3.7), whereas 'MetS+CVD'/non-obese had 2.2 times the odds of AKI (95% CI: 1.8-2.7; model area under the curve 0.76). CONCLUSIONS The risk of postoperative AKI varies widely between patients. The current study suggests that the co-occurrence of metabolic conditions (diabetes mellitus, hypertension), with or without obesity, is a more important risk factor for acute kidney injury than individual comorbid diseases.
Collapse
Affiliation(s)
- Aleda M Leis
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Michael R Mathis
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Sachin Kheterpal
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nathan Pace
- Department of Anaesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Vikas N O'Reilly-Shah
- Department of Anaesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | |
Collapse
|
129
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
130
|
Sittiwanichai S, Niramitranon J, Japrung D, Pongprayoon P. Binding of Apo and Glycated Human Serum Albumins to an Albumin-Selective Aptamer-Bound Graphene Quantum Dot Complex. ACS OMEGA 2023; 8:21862-21870. [PMID: 37360475 PMCID: PMC10286295 DOI: 10.1021/acsomega.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease involving continued elevated blood glucose levels. It is a leading cause of mortality and reduced life expectancy. Glycated human serum albumin (GHSA) has been reported to be a potential diabetes biomarker. A nanomaterial-based aptasensor is one of the effective techniques to detect GHSA. Graphene quantum dots (GQDs) have been widely used in aptasensors as an aptamer fluorescence quencher due to their high biocompatibility and sensitivity. GHSA-selective fluorescent aptamers are first quenched upon binding to GQDs. The presence of albumin targets results in the release of aptamers to albumin and consequently fluorescence recovery. To date, the molecular details on how GQDs interact with GHSA-selective aptamers and albumin remain limited, especially the interactions of an aptamer-bound GQD (GQDA) with an albumin. Thus, in this work, molecular dynamics simulations were used to reveal the binding mechanism of human serum albumin (HSA) and GHSA to GQDA. The results show the rapid and spontaneous assembly of albumin and GQDA. Multiple sites of albumins can accommodate both aptamers and GQDs. This suggests that the saturation of aptamers on GQDs is required for accurate albumin detection. Guanine and thymine are keys for albumin-aptamer clustering. GHSA gets denatured more than HSA. The presence of bound GQDA on GHSA widens the entrance of drug site I, resulting in the release of open-chain glucose. The insight obtained here will serve as a base for accurate GQD-based aptasensor design and development.
Collapse
Affiliation(s)
- Sirin Sittiwanichai
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Jitti Niramitranon
- Department
of Computer Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
131
|
Banerjee M, Pal R, Mukhopadhyay S, Nair K. GLP-1 Receptor Agonists and Risk of Adverse Cerebrovascular Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2023; 108:1806-1812. [PMID: 36800286 DOI: 10.1210/clinem/dgad076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
CONTEXT The effect of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on ischemic/hemorrhagic stroke and transient ischemic attacks (TIA) in type 2 diabetes mellitus (T2DM) remains undetermined. OBJECTIVE To pool effects of GLP-1RAs on adverse cerebrovascular outcomes and investigate impact of baseline variables on these effects. METHODS PubMed, Embase, Web of Science, Cochrane Library, and clinical trial registry websites were searched for randomized controlled trials (RCTs) ≥24 weeks duration in adults with T2DM (PROSPERO: CRD42022331547). Adjudicated cerebrovascular events in GLP-1RA treatment vs control arms were pooled together to calculate risk ratios (RR) using fixed-effects model. Subgroup analysis was performed based on individual drugs, treatment duration, and baseline patient characteristics. Quality of evidence was assessed using GRADE framework. RESULTS We identified 28 RCTs involving 74 148 patients (57% male; median [range], age 58 [52-67] years, BMI 32 [25.4-37.2] kg/m2, T2DM duration 9 [3.5-15.4] years, treatment duration 52 [24-259] weeks). GLP-1RA use in T2DM was associated with significantly decreased risk of adverse cerebrovascular outcomes vs placebo/active comparator (RR, 0.83; 95% CI, 0.76-0.91; I2 = 0%). Pooling data from cardiovascular outcome trials (n = 8), GLP-1RA treatment vs placebo was associated with reduced risk of nonfatal stroke (RR, 0.85; 95% CI, 0.76-0.94; I2 = 0%) but not fatal stroke (RR, 0.80; 95% CI, 0.61-1.05; I2 = 0%). GLP-1RA use was associated with reduced risk of ischemic stroke (RCTs = 12; RR, 0.73; 95% CI, 0.60-0.89; I2 = 0%), composite of ischemic stroke/TIA (RCTs = 16; RR, 0.76; 95% CI, 0.65-0.90; I2 = 0%), but not hemorrhagic stroke (RCTs = 3; RR, 0.92; 95% CI, 0.51-1.64; I2 = 0%). Treatment benefits differed according to baseline eGFR and diabetes duration (P interaction < .1). Benefits were statistically significant for dulaglutide, subcutaneous/oral semaglutide (P < .05). Sensitivity analysis, excluding shorter-acting lixisenatide, eliminated the heterogeneity between individual GLP-1RA effects. CONCLUSION GLP-1RAs, particularly longer-acting formulations, reduced ischemic cerebrovascular events in T2DM. Observed benefits were significantly higher in patients with shorter T2DM duration and higher eGFR.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India
| | - Kirthana Nair
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
132
|
Chen D, Shao M, Song Y, Ren G, Guo F, Fan X, Wang Y, Zhang W, Qin G. Single-cell RNA-seq with spatial transcriptomics to create an atlas of human diabetic kidney disease. FASEB J 2023; 37:e22938. [PMID: 37130011 DOI: 10.1096/fj.202202013rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Diabetic kidney disease (DKD) develops in ~40% of patients with diabetes and is the leading cause of chronic kidney disease worldwide. We used single-cell RNA-sequencing and spatial transcriptomic analyses of kidney specimens from patients with DKD. Unsupervised clustering revealed distinct cell clusters, including epithelial cells and fibroblasts. We also identified differentially expressed genes (DEGs) and assessed enrichment, and cell-cell interactions. Specific enrichment of DKD was evident in venous endothelial cells (VECs) and fibroblasts with elevated CCL19 expression. The DEGs in most kidney parenchymal cells in DKD were primarily enriched in inflammatory signaling pathways. Intercellular crosstalk revealed that most cell interactions in DKD are associated with chemokines. Spatial transcriptomics revealed that VECs co-localized with fibroblasts, with most immune cells being enriched in areas of renal fibrosis. These results provided insight into the cell populations, intercellular interactions, and signaling pathways underlying the pathogenesis and potential targets for treating DKD.
Collapse
Affiliation(s)
- Duo Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunjie Fan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Wang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
133
|
He J, Cui J, Shi Y, Wang T, Xin J, Li Y, Shan X, Zhu Z, Gao Y. Astragaloside IV Attenuates High-Glucose-Induced Impairment in Diabetic Nephropathy by Increasing Klotho Expression via the NF- κB/NLRP3 Axis. J Diabetes Res 2023; 2023:7423661. [PMID: 37261217 PMCID: PMC10228232 DOI: 10.1155/2023/7423661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Deficiencies in klotho are implicated in various kidney dysfunctions including diabetic nephropathy (DN) related to inflammatory responses. Klotho is closely related to inflammatory responses and is a potential target for ameliorating kidney failure. Pyroptosis, an inflammatory form of programmed cell death, is reported to take part in DN pathogenesis recently. This study is aimed at exploring whether and how klotho inhibited podocyte pyroptosis and whether astragaloside IV (AS-IV) protect podocyte through the regulation of klotho. Materials and Methods SD rat model of DN and conditionally immortalized mouse podocytes exposed to high glucose were treated with AS-IV. Biochemical assays and morphological examination, cell viability assay, cell transfection, phalloidin staining, ELISA, LDH release assay, SOD and MDA detection, MMP assay, ROS level detection, flow cytometry analysis, TUNEL staining assay, PI/Hoechst 33342 staining, immunofluorescence assay, and western blot were performed to elucidate podocyte pyroptosis and to observe the renal morphology. Results The treatment of AS-IV can improve renal function and protect podocytes exposed to high glucose. Klotho was decreased, and AS-IV increased klotho levels in serum and kidney tissue of DN rats as well as podocytes exposed to high glucose. AS-IV can inhibit DN glomeruli pyroptosis in vivo. In vitro, overexpressed klotho and treatment with AS-IV inhibited pyroptosis of podocytes cultured in high glucose. Klotho knockdown promoted podocyte pyroptosis, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of klotho and AS-IV reduces oxidative stress levels and inhibited NF-κB activation and NLRP3-mediated podocytes' pyroptosis which was abolished by klotho knockdown. In addition, both the ROS inhibitor NAC and the NF-κB pathway inhibitor PDTC can inhibit NLRP3 inflammasome activation. NLRP3 inhibitor MCC950 can inhibit pyroptosis of podocytes exposed to high glucose. Conclusion Altogether, our results demonstrate that the protective effect of AS-IV in upregulating klotho expression in diabetes-induced podocyte injury is associated with the inhibition of NLRP3-mediated pyroptosis via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiaxin He
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jialin Cui
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Junyan Xin
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yimeng Li
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Zhiyao Zhu
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
134
|
Meng Y, Zhao Y, Wang R, Wen J, Tang T. Influencing factors of early dramatic recovery of neurological function after intravenous thrombolysis in patients with branch atheromatous disease. Medicine (Baltimore) 2023; 102:e33658. [PMID: 37171349 PMCID: PMC10174376 DOI: 10.1097/md.0000000000033658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Intravenous thrombolysis can significantly improve the neurological function of patients with acute ischemic stroke. However, the expected early dramatic recovery (EDR) of neurological function after thrombolysis is not achieved in some patients with branch atheromatous disease (BAD). Here we evaluated the factors associated with EDR after thrombolysis in BAD patients. METHODS We conducted a retrospective study on 580 consecutive BAD patients. All patients met the diagnostic criteria of BAD and received intravenous recombinant tissue-type plasminogen activator (rt-PA). EDR was defined when the improvement of National Institutes of Health Stroke Scale (NIHSS) score was >8 points within 2 or 24 hours after rt-PA, or the total NIHSS score was 0 or 1. The factors associated with EDR were analyzed with multivariate logistic regression analysis. RESULTS Among 580 patients, the incidence of EDR was 35.2% (204 cases). Compared with patients without EDR, patients with EDR had lower incidence of diabetes (15.7% vs 29.3%, P < .001), lower NIHSS scores at 2 and 24 hours after rt-PA (P < .001), less cerebral hemorrhage (0% vs 5.3%, P = .001), and shorter onset to treatment time (OTT) (P < .001). Multivariate logistic regression analysis in propensity score-matched cohort showed that EDR was associated with OTT (adjusted OR = 0.994; 95% CI, 0.989-0.999) and NIHSS score after rt-PA (adjusted OR = 0.768; 95% CI, 0.663-0.890). Notably, diabetes (adjusted OR = 0.477, 95% CI, 0.234-0.972) was an independent factor related to EDR of neurological function in BAD patients. In the subgroup analysis, a lower incidence of diabetes (adjusted OR = 0.205, 95% CI: 0.059-0.714, P = .013) and a lower NIHSS score after thrombolysis in patients with paramedian pontine infarction (adjusted OR = 0.809, 95% CI: 0.656-0.997, P = .047) were significantly associated with EDR. CONCLUSION Diabetes is not conducive to EDR of neurological function in patients with BAD, especially in patients with paramedian pontine infraction. Low NIHSS score and short OTT after thrombolysis may be closely related to EDR after intravenous thrombolysis.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Yanjun Zhao
- Department of Rehabilitation, Weifang People’s Hospital, Weifang, China
| | - Ruixia Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiangshan Wen
- Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Tianping Tang
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
135
|
Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, Mingiano C. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) 2023; 12:antiox12040928. [PMID: 37107303 PMCID: PMC10135862 DOI: 10.3390/antiox12040928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients.
Collapse
Affiliation(s)
- Guido Cavati
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Filippo Pirrotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marco Calabrese
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
136
|
Nguyen DT, Zaferanieh MH, Black AC, Hamedi KR, Goodwin RL, Nathaniel TI. Obstetric Neuropathy in Diabetic Patients: The “Double Hit Hypothesis”. Int J Mol Sci 2023; 24:ijms24076812. [PMID: 37047786 PMCID: PMC10094911 DOI: 10.3390/ijms24076812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The two-hit model has been proposed to explain the effects of diabetes on mothers who are already in a putative subclinical damaged state and then undergo neuronal damage during the delivery process. However, the anatomical and pathophysiological mechanisms are not well understood. Our overarching hypothesis in this review paper is that pregnant women who are diabetic have a damaged peripheral nervous system, constituting the “first hit” hypothesis. The delivery process itself—the “second hit”—can produce neurological damage to the mother. Women with diabetes mellitus (DM) are at risk for neurological damage during both hits, but the cumulative effects of both “hits” pose a greater risk of neurological damage and pathophysiological changes during delivery. In our analysis, we introduce the different steps of our concept paper. Subsequently, we describe each of the topics. First, we outline the mechanisms by which diabetes acts as a detrimental variable in neuropathy by focusing on the most common form of diabetic neuropathy, diabetic distal symmetrical polyneuropathy, also known as distal sensorimotor neuropathy. The possible role of macrosomia in causing diabetic neuropathy and obstetric neurological injury is discussed. Second, we describe how vaginal delivery can cause various obstetrical neurological syndromes and pathophysiological changes. Third, we highlight the risk of obstetric neuropathy and discuss anatomical sites at which lesions may occur, including lesions during delivery. Fourth, we characterize the pathophysiological pathways involved in the causation of diabetic neuropathy. Finally, we highlight diabetic damage to sensory vs. motor nerves, including how hyperglycemia causes different types of damage depending on the location of nerve cell bodies.
Collapse
Affiliation(s)
- Dieu Thao Nguyen
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | | | - Asa C. Black
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Kamron Reza Hamedi
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Richard L. Goodwin
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| | - Thomas I. Nathaniel
- Greenville School of Medicine, University of South Carolina, 607 Grove Road, Greenville, SC 29605, USA
| |
Collapse
|
137
|
Aoki E, Hirashima T, Kumamoto Y, Yamamoto Y, Suzuki N, Oshima T, Saito D, Hirano T. Clinical significance of skin autofluorescence for diabetic macroangiopathy and comparison with conventional markers of atherosclerosis: a cross-sectional and prospective study. Diabetol Int 2023; 14:145-154. [PMID: 37090128 PMCID: PMC10113414 DOI: 10.1007/s13340-022-00608-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Background Skin autofluorescence (SAF) is a marker for the accumulation of advanced glycation end products (AGEs), and is associated with diabetic macroangiopathy. However, whether SAF is superior to conventional markers of atherosclerosis such as carotid intima-media thickness (IMT) and pulse wave velocity (PWV) in detecting macroangiopathy remains unclear. Methods We recruited 845 patients with type 2 diabetes enrolled in a community diabetes cohort (ViNA cohort) who had SAF, IMT, and PWV measured at baseline. The prevalence of macroangiopathy at baseline and new cardiovascular events during the 2-year follow-up period was investigated. SAF was measured using an AGE reader. Coronary artery calcification (CAC) was measured by computed tomography in 485 patients. Peripheral artery disease (PAD) was defined as the ankle-brachial blood pressure ratio of ≤ 0.9. Results SAF, IMT, and PWV were significantly correlated with each other, and age, diabetes duration, and estimated glomerular filtration rate were their strong confounders. SAF was associated with baseline stroke and new stroke after adjusting for confounders, but not with coronary artery disease (CAD) or PAD. The nonsignificant relationship between SAF and CAD was consistent with the relationship between SAF and CAC. Multivariate analysis showed a significant association of SAF with baseline and new stroke independent of IMT and PWV. Maximum-IMT was significantly associated with baseline CAD, PAD, and stroke, but not with a new stroke, whereas PWV was associated with a new stroke. Conclusion Among diabetic macroangiopathies, SAF is a good stroke biomarker, but not for CAD and PAD. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-022-00608-8.
Collapse
Affiliation(s)
- Ema Aoki
- Diabetes Center, Ebina General Hospital, Kawaharaguchi 1320, Ebina, Kanagawa 243-0433 Japan
| | - Takeshi Hirashima
- Diabetes Center, Ebina General Hospital, Kawaharaguchi 1320, Ebina, Kanagawa 243-0433 Japan
| | - Yuko Kumamoto
- Department of Clinical Laboratory, Ebina General Hospital, Ebina, Japan
| | - Yuko Yamamoto
- Department of Clinical Laboratory, Ebina General Hospital, Ebina, Japan
| | - Natsuko Suzuki
- Diabetes Center, Ebina General Hospital, Kawaharaguchi 1320, Ebina, Kanagawa 243-0433 Japan
| | - Taito Oshima
- Diabetes Center, Ebina General Hospital, Kawaharaguchi 1320, Ebina, Kanagawa 243-0433 Japan
| | - Daizo Saito
- Department of Nutrition, Ebina General Hospital, Ebina, Japan
| | - Tsutomu Hirano
- Diabetes Center, Ebina General Hospital, Kawaharaguchi 1320, Ebina, Kanagawa 243-0433 Japan
| |
Collapse
|
138
|
Erdem S, Titus A, Patel D, Patel NN, Sattar Y, Glazier J, Alraies MC. Sodium-Glucose Cotransporter 2 Inhibitors: A Scoping Review of the Positive Implications on Cardiovascular and Renal Health and Dynamics for Clinical Practice. Cureus 2023; 15:e37310. [PMID: 37182087 PMCID: PMC10166724 DOI: 10.7759/cureus.37310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiorenal benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been demonstrated in patients with type 2 diabetes in multiple trials. We aim to provide a comprehensive review of the role of SGLT2i in cardiovascular disease. Reducing blood glucose to provide more effective vascular function, lowering the circulating volume, reducing cardiac stress, and preventing pathological cardiac re-modeling and function are the mechanisms implicated in the beneficial cardiovascular effects of SGLT2 inhibitors. Treatment with SGLT2i was associated with a decrease in cardiovascular and all-cause mortality, acute heart failure exacerbation hospitalization, and composite adverse renal outcomes. Improved symptoms, better functional status, and quality of life were also seen in heart failure with reduced ejection fraction (HFrEF), heart failure and mildly reduced ejection fraction (HFmrEF), and heart failure with preserved ejection fraction (HFpEF) patients. Recent trials have shown a notable therapeutic benefit of SGLT2is in acute heart failure and also suggest that SGLT2is have the potential to strengthen recovery after acute myocardial infarction (AMI) in percutaneous coronary Intervention (PCI) patients. The mechanism behind the cardio-metabolic and renal-protective effects of SGLT2i is multifactorial. Adverse events may occur with their usage including increased risk of genital infections, diabetic ketoacidosis, and perhaps limited amputations; however, all of them are preventable. Overall, SGLT2i clearly has many beneficial effects, and the benefits of using SGLT2i by far outweigh the risks.
Collapse
Affiliation(s)
- Saliha Erdem
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Anoop Titus
- Internal Medicine, Saint Vincent Hospital, Worcester, USA
- Medicine, Government Medical College Thrissur, Thrissur, IND
| | - Dhruvil Patel
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Neel N Patel
- Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, USA
- Medicine, B. J. (Byramjee Jeejeebhoy) Medical College, Ahmedabad, IND
| | - Yasar Sattar
- Cardiology, West Virginia University, Morgantown, USA
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - James Glazier
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| | - M Chadi Alraies
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| |
Collapse
|
139
|
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut-Liver-Muscle Axis In Vitro. Nutrients 2023; 15:1593. [PMID: 37049441 PMCID: PMC10096767 DOI: 10.3390/nu15071593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.
Collapse
Affiliation(s)
- Amar van Laar
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Van Camp
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
140
|
Ho LJ, Sheu WHH, Lo SH, Yeh YP, Hwu CM, Huang CN, Hsieh CH, Kuo FC. Unhealthy lifestyle associated with increased risk of macro- and micro-vascular comorbidities in patients with long-duration type 2 diabetes: results from the Taiwan Diabetes Registry. Diabetol Metab Syndr 2023; 15:38. [PMID: 36890551 PMCID: PMC9996995 DOI: 10.1186/s13098-023-01018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Unhealthy lifestyle has been associated with obesity and type 2 diabetes. Whereas its association with vascular complications in patients with long-duration of type 2 diabetes is still uncertain. METHODS A total of 1188 patients with long-duration of type 2 diabetes from the Taiwan Diabetes Registry (TDR) data were analyzed. We stratified the severity of unhealthy lifestyle via scoring three factors (sleep duration <7 or >9 h, sit duration ≥ 8h, and meal numbers ≥ with night snack) and analyzed their associations with the development of vascular complications using logistic regression analysis. Besides, we also included 3285 patients with newly diagnosed type 2 diabetes as the comparison. RESULTS Increased numbers of factors that stand for unhealthy lifestyle were significantly associated with the development of cardiovascular disease, peripheral arterial occlusion disease (PAOD) and nephropathy in patients with long-duration of type 2 diabetes. After adjusting multiple covariables, having ≥ 2 factors of unhealthy lifestyle remained significant associations with cardiovascular disease and PAOD, with an odds ratio (OR) of 2.09 (95% confidence interval [CI] 1.18-3.69) and 2.68 (95% CI 1.21-5.90), respectively. Among individual factor for unhealthy lifestyle behaviors, we revealed that eating ≥ 4 meals per day with night snack increased the risk of cardiovascular disease and nephropathy after multivariable adjustment (OR of 2.60, 95% CI 1.28-5.30; OR of 2.54, 95% CI 1.52-4.26, respectively). Whereas sit duration for ≥ 8 h per day increased the risk of PAOD (OR of 4.32, 95% CI 2.38-7.84). CONCLUSION Unhealthy lifestyle is associated with increased prevalence of macro- and micro-vascular comorbidities in Taiwanese patients with long-duration type 2 diabetes.
Collapse
Affiliation(s)
- Li-Ju Ho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, Republic of China
| | - Wayne Huey-Herng Sheu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Medical Technology, College of Life Science, National Chung-Hsing University, Taichung, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Su-Huey Lo
- Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shang Medical University Hospital, Taichung, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, Republic of China
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu District, Taipei City, 11490, Taiwan, Republic of China.
| |
Collapse
|
141
|
Maddaloni E, Coraggio L, Amendolara R, Baroni MG, Cavallo MG, Copetti M, Cossu E, D'Angelo P, D'Onofrio L, Cosmo SD, Leonetti F, Morano S, Morviducci L, Napoli N, Prudente S, Pugliese G, Park K, Holman RR, Trischitta V, Buzzetti R. Association of osteocalcin, osteoprotegerin, and osteopontin with cardiovascular disease and retinopathy in type 2 diabetes. Diabetes Metab Res Rev 2023:e3632. [PMID: 36880127 DOI: 10.1002/dmrr.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Novel biomarkers of vascular disease in diabetes could help identify new mechanistic pathways. Osteocalcin, osteoprotegerin, and osteopontin are key molecules involved in bone and vascular calcification processes, both of which are compromised in diabetes. We aimed to evaluate possible associations of osteocalcin, osteoprotegerin, and osteopontin with cardiovascular disease (CVD) and diabetic retinopathy (DR) among people with type 2 diabetes (T2D). MATERIALS AND METHODS Osteocalcin, osteoprotegerin, and osteopontin concentrations were measured at enrolment in 848 participants with T2D from the Sapienza University Mortality and Morbidity Event Rate (SUMMER) Study (ClinicalTrials.gov: NCT02311244). Logistic regression models and propensity score matching were used to assess possible associations of osteocalcin, osteoprotegerin, and osteopontin with a history of CVD and with evidence of any grade of DR adjusting for confounders. RESULTS Previous CVD was reported in 139 (16.4%) participants, while 144 (17.0%) had DR. After adjusting for possible confounders, osteocalcin but not osteoprotegerin or osteopontin concentrations were associated with a history of CVD (Odds Ratio [OR] and 95% CI for one standard deviation (SD) increase in osteocalcin concentrations (natural log): 1.35 (1.06-1.72), p = 0.014). Associations with prevalent DR were seen for osteoprotegerin (OR for one SD increase in osteoprotegerin concentrations (natural log): 1.25 (1.01-1.55), p = 0.047) and osteopontin (OR for one SD increase in osteopontin concentrations (natural log): 1.25 (1.02-1.53), p = 0.022), but not osteocalcin. CONCLUSIONS In T2D, higher serum osteocalcin concentrations are associated with macrovascular complications and higher osteoprotegerin and osteopontin concentrations with microvascular complications, suggesting that these osteokines might be involved in pathways directly related to vascular disease.
Collapse
Affiliation(s)
- Ernesto Maddaloni
- Sapienza University of Rome, Rome, Italy
- Diabetes Trials Unit, OCDEM, University of Oxford, Oxford, UK
| | | | | | | | | | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Rome, Italy
| | | | | | | | - Salvatore De Cosmo
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Rome, Italy
| | | | | | | | | | - Sabrina Prudente
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Rome, Italy
| | | | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rury R Holman
- Diabetes Trials Unit, OCDEM, University of Oxford, Oxford, UK
| | - Vincenzo Trischitta
- Sapienza University of Rome, Rome, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Rome, Italy
| | | |
Collapse
|
142
|
Wang Y, Han J, Luo L, Kasim V, Wu S. Salidroside facilitates therapeutic angiogenesis in diabetic hindlimb ischemia by inhibiting ferroptosis. Biomed Pharmacother 2023; 159:114245. [PMID: 36638593 DOI: 10.1016/j.biopha.2023.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Hindlimb ischemia (HLI), in which blood perfusion to the hindlimb is obstructed, is one of the major complications of diabetes. Skeletal muscle cells are crucial for revascularization as they can secrete various angiogenic factors; however, hyperglycemia impairs their viability and subsequently their angiogenic potential. Salidroside can promote skeletal muscle cell viability under hyperglycemia; however, the molecular mechanism is still poorly understood. Here we revealed that salidroside could suppress hyperglycemia-induced ferroptosis in skeletal muscle cells by promoting GPX4 expression, thereby restoring their viability and paracrine functions. These in turn promoted the proliferation and migration potentials of blood vessel-forming cells. Furthermore, we showed that salidroside/GPX4-mediated ferroptosis inhibition is crucial for promoting angiogenesis and blood perfusion recovery in diabetic HLI mice. Together, we reveal a novel molecular mechanism of salidroside in enhancing skeletal muscle cells-mediated revascularization and blood perfusion recovery in diabetic HLI mice, further highlighting it as a potential compound for treating diabetic HLI.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingxuan Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lailiu Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Shourong Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
143
|
Candesartan protects against unilateral peripheral limb ischemia in type-2 diabetic rats: Possible contribution of PI3K-Akt-eNOS-VEGF angiogenic signaling pathway. Int Immunopharmacol 2023; 116:109817. [PMID: 36773570 DOI: 10.1016/j.intimp.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Type-2 diabetes (T2DM) is known to be highly associated with increased risk for vascular complications including peripheral arterial diseases (PAD). Critical limb ischemia (CLI) is the most advanced stage of PAD. Current therapeutic options for diabetic patients experiencing vascular complications are limited to surgical revascularization with no effective pharmacotherapy available for clinical settings. This study is dedicated to evaluate the angiogenic potential of candesartan an angiotensin-II receptor blocker in an experimental model of vascular complications associating T2DM. T2DM was induced in rats through feeding with high fat diet for 6 weeks, followed by injection with streptozotocin (STZ, 30 mg/kg; i.p). After establishment of T2DM, unilateral CLI was induced through the ligation and excision of superficial femoral artery. Candesartan treatment (10 or 30 mg/kg; orally) was initiated one day post CLI and thereafter once daily for up to 14 days. T2DM rats that underwent CLI demonstrated impaired angiogenic signaling, increased inflammation and apoptosis in gastrocnemius muscle (GC). Candesartan reversed ischemic insult in T2DM rats subjected to unilateral CLI and induced reparative angiogenesis that was evident by increase in p-PI3K/PI3K, p-Akt/Akt, p-eNOS/eNOS, p-VEGFR2/VEGFR2 ratios, and VEGF levels. Candesartan treatment also increased levels of HO-1; while decreased caspase-3 apoptotic marker and levels of inflammatory markers; NF-κB and TNF-α, all of which were accompanied by preserved histological manifestations of GC muscles. Candesartan was able to combat limb ischemia under diabetic conditions which could pave the way for its therapeutic utility for diabetic patients experiencing vascular complications in clinical setting.
Collapse
|
144
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
145
|
The effect and a mechanistic evaluation of polystyrene nanoplastics on a mouse model of type 2 diabetes. Food Chem Toxicol 2023; 173:113642. [PMID: 36736609 DOI: 10.1016/j.fct.2023.113642] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Nanoplastics have become ubiquitous in the global environment and have attracted increasing attention. However, whether there is an influence between exposure to nanoplastics and diabetes is unclear. To determine the effects of exposure to Polystyrene nanoplastics (PS-NPs) and evaluate the underlying mechanisms, mice were orally exposed to PS-NPs at dosages of 1, 10, 30 mg/kg/day for 8 weeks, alone or combined with a high fat diet and streptozocin (STZ) injection. Our data showed that exposure to 30 mg/kg/day PS-NPs alone induced a significant increase in blood glucose, glucose intolerance and insulin resistance. Combined with a high fat diet and STZ injection, PS-NPs exposure markedly aggravated oxidative stress, glucose intolerance, insulin tolerance and insulin resistance, and induced lesions in the liver and pancreas. PS-NPs exposure could decrease the phosphorylation of AKT and GSK3β, and treatment with SC79, a selective AKT activator, could increase the level of AKT and GSK3β phosphorylation, effectively alleviating the increase in ROS levels in the liver or pancreas, and slightly attenuating the increase in fasting blood glucose levels and insulin resistance induced by PS-NPs exposure. This showed that exposure to PS-NPs aggravated type 2 diabetes and the underlying mechanism partly involved in the inhibition of AKT/GSK3β phosphorylation.
Collapse
|
146
|
Shitomi-Jones LM, Akam L, Hunter D, Singh P, Mastana S. Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3729. [PMID: 36834424 PMCID: PMC9959290 DOI: 10.3390/ijerph20043729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Globally, type 2 diabetes mellitus (T2DM) is one of the fastest-growing noncommunicable multifactorial and polygenic diseases, which leads to many health complications and significant morbidity and mortality. South Asians have a high genetic predisposition to T2DM, with India being home to one in six diabetics. This study investigates the association of selected genetic polymorphisms with T2DM risk and develops a polygenic risk score (PRS). METHODS A case-control study recruited fully consented participants from a population of Jat Sikhs in north India. DNA samples were genotyped for a range of polymorphisms and odds ratios were calculated under several genetic association models. Receiver operating characteristic (ROC) curves were produced for combinations of the PRS and clinical parameters. RESULTS The GSTT1(rs17856199), GSTM1(rs366631), GSTP1(rs1695), KCNQ1(rs2237892), ACE(rs4646994), and TCF7L2(rs12255372; rs7903146; rs7901695) polymorphisms were associated with increased T2DM risk (p ≤ 0.05). No association was observed with IGF2BP2(rs4402960) or PPARG2(rs1801282). The weighted PRS was found to be significantly higher in patients (mean = 15.4, SD = 3.24) than controls (mean = 11.9, SD = 3.06), and t(454) = -12.2 (p < 0.001). The ROC curve analysis found the weighted PRS in combination with clinical variables to be the most effective predictor of T2DM (area under the curve = 0.844, 95%CI = 0.0.808-0.879). CONCLUSIONS Several polymorphisms were associated with T2DM risk. PRS based on even a limited number of loci improves the prediction of the disease. This may provide a useful method for determining T2DM susceptibility for clinical and public health applications.
Collapse
Affiliation(s)
- Lisa Mitsuko Shitomi-Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK
| | - David Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK
| |
Collapse
|
147
|
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel) 2023; 13:life13020539. [PMID: 36836895 PMCID: PMC9967500 DOI: 10.3390/life13020539] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic Nephropathy (DN) is a serious complication of type I and II diabetes. It develops from the initial microproteinuria to end-stage renal failure. The main initiator for DN is chronic hyperglycemia. Hyperglycemia (HG) can stimulate the resident and non-resident renal cells to produce humoral mediators and cytokines that can lead to functional and phenotypic changes in renal cells and tissues, interference with cell growth, interacting proteins, advanced glycation end products (AGEs), etc., ultimately resulting in glomerular and tubular damage and the onset of kidney disease. Therefore, poor blood glucose control is a particularly important risk factor for the development of DN. In this paper, the types and mechanisms of DN cell damage are classified and summarized by reviewing the related literature concerning the effect of hyperglycemia on the development of DN. At the cellular level, we summarize the mechanisms and effects of renal damage by hyperglycemia. This is expected to provide therapeutic ideas and inspiration for further studies on the treatment of patients with DN.
Collapse
|
148
|
A Nonrandomized Phase 2 Trial of EG-Mirotin, a Novel, First-in-Class, Subcutaneously Deliverable Peptide Drug for Nonproliferative Diabetic Retinopathy. Medicina (B Aires) 2023; 59:medicina59010178. [PMID: 36676801 PMCID: PMC9862301 DOI: 10.3390/medicina59010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Background and objectives: EG-Mirotin (active ingredient EGT022) targets nonproliferative diabetic retinopathy (NPDR), the early stage of retinopathy. EG-Mirotin reverses capillary damage before NPDR progresses to an irreversible stage. EG-Mirotin safety and efficacy were investigated in patients with type 1 or type 2 diabetes mellitus and moderate to severe NPDR. Methods: In this open-label, single-arm, single-center, exploratory phase II study, 10 patients (20 eyes) received EG-Mirotin once a day (3 mg/1.5 mL sterile saline) for 5 days and were evaluated for ischemic index changes and safety. End of study was approximately 8 ± 1 weeks (57 ± 7 days) after the first drug administration. Results: EG-Mirotin injections were well tolerated, with no dose-limiting adverse events, serious adverse events, or deaths. Four treatment-emergent adverse events (TEAEs) unrelated to the investigational drug were observed in 2 out of 10 participants (20%) who had received the investigational drug. The overall average percent change in ischemic index at each evaluation point compared with baseline was statistically significant (Greenhouse-Geisser F = 9.456, p = 0.004 for the main effect of time), and a larger change was observed when the baseline ischemic index value was high (Greenhouse-Geisser F = 10.946, p = 0.002 for time × group interaction). Conclusions: The EG-Mirotin regimen established in this study was shown to be feasible and safe and was associated with a trend toward potential improvement in diabetes-induced ischemia and retinal capillary leakage.
Collapse
|
149
|
Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen Ther 2023; 22:79-89. [PMID: 36712958 PMCID: PMC9841355 DOI: 10.1016/j.reth.2022.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Diabetes mellitus (DM) is a chronic disease and a major cause of mortality and morbidity worldwide. The hyperglycemia caused by DM induces micro and macrovascular complications that lead, among other consequences, to chronic wounds and amputations. Cell therapy and tissue engineering constitute recent therapeutic alternatives to improve wound healing in diabetic patients. The current study aimed to analyze the effectiveness of biocuratives containing human mesenchymal stem cells (MSCs) associated with a hydrogel matrix in the wound healing process and related inflammatory cell profile in diabetic mice. Methods Biocuratives containing MSCs were constructed by 3D bioprinting, and applied to skin wounds on the back of streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. The healing process, after the application of biocuratives with or without MSCs was histologically analyzed. In parallel, genes related to growth factors, mast cells (MC), M1 and M2 macrophage profiles were evaluated by RT-PCR. Macrophages were characterized by flow cytometry, and MC by toluidine blue staining and flow cytometry. Results Mice with T1D exhibited fewer skin MC and delayed wound healing when compared to the non-diabetic group. Treatment with the biocuratives containing MSCs accelerated wound healing and improved skin collagen deposition in diabetic mice. Increased TGF-β gene expression and M2 macrophage-related markers were also detected in skin of diabetic mice that received MSCs-containing biocuratives. Finally, MSCs upregulated IL-33 gene expression and augmented the number of MC in the skin of diabetic mice. Conclusion These results reveal the therapeutic potential of biocuratives containing MSCs in the healing of skin wounds in diabetic mice, providing a scientific base for future treatments in diabetic patients.
Collapse
|
150
|
Impact of albuminuria on the various causes of death in diabetic patients: a nationwide population-based study. Sci Rep 2023; 13:295. [PMID: 36609387 PMCID: PMC9822964 DOI: 10.1038/s41598-022-23352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/30/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) is a well-known risk factor for mortality, and the risk is exacerbated by coexisting diabetic kidney disease (DKD). We aimed to explore the impact of DM on each cause of mortality according to kidney function and the presence of albuminuria. Data on subjects with DM were extracted from the Nationwide Health Insurance Database of South Korea between 2009 and 2012. Subjects were divided by eGFR and albuminuria into five groups. To evaluate the risk of diabetes, we used the Cox proportional hazards model. A total of 2,614,662 patients were enrolled in this study. Most causes of death showed a higher incidence in an advanced stage of DKD. In addition to all-cause mortality and cardiovascular death, the risk of death from neoplasms and diseases of the endocrine, respiratory, and digestive systems is increased by albuminuria. The synergistic effect of a reduced eGFR and the presence of albuminuria was prominent in death from circulatory diseases, and endocrine and metabolic diseases. The risk for mortality was different according to the stage of DKD. Even in patients with a favorable eGFR, the presence of albuminuria significantly increased the risk for mortality, especially that due to cardiovascular causes.
Collapse
|