101
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
102
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
103
|
Liu S, Liu Y, Zhang D, Li H, Shao X, Xie P, Li J. Novel insights into perfluorinated compound-induced hepatotoxicity: Chronic dietary restriction exacerbates the effects of PFBS on hepatic lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2023; 181:108274. [PMID: 37879206 DOI: 10.1016/j.envint.2023.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Perfluorobutane sulfonates (PFBS) have garnered extensive utilization because of their distinctive physicochemical properties. The liver acts as a key target organ for toxicity within the body and is vital for regulating metabolic processes, particularly lipid metabolism. However, there is currently a significant research gap regarding the influences of PFBS on hepatic lipid metabolism, especially in individuals with different dietary statuses. Here, the objective of this research was to examine the effects of PFBS on hepatic function under different dietary conditions. The results suggested that the levels of liver injury biomarkers were significantly upregulated, e.g., transaminase (GPT, GOT), while liver lipid levels were downregulated after exposure to PFBS at concentration of 50 μg/L for 42 days. Moreover, restricted diet further intensified the adverse effects of PFBS on the liver. Metabolomics analysis identified significant alterations in lipid-related metabolites in PFBS-induced hepatotoxicity, PFBS exposure induced a decrease in lysophosphatidylethanolamine and lysophosphatidylcholine. PFBS exposure caused an increase in aldosterone and prostaglandin f2alpha under restricted diet. In PFBS treatment group, histidine metabolism, beta-alanine metabolism, and arginine biosynthesis were the main pathway for PFBS toxicity. Aldosterone-regulated sodium reabsorption as a vital factor in inducing PFBS toxicity in the RD-PFBS treatment group. The analysis of 16S rRNA sequencing revealed that exposure to PFBS resulted in imbalance of gut microbial communities. PFBS exposure induced a decrease in Akkermansia and Lactobacillus, but an increase in Enterococcus. PFBS exposure caused the abundance of Lachnospiraceae_NK4A136_group was significantly elevated under restricted diet. Additionally, disruptions in the expression of genes involved in lipid production and consumption may significantly contribute to lipid imbalance in the liver. This study underscores the importance of recognizing the harmful impact of PFBS on liver function, along with the biotoxicity of contaminant influenced by dietary habits.
Collapse
Affiliation(s)
- Su Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafeng Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Huan Li
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xicheng Shao
- Faculty of Land and Food Systems, Vancouver Campus, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
104
|
Escudero M, Vaysse L, Eke G, Peyrou M, Villarroya F, Bonnel S, Jeanson Y, Boyer L, Vieu C, Chaput B, Yao X, Deschaseaux F, Parny M, Raymond‐Letron I, Dani C, Carrière A, Malaquin L, Casteilla L. Scalable Generation of Pre-Vascularized and Functional Human Beige Adipose Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301499. [PMID: 37731092 PMCID: PMC10625054 DOI: 10.1002/advs.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor β (TGFβ) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.
Collapse
Affiliation(s)
- Mélanie Escudero
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Laurence Vaysse
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Gozde Eke
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Marion Peyrou
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Francesc Villarroya
- CIBER “Fisiopatologia de la Obesidad y Nutrición”, Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaMadrid28029Spain
| | - Sophie Bonnel
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Yannick Jeanson
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Louisa Boyer
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Christophe Vieu
- LAAS‐CNRSUniversité de Toulouse, CNRS, INSAToulouse31400France
| | - Benoit Chaput
- Service de Chirurgie plastique, reconstructrice et esthétiqueCentre Hospitalier Universitaire RangueilToulouse31400France
| | - Xi Yao
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Frédéric Deschaseaux
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | - Mélissa Parny
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Isabelle Raymond‐Letron
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
- LabHPEC, Histology and Pathology DepartmentUniversité de Toulouse, ENVTToulouse31076France
| | - Christian Dani
- Faculté de MédecineUniversité Côte d'AzurINSERM, CNRS, iBVNice06103France
| | - Audrey Carrière
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| | | | - Louis Casteilla
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTToulouse31100France
| |
Collapse
|
105
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
106
|
Hong E, Kang H, Yang G, Oh S, Kim E. The PKA-SREBP1c Pathway Plays a Key Role in the Protective Effects of Lactobacillus johnsonii JNU3402 Against Diet-Induced Fatty Liver in Mice. Mol Nutr Food Res 2023; 67:e2200496. [PMID: 37650271 DOI: 10.1002/mnfr.202200496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/24/2023] [Indexed: 09/01/2023]
Abstract
SCOPE The present study aims to assess the protective effect of Lactobacillus johnsonii JNU3402 (LJ3402) against diet-induced non-alcoholic fatty liver disease (NAFLD) and determine the mechanism underlying its beneficial effect on the liver in mice. METHODS AND RESULTS Seven-week-old male mice are fed a high-fat diet (HFD) with or without oral supplementation of LJ3402 for 14 weeks. In mice fed an HFD, LJ3402 administration alleviates liver steatosis, diet-induced obesity, and insulin resistance with a decreased hepatic expression of sterol-regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and an increased phosphorylation of SREBP-1c. The mechanistic study shows that LJ3402 inhibits SREBP-1c transcriptional activity by enhancing protein kinase A (PKA)-mediated phosphorylation and reduces the expression of its lipogenic target genes in AML12 and HepG2 cells, thereby attenuating hepatic lipid accumulation. Moreover, silencing the PKA α catalytic subunit or the inhibition of PKA activity by H89 abolishes LJ3402 suppression of free fatty acid (FFA)-induced SREBP-1c activity in hepatocytes. In addition, LJ3402 administration elevates the plasma lactate levels in mice fed an HFD; this lactate increases PKA-mediated SREBP-1c phosphorylation in AML12 cells with a decreased expression of its target genes, reducing hepatic lipid accumulation. CONCLUSION LJ3402 attenuates HFD-induced fatty liver in mice through the lactate-PKA-SREBP-1c pathway.
Collapse
Affiliation(s)
- Eunjeong Hong
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyuno Kang
- Division of Analytical Science, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Garam Yang
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, College of Agriculture & Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Eungseok Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
107
|
Noriega L, Yang CY, Wang CH. Brown Fat and Nutrition: Implications for Nutritional Interventions. Nutrients 2023; 15:4072. [PMID: 37764855 PMCID: PMC10536824 DOI: 10.3390/nu15184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brown and beige adipocytes are renowned for their unique ability to generate heat through a mechanism known as thermogenesis. This process can be induced by exposure to cold, hormonal signals, drugs, and dietary factors. The activation of these thermogenic adipocytes holds promise for improving glucose metabolism, reducing fat accumulation, and enhancing insulin sensitivity. However, the translation of preclinical findings into effective clinical therapies poses challenges, warranting further research to identify the molecular mechanisms underlying the differentiation and function of brown and beige adipocytes. Consequently, research has focused on the development of drugs, such as mirabegron, ephedrine, and thyroid hormone, that mimic the effects of cold exposure to activate brown fat activity. Additionally, nutritional interventions have been explored as an alternative approach to minimize potential side effects. Brown fat and beige fat have emerged as promising targets for addressing nutritional imbalances, with the potential to develop strategies for mitigating the impact of metabolic diseases. Understanding the influence of nutritional factors on brown fat activity can facilitate the development of strategies to promote its activation and mitigate metabolic disorders.
Collapse
Affiliation(s)
- Lloyd Noriega
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Cell Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
108
|
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects of intermittent fasting for adults with overweight or obesity.
Collapse
|
109
|
Abstract
Overweight and obesity are an important public health problem that affects a significant part of the world population and increases the risk of many metabolic diseases. Weight loss is the primary goal in obesity treatment, and many different dietary interventions are tried for this purpose. Intermittent fasting is a diet that has become popular in recent years with the weight loss it provides and includes periods of fasting and feeding. In addition to providing weight loss, intermittent fasting also has positive effects on important risk factors such as glucoregulatory parameters, blood lipids, and oxidative stress. Intermittent fasting appears to be an effective and safe way to achieve weight loss in obesity. It could also have therapeutic effects on obesity-related diseases. The aim of this review was to bring together up-to-date information on the effects of intermittent fasting on obesity and various obesity-related diseases, mechanisms of action, possible benefits and harms, and potential uses.
Collapse
Affiliation(s)
- Caner Özyildirim
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Türkiye -
| | - Asli Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Türkiye
| |
Collapse
|
110
|
Barayan D, Abdullahi A, Knuth CM, Khalaf F, Rehou S, Screaton RA, Jeschke MG. Lactate shuttling drives the browning of white adipose tissue after burn. Am J Physiol Endocrinol Metab 2023; 325:E180-E191. [PMID: 37406182 PMCID: PMC10396278 DOI: 10.1152/ajpendo.00084.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
111
|
Abdallah H, Khalil M, Farella I, JohnBritto JS, Lanza E, Santoro S, Garruti G, Portincasa P, Di Ciaula A, Bonfrate L. Ramadan intermittent fasting reduces visceral fat and improves gastrointestinal motility. Eur J Clin Invest 2023; 53:e14029. [PMID: 37203871 DOI: 10.1111/eci.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Ramadan is a model of intermittent fasting linked with possible beneficial effects. Scarce information, however, is available about the combined effects of Ramadan intermittent fasting (RIF) on anthropometric and metabolic indices, gastrointestinal symptoms, and motility. METHODS In 21 healthy Muslims, we assessed the impact of RIF on caloric intake, physical activity, gastrointestinal symptoms and motility (gastric/gallbladder emptying by ultrasonography, orocaecal transit time by lactulose breath test), anthropometric indices, subcutaneous and visceral fat thickness (ultrasonography), glucose and lipid homeostasis. RESULTS Mean caloric intake decreased from a median of 2069 kcal (range 1677-2641) before Ramadan to 1798 kcal (1289-3126) during Ramadan and increased again to 2000 kcal (1309-3485) after Ramadan. Although physical activity remained stable before, during, and after RIF, body weight, body mass index and waist circumference decreased in all subjects and in both genders, together with a significant decrease in subcutaneous and visceral fat thickness and insulin resistance. The postprandial gastric emptying speed was significantly faster after than before RIF. Fasting gallbladder volume was about 6% smaller after, than before Ramadan, with a stronger and faster postprandial gallbladder contraction. After RIF, lactulose breath test documented increased microbiota carbohydrate fermentation (postprandial H2 peak), and faster orocaecal transit time. RIF also significantly improved gastric fullness, epigastric pain and heartburn. CONCLUSIONS RIF generates, in healthy subjects, multiple systemic beneficial effects in terms of fat burden, metabolic profile, gastrointestinal motility and symptoms. Further comprehensive studies should assess the potential beneficial effects of RIF in diseased people.
Collapse
Affiliation(s)
- Hala Abdallah
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Mohamad Khalil
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Ilaria Farella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Jerlin Stephy JohnBritto
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Elisa Lanza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Sergio Santoro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| |
Collapse
|
112
|
Guan L, Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv Biol (Weinh) 2023; 7:e2300100. [PMID: 37142556 DOI: 10.1002/adbi.202300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Diet is a pivotal determinant in shaping the structure and function of resident microorganisms in the gut through different food components, nutritive proportion, and calories. The effects of diet on host metabolism and physiology can be mediated through the gut microbiota. Gut microbiota-derived metabolites have been shown to regulate glucose and lipid metabolism, energy consumption, and the immune system. On the other hand, emerging evidence indicates that baseline gut microbiota could predict the efficacy of diet intervention, highlighting gut microbiota can be harnessed as a biomarker in personalized nutrition. In this review, the alterations of gut microbiota in different dietary components and dietary patterns, and the potential mechanisms in the diet-microbiota crosstalk are summarized to understand the interactions of diet and gut microbiota on the impact of metabolic homeostasis.
Collapse
Affiliation(s)
- Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
113
|
Brown KL, Ganswindt A, Steenkamp G, Tordiffe ASW. Responses to Reduced Feeding Frequency in Captive-Born Cheetahs ( Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Animals (Basel) 2023; 13:2783. [PMID: 37685047 PMCID: PMC10486355 DOI: 10.3390/ani13172783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Unnatural diet composition and frequent feeding regimes may play an aetiological role in the multiple diseases prevalent in captive cheetahs. This study investigated the responses of captive-born (hand-reared) cheetahs (n = 6) to a reduced feeding frequency schedule distinguished by offering larger quantities of food less frequently. The study cheetahs were fed four once-daily meals per week during the 3-week treatment period, followed by a 3-week control period in which they were fed two daily rations six days a week. Total weekly food intake was maintained throughout the study. Variations in behaviour, faecal consistency score (FCS), and faecal glucocorticoid metabolite concentration were measured. Less frequent feeding resulted in higher FCS (p < 0.01) and locomotory behaviour (p < 0.05) among the studied cheetahs. Faecal glucocorticoid metabolite concentration demonstrated an initial acute stress response to the change in feeding frequency (p < 0.05) and subsequent adaptation. The results of the FCS analysis suggest that the more natural feeding pattern could have benefited the studied cheetahs' gastrointestinal health without a significant behavioural or physiological stress response overall to the change in feeding frequency.
Collapse
Affiliation(s)
- Kelsey Lee Brown
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - André Ganswindt
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, Mammal Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Gerhard Steenkamp
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Adrian Stephen Wolferstan Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| |
Collapse
|
114
|
Saglam D, Colak GA, Sahin E, Ekren BY, Sezerman U, Bas M. Effects of Ramadan intermittent fasting on gut microbiome: is the diet key? Front Microbiol 2023; 14:1203205. [PMID: 37705730 PMCID: PMC10495574 DOI: 10.3389/fmicb.2023.1203205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Much research has been conducted regarding the impact of diet on the gut microbiota. However, the effects of dietary habits such as intermittent fasting are unclear. This study aimed to investigate the effect of intermittent fasting during Ramadan on the gut microbiota. The study was conducted on 12 healthy adult individuals who practiced fasting 17 h per day for 29 consecutive days during the month of Ramadan. To determine the dietary intake of individuals, a 3-day dietary record was kept at the beginning and end of the study. Reads that passed quality filtering were clustered, and custom-prepared 16S rRNA gene regions of bacteria associated with the human microbiome were used as a reference. Consensus sequences were created, and genus-level taxonomic annotations were determined using a sequence identity threshold of 95%. The correlations between the dietary intake measurements of the participants and the respective relative abundance of bacterial genera were investigated. The results showed that Firmicutes were higher in abundance in the gut microbiota before fasting among participants, while they were significantly lower in abundance at the end of Ramadan fasting (p < 0.05). Proteobacteria were significantly higher in abundance at the end of the month of Ramadan (p < 0.05). Fasting was associated with a significant decrease in levels of seven genera: Blautia, Coprococcus, Dorea, Faecalicatena, Fusicatenibacter, Lachnoclostridium, and Mediterraneibacter. Conversely, the abundances of two bacterial genera were enhanced at the end of the fasting month: Escherichia and Shigella. The results of the dietary intake analysis showed that a negative correlation was detected for three comparisons: Ihubacter and protein (rho = -0.54, p = 0.0068), Fusicatenibacter and vegetables (rho = -0.54, p = 0.0042), and Intestinibacter and nuts (rho = -0.54, p-value = 0.0065). The results suggest that even when the fasting period during Ramadan is consistent, the types of food consumed by individuals can affect the gut microbiota.
Collapse
Affiliation(s)
- Duygu Saglam
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Gozde Aritici Colak
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Berkay Yekta Ekren
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ugur Sezerman
- Department of Medical Statistics and Bioinformatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Murat Bas
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
115
|
Marjot T, Tomlinson JW, Hodson L, Ray DW. Timing of energy intake and the therapeutic potential of intermittent fasting and time-restricted eating in NAFLD. Gut 2023; 72:1607-1619. [PMID: 37286229 PMCID: PMC10359613 DOI: 10.1136/gutjnl-2023-329998] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, UK
- Oxford Liver Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, UK
| | - David W Ray
- Oxford Centre for Diabetes Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| |
Collapse
|
116
|
Silverii GA, Cresci B, Benvenuti F, Santagiuliana F, Rotella F, Mannucci E. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2023; 33:1481-1489. [PMID: 37248144 DOI: 10.1016/j.numecd.2023.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
AIM To assess whether intermittent fasting (IF) diets are associated with improvement in weight loss, metabolic parameters, and subjective well-being, in people with obesity. DATA SYNTHESIS We performed a Meta-analysis of Randomized Controlled Trials longer than 2 months, retrieved through an extensive search on MedLine, Cochrane CENTRAL Library, and Embase online databases, comparing weight loss with IF diets and control diets in people with Body Mass index (BMI) > 30 kg/m2. We retrieved 9 trials, enrolling 540 patients. IF was not associated with a significantly greater reduction of body weight or BMI at any time point with respect to controls or in respect to continuous restricted diets, with low-to moderate quality of evidence; no significant difference in efficacy between alternate day fasting and time restricted eating was found. Differences in fasting plasma glucose, total or high-density lipoprotein cholesterol or blood pressure at any time point were not statistically significant, whereas a reduction of low-density lipoprotein cholesterol (MD -8.39 [-15.96, -0.81] mg/dl, P = 0.03; I2 = 0%) was observed at 2-4 months, but not in the longer term. Data on psychological parameters and overall well-being were insufficient to perform a formal meta-analysis, whereas a qualitative synthesis did not show any difference between IF and controls. CONCLUSIONS IF is not associated with greater or lesser weight loss than non-intermittent fasting diets. Further data on psychological parameters and overall well-being are needed to properly assess the role of IF diets in the management of obesity.
Collapse
|
117
|
Pérez-Gerdel T, Camargo M, Alvarado M, Ramírez JD. Impact of Intermittent Fasting on the Gut Microbiota: A Systematic Review. Adv Biol (Weinh) 2023; 7:e2200337. [PMID: 36950759 DOI: 10.1002/adbi.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Obesity often results in severe negative health consequences and represents a growing issue for global health. Reducing food intake is a crucial factor for weight loss. Intermittent fasting is a relatively new intervention that contributes to weight reduction. Considering the intimate relationship between obesity and inflammatory pathologies with gut microbiota alterations, a systematic review of the literature was herein conducted to elucidate the relationship between time-restricted food intake and gut microbiota diversity in humans. Searches are carried out in three databases (PubMed, MedLine/OVID, and Academic Search Complete) between April 2019 and April 2022. Nine studies (all with longitudinal design) were identified as eligible by presenting data about the impact of intermittent fasting schemes on gut microbiota. At the phylum level, Firmicutes and Bacteroidetes increase throughout follow-ups, while 16 bacteria genera change their abundance in response to intermittent fasting. Finally, some genera associated with clinical predictors such as weight change, abdominal circumference, and metabolic variables were reported. Changes induced by fasting schemes positively impact the diversity and abundance of gut microbiota and the biomarkers described here. However, the changes previously reported have been studied in short periods and some return to their basal state after fasting intervention.
Collapse
Affiliation(s)
- Theodoro Pérez-Gerdel
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá D.C., 112111, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá D.C., 112111, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza-Cundinamarca, 250027, Colombia
| | - Mateo Alvarado
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá D.C., 112111, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá D.C., 112111, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
118
|
Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023; 26:107046. [PMID: 37389181 PMCID: PMC10300224 DOI: 10.1016/j.isci.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Hematology, Haddasah Medical Center, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
119
|
Tsukada A, Okamatsu-Ogura Y, Futagawa E, Habu Y, Takahashi N, Kato-Suzuki M, Kato Y, Ishizuka S, Sonoyama K, Kimura K. White adipose tissue undergoes browning during preweaning period in association with microbiota formation in mice. iScience 2023; 26:107239. [PMID: 37485363 PMCID: PMC10362363 DOI: 10.1016/j.isci.2023.107239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Beige adipocytes are transiently induced during early postnatal period in mice. Previous studies have suggested that, unlike in adults, the induction is independent of the sympathetic nerve activity; however, the mechanism is yet unknown. Here, we showed that beige adipocytes are induced during the preweaning period in association with the formation of microbiota in mice. Alteration of gut microbiota composition in preweaning mice by maternal treatment with antibiotics or high-fat diet feeding substantially suppressed WAT browning. The suppression was also found in pups transplanted cecal microbiota from pups of high-fat diet-fed dams. These treatments reduced the hepatic expression of genes involved in bile acid synthesis and the serum bile acids level. The abundance of Porphyromonadaceae and Ruminococcaceae in microbiota showed a positive and negative correlation with the induction of beige adipocytes, respectively. This finding may provide comprehensive understanding of the association between gut microbiota and adipose tissue development in the neonatal period.
Collapse
Affiliation(s)
- Anju Tsukada
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Emi Futagawa
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuki Habu
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Natsumi Takahashi
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Kato
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Satoshi Ishizuka
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kei Sonoyama
- Laboratory of Food Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
120
|
Wang H, Dai Y, Huang S, Rong S, Qi Y, Li B. A new perspective on special effective interventions for metabolic syndrome risk factors: a systematic review and meta-analysis. Front Public Health 2023; 11:1133614. [PMID: 37521969 PMCID: PMC10375293 DOI: 10.3389/fpubh.2023.1133614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Metabolic syndrome (MetS) has the largest global burden of all noncommunicable diseases. Owing to the clinical heterogeneity of MetS, wide variations have been reported in the efficacy of moderate-to-vigorous physical activity (MVPA) and intermittent fasting (IF) for improving MetS. We searched five databases for randomized controlled trials published through December 2021, and 372 participants from 11 studies were included in this meta-analysis. Compared with MVPA alone, IF combined with MVPA had a more significant effect on improving body mass and levels of fasting blood glucose and high-density lipoprotein cholesterol; however, it was ineffective in improving triglycerides level, systolic blood pressure, and diastolic blood pressure. Subgroup analysis showed that, except for blood pressure, time-restricted fasting combined with MVPA had a better effect than alternate-day fasting with MVPA. Meanwhile, when the intervention lasted longer than 8 weeks, the effect of the combined intervention was significantly better than that of MVPA alone. This finding provides a basis for clinicians to manage the health of overweight individuals. This study also showed that Caucasians may be more suitable for the combined intervention than Asians. And the combined intervention may provide a preventive effect for MetS risk factors in healthy populations, although this may be due to the small sample size. In general, this study provides a novel perspective on special interventions for MetS traits.
Collapse
Affiliation(s)
- Haonan Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Department of Physical Education and Research, Central South University, Changsha, China
| | - Yinghong Dai
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Sike Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siyu Rong
- Sports and Art Institute, Hunan University of Chinese Medicine, Changsha, China
| | - Yufei Qi
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Physical Education and Research, Central South University, Changsha, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
121
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
122
|
Harney DJ, Cielesh M, Roberts GE, Vila IK, Viengkhou B, Hofer MJ, Laguette N, Larance M. Dietary restriction induces a sexually dimorphic type I interferon response in mice with gene-environment interactions. Cell Rep 2023; 42:112559. [PMID: 37243595 DOI: 10.1016/j.celrep.2023.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Intermittent fasting (IF) is an established intervention to treat the growing obesity epidemic. However, the interaction between dietary interventions and sex remains a significant knowledge gap. In this study, we use unbiased proteome analysis to identify diet-sex interactions. We report sexual dimorphism in response to intermittent fasting within lipid and cholesterol metabolism and, unexpectedly, in type I interferon signaling, which was strongly induced in females. We verify that secretion of type I interferon is required for the IF response in females. Gonadectomy differentially alters the every-other-day fasting (EODF) response and demonstrates that sex hormone signaling can either suppress or enhance the interferon response to IF. IF fails to potentiate a stronger innate immune response when IF-treated animals were challenged with a viral mimetic. Lastly, the IF response changes with genotype and environment. These data reveal an interesting interaction between diet, sex, and the innate immune system.
Collapse
Affiliation(s)
- Dylan J Harney
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Michelle Cielesh
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Georgia E Roberts
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | | | - Barney Viengkhou
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| | | | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, 2006 NSW, Australia.
| |
Collapse
|
123
|
Vacca M, Celano G, Calabrese FM, Rocchetti MT, Iacobellis I, Serale N, Calasso M, Gesualdo L, De Angelis M. In vivo evaluation of an innovative synbiotics on stage IIIb-IV chronic kidney disease patients. Front Nutr 2023; 10:1215836. [PMID: 37396126 PMCID: PMC10311028 DOI: 10.3389/fnut.2023.1215836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Microbiota unbalance has been proven to affect chronic kidney disease (CKD) patients and, noteworthy, microbiota composition and activity are implicated in CKD worsening. The progression of kidney failure implies an exceeding accumulation of waste compounds deriving from the nitrogenous metabolism in the intestinal milieu. Therefore, in the presence of an altered intestinal permeability, gut-derived uremic toxins, i.e., indoxyl sulfate (IS) and p-cresyl sulfate (PCS), can accumulate in the blood. Methods In a scenario facing the nutritional management as adjuvant therapy, the present study assessed the effectiveness of an innovative synbiotics for its ability to modulate the patient gut microbiota and metabolome by setting a randomized, single-blind, placebo-controlled, pilot trial accounting for IIIb-IV stage CKD patients and healthy controls. Metataxonomic fecal microbiota and fecal volatilome were analyzed at the run-in, after 2 months of treatment, and after 1 month of wash out. Results Significant changes in microbiota profile, as well as an increase of the saccharolytic metabolism, in feces were found for those CKD patients that were allocated in the synbiotics arm. Conclusions Noteworthy, the here analyzed data emphasized a selective efficacy of the present synbiotics on a stage IIIb-IV CKD patients. Nonetheless, a further validation of this trial accounting for an increased patient number should be considered. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03815786.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Giuseppe Celano
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | | | | | - Ilaria Iacobellis
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Nadia Serale
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Maria Calasso
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| |
Collapse
|
124
|
Xu T, Wang J, Shi H, Wei X, Zhang H, Ji Y, Lu S, Yan Y, Yu X, Luo X, Wang H. CCE and EODF as two distinct non-shivering thermogenesis models inducing weight loss. Pflugers Arch 2023:10.1007/s00424-023-02827-7. [PMID: 37386129 DOI: 10.1007/s00424-023-02827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Increasing energy expenditure and reducing energy intake are considered two classical methods to induce weight loss. Weight loss through physical methods instead of drugs has been a popular research topic nowadays, but how these methods function in adipose and cause weight loss in body remains unclear. In this study, we set up chronic cold exposure (CCE) and every-other-day fasting (EODF) as two distinct models in long-term treatment to induce weight loss, recording their own characteristics in changes of body temperature and metabolism. We investigated the different types of non-shivering thermogenesis induced by CCE and EODF in white and brown adipose tissue through sympathetic nervous system (SNS), creatine-driven pathway, and fibroblast growth factor 21 (FGF21)-adiponectin axis. CCE and EODF could reduce body weight, lipid composition, increase insulin sensitivity, promote the browning of white fat, and increase the expression of endogenous FGF21 in adipose tissue. CCE stimulated the SNS and increased the thermogenic function of brown fat, and EODF increased the activity of protein kinase in white fat. In this study, we further explained the thermogenic mechanism function in adipose and metabolic benefits of the stable phenotype through physical treatments used for weight loss, providing more details for the literature on weight loss models. The influence on metabolism, non-shivering thermogenesis, endogenous FGF21, and ADPN changes in the long-term treatment of distinct methods (increasing energy expenditure and decreasing energy intake) to induce weight loss.
Collapse
Affiliation(s)
- Tianyi Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hosptial, Shanghai Jiaotong University School of Medicine, Haining Road, Shanghai, 200080, People's Republic of China
| | - Hongwei Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaofang Wei
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Huiling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Yunyan Ji
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Shiting Lu
- School of Foreign Languages, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
125
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
126
|
Wang S, Liu Y, Chen J, He Y, Ma W, Liu X, Sun X. Effects of multi-organ crosstalk on the physiology and pathology of adipose tissue. Front Endocrinol (Lausanne) 2023; 14:1198984. [PMID: 37383400 PMCID: PMC10293893 DOI: 10.3389/fendo.2023.1198984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
In previous studies, adipocytes were found to play an important role in regulating whole-body nutrition and energy balance, and are also important in energy metabolism, hormone secretion, and immune regulation. Different adipocytes have different contributions to the body, with white adipocytes primarily storing energy and brown adipocytes producing heat. Recently discovered beige adipocytes, which have characteristics in between white and brown adipocytes, also have the potential to produce heat. Adipocytes interact with other cells in the microenvironment to promote blood vessel growth and immune and neural network interactions. Adipose tissue plays an important role in obesity, metabolic syndrome, and type 2 diabetes. Dysfunction in adipose tissue endocrine and immune regulation can cause and promote the occurrence and development of related diseases. Adipose tissue can also secrete multiple cytokines, which can interact with organs; however, previous studies have not comprehensively summarized the interaction between adipose tissue and other organs. This article reviews the effect of multi-organ crosstalk on the physiology and pathology of adipose tissue, including interactions between the central nervous system, heart, liver, skeletal muscle, and intestines, as well as the mechanisms of adipose tissue in the development of various diseases and its role in disease treatment. It emphasizes the importance of a deeper understanding of these mechanisms for the prevention and treatment of related diseases. Determining these mechanisms has enormous potential for identifying new targets for treating diabetes, metabolic disorders, and cardiovascular diseases.
Collapse
Affiliation(s)
- Sufen Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuejing He
- Clinical Laboratory, Dongguan Eighth People’s Hospital, Dongguan, China
| | - Wanrui Ma
- Department of General Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
127
|
Qiu H, Shao N, Liu J, Zhao J, Chen C, Li Q, He Z, Zhao X, Xu L. Amino acid metabolism in tumor: New shine in the fog? Clin Nutr 2023:S0261-5614(23)00184-X. [PMID: 37321900 DOI: 10.1016/j.clnu.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Alterations in amino acid metabolism is closely related to the occurrence of clinical diseases. The mechanism of tumorigenesis is complex, involving the complicated relationship between tumor cells and immune cells in local tumor microenvironment. A series of recent studies have shown that metabolic remodeling is intimately related to tumorigenesis. And amino acid metabolic reprogramming is one of the important characteristics of tumor metabolic remodeling, which participates in tumor cells growth, survival as well as the immune cell activation and function in the local tumor microenvironment, thereby affecting tumor immune escape. Recent studies have further shown that controlling the intake of specific amino acids can significantly improve the effect of clinical intervention in tumors, suggesting that amino acid metabolism is gradually becoming one of the new promising targets of clinical intervention in tumors. Therefore, developing new intervention strategies based on amino acid metabolism has broad prospects. In this article, we review the abnormal changes in the metabolism of some typical amino acids, including glutamine, serine, glycine, asparagine and so on in tumor cells and summarize the relationship among amino acid metabolism, tumor microenvironment and the function of T cells. In particular, we discuss the current issues that need to be addressed in the related fields of tumor amino acid metabolism, aiming to provide a theoretical basis for the development of new strategies for clinical interventions in tumors based on amino acid metabolism reprogramming.
Collapse
Affiliation(s)
- Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Qihong Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi Guizhou 563000, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Xu Zhao
- School of Medicine, Guizhou University, Guizhou Guiyang, 550025 China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China.
| |
Collapse
|
128
|
Endo S, Uto A, Miyashita K, Sato M, Inoue H, Fujii K, Hagiwara A, Ryuzaki M, Oshida T, Kinouchi K, Itoh H. Intermittent Fasting Sustainably Improves Glucose Tolerance in Normal Weight Male Mice Through Histone Hyperacetylation. J Endocr Soc 2023; 7:bvad082. [PMID: 37362383 PMCID: PMC10290492 DOI: 10.1210/jendso/bvad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/28/2023] Open
Abstract
To explore the mechanism by which intermittent fasting (IF) exerts prolonged effects after discontinuation, we examined mice that had been subjected to 4 cycles of fasting for 72 hours and ad libitum feeding for 96 hours per week (72hIF), followed by 4 weeks of ad libitum feeding, focusing on expression of genes for lipid metabolism in the skeletal muscle and histone acetylation in the promoter region. The 72hIF regimen resulted in metabolic remodeling, characterized by enhanced lipid utilization and mitochondrial activation in the muscle. This long-term IF (72hIF) caused stronger metabolic effects than alternate day fasting (24hIF) wherein fasting and refeeding are repeated every 24 hours. Upregulation of lipid oxidation genes and an increase in oxygen utilization were sustained even at 4 weeks after discontinuation of 72hIF, associated with histone hyperacetylation of the promoter region of uncoupling protein 3 (Ucp3) and carnitine palmitoyl transferase 1b (Cpt1b) genes. An increase in leucine owing to fasting-induced muscle degradation was suggested to lead to the histone acetylation. These findings support the previously unappreciated notion that sustainable promotion of histone acetylation in lipid oxidation genes of the muscle and adipose tissues during and after IF may contribute to sustained metabolic effects of IF.
Collapse
Affiliation(s)
- Sho Endo
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Asuka Uto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazutoshi Miyashita
- Correspondence: Kazutoshi Miyashita, MD, PhD, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaaki Sato
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroyuki Inoue
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kentaro Fujii
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Aika Hagiwara
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Ryuzaki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Takuma Oshida
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
129
|
Uchida M, Fujie S, Yano H, Iemitsu M. Aerobic exercise training-induced alteration of gut microbiota composition affects endurance capacity. J Physiol 2023; 601:2329-2344. [PMID: 37056044 DOI: 10.1113/jp283995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
This study aimed to clarify whether aerobic exercise training-induced alterations in the gut microbiota affect physiological adaptation with endurance exercise capacity. In study 1, ICR mice were randomly divided into three groups: vehicle intake + sedentary (V+S), vehicle intake + exercise training (V+Ex) and antibiotic intake + exercise training (AB+Ex). In the exercise training groups, treadmill running was performed for 8 weeks. During the exercise training intervention, the antibiotic-intake group freely drank water containing antibiotics. In study 2, ICR mice were randomly divided into three groups: Sham, transplantation of caecum microbiota from sedentary mice (Sed-CMT) and exercise training mice (Ex-CMT). In study 1, the treadmill running time to exhaustion, an index of maximal aerobic capacity, after aerobic exercise training in the V+Ex group was significantly longer than that in the V+S and AB+Ex groups. Gastrocnemius muscle citrate synthase (CS) activity and PGC-1α protein levels in the V+Ex group were significantly higher than in the V+S and AB+Ex groups. The bacterial Erysipelotrichaceae and Alcaligenaceae families were positively correlated with treadmill running time to exhaustion. In study 2, the treadmill running time to exhaustion after transplantation was significantly higher in the Ex-CMT group than in the Sham and Sed-CMT groups. Furthermore, CS activity and PGC-1α protein levels in the gastrocnemius muscle were significantly higher in the Ex-CMT group than in the Sham and Sed-CMT groups. Thus, gut microbiota altered by aerobic exercise training may be involved in the augmentation of endurance capacity and muscle mitochondrial energy metabolism. KEY POINTS: Aerobic exercise training changes gut microbiota composition, and the Erysipelotrichaceae and Alcaligenaceae families were among the altered gut bacteria. The gut microbiota was associated with endurance performance and metabolic regulator levels in skeletal muscle after aerobic exercise training. Continuous antibiotic treatment attenuated the increase in endurance performance, citrate synthase activity and PGC-1α levels in skeletal muscle induced by aerobic exercise training. Gut microbiota transplantation from exercise-trained mice improved endurance performance and metabolic regulator levels in recipient skeletal muscle, despite the absence of aerobic exercise training.
Collapse
Affiliation(s)
- Masataka Uchida
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
130
|
Zhang L, Wang Y, Sun Y, Zhang X. Intermittent Fasting and Physical Exercise for Preventing Metabolic Disorders through Interaction with Gut Microbiota: A Review. Nutrients 2023; 15:2277. [PMID: 37242160 PMCID: PMC10224556 DOI: 10.3390/nu15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic disorders entail both health risks and economic burdens to our society. A considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut microbial structure and function are susceptible to dietary patterns and host physiological activities. A sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites, which impair the intestinal barrier, thereby triggering a constant change in the immune system and biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled with regular physical exercise can improve several metabolic and inflammatory parameters, resulting in stronger beneficial actions for metabolic health. In this review, the current progress on how gut microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also highlight the independent and synergistic effects of fasting and exercise interventions on metabolic health and provide perspectives for preventing metabolic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Yuanshang Wang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
131
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
132
|
Samakidou GE, Koliaki CC, Liberopoulos EN, Katsilambros NL. Non-Classical Aspects of Obesity Pathogenesis and Their Relative Clinical Importance for Obesity Treatment. Healthcare (Basel) 2023; 11:1310. [PMID: 37174852 PMCID: PMC10178220 DOI: 10.3390/healthcare11091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is a chronic disease and a major public health problem due to its association with non-communicable diseases and all-cause mortality. An increased energy intake and decreased physical activity have been long recognized as the classical parameters that contribute to the development of obesity. However, several other, non-classical factors have also been associated with obesity through various complex mechanisms. Some of them are diet related, such as diet quality, dietary habits and speed of eating. Other factors are non-dietary, such as endocrine-disrupting chemicals, sleep quality and quantity, psychotropic medications and light at night. The scope of the present narrative review is to address these non-classical factors that are implicated in the pathogenesis of obesity, to clarify their potential role in the management of obesity and, where possible, to provide some practical clinical recommendations.
Collapse
Affiliation(s)
- Georgia E. Samakidou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece; (C.C.K.); (E.N.L.); (N.L.K.)
| | | | | | | |
Collapse
|
133
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF. The Role of Adipokines in Health and Disease. Biomedicines 2023; 11:biomedicines11051290. [PMID: 37238961 DOI: 10.3390/biomedicines11051290] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are cell-signaling proteins secreted by adipose tissue that has been related to a low-grade state of inflammation and different pathologies. The present review aims to analyze the role of adipokines in health and disease in order to understand the important functions and effects of these cytokines. For this aim, the present review delves into the type of adipocytes and the cytokines produced, as well as their functions; the relations of adipokines in inflammation and different diseases such as cardiovascular, atherosclerosis, mental diseases, metabolic disorders, cancer, and eating behaviors; and finally, the role of microbiota, nutrition, and physical activity in adipokines is discussed. This information would allow for a better understanding of these important cytokines and their effects on body organisms.
Collapse
Affiliation(s)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | | | |
Collapse
|
134
|
Liu L, Zhuo Y, Zhang H, Li J, Jiang X, Han X, Chao J, Feng B, Che L, Xu S, Lin Y, Li J, Fang Z, Sun M, Luo T, Wu D, Hua L. Time-restricted feeding ameliorates uterine epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in mice fed a high-fat diet. J Nutr 2023:S0022-3166(23)37555-2. [PMID: 37062485 DOI: 10.1016/j.tjnut.2023.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND More than 30% of reproductive-age women are obese or overweight. Obesity and exposure to a high-fat diet (HFD) detrimentally affect endometrial development and embryo implantation. We previously reported that time-restricted feeding (TRF) improved ovarian follicular development, but whether and how TRF modulates embryo implantation are poorly understood. OBJECTIVE We investigated the effect of TRF on embryo implantation. METHODS In TRF group, mice had 10 hours of food free access from 9 pm to 7 am, and fed a normal diet or a HFD. Tail vein injection of Chicago blue dye was used to examine embryo implantation sites at day 5.5 (D5.5) of pregnancy. Serum collected at D0.5 and D4.5 of pregnancy was used to examine the level of estradiol (E2) and progesterone. Uterine estrogen receptor (ER) and progesterone receptor levels and their targeted aquaporins (AQPs) were measured. LC-MS was used to analyze bile acid (BA) composition, and primary hepatocytes were used to test the effects of BA on the expression level of SULT1E1, a key enzyme in estrogen inactivation and elimination. RESULTS We found that TRF prevented HFD-induced embryo loss and alleviated the defect in luminal closure on D4.5 of pregnancy. The cyclic changes of E2 level were lost in mice fed ad libitum but not in TRF mice on the HFD. The HFD increased ERα expression and transcriptional activity, which induced AQP3 and AQP5 expression on D4.5 of pregnancy. TRF prevented the negative effect of the HFD on uterine luminal closure. Furthermore, in vitro and in vivo results showed that BA suppressed estrogen degradation by activating liver SULT1E1 expression. CONCLUSIONS Our findings demonstrated that TRF prevented HFD-induced defects in luminal closure, thereby improving embryonic implantation, and provide novel insights into the effects of dietary intervention on obesity and associated infertility.
Collapse
Affiliation(s)
- Luting Liu
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Yong Zhuo
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Haoqi Zhang
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Jing Li
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Xuemei Jiang
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Xingfa Han
- School of Life Sciences, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jin Chao
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Bin Feng
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Lianqiang Che
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Shengyu Xu
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Yan Lin
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Jian Li
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Zhengfeng Fang
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P.R. China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - De Wu
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130.
| | - Lun Hua
- Animal Nutrition Institute, Chengdu, PR China, 611130; Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Chengdu, PR China, 611130; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China, 611130.
| |
Collapse
|
135
|
Hu X, Xia K, Dai M, Han X, Yuan P, Liu J, Liu S, Jia F, Chen J, Jiang F, Yu J, Yang H, Wang J, Xu X, Jin X, Kristiansen K, Xiao L, Chen W, Han M, Duan S. Intermittent fasting modulates the intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes 2023; 9:19. [PMID: 37029135 PMCID: PMC10081985 DOI: 10.1038/s41522-023-00386-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average loss of 3.67 kg body weight accompanied with improved clinical parameters was observed irrespective of initial anthropometric and gut microbiota status. Fecal samples were collected before and after the intervention and subjected to shotgun metagenomic sequencing. De novo assembly yielded 2934 metagenome-assembled genomes (MAGs). Profiling revealed significant enrichment of Parabacteroides distasonis and Bacteroides thetaiotaomicron after the intervention, with inverse correlations between their relative abundances and parameters related to obesity and atherosclerotic cardiovascular diseases (ASCVD). MAGs enriched after the intervention showed high richness and diversity of carbohydrate-active enzymes, with an increased relative abundances of genes related to succinate production and glutamate fermentation.
Collapse
Affiliation(s)
- Xiangwei Hu
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Xia
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Minhui Dai
- Department of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaofeng Han
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Shiwei Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biological Technology Co., Ltd, Ningbo, 315012, China
| | - Jiayu Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Fangfang Jiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jieyao Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Chen
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Mo Han
- BGI-Shenzhen, Shenzhen, 518083, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|
136
|
Zhang SM, Huang SL. The Commensal Anaerobe Veillonella dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase. Microbiol Spectr 2023; 11:e0355822. [PMID: 36975840 PMCID: PMC10100942 DOI: 10.1128/spectrum.03558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Veillonella spp. are obligate, anaerobic, Gram-negative bacteria found in the human oral cavity and gut. Recent studies have indicated that gut Veillonella promote human homeostasis by producing beneficial metabolites, specifically short-chain fatty acids (SCFAs), by lactate fermentation. The gut lumen is a dynamic environment with fluctuating nutrient levels, so the microbes present shifting growth rates and significant variations of gene expression. The current knowledge of lactate metabolism by Veillonella has focused on log phase growth. However, the gut microbes are mainly in the stationary phase. In this study, we investigated the transcriptomes and major metabolites of Veillonella dispar ATCC 17748T during growth from log to stationary phases with lactate as the main carbon source. Our results revealed that V. dispar reprogrammed its lactate metabolism during the stationary phase. Lactate catabolic activity and propionate production were significantly decreased during the early stationary phase but were partially restored during the stationary phase. The propionate/acetate production ratio was lowered from 1.5 during the log phase to 0.9 during the stationary phase. Pyruvate secretion was also greatly decreased during the stationary phase. Furthermore, we have demonstrated that the gene expression of V. dispar is reprogrammed during growth, as evidenced by the distinct transcriptomes present during the log, early stationary, and stationary phases. In particular, propionate metabolism (the propanediol pathway) was downregulated during the early stationary phase, which explains the decrease in propionate production during the stationary phase. The fluctuations in lactate fermentation during the stationary phase and the associated gene regulation expand our understanding of the metabolism of commensal anaerobes in changing environments. IMPORTANCE Short-chain fatty acids produced by gut commensal bacteria play an important role in human physiology. Gut Veillonella and the metabolites acetate and propionate, produced by lactate fermentation, are associated with human health. Most gut bacteria in humans are in the stationary phase. Lactate metabolism by Veillonella spp. during the stationary phase is poorly understood and was therefore the focus of the study. To this end, we used a commensal anaerobic bacterium and explored its short-chain fatty acid production and gene regulation in order to provide a better understanding of lactate metabolism dynamics during nutrient limitation.
Collapse
Affiliation(s)
- Shi-Min Zhang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| |
Collapse
|
137
|
Chen F, Wu S, Li D, Dong J, Huang X. Leaf Extract of Perilla frutescens (L.) Britt Promotes Adipocyte Browning via the p38 MAPK Pathway and PI3K-AKT Pathway. Nutrients 2023; 15:nu15061487. [PMID: 36986217 PMCID: PMC10054491 DOI: 10.3390/nu15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The leaf of Perilla frutescens (L.) Britt (PF) has been reported to negatively affect adipocyte formation, inhibit body-fat formation, and lower body weight. However, its effect on adipocyte browning remains unknown. Thus, the mechanism of PF in promoting adipocyte browning was investigated. The ingredients of PF were acquired from the online database and filtered with oral bioavailability and drug-likeness criteria. The browning-related target genes were obtained from the Gene Card database. A Venn diagram was employed to obtain the overlapped genes that may play a part in PF promoting adipocyte browning, and an enrichment was analysis conducted based on these overlapped genes. A total of 17 active ingredients of PF were filtered, which may regulate intracellular receptor-signaling pathways, the activation of protein kinase activity, and other pathways through 56 targets. In vitro validation showed that PF promotes mitochondrial biogenesis and upregulates brite adipocyte-related gene expression. The browning effect of PF can be mediated by the p38 MAPK pathway as well as PI3K-AKT pathway. The study revealed that PF could promote adipocyte browning through multitargets and multipathways. An in vitro study validated that the browning effect of PF can be mediated by both the P38 MAPK pathway and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopaedics & Rehabilitation, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Silin Wu
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200120, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Huang
- Facutly of Medicine, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
138
|
Ceylani T, Allahverdi H, Teker HT. Role of age-related plasma in the diversity of gut bacteria. Arch Gerontol Geriatr 2023; 111:105003. [PMID: 36965198 DOI: 10.1016/j.archger.2023.105003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Recent studies have demonstrated the efficacy of young blood plasma factors in reversing aging-related deformities. However, the impact of plasma exchange between young and old individuals on gut microbiota remains understudied. To investigate this, we evaluated the effects of plasma exchange between 5-week-old and 24-month-old rats on gut microbiota composition. In this study, old rats were administered 0.5 ml of young plasma, while young rats were administered 0.25 ml of old plasma daily for 30 days. Metagenome analysis was performed on the contents of the cecum after completing plasma transfer. Results showed that transferring young plasma to old rats significantly increased the alpha diversity indices (Shannon and Simpson values), while the Firmicutes to Bacteroidetes ratio decreased significantly. Conversely, transferring aged plasma to young rats led to a significant decrease in Shannon value and F/B ratio but no change in Simpson value. Plasma exchange also caused substantial changes in the top ten dominant genera and species found in the gut microbiota of young and old rats. After young blood plasma transfer, the dominant bacterial profile in the old gut microbiota shifted toward the bacterial profile found in the young control group. Notably, old plasma also altered the gut microbiota structure of young rats toward that of old rats. Our findings suggest that age-related changes in plasma play a crucial role in gut microbiota species diversity and their presence rates.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey.
| |
Collapse
|
139
|
Gut microbiota mediates the anti-obesity effect of intermittent fasting by inhibiting intestinal lipid absorption. J Nutr Biochem 2023; 116:109318. [PMID: 36924854 DOI: 10.1016/j.jnutbio.2023.109318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
The prevention and treatment of obesity have been one of the most difficult problems in the world. Intermittent fasting (IF) has received wide attention as an effective diet strategy. Existing studies have shown that IF could improve obesity and diabetes-related metabolic disorders. Here, we show that IF can change the composition and metabolic function of intestinal microbes, and reduce lipid absorption by inhibiting PI3K/AKT signaling pathway, with the participation of arginine. Arginine concentration in feces of fasted mice is inversely correlated with Akkermansia muciniphila abundance. Antibiotic-induced clearance of intestinal microbiota greatly inhibits the effect of IF. Furthermore, the colonization test of Akkermansia muciniphila again activates the browning of white adipose tissue and restores the improvement of metabolism to alleviate obesity. These phenomena indicate that every-other-day fasting regimen inhibits intestinal lipid absorption and promotes the browning of white adipose tissue in mice to ameliorate the risk of obesity and metabolic disorders through the microbial flora-metabolite-fat signaling axis. And the above results demonstrate new directions for the treatment of obesity and other metabolic disorders.
Collapse
|
140
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
141
|
Zhou R, He D, Zhang H, Xie J, Zhang S, Tian X, Zeng H, Qin Y, Huang L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115997. [PMID: 36509256 DOI: 10.1016/j.jep.2022.115997] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolius Linn. is one of the most valuable herbal medicine in the world for its broad health benefits, including anti-diabetes. Ginsenoside Rb1, the principal active constituent of Panax quinquefolius Linn., could attenuate insulin resistance and metabolic disorders. The dysfunction of gut microbiota and fecal metabolites plays an important role in the pathogenesis of Type 2 Diabetes mellitus (T2DM). However, whether ginsenoside Rb1's hypoglycemic effect is related to gut microbiota remains elusive. AIM OF THE STUDY Our study aimed to explore the insulin-sensitizing and anti-diabetic effects of ginsenoside Rb1 as well as the underlying mechanisms. MATERIALS AND METHODS The T2DM model were established by high fat diet (HFD)-induced Kkay mice. The anti-diabetic effect of ginsenoside Rb1 (200 mg/kg/day) was evaluated by random blood glucose (RBG), fasting blood glucose (FBG), glucose tolerance test (OGTT), serum insulin level, insulin resistance index (HOMA-IR), pancreatic histology analysis, liver indexes, total triglyceride (TG) and total cholesterol (TC). Subsequently, 16S rRNA sequencing and LC-MS-based untargeted metabolomics were applied to characterize the microbiome and metabolites profile in HFD-induced Kkay mice, respectively. Finally, antibiotic treatment was used to validate the potential mechanism of ginsenoside Rb1 by modulating gut microbiota. RESULTS Our results showed that ginsenoside Rb1 reduced blood glucose, OGTT, serum insulin level, HOMA-IR, liver indexes as well as pancreatic injury. In addition, the ginsenoside Rb1 reversed the gut microbiota dysbiosis in diabetic Kkay mice, as indicated by the elevated abundance of Parasutterella, decreased population of Alistipes, f_Prevotellaceae_unclassified, Odoribacter, Anaeroplasma. Moreover, ginsenoside Rb1 altered free fatty acid (FFA) levels in fecal metabolites, such as decreased the level of α-linolenic acid, 13-OxoODE, oleic acid, 13-HODE, arachidonic acid, palmitic acid, stearic acid, while increased the level of PC (14:0/22:1(13Z)) and PC (16:0/16:0). Notably, ginsenoside Rb1 failed to improve HFD-induced diabetes in Kkay mice with antibiotics intervention. CONCLUSION These findings suggested that ginsenoside Rb1 may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play essential roles in diabetes-associated metabolic disorders and insulin resistance.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dan He
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Haichao Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, Changsha, PR China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.
| | - Yuhui Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
142
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
143
|
Dietary energy restriction in neurological diseases: what's new? Eur J Nutr 2023; 62:573-588. [PMID: 36369305 DOI: 10.1007/s00394-022-03036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
Energy-restricted diet is a specific dietary regimen, including the continuous energy-restricted diet and the intermittent energy-restricted diet. It has been proven effective not only to reduce weight and extend the lifespan in animal models, but also to regulate the development and progression of various neurological diseases such as epilepsy, cerebrovascular diseases (stroke), neurodegenerative disorders (Alzheimer's disease and Parkinson's disease) and autoimmune diseases (multiple sclerosis). However, the mechanism in this field is still not clear and a systematic neurological summary is still missing. In this review, we first give a brief summary of the definition and mainstream strategies of energy restrictions. We then review evidence about the effects of energy-restricted diet from both animal models and human trials, and update the current understanding of mechanisms underlying the biological role of energy-restricted diet in the fight against neurological diseases. Our review thus contributes to the modification of dietary regimen and the search for special diet mimics.
Collapse
|
144
|
García-Luna C, Prieto I, Soberanes-Chávez P, Alvarez-Salas E, Torre-Villalvazo I, Matamoros-Trejo G, de Gortari P. Effects of Intermittent Fasting on Hypothalamus-Pituitary-Thyroid Axis, Palatable Food Intake, and Body Weight in Stressed Rats. Nutrients 2023; 15:nu15051164. [PMID: 36904162 PMCID: PMC10005667 DOI: 10.3390/nu15051164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Dietary regimens that are focused on diminishing total caloric intake and restricting palatable food ingestion are the most common strategies for weight control. However, restrictive diet therapies have low adherence rates in obese patients, particularly in stressed individuals. Moreover, food restriction downregulates the hypothalamic-pituitary-thyroid axis (HPT) function, hindering weight loss. Intermittent fasting (IF) has emerged as an option to treat obesity. We compared the effects of IF to an all-day feeding schedule on palatable diet (PD)-stress (S)-induced hyperphagia, HPT axis function, accumbal thyrotropin-releasing hormone (TRH), and dopamine D2 receptor expression in association with adipocyte size and PPARƔ coactivator 1α (PGC1α) and uncoupling protein 1 (UCP1) expression in stressed vs. non-stressed rats. After 5 weeks, S-PD rats showed an increased energy intake and adipocyte size, fewer beige cells, and HPT axis deceleration-associated low PGC1α and UCP1 expression, as well as decreased accumbal TRH and D2 expression. Interestingly, IF reversed those parameters to control values and increased the number of beige adipocytes, UCP1, and PGC1α mRNAs, which may favor a greater energy expenditure and a reduced body weight, even in stressed rats. Our results showed that IF modulated the limbic dopaminergic and TRHergic systems that regulate feeding and HPT axis function, which controls the metabolic rate, supporting this regimen as a suitable non-pharmacologic strategy to treat obesity, even in stressed individuals.
Collapse
Affiliation(s)
- Cinthia García-Luna
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Ixchel Prieto
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Escuela de Dietética y Nutrición, ISSSTE, Mexico City 14070, Mexico
| | - Paulina Soberanes-Chávez
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Elena Alvarez-Salas
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Gilberto Matamoros-Trejo
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Patricia de Gortari
- Laboratorio de Neurofisiología Molecular, Departamento de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Correspondence: ; Tel.: +52-55-4160-5056
| |
Collapse
|
145
|
Ageeli RY, Sharma S, Puppa M, Bloomer RJ, Buddington RK, van der Merwe M. Fasting Protocols Do Not Improve Intestinal Architecture and Immune Parameters in C57BL/6 Male Mice Fed a High Fat Diet. MEDICINES (BASEL, SWITZERLAND) 2023; 10:18. [PMID: 36827218 PMCID: PMC9961949 DOI: 10.3390/medicines10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The intestinal ecosystem, including epithelium, immune cells, and microbiota, are influenced by diet and timing of food consumption. The purpose of this study was to evaluate various dietary protocols after ad libitum high fat diet (HFD) consumption on intestinal morphology and mucosal immunity. METHODS C57BL/6 male mice were fed a 45% high fat diet (HFD) for 6 weeks and then randomized to the following protocols; (1) chow, (2) a purified high fiber diet known as the Daniel Fast (DF), HFD consumed (3) ad libitum or in a restricted manner; (4) caloric-restricted, (5) time-restricted (six hours of fasting in each 24 h), or (6) alternate-day fasting (24 h fasting every other day). Intestinal morphology and gut-associated immune parameters were investigated after 2 months on respective protocols. RESULTS Consuming a HFD resulted in shortening of the intestine and reduction in villi and crypt size. Fasting, while consuming the HFD, did not restore these parameters to the extent seen with the chow and DF diet. Goblet cell number and regulatory T cells had improved recovery with high fiber diets, not seen with the HFD irrespective of fasting. CONCLUSION Nutritional content is a critical determinant of intestinal parameters associated with gut health.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie van der Merwe
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
146
|
Mérian J, Ghezali L, Trenteseaux C, Duparc T, Beuzelin D, Bouguetoch V, Combes G, Sioufi N, Martinez LO, Najib S. Intermittent Fasting Resolves Dyslipidemia and Atherogenesis in Apolipoprotein E-Deficient Mice in a Diet-Dependent Manner, Irrespective of Sex. Cells 2023; 12:533. [PMID: 36831200 PMCID: PMC9953823 DOI: 10.3390/cells12040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In humans and animal models, intermittent fasting (IF) interventions promote body weight loss, improve metabolic health, and are thought to lower cardiovascular disease risk. However, there is a paucity of reports on the relevance of such nutritional interventions in the context of dyslipidemia and atherosclerotic cardiovascular diseases. The present study assessed the metabolic and atheroprotective effects of intermittent fasting intervention (IF) in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Groups of male and female Apoe-/- mice were fed a regular (chow) or atherogenic (high-fat, high-cholesterol, HFCD) diet for 4 months, either ad libitum or in an alternate-day fasting manner. The results show that IF intervention improved glucose and lipid metabolism independently of sex. However, IF only decreased body weight gain in males fed chow diet and differentially modulated adipose tissue parameters and liver steatosis in a diet composition-dependent manner. Finally, IF prevented spontaneous aortic atherosclerotic lesion formation in mice fed chow diet, irrespective of sex, but failed to reduce HFCD-diet-induced atherosclerosis. Overall, the current work indicates that IF interventions can efficiently improve glucose homeostasis and treat atherogenic dyslipidemia, but a degree of caution is warranted with regard to the individual sex and the composition of the dietary regimen.
Collapse
Affiliation(s)
- Jules Mérian
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Lamia Ghezali
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Charlotte Trenteseaux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Diane Beuzelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Vanessa Bouguetoch
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Nabil Sioufi
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Laurent O. Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Souad Najib
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| |
Collapse
|
147
|
Wang W, Liu Y, Li Y, Luo B, Lin Z, Chen K, Liu Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm (Beijing) 2023; 4:e212. [PMID: 36776765 PMCID: PMC9899878 DOI: 10.1002/mco2.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
For centuries, the search for nutritional interventions to underpin cardiovascular treatment and prevention guidelines has contributed to the rapid development of the field of dietary patterns and cardiometabolic disease (CMD). Numerous studies have demonstrated that healthy dietary patterns with emphasis on food-based recommendations are the gold standard for extending lifespan and reducing the risks of CMD and mortality. Healthy dietary patterns include various permutations of energy restriction, macronutrients, and food intake patterns such as calorie restriction, intermittent fasting, Mediterranean diet, plant-based diets, etc. Early implementation of healthy dietary patterns in patients with CMD is encouraged, but an understanding of the mechanisms by which these patterns trigger cardiometabolic benefits remains incomplete. Hence, this review examined several dietary patterns that may improve cardiometabolic health, including restrictive dietary patterns, regional dietary patterns, and diets based on controlled macronutrients and food groups, summarizing cutting-edge evidence and potential mechanisms for CMD prevention and treatment. Particularly, considering individual differences in responses to dietary composition and nutritional changes in organ tissue diversity, we highlighted the critical role of individual gut microbiota in the crosstalk between diet and CMD and recommend a more precise and dynamic nutritional strategy for CMD by developing dietary patterns based on individual gut microbiota profiles.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Binyu Luo
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhixiu Lin
- Faculty of MedicineThe Chinese University of Hong KongHong Kong
| | - Keji Chen
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine CardiologyXiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
148
|
Ma X, Yan H, Hong S, Yu S, Gong Y, Wu D, Li Y, Xiao H. Gamma-Aminobutyric Acid Promotes Beige Adipocyte Reconstruction by Modulating the Gut Microbiota in Obese Mice. Nutrients 2023; 15:nu15020456. [PMID: 36678326 PMCID: PMC9864545 DOI: 10.3390/nu15020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Given the increasing prevalence of obesity, the white-to-beige adipocyte conversion has attracted interest as a target for obesity treatment. Gamma-aminobutyric acid (GABA) treatment can reduce obesity, but the underlying mechanism remains unclear. Here, we aimed to investigate the mechanism by which GABA triggers weight loss by improving the beiging of inguinal white adipose tissue (iWAT) and the role of gut microbiota in this process. The results showed that GABA reduced body weight and adipose inflammation and promoted the expression of thermogenic genes in the iWAT. The 16S rRNA sequence analysis of gut microbiota showed that GABA treatment increased the relative abundance of Bacteroidetes, Akkermansia, and Romboutsia and reduced that of Firmicutes and Erysipelatoclostridium in obese mice. Additionally, serum metabolomic analysis revealed that GABA treatment increased 3-hydroxybutyrate and reduced oxidized lipid levels in obese mice. Spearman's correlation analysis showed that Akkermansia and Romboutsia were negatively associated with the levels of oxidized lipids. Fecal microbiota transplantation analysis confirmed that the gut microbiota was involved in the white-to-beige adipocyte reconstruction by GABA. Overall, our findings suggest that GABA treatment may promote iWAT beiging through the gut microbiota in obese mice. GABA may be utilized to protect obese people against metabolic abnormalities brought on by obesity and gut dysbiosis.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanhuan Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
149
|
Wang X, Geng S. Diet-gut microbial interactions influence cancer immunotherapy. Front Oncol 2023; 13:1138362. [PMID: 37035188 PMCID: PMC10081683 DOI: 10.3389/fonc.2023.1138362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The gut microbiome is involved in the absorption and metabolism of host nutrients and modulates the immune response, affecting the efficacy of immunotherapy for cancer. In patients receiving immunotherapy, appropriate modifications of gut microbiota are thought to improve therapeutic response. Of all the factors that influence the gut microbiota, diet is the most influential and modifiable. Healthy dietary patterns as well as some specific dietary components can help the growth of beneficial microbiota in the gut, thereby protecting against cancers and promoting human health. A growing number of researches have confirmed the positive effects of a diet-gut microbiota approach as an adjuvant therapy for cancer, but controversy remains. Here, we summarize the interactions between diet and gut microbes based on previous studies, and discuss the role of gut microbiota-based dietary strategies in tumor immunotherapy, with the potential mechanisms of actions also intensively discussed.
Collapse
Affiliation(s)
- Xue Wang
- Department of Oncology, First People's Hospital of Guangyuan, Guangyuan, China
| | - Shitao Geng
- Department of Emergency, First Naval Hospital of Southern Theater Command, Zhanjiang, China
| |
Collapse
|
150
|
Huang Z, Li Y, Park H, Ho M, Bhardwaj K, Sugimura N, Lee HW, Meng H, Ebert MP, Chao K, Burgermeister E, Bhatt AP, Shetty SA, Li K, Wen W, Zuo T. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023; 15:2237645. [PMID: 37498052 PMCID: PMC10376922 DOI: 10.1080/19490976.2023.2237645] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
The world is witnessing a global increase in the urban population, particularly in developing Asian and African countries. Concomitantly, the global burden of non-communicable diseases (NCDs) is rising, markedly associated with the changing landscape of lifestyle and environment during urbanization. Accumulating studies have revealed the role of the gut microbiome in regulating the immune and metabolic homeostasis of the host, which potentially bridges external factors to the host (patho-)physiology. In this review, we discuss the rising incidences of NCDs during urbanization and their links to the compositional and functional dysbiosis of the gut microbiome. In particular, we elucidate the effects of urbanization-associated factors (hygiene/pollution, urbanized diet, lifestyles, the use of antibiotics, and early life exposure) on the gut microbiome underlying the pathogenesis of NCDs. We also discuss the potential and feasibility of microbiome-inspired and microbiome-targeted approaches as novel avenues to counteract NCDs, including fecal microbiota transplantation, diet modulation, probiotics, postbiotics, synbiotics, celobiotics, and precision antibiotics.
Collapse
Affiliation(s)
- Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Centre, New York, NY, USA
| | - Martin Ho
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kanchan Bhardwaj
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Haryana, India
| | - Naoki Sugimura
- Gastrointestinal Centre and Institute of Minimally-Invasive Endoscopic Care (iMEC), Sano Hospital, Kobe, Japan
| | - Hye Won Lee
- Institute of Gastroenterology and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China
| | - Matthias P. Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute, Mannheim, Germany
- Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Mannheim, Germany
| | - Kang Chao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Aadra P. Bhatt
- Department of Medicine, Centre for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, NC, USA
| | - Sudarshan A. Shetty
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kai Li
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Wen
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Centre, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|