101
|
Jaimes C, Cheng HH, Soul J, Ferradal S, Rathi Y, Gagoski B, Newburger JW, Grant PE, Zöllei L. Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J Magn Reson Imaging 2017; 47:1626-1637. [PMID: 29080379 DOI: 10.1002/jmri.25875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Given the central role of the thalamus in motor, sensory, and cognitive development, methods to study emerging thalamocortical connectivity in early infancy are of great interest. PURPOSE To determine the feasibility of performing probabilistic tractography-based thalamic parcellation (PTbTP) in typically developing (TD) neonates and to compare the results with a pilot sample of neonates with congenital heart disease (CHD). STUDY TYPE Institutional Review Board (IRB)-approved cross-sectional study. MODEL We prospectively recruited 20 TD neonates and five CHD neonates (imaged preoperatively). FIELD STRENGTH/SEQUENCE MRI was performed at 3.0T including diffusion-weighted imaging (DWI) and 3D magnetization prepared rapid gradient-echo (MPRAGE). ASSESSMENT A radiologist and trained research assistants segmented the thalamus and seven cortical targets for each hemisphere. Using the thalami as seeds and the cortical labels as targets, FSL library tools were used to generate probabilistic tracts. A Hierarchical Dirichlet Process algorithm was then used for clustering analysis. A radiologist qualitatively assessed the results of clustering. Quantitative analyses were also performed. STATISTICAL TESTS We summarized the demographic data and results of clustering with descriptive statistics. Linear regressions covarying for gestational age were used to compare groups. RESULTS In 17 of 20 TD neonates, we identified five connectivity-determined clusters, which correlate with known thalamic nuclei and subnuclei. In four neonates with CHD we observed a spectrum of abnormalities including fewer and disorganized clusters or small supernumerary clusters (up to seven per thalamus). After covarying for differences in corrected gestational age (cGA), the fractional anisotropy (FA), volume, and normalized thalamic volume were significantly lower in CHD neonates (P < 0.01). DATA CONCLUSIONS Using PTbTP clusters, correlating well with the location and connectivity of known thalamic nuclei, were identified in TD neonates. Differences in thalamic clustering outputs were identified in four neonates with CHD, raising concern for disordered thalamic connectivity. PTbTP is feasible in TD and CHD neonates. Preliminary findings suggest the prenatal origins of altered connectivity in CHD. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:1626-1637.
Collapse
Affiliation(s)
- Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Henry H Cheng
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Silvina Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA.,Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA.,Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA; all: Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
102
|
Moyer D, Gutman BA, Faskowitz J, Jahanshad N, Thompson PM. Continuous representations of brain connectivity using spatial point processes. Med Image Anal 2017; 41:32-39. [PMID: 28487128 PMCID: PMC5559296 DOI: 10.1016/j.media.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
We present a continuous model for structural brain connectivity based on the Poisson point process. The model treats each streamline curve in a tractography as an observed event in connectome space, here the product space of the gray matter/white matter interfaces. We approximate the model parameter via kernel density estimation. To deal with the heavy computational burden, we develop a fast parameter estimation method by pre-computing associated Legendre products of the data, leveraging properties of the spherical heat kernel. We show how our approach can be used to assess the quality of cortical parcellations with respect to connectivity. We further present empirical results that suggest that "discrete" connectomes derived from our model have substantially higher test-retest reliability compared to standard methods. In this, the expanded form of this paper for journal publication, we also explore parcellation free analysis techniques that avoid the use of explicit partitions of the cortical surface altogether. We provide an analysis of sex effects on our proposed continuous representation, demonstrating the utility of this approach.
Collapse
Affiliation(s)
- Daniel Moyer
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States; Information Sciences Institute, University of Southern California, United States; Department of Computer Science, University of Southern California, United States.
| | - Boris A Gutman
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States; Department of Psychological and Brain Sciences, Indiana University, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, United States.
| |
Collapse
|
103
|
Keunen K, Counsell SJ, Benders MJ. The emergence of functional architecture during early brain development. Neuroimage 2017; 160:2-14. [DOI: 10.1016/j.neuroimage.2017.01.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/12/2023] Open
|
104
|
Karolis VR, Froudist-Walsh S, Kroll J, Brittain PJ, Tseng CEJ, Nam KW, Reinders AATS, Murray RM, Williams SCR, Thompson PM, Nosarti C. Volumetric grey matter alterations in adolescents and adults born very preterm suggest accelerated brain maturation. Neuroimage 2017; 163:379-389. [PMID: 28942062 PMCID: PMC5725310 DOI: 10.1016/j.neuroimage.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Previous research investigating structural neurodevelopmental alterations in individuals who were born very preterm demonstrated a complex pattern of grey matter changes that defy straightforward summary. Here we addressed this problem by characterising volumetric brain alterations in individuals who were born very preterm from adolescence to adulthood at three hierarchically related levels - global, modular and regional. We demarcated structural components that were either particularly resilient or vulnerable to the impact of very preterm birth. We showed that individuals who were born very preterm had smaller global grey matter volume compared to controls, with subcortical and medial temporal regions being particularly affected. Conversely, frontal and lateral parieto-temporal cortices were relatively resilient to the effects of very preterm birth, possibly indicating compensatory mechanisms. Exploratory analyses supported this hypothesis by showing a stronger association between lateral parieto-temporal volume and IQ in the very preterm group compared to controls. We then related these alterations to brain maturation processes. Very preterm individuals exhibited a higher maturation index compared to controls, indicating accelerated brain maturation and this was specifically associated with younger gestational age. We discuss how the findings of accelerated maturation might be reconciled with evidence of delayed maturation at earlier stages of development. Hierarchically related structural brain alterations in very preterm individuals span adolescence and adulthood. Structural volumetric components that showed resiliency in very preterm individuals were associated with higher IQ. Very preterm individuals showed accelerated brain maturation compared to a large dataset of term-born controls.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chieh-En Jane Tseng
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kie-Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Antje A T S Reinders
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
105
|
Dodson CK, Travis KE, Ben-Shachar M, Feldman HM. White matter microstructure of 6-year old children born preterm and full term. NEUROIMAGE-CLINICAL 2017; 16:268-275. [PMID: 28840098 PMCID: PMC5558468 DOI: 10.1016/j.nicl.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Abstract
AIM We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9-17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm2) and 96 diffusion directions (b = 2500 s/mm2). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| |
Collapse
|
106
|
Cao M, Huang H, He Y. Developmental Connectomics from Infancy through Early Childhood. Trends Neurosci 2017; 40:494-506. [PMID: 28684174 PMCID: PMC5975640 DOI: 10.1016/j.tins.2017.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
The human brain undergoes rapid growth in both structure and function from infancy through early childhood, and this significantly influences cognitive and behavioral development in later life. A newly emerging research framework, developmental connectomics, provides unprecedented opportunities for exploring the developing brain through non-invasive mapping of structural and functional connectivity patterns. Within this framework, we review recent neuroimaging and neurophysiological studies investigating connectome development from 20 postmenstrual weeks to 5 years of age. Specifically, we highlight five fundamental principles of brain network development during the critical first years of life, emphasizing strengthened segregation/integration balance, a remarkable hierarchical order from primary to higher-order regions, unparalleled structural and functional maturations, substantial individual variability, and high vulnerability to risk factors and developmental disorders.
Collapse
Affiliation(s)
- Miao Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
107
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
108
|
Functional thalamocortical connectivity development and alterations in preterm infants during the neonatal period. Neuroscience 2017; 356:22-34. [PMID: 28526574 DOI: 10.1016/j.neuroscience.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/25/2023]
Abstract
The thalamus is one of the most commonly affected brain regions in preterm infants, particularly in infants with white matter lesions (WML). The aim of this paper is to explore the development and alterations of the functional thalamocortical connectivity in preterm infants with and without punctate white matter lesions (PWMLs) during the period before term equivalent age (TEA). In this study, twenty-two normal preterm infants (NP), twenty-two preterm infants with PWMLs and thirty-one full-term control infants (FT) were enrolled. Thalamus parcellation was performed based on partial correlation between the thalamus and seven well-recognized infant networks obtained from independent component analysis (ICA), and thalamocortical connectivity was further reconstructed between the defined thalamus clusters and the whole brain. Thalamo-salience (SA) and thalamo-sensorimotor (SM) connectivity were predominantly identified, while other types of thalamocortical connectivity remained largely limited during the neonatal period. Both preterm groups exhibited prominent development in thalamo-SA and thalamo-SM connectivity during this period. Compared with NP infants, PWML infants demonstrated increased connectivity in the parietal area in thalamo-SA connectivity but no significant differences in thalamo-SM connectivity. Our results reveal that compared with NP infants, PWML infants exhibit slightly altered thalamo-SA connectivity, and this alteration is deduced to be functional compensations for inefficient thalamocortical processing due to PWMLs.
Collapse
|
109
|
Krsnik Ž, Majić V, Vasung L, Huang H, Kostović I. Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain. Front Neurosci 2017; 11:233. [PMID: 28496398 PMCID: PMC5406414 DOI: 10.3389/fnins.2017.00233] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/07/2017] [Indexed: 01/17/2023] Open
Abstract
Thalamocortical (TH-C) fiber growth begins during the embryonic period and is completed by the third trimester of gestation in humans. Here we determined the timing and trajectories of somatosensory TH-C fibers in the developing human brain. We analyzed the periods of TH-C fiber outgrowth, path-finding, "waiting" in the subplate (SP), target selection, and ingrowth in the cortical plate (CP) using histological sections from post-mortem fetal brain [from 7 to 34 postconceptional weeks (PCW)] that were processed with acetylcholinesterase (AChE) histochemistry and immunohistochemical methods. Images were compared with post mortem diffusion tensor imaging (DTI)-based fiber tractography (code No NO1-HD-4-3368). The results showed TH-C axon outgrowth occurs as early as 7.5 PCW in the ventrolateral part of the thalamic anlage. Between 8 and 9.5 PCW, TH-C axons form massive bundles that traverse the diencephalic-telencephalic boundary. From 9.5 to 11 PCW, thalamocortical axons pass the periventricular area at the pallial-subpallial boundary and enter intermediate zone in radiating fashion. Between 12 and 14 PCW, the TH-C axons, aligned along the fibers from the basal forebrain, continue to grow for a short distance within the deep intermediate zone and enter the deep CP, parallel with SP expansion. Between 14 and 18 PCW, the TH-C interdigitate with callosal fibers, running shortly in the sagittal stratum and spreading through the deep SP ("waiting" phase). From 19 to 22 PCW, TH-C axons accumulate in the superficial SP below the somatosensory cortical area; this occurs 2 weeks earlier than in the frontal and occipital cortices. Between 23 and 24 PCW, AChE-reactive TH-C axons penetrate the CP concomitantly with its initial lamination. Between 25 and 34 PCW, AChE reactivity of the CP exhibits an uneven pattern suggestive of vertical banding, showing a basic 6-layer pattern. In conclusion, human thalamocortical axons show prolonged growth (4 months), and somatosensory fibers precede the ingrowth of fibers destined for frontal and occipital areas. The major features of growing TH-C somatosensory fiber trajectories are fan-like radiation, short runs in the sagittal strata, and interdigitation with the callosal system. These results support our hypothesis that TH-C axons are early factors in SP and CP morphogenesis and synaptogenesis and may regulate cortical somatosensory system maturation.
Collapse
Affiliation(s)
- Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Visnja Majić
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Lana Vasung
- Harvard Medical School, Boston Children's HospitalBoston, MA, USA
| | - Hao Huang
- Laboratory of Neural MRI and Brain Connectivity, School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania PerelmanPhiladelphia, PA, USA
| | - Ivica Kostović
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| |
Collapse
|
110
|
Menegaux A, Meng C, Neitzel J, Bäuml JG, Müller HJ, Bartmann P, Wolke D, Wohlschläger AM, Finke K, Sorg C. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. Neuroimage 2017; 150:68-76. [DOI: 10.1016/j.neuroimage.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022] Open
|
111
|
Raju TNK, Pemberton VL, Saigal S, Blaisdell CJ, Moxey-Mims M, Buist S. Long-Term Healthcare Outcomes of Preterm Birth: An Executive Summary of a Conference Sponsored by the National Institutes of Health. J Pediatr 2017; 181:309-318.e1. [PMID: 27806833 DOI: 10.1016/j.jpeds.2016.10.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Tonse N K Raju
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| | | | - Saroj Saigal
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | | | - Marva Moxey-Mims
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Sonia Buist
- Oregon Health & Sciences University, Portland, OR
| | | |
Collapse
|
112
|
Botellero VL, Skranes J, Bjuland KJ, Håberg AK, Lydersen S, Brubakk AM, Indredavik MS, Martinussen M. A longitudinal study of associations between psychiatric symptoms and disorders and cerebral gray matter volumes in adolescents born very preterm. BMC Pediatr 2017; 17:45. [PMID: 28143492 PMCID: PMC5286868 DOI: 10.1186/s12887-017-0793-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background Being born preterm with very low birthweight (VLBW ≤ 1500 g) poses a risk for cortical and subcortical gray matter (GM) abnormalities, as well as for having more psychiatric problems during childhood and adolescence than term-born individuals. The aim of this study was to investigate the relationship between cortical and subcortical GM volumes and the course of psychiatric disorders during adolescence in VLBW individuals. Methods We followed VLBW individuals and term-born controls (birth weight ≥10th percentile) from 15 (VLBW;controls n = 40;56) to 19 (n = 44;60) years of age. Of these, 30;37 individuals were examined longitudinally. Cortical and subcortical GM volumes were extracted from MRPRAGE images obtained with the same 1.5 T MRI scanner at both time points and analyzed at each time point with the longitudinal stream of the FreeSurfer software package 5.3.0. All participants underwent clinical interviews and were assessed for psychiatric symptoms and diagnosis (Schedule for Affective Disorders and Schizophrenia for School-age Children, Children’s Global Assessment Scale, Attention-Deficit/Hyperactivity Disorder Rating Scale-IV). VLBW adolescents were divided into two groups according to diagnostic status from 15 to 19 years of age: persisting/developing psychiatric diagnosis or healthy/becoming healthy. Results Reduction in subcortical GM volume at 15 and 19 years, not including the thalamus, was limited to VLBW adolescents with persisting/developing diagnosis during adolescence, whereas VLBW adolescents in the healthy/becoming healthy group had similar subcortical GM volumes to controls. Moreover, across the entire VLBW group, poorer psychosocial functioning was predicted by smaller subcortical GM volumes at both time points and with reduced GM volume in the thalamus and the parietal and occipital cortex at 15 years. Inattention problems were predicted by smaller GM volumes in the parietal and occipital cortex. Conclusions GM volume reductions in the parietal and occipital cortex as well as smaller thalamic and subcortical GM volumes were associated with the higher rates of psychiatric symptoms found across the entire VLBW group. Significantly smaller subcortical GM volumes in VLBW individuals compared with term-born peers might pose a risk for developing and maintaining psychiatric diagnoses during adolescence. Future research should explore the possible role of reduced cortical and subcortical GM volumes in the pathogenesis of psychiatric illness in VLBW adolescents. Electronic supplementary material The online version of this article (doi:10.1186/s12887-017-0793-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violeta L Botellero
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Medical Technology Research Center, P.O. Box 8905, NO-7491, Trondheim, Norway.
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Medical Technology Research Center, P.O. Box 8905, NO-7491, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Knut Jørgen Bjuland
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Medical Technology Research Center, P.O. Box 8905, NO-7491, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stian Lydersen
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Medical Technology Research Center, P.O. Box 8905, NO-7491, Trondheim, Norway.,Department of Pediatrics, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marit S Indredavik
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Child and Adolescent Psychiatry, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marit Martinussen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Medical Technology Research Center, P.O. Box 8905, NO-7491, Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
113
|
Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, Wali L, Alexander DC, Hajnal JV, Nosarti C, Edwards AD, Counsell SJ. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage 2017; 149:379-392. [PMID: 28153637 PMCID: PMC5387181 DOI: 10.1016/j.neuroimage.2017.01.065] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25+3 and 45+6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. First characterisation of preterm brain networks weighted by microstructural features. Preterm brain is resistant to disruptions in development of core connections. Peripheral connections associated with cognition and behaviour are more vulnerable.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Luqman Wali
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Daniel C Alexander
- Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom.
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, SE1 7EH London, United Kingdom
| |
Collapse
|
114
|
Wehrle FM, Latal B, O'Gorman RL, Hagmann CF, Huber R. Sleep EEG maps the functional neuroanatomy of executive processes in adolescents born very preterm. Cortex 2017; 86:11-21. [DOI: 10.1016/j.cortex.2016.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
|
115
|
Muñoz-Moreno E, Fischi-Gomez E, Batalle D, Borradori-Tolsa C, Eixarch E, Thiran JP, Gratacós E, Hüppi PS. Structural Brain Network Reorganization and Social Cognition Related to Adverse Perinatal Condition from Infancy to Early Adolescence. Front Neurosci 2016; 10:560. [PMID: 28008304 PMCID: PMC5143343 DOI: 10.3389/fnins.2016.00560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Adverse conditions during fetal life have been associated to both structural and functional changes in neurodevelopment from the neonatal period to adolescence. In this study, connectomics was used to assess the evolution of brain networks from infancy to early adolescence. Brain network reorganization over time in subjects who had suffered adverse perinatal conditions is characterized and related to neurodevelopment and cognition. Three cohorts of prematurely born infants and children (between 28 and 35 weeks of gestational age), including individuals with a birth weight appropriated for gestational age and with intrauterine growth restriction (IUGR), were evaluated at 1, 6, and 10 years of age, respectively. A common developmental trajectory of brain networks was identified in both control and IUGR groups: network efficiencies of the fractional anisotropy (FA)-weighted and normalized connectomes increase with age, which can be related to maturation and myelination of fiber connections while the number of connections decreases, which can be associated to an axonal pruning process and reorganization. Comparing subjects with or without IUGR, a similar pattern of network differences between groups was observed in the three developmental stages, mainly characterized by IUGR group having reduced brain network efficiencies in binary and FA-weighted connectomes and increased efficiencies in the connectome normalized by its total connection strength (FA). Associations between brain networks and neurobehavioral impairments were also evaluated showing a relationship between different network metrics and specific social cognition-related scores, as well as a higher risk of inattention/hyperactivity and/or executive functional disorders in IUGR children.
Collapse
Affiliation(s)
- Emma Muñoz-Moreno
- Fetal i+D, Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of BarcelonaBarcelona, Spain; Experimental 7T MRI Unit, Institut d'Investigacions Biomèdiques August Pi I SunyerBarcelona, Spain
| | - Elda Fischi-Gomez
- Signal Processing Laboratory 5, École Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Development and Growth. Department of Pediatrics, University Hospital of GenevaGeneva, Switzerland
| | - Dafnis Batalle
- Fetal i+D, Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of BarcelonaBarcelona, Spain; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College LondonLondon, UK
| | - Cristina Borradori-Tolsa
- Division of Development and Growth. Department of Pediatrics, University Hospital of Geneva Geneva, Switzerland
| | - Elisenda Eixarch
- Fetal i+D, Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of BarcelonaBarcelona, Spain; Centre for Biomedical Research on Rare DiseasesBarcelona, Spain
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5, École Polytechnique Fédérale de LausanneLausanne, Switzerland; Department of Radiology, University Hospital Center and University of LausanneLausanne, Switzerland
| | - Eduard Gratacós
- Fetal i+D, Fetal Medicine Research Center, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of BarcelonaBarcelona, Spain; Centre for Biomedical Research on Rare DiseasesBarcelona, Spain
| | - Petra S Hüppi
- Division of Development and Growth. Department of Pediatrics, University Hospital of Geneva Geneva, Switzerland
| |
Collapse
|
116
|
Verriotis M, Chang P, Fitzgerald M, Fabrizi L. The development of the nociceptive brain. Neuroscience 2016; 338:207-219. [DOI: 10.1016/j.neuroscience.2016.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 12/20/2022]
|
117
|
Koob M, Viola A, Le Fur Y, Viout P, Ratiney H, Confort-Gouny S, Cozzone PJ, Girard N. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term. PLoS One 2016; 11:e0160990. [PMID: 27547969 PMCID: PMC4993494 DOI: 10.1371/journal.pone.0160990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS) to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks) and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks) were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS) sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05), the occipital white matter (P<0.005) and the thalamus (P<0.05). The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05) at a TE of 30 ms, and reduced (creatine+phosphocreatine)/H2O and (glutamine+glutamate)/H2O ratios (P<0.05) at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis.
Collapse
Affiliation(s)
- Meriam Koob
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Service de Radiopédiatrie-Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
- Laboratoire ICube, UMR 7357, FMTS, Université de Strasbourg-CNRS, Strasbourg, France
| | - Angèle Viola
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick Viout
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Hélène Ratiney
- Laboratoire CREATIS, CNRS UMR 5220, Inserm U1044, Université Claude Bernard Lyon I, INSA-Lyon, Lyon, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Patrick J. Cozzone
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
| | - Nadine Girard
- Service de Neuroradiologie, AP-HM Timone, Aix-Marseille Université, Marseille, France
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Faculté de Médecine la Timone, Marseille, France
- * E-mail: (NG); (AV)
| |
Collapse
|
118
|
Bergman NJ. Hypothesis on supine sleep, sudden infant death syndrome reduction and association with increasing autism incidence. World J Clin Pediatr 2016; 5:330-342. [PMID: 27610351 PMCID: PMC4978628 DOI: 10.5409/wjcp.v5.i3.330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify a hypothesis on: Supine sleep, sudden infant death syndrome (SIDS) reduction and association with increasing autism incidence.
METHODS: Literature was searched for autism spectrum disorder incidence time trends, with correlation of change-points matching supine sleep campaigns. A mechanistic model expanding the hypothesis was constructed based on further review of epidemiological and other literature on autism.
RESULTS: In five countries (Denmark, United Kingdom, Australia, Israel, United States) with published time trends of autism, change-points coinciding with supine sleep campaigns were identified. The model proposes that supine sleep does not directly cause autism, but increases the likelihood of expression of a subset of autistic criteria in individuals with genetic susceptibility, thereby specifically increasing the incidence of autism without intellectual disability.
CONCLUSION: Supine sleep is likely a physiological stressor, that does reduce SIDS, but at the cost of impact on emotional and social development in the population, a portion of which will be susceptible to, and consequently express autism. A re-evaluation of all benefits and harms of supine sleep is warranted. If the SIDS mechanism proposed and autism model presented can be verified, the research agenda may be better directed, in order to further decrease SIDS, and reduce autism incidence.
Collapse
|
119
|
Thompson DK, Chen J, Beare R, Adamson CL, Ellis R, Ahmadzai ZM, Kelly CE, Lee KJ, Zalesky A, Yang JYM, Hunt RW, Cheong JLY, Inder TE, Doyle LW, Seal ML, Anderson PJ. Structural connectivity relates to perinatal factors and functional impairment at 7years in children born very preterm. Neuroimage 2016; 134:328-337. [PMID: 27046108 PMCID: PMC4912891 DOI: 10.1016/j.neuroimage.2016.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/17/2016] [Accepted: 03/26/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To use structural connectivity to (1) compare brain networks between typically and atypically developing (very preterm) children, (2) explore associations between potential perinatal developmental disturbances and brain networks, and (3) describe associations between brain networks and functional impairments in very preterm children. METHODS 26 full-term and 107 very preterm 7-year-old children (born <30weeks' gestational age and/or <1250g) underwent T1- and diffusion-weighted imaging. Global white matter fibre networks were produced using 80 cortical and subcortical nodes, and edges were created using constrained spherical deconvolution-based tractography. Global graph theory metrics were analysed, and regional networks were identified using network-based statistics. Cognitive and motor function were assessed at 7years of age. RESULTS Compared with full-term children, very preterm children had reduced density, lower global efficiency and higher local efficiency. Those with lower gestational age at birth, infection or higher neonatal brain abnormality score had reduced connectivity. Reduced connectivity within a widespread network was predictive of impaired IQ, while reduced connectivity within the right parietal and temporal lobes was associated with motor impairment in very preterm children. CONCLUSIONS This study utilised an innovative structural connectivity pipeline to reveal that children born very preterm have less connected and less complex brain networks compared with typically developing term-born children. Adverse perinatal factors led to disturbances in white matter connectivity, which in turn are associated with impaired functional outcomes, highlighting novel structure-function relationships.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia.
| | - Jian Chen
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Medicine, Monash Medical Centre, Monash University, 246 Clayton Rd, Melbourne, VIC 3168, Australia
| | - Richard Beare
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Medicine, Monash Medical Centre, Monash University, 246 Clayton Rd, Melbourne, VIC 3168, Australia
| | - Christopher L Adamson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rachel Ellis
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Zohra M Ahmadzai
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Claire E Kelly
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Katherine J Lee
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, 161 Barry St, Carlton, VIC 3053, Australia; Melbourne School of Engineering, Building 173, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph Y M Yang
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rodney W Hunt
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Neonatal Medicine, The Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Women's Newborn Research Centre, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, 20 Flemington Rd, Parkville, VIC 3052, Australia
| | - Terrie E Inder
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Lex W Doyle
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia; Women's Newborn Research Centre, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC 3052, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, 20 Flemington Rd, Parkville, VIC 3052, Australia
| | - Marc L Seal
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
120
|
Goldstein RD, Kinney HC, Willinger M. Sudden Unexpected Death in Fetal Life Through Early Childhood. Pediatrics 2016; 137:e20154661. [PMID: 27230764 PMCID: PMC4894250 DOI: 10.1542/peds.2015-4661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 11/24/2022] Open
Abstract
In March 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development held a workshop entitled "Sudden Unexpected Death in Fetal Life Through Early Childhood: New Opportunities." Its objective was to advance efforts to understand and ultimately prevent sudden deaths in early life, by considering their pathogenesis as a potential continuum with some commonalities in biological origins or pathways. A second objective of this meeting was to highlight current issues surrounding the classification of sudden infant death syndrome (SIDS), and the implications of variations in the use of the term "SIDS" in forensic practice, and pediatric care and research. The proceedings reflected the most current knowledge and understanding of the origins and biology of vulnerability to sudden unexpected death, and its environmental triggers. Participants were encouraged to consider the application of new technologies and "omics" approaches to accelerate research. The major advances in delineating the intrinsic vulnerabilities to sudden death in early life have come from epidemiologic, neural, cardiac, metabolic, genetic, and physiologic research, with some commonalities among cases of unexplained stillbirth, SIDS, and sudden unexplained death in childhood observed. It was emphasized that investigations of sudden unexpected death are inconsistent, varying by jurisdiction, as are the education, certification practices, and experience of death certifiers. In addition, there is no practical consensus on the use of "SIDS" as a determination in cause of death. Major clinical, forensic, and scientific areas are identified for future research.
Collapse
Affiliation(s)
- Richard D Goldstein
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, and
| | - Hannah C Kinney
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Marian Willinger
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
121
|
Botellero VL, Skranes J, Bjuland KJ, Løhaugen GC, Håberg AK, Lydersen S, Brubakk AM, Indredavik MS, Martinussen M. Mental health and cerebellar volume during adolescence in very-low-birth-weight infants: a longitudinal study. Child Adolesc Psychiatry Ment Health 2016; 10:6. [PMID: 26985236 PMCID: PMC4793750 DOI: 10.1186/s13034-016-0093-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preterm birth at very low birth weight (VLBW) poses a risk for cerebellar abnormalities and increased psychiatric morbidity compared with reference populations. We aimed to study cerebellar volumes (grey and white matter; GM, WM) and mental health in VLBW individuals and controls at 15 and 19 years of age, as well as changes between the two time points. METHODS Forty VLBW (≤1500 g) and 56 control adolescents were included in the study at 15 years of age, and 44 VLBW and 60 control adolescents at 19 years of age. We had longitudinal data for 30 VLBW participants and for 37 controls. Clinical diagnoses were assessed following the schedule for affective disorders and schizophrenia for school-age children (KSADS). Psychiatric symptoms and function were further investigated with the Achenbach System of Empirically Based Assessment (ASEBA), ADHD Rating Scale-IV and the children's global assessment scale (CGAS). An automatic segmentation of cerebellar GM and WM volumes was performed in FreeSurfer. The MRI scans were obtained on the same 1.5T scanner at both ages. RESULTS The VLBW group had higher rates of psychiatric disorders at both ages. Cerebellar growth trajectories did not differ between VLBW adolescents and controls, regardless of psychiatric status. However, VLBW adolescents who had a psychiatric diagnosis at both ages or developed a psychiatric disorder from 15 to 19 years had maintained smaller cerebellar WM and GM volumes than controls and also smaller volumes than VLWB adolescents who were or became healthy in this period. Moreover, there were no differences in cerebellar WM and GM volumes between controls and those VLBW who were healthy or became healthy. In the VLBW group, cerebellar WM and GM volumes correlated positively with psycho-social function at both 15 and 19 years of age, and smaller GM volumes were associated with inattention at 15 years. CONCLUSIONS Smaller cerebellar volume in adolescents born very preterm and with VLBW may be a biomarker of increased risk of psychiatric problems in young adulthood.
Collapse
Affiliation(s)
- Violeta L. Botellero
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway
| | - Jon Skranes
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway ,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Knut Jørgen Bjuland
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway
| | - Gro C. Løhaugen
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway ,Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Asta Kristine Håberg
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway ,Department of Medical Imaging, St. Olav’s University Hospital, Trondheim, Norway
| | - Stian Lydersen
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway ,Department of Pediatrics, St. Olav’s University Hospital, Trondheim, Norway
| | - Marit S. Indredavik
- Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway ,Department of Child and Adolescent Psychiatry, St. Olav’s University Hospital, Trondheim, Norway
| | - Marit Martinussen
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Medical Technology Research Center, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway ,Department of Gynecology and Obstetrics, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
122
|
Montagna A, Nosarti C. Socio-Emotional Development Following Very Preterm Birth: Pathways to Psychopathology. Front Psychol 2016; 7:80. [PMID: 26903895 PMCID: PMC4751757 DOI: 10.3389/fpsyg.2016.00080] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Very preterm birth (VPT; < 32 weeks of gestation) has been associated with an increased risk to develop cognitive and socio-emotional problems, as well as with increased vulnerability to psychiatric disorder, both with childhood and adult onset. Socio-emotional impairments that have been described in VPT individuals include diminished social competence and self-esteem, emotional dysregulation, shyness and timidity. However, the etiology of socio-emotional problems in VPT samples and their underlying mechanisms are far from understood. To date, research has focused on the investigation of both biological and environmental risk factors associated with socio-emotional problems, including structural and functional alterations in brain areas involved in processing emotions and social stimuli, perinatal stress and pain and parenting strategies. Considering the complex interplay of the aforementioned variables, the review attempts to elucidate the mechanisms underlying the association between very preterm birth, socio-emotional vulnerability and psychopathology. After a comprehensive overview of the socio-emotional impairments associated with VPT birth, three main models of socio-emotional development are presented and discussed. These focus on biological vulnerability, early life adversities and parenting, respectively. To conclude, a developmental framework is used to consider different pathways linking VPT birth to psychopathology, taking into account the interaction between medical, biological, and psychosocial factors.
Collapse
Affiliation(s)
- Anita Montagna
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, St. Thomas' Hospital, King's College LondonLondon, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK
| |
Collapse
|
123
|
Karolis VR, Froudist-Walsh S, Brittain PJ, Kroll J, Ball G, Edwards AD, Dell'Acqua F, Williams SC, Murray RM, Nosarti C. Reinforcement of the Brain's Rich-Club Architecture Following Early Neurodevelopmental Disruption Caused by Very Preterm Birth. Cereb Cortex 2016; 26:1322-35. [PMID: 26742566 PMCID: PMC4737614 DOI: 10.1093/cercor/bhv305] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The second half of pregnancy is a crucial period for the development of structural brain connectivity, and an abrupt interruption of the typical processes of development during this phase caused by the very preterm birth (<33 weeks of gestation) is likely to result in long-lasting consequences. We used structural and diffusion imaging data to reconstruct the brain structural connectome in very preterm-born adults. We assessed its rich-club organization and modularity as 2 characteristics reflecting the capacity to support global and local information exchange, respectively. Our results suggest that the establishment of global connectivity patterns is prioritized over peripheral connectivity following early neurodevelopmental disruption. The very preterm brain exhibited a stronger rich-club architecture than the control brain, despite possessing a relative paucity of white matter resources. Using a simulated lesion approach, we also investigated whether putative structural reorganization takes place in the very preterm brain in order to compensate for its anatomical constraints. We found that connections between the basal ganglia and (pre-) motor regions, as well as connections between subcortical regions, assumed an altered role in the structural connectivity of the very preterm brain, and that such alterations had functional implications for information flow, rule learning, and verbal IQ.
Collapse
Affiliation(s)
- Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience
| | - Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience
| | - Philip J Brittain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering
| | - Flavio Dell'Acqua
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering
| |
Collapse
|
124
|
Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 mo of age: an MRI and DTI study. Pediatr Res 2015; 78:700-8. [PMID: 26322412 DOI: 10.1038/pr.2015.157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age. METHODS One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.6 ± 1.8 wk postmenstrual age. Cerebellar and WM macrostructure was assessed on conventional structural MRI. DTI was obtained in 66 out of 102 and WM microstructure was assessed using fractional anisotropy and mean diffusivity (MD) in six subcortical brain regions defined by DiffeoMap neonatal atlas. Neurodevelopment was assessed with Bayley-Scales-of-Infant-Toddler-Development, 3rd-Edition (BSID-III); gait was assessed using an instrumented mat. RESULTS Neonates with cerebellar abnormalities identified using MRI demonstrated lower mean BSID-III cognitive composite scores (89.0 ± 10.1 vs. 97.8 ± 12.4; P = 0.002) at 18-22 mo. Neonates with higher DTI-derived left posterior limb of internal capsule (PLIC) MD demonstrated lower cognitive and motor composite scores (r = -0.368; P = 0.004; r = -0.354; P = 0.006) at 18-22 mo; neonates with higher genu MD demonstrated slower gait velocity (r = -0.374; P = 0.007). Multivariate linear regression significantly predicted cognitive (adjusted r(2) = 0.247; P = 0.002) and motor score (adjusted r(2) = 0.131; P = 0.017). CONCLUSION Near-term cerebellar macrostructure and PLIC and genu microstructure were predictive of early neurodevelopment and gait.
Collapse
|
125
|
Thomas MM, Sulek K, McKenzie EJ, Jones B, Han TL, Villas-Boas SG, Kenny LC, McCowan LME, Baker PN. Metabolite Profile of Cervicovaginal Fluids from Early Pregnancy Is Not Predictive of Spontaneous Preterm Birth. Int J Mol Sci 2015; 16:27741-8. [PMID: 26610472 PMCID: PMC4661910 DOI: 10.3390/ijms161126052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 11/24/2022] Open
Abstract
In our study, we used a mass spectrometry-based metabolomic approach to search for biomarkers that may act as early indicators of spontaneous preterm birth (sPTB). Samples were selected as a nested case-control study from the Screening for Pregnancy Endpoints (SCOPE) biobank in Auckland, New Zealand. Cervicovaginal swabs were collected at 20 weeks from women who were originally assessed as being at low risk of sPTB. Samples were analysed using gas chromatography-mass spectrometry (GC-MS). Despite the low amount of biomass (16–23 mg), 112 compounds were detected. Statistical analysis showed no significant correlations with sPTB. Comparison of reported infection and plasma inflammatory markers from early pregnancy showed two inflammatory markers were correlated with reported infection, but no correlation with any compounds in the metabolite profile was observed. We hypothesise that the lack of biomarkers of sPTB in the cervicovaginal fluid metabolome is simply because it lacks such markers in early pregnancy. We propose alternative biofluids be investigated for markers of sPTB. Our results lead us to call for greater scrutiny of previously published metabolomic data relating to biomarkers of sPTB in cervicovaginal fluids, as the use of small, high risk, or late pregnancy cohorts may identify metabolite biomarkers that are irrelevant for predicting risk in normal populations.
Collapse
Affiliation(s)
- Melinda M Thomas
- Liggins Institute, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| | - Karolina Sulek
- Liggins Institute, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| | - Elizabeth J McKenzie
- Liggins Institute, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| | - Beatrix Jones
- Institute of Natural and Mathematical Sciences, Massey University, Albany Campus, Auckland 0632, New Zealand.
| | - Ting-Li Han
- Liggins Institute, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand.
| | - Louise C Kenny
- The Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Wilton 06897, Cork, Ireland.
| | - Lesley M E McCowan
- Department of Obstetrics and Gynaecology, University of Auckland, 2 Park Road, Auckland 1023, New Zealand.
| | - Philip N Baker
- Liggins Institute, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
126
|
Travis KE, Adams JN, Ben-Shachar M, Feldman HM. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents. PLoS One 2015; 10:e0142860. [PMID: 26560745 PMCID: PMC4641645 DOI: 10.1371/journal.pone.0142860] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood.
Collapse
Affiliation(s)
- Katherine E. Travis
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Jenna N. Adams
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, 5290002, Israel
- Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Heidi M. Feldman
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| |
Collapse
|
127
|
Allievi AG, Arichi T, Tusor N, Kimpton J, Arulkumaran S, Counsell SJ, Edwards AD, Burdet E. Maturation of Sensori-Motor Functional Responses in the Preterm Brain. Cereb Cortex 2015; 26:402-413. [PMID: 26491066 PMCID: PMC4677983 DOI: 10.1093/cercor/bhv203] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level–dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.
Collapse
Affiliation(s)
| | - Tomoki Arichi
- Department of Bioengineering.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Sophie Arulkumaran
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, LondonSE1 7EH, UK
| | - A David Edwards
- Department of Bioengineering.,Division of Brain Sciences, Department of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | | |
Collapse
|
128
|
Ball G, Aljabar P, Arichi T, Tusor N, Cox D, Merchant N, Nongena P, Hajnal JV, Edwards AD, Counsell SJ. Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 2015; 124:267-275. [PMID: 26341027 PMCID: PMC4655920 DOI: 10.1016/j.neuroimage.2015.08.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/22/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest–based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth. Robust classification of preterm and term-born neonates using functional connectivity patterns. Discriminative pattern of alterations in basal ganglia and frontal connections. Reflects system-wide disruption of subcortical–cortical connections following preterm birth.
Collapse
Affiliation(s)
- G Ball
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - P Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - T Arichi
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - N Tusor
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - D Cox
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - N Merchant
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - P Nongena
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - J V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - A D Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom.
| | - S J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| |
Collapse
|
129
|
Disconnected neuromagnetic networks in children born very preterm: Disconnected MEG networks in preterm children. NEUROIMAGE-CLINICAL 2015; 11:376-84. [PMID: 27330980 PMCID: PMC4589841 DOI: 10.1016/j.nicl.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Many children born very preterm (≤32 weeks) experience significant cognitive difficulties, but the biological basis of such problems has not yet been determined. Functional MRI studies have implicated altered functional connectivity; however, little is known regarding the spatiotemporal organization of brain networks in this population. We provide the first examination of resting-state neuromagnetic connectivity mapped in brain space in school age children born very preterm. Thirty-four subjects (age range 7–12 years old), consisting of 17 very preterm-born children and 17 full-term born children were included. Very preterm-born children exhibited global decreases in inter-regional synchrony in all analysed frequency ranges, from theta (4–7 Hz) to high gamma (80–150 Hz; p < 0.01, corrected). These reductions were expressed in spatially and frequency specific brain networks (p < 0.0005, corrected). Our results demonstrate that mapping connectivity with high spatiotemporal resolution offers new insights into altered organization of neurophysiological networks which may contribute to the cognitive difficulties in this vulnerable population. We recorded resting-state magnetoencephalography in school-age children born very preterm and healthy children. We examine functional connectivity across a wide frequency spectrum in brain space. Global reductions in neural synchrony were detected in children born very preterm. These reductions encompass networks related to executive function and overall cognitive flexibility. These effects may be relevant to cognitive and behavioural difficulties reported in the ex-preterm population.
Collapse
|
130
|
Salmaso N, Dominguez M, Kravitz J, Komitova M, Vaccarino FM, Schwartz ML. Contribution of maternal oxygenic state to the effects of chronic postnatal hypoxia on mouse body and brain development. Neurosci Lett 2015. [PMID: 26222256 DOI: 10.1016/j.neulet.2015.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-2% of live births are to very low birth weight, premature infants that often show a developmental trajectory plagued with neurological sequelae including ventriculomegaly and significant decreases in cortical volume. We are able to recapitulate these sequelae using a mouse model of hypoxia where early postnatal pups are exposed to chronic hypoxia for one week. However, because the timing of hypoxic exposure occurs so early in development, dams and pups are housed together in the hypoxic chamber, and therefore, dams are also subjected to the same hypoxic conditions as the pups. To understand the relative contribution of hypoxia directly on the pups as opposed to the indirect contribution mediated by the effects of hypoxia and potential alterations in the dam's care of the pups, we examined whether reducing the dams exposure to hypoxia may significantly increase pup outcomes on measures that we have found consistently changed immediately following chronic hypoxia exposure. To achieve this, we rotated dams between normoxic and hypoxic conditions, leaving the litters untouched in their respective conditions and compared gross anatomical measures of normoxic and hypoxic pups with non-rotating or rotating mothers. As we expected, hypoxic-rearing decreased pup body weight, brain weight and cortical volume. Reducing the dam's exposure to hypoxic conditions actually amplified the effects of hypoxia on body weight, such that hypoxic pups with rotating mothers showed significantly less growth. Interestingly, rotation of hypoxic mothers did not have the same deleterious effect on brain weight, suggesting the presence of compensatory mechanisms conserving brain weight and development even under extremely low body weight conditions. The factors that potentially contribute to these compensatory changes remain to be determined, however, nutrition, pup feeding/metabolism, or changes in maternal care are important candidates, acting either together or independently to change pup body and brain development.
Collapse
Affiliation(s)
- Natalina Salmaso
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Moises Dominguez
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Jacob Kravitz
- Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Mila Komitova
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Flora M Vaccarino
- Child Study Center, and Department of Neurobiology, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA.
| | - Michael L Schwartz
- Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
131
|
Brain damage of the preterm infant: new insights into the role of inflammation. Biochem Soc Trans 2015; 42:557-63. [PMID: 24646278 DOI: 10.1042/bst20130284] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have shown a strong association between perinatal infection/inflammation and brain damage in preterm infants and/or neurological handicap in survivors. Experimental studies have shown a causal effect of infection/inflammation on perinatal brain damage. Infection including inflammatory factors can disrupt programmes of brain development and, in particular, induce death and/or blockade of oligodendrocyte maturation, leading to myelin defects. Alternatively, in the so-called multiple-hit hypothesis, infection/inflammation can act as predisposing factors, making the brain more susceptible to a second stress (sensitization process), such as hypoxic-ischaemic or excitotoxic insults. Epidemiological data also suggest that perinatal exposure to inflammatory factors could predispose to long-term diseases including psychiatric disorders.
Collapse
|
132
|
Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants. NEUROIMAGE-CLINICAL 2015; 8:462-72. [PMID: 26106571 PMCID: PMC4474422 DOI: 10.1016/j.nicl.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Thalamic structural co-variation with cortical regions has been demonstrated in preterm infants, but its relationship to cortical function and severity of non-cystic white matter injury (non-cystic WMI) is unclear. The relationship between thalamic morphology and both cortical network synchronization and cortical structural connectivity has not been established. We tested the hypothesis that in preterm neonates, thalamic volume would correlate with primary cortical visual function and microstructural integrity of cortico-cortical visual association pathways. A total of 80 term-equivalent preterm and 44 term-born infants underwent high-resolution structural imaging coupled with visual functional magnetic resonance imaging or diffusion tensor imaging. There was a strong correlation between thalamic volume and primary visual cortical activation in preterms with non-cystic WMI (r = 0.81, p-value = 0.001). Thalamic volume also correlated strongly with interhemispheric cortico-cortical connectivity (splenium) in preterm neonates with a relatively higher severity of non-cystic WMI (p-value < 0.001). In contrast, there was lower correlation between thalamic volume and intrahemispheric cortico-cortical connectivity, including the inferior longitudinal fasciculus and inferior frontal orbital fasciculus. This study shows distinct temporal overlap in the disruption of thalamo-cortical and interhemispheric cortico-cortical connectivity in preterm infants suggesting developmental synergy between thalamic morphology and the emergence of cortical networks in the last trimester.
Collapse
|
133
|
Meng C, Bäuml JG, Daamen M, Jaekel J, Neitzel J, Scheef L, Busch B, Baumann N, Boecker H, Zimmer C, Bartmann P, Wolke D, Wohlschläger AM, Sorg C. Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Struct Funct 2015; 221:2109-21. [PMID: 25820473 DOI: 10.1007/s00429-015-1032-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
Preterm birth is a leading cause for impaired neurocognitive development with an increased risk for persistent cognitive deficits in adulthood. In newborns, preterm birth is associated with interrelated white matter (WM) alterations and deep gray matter (GM) loss; however, little is known about the persistence and relevance of these subcortical brain changes. We tested the hypothesis that the pattern of correspondent subcortical WM and GM changes is present in preterm-born adults and has a brain-injury-like nature, i.e., it predicts lowered general cognitive performance. Eighty-five preterm-born and 69 matched term-born adults were assessed by diffusion- and T1-weighted MRI and cognitive testing. Main outcome measures were fractional anisotropy of water diffusion for WM property, GM volume for GM property, and full-scale IQ for cognitive performance. In preterm-born adults, reduced fractional anisotropy was widely distributed ranging from cerebellum to brainstem to hemispheres. GM volume was reduced in the thalamus, striatum, temporal cortices, and increased in the cingulate cortices. Fractional anisotropy reductions were specifically associated with GM loss in thalamus and striatum, with correlation patterns for both regions extensively overlapping in the WM of brainstem and hemispheres. For overlap regions, fractional anisotropy was positively related with both gestational age and full-scale IQ. Results provide evidence for extensive, interrelated, and adverse WM and GM subcortical changes in preterm-born adults. Data suggest persistent brain-injury-like changes of subcortical-cortical connectivity after preterm delivery.
Collapse
Affiliation(s)
- C Meng
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- TUM-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Großhaderner Strasse 2, 82152, Munich, Germany
| | - J G Bäuml
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- TUM-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
| | - M Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - J Jaekel
- Department of Psychology, University of Warwick, Coventry, UK
- Department of Developmental Psychology, Ruhr-University Bochum, Bochum, Germany
| | - J Neitzel
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- TUM-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Großhaderner Strasse 2, 82152, Munich, Germany
| | - L Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - B Busch
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - N Baumann
- Department of Psychology, University of Warwick, Coventry, UK
| | - H Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - C Zimmer
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
| | - P Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - D Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - A M Wohlschläger
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- Department of Neurology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- TUM-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Großhaderner Strasse 2, 82152, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany.
- Department of Psychiatry, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany.
- TUM-Neuroimaging Center of Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675, Munich, Germany.
| |
Collapse
|
134
|
Anblagan D, Bastin ME, Sparrow S, Piyasena C, Pataky R, Moore EJ, Serag A, Wilkinson AG, Clayden JD, Semple SI, Boardman JP. Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects. Neuroimage Clin 2015; 8:51-8. [PMID: 26106527 PMCID: PMC4473726 DOI: 10.1016/j.nicl.2015.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/17/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022]
Abstract
Preterm birth is associated with altered connectivity of neural circuits. We developed a tract segmentation method that provides measures of tract shape and integrity (probabilistic neighborhood tractography, PNT) from diffusion MRI (dMRI) data to test the hypotheses: 1) preterm birth is associated with alterations in tract topology (R), and tract-averaged mean diffusivity (〈D〉) and fractional anisotropy (FA); 2) neural systems are separable based on tract-averaged dMRI parameters; and 3) PNT can detect neuroprotective treatment effects. dMRI data were collected from 87 preterm infants (mean gestational age 29(+1) weeks, range 23(+2) -34(+6)) at term equivalent age and 24 controls (mean gestational age 39(+6) weeks). PNT was used to segment eight major fasciculi, characterize topology, and extract tract-averaged〈D〉and FA. Tract topology was altered by preterm birth in all tracts except the splenium (p < 0.05, false discovery rate [FDR] corrected). After adjustment for age at scan, tract-averaged〈D〉was increased in the genu and splenium, right corticospinal tract (CST) and the left and right inferior longitudinal fasciculi (ILF) in preterm infants compared with controls (p < 0.05, FDR), while tract-averaged FA was decreased in the splenium and left ILF (p < 0.05, FDR). Specific fasciculi were separable based on tract-averaged〈D〉and FA values. There was a modest decrease in tract-averaged〈D〉in the splenium of preterm infants who had been exposed to antenatal MgSO4 for neuroprotection (p = 0.002). Tract topology is a biomarker of preterm brain injury. The data provide proof of concept that tract-averaged dMRI parameters have utility for evaluating tissue effects of perinatal neuroprotective strategies.
Collapse
Affiliation(s)
- Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chinthika Piyasena
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma J. Moore
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Jonathan D. Clayden
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Scott I. Semple
- Clinical Research Imaging Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
135
|
Anderson PJ, Cheong JLY, Thompson DK. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol 2015; 39:147-58. [PMID: 25724792 DOI: 10.1053/j.semperi.2015.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very preterm children are at a high risk for neurodevelopmental impairments, but there is variability in the pattern and severity of outcome. Neonatal magnetic resonance imaging (MRI) enhances the capacity to detect brain injury and altered brain development and assists in the prediction of high-risk children who warrant surveillance and early intervention. This review describes the application of conventional and advanced MRI with very preterm neonates, specifically focusing on the relationship between neonatal MRI findings and later neurodevelopmental outcome. Research demonstrates that conventional MRI is strongly associated with neurodevelopmental outcome in childhood. Further studies are needed to examine the role of advanced MRI techniques in predicting outcome in very preterm children, but early research findings are promising. In conclusion, neonatal MRI is predictive of later neurodevelopment but is dependent on appropriately trained specialists and should be interpreted in conjunction with other clinical and social information.
Collapse
Affiliation(s)
- Peter J Anderson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Jeanie L Y Cheong
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Neonatal Services, Royal Women׳s Hospital, Melbourne, Australia; Department of Obstetrics & Gynaecology, University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
136
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
137
|
Wisnowski JL, Ceschin RC, Choi SY, Schmithorst VJ, Painter MJ, Nelson MD, Blüml S, Panigrahy A. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury. Neuroradiology 2015; 57:515-25. [PMID: 25666231 DOI: 10.1007/s00234-015-1495-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. METHODS Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. RESULTS Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. CONCLUSION These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS #81, Los Angeles, CA, 90027, USA,
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Dudink J, Pieterman K, Leemans A, Kleinnijenhuis M, van Cappellen van Walsum AM, Hoebeek FE. Recent advancements in diffusion MRI for investigating cortical development after preterm birth-potential and pitfalls. Front Hum Neurosci 2015; 8:1066. [PMID: 25653607 PMCID: PMC4301014 DOI: 10.3389/fnhum.2014.01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the developing brain, but did cause significantly impaired dendritic growth and synapse formation alongside a disturbed development of neuronal connectivity as measured using diffusion magnetic resonance imaging (dMRI). When using more advanced acquisition settings such as high-angular resolution diffusion imaging (HARDI), more advanced reconstruction methods can be applied to investigate the cortical microstructure with higher levels of detail. Recent advances in dMRI acquisition and analysis have great potential to contribute to a better understanding of neuronal connectivity impairment in preterm birth. We will review the current understanding of abnormal preterm cortical development, novel approaches in dMRI, and the pitfalls in scanning vulnerable preterm infants.
Collapse
Affiliation(s)
- J Dudink
- Department of Neonatology, Pediatric Intensive Care and Pediatric Radiology, Erasmus Medical Center - Sophia Children's Hospital Rotterdam, Netherlands
| | - K Pieterman
- Department of Neonatology, Pediatric Intensive Care and Pediatric Radiology, Erasmus Medical Center - Sophia Children's Hospital Rotterdam, Netherlands
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht Utrecht, Netherlands
| | - M Kleinnijenhuis
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford Oxford, UK
| | - A M van Cappellen van Walsum
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - F E Hoebeek
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
139
|
Ball G, Pazderova L, Chew A, Tusor N, Merchant N, Arichi T, Allsop JM, Cowan FM, Edwards AD, Counsell SJ. Thalamocortical Connectivity Predicts Cognition in Children Born Preterm. Cereb Cortex 2015; 25:4310-8. [PMID: 25596587 PMCID: PMC4816783 DOI: 10.1093/cercor/bhu331] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thalamocortical connections are: essential for brain function, established early in development, and significantly impaired following preterm birth. Impaired cognitive abilities in preterm infants may be related to disruptions in thalamocortical connectivity. The aim of this study was to test the hypothesis: thalamocortical connectivity in the preterm brain at term-equivalent is correlated with cognitive performance in early childhood. We examined 57 infants who were born <35 weeks gestational age (GA) and had no evidence of focal abnormality on magnetic resonance imaging (MRI). Infants underwent diffusion MRI at term and cognitive performance at 2 years was assessed using the Bayley III scales of Infant and Toddler development. Cognitive scores at 2 years were correlated with structural connectivity between the thalamus and extensive cortical regions at term. Mean thalamocortical connectivity across the whole cortex explained 11% of the variance in cognitive scores at 2 years. The inclusion of GA at birth and parental socioeconomic group in the model explained 30% of the variance in subsequent cognitive performance. Identifying impairments in thalamocortical connectivity as early as term equivalent can help identify those infants at risk of subsequent cognitive delay and may be useful to assess efficacy of potential treatments at an early age.
Collapse
Affiliation(s)
- Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Libuse Pazderova
- Department of Paediatrics, Imperial College London, Hammersmith Hospital, W12 0HS, UK
| | - Andrew Chew
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Nazakat Merchant
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Joanna M Allsop
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Frances M Cowan
- Department of Paediatrics, Imperial College London, Hammersmith Hospital, W12 0HS, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, SE1 7EH, UK
| |
Collapse
|
140
|
Pieterman K, Plaisier A, Govaert P, Leemans A, Lequin MH, Dudink J. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review. Pediatr Radiol 2015; 45:1372-81. [PMID: 25820411 PMCID: PMC4526590 DOI: 10.1007/s00247-015-3307-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. MATERIALS AND METHODS We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. RESULTS We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. CONCLUSION Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center - Sophia, dr. Molewaterplein 60, 3015, GJ, Rotterdam, The Netherlands,
| | - Annemarie Plaisier
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Govaert
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
141
|
Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res 2015; 77:148-55. [PMID: 25314585 PMCID: PMC4291511 DOI: 10.1038/pr.2014.171] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/30/2014] [Indexed: 01/08/2023]
Abstract
The impact of nutrition on brain development in preterm infants has been increasingly appreciated. Early postnatal growth and nutrient intake have been demonstrated to influence brain growth and maturation with subsequent effects on neurodevelopment that persist into childhood and adolescence. Nutrition could also potentially protect against injury. Inflammation and perinatal infection play a crucial role in the pathogenesis of white matter injury, the most common pattern of brain injury in preterm infants. Therefore, nutritional components with immunomodulatory and/or anti-inflammatory effects may serve as neuroprotective agents. Moreover, growing evidence supports the existence of a microbiome-gut-brain axis. The microbiome is thought to interact with the brain through immunological, endocrine, and neural pathways. Consequently, nutritional components that may influence gut microbiota may also exert beneficial effects on the developing brain. Based on these properties, probiotics, prebiotic oligosaccharides, and certain amino acids are potential candidates for neuroprotection. In addition, the amino acid glutamine has been associated with a decrease in infectious morbidity in preterm infants. In conclusion, early postnatal nutrition is of major importance for brain growth and maturation. Additionally, certain nutritional components might play a neuroprotective role against white matter injury, through modulation of inflammation and infection, and may influence the microbiome-gut-brain axis.
Collapse
|
142
|
Chorna O, Solomon JE, Slaughter JC, Stark AR, Maitre NL. Abnormal sensory reactivity in preterm infants during the first year correlates with adverse neurodevelopmental outcomes at 2 years of age. Arch Dis Child Fetal Neonatal Ed 2014; 99:F475-9. [PMID: 25053637 PMCID: PMC4783156 DOI: 10.1136/archdischild-2014-306486] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sensory experience is the basis for learning in infancy. In older children, abnormal sensory reactivity is associated with behavioural and developmental disorders. We hypothesised that in preterm infants, abnormal sensory reactivity during infancy would be associated with perinatal characteristics and correlate with 2-year neurodevelopmental outcomes. METHODS We conducted a prospective observational study of infants with birth weight ≤1500 g using the Test of Sensory Function in Infants (TSFI) in the first year. Infants with gestational age ≤30 weeks were tested with the Bayley Scales of Infant and Toddler Development III (BSID III) at 24 months. RESULTS Of the 72 participants evaluated at 4-12 months corrected age (median 8 months), 59 (82%) had a least one TSFI score concerning for abnormal sensory reactivity. Lower gestational age was associated with abnormal reactivity to deep pressure and vestibular stimulation (p<0.001). Poor ocular-motor control predicted worse cognitive and motor scores in early childhood (OR 16.7; p=0.004), but was tightly correlated to the presence of severe white matter injury. Poor adaptive motor function in response to tactile stimuli predicted worse BSID III motor (p=0.01) and language scores (p=0.04) at 2 years, even after adjusting for confounders. CONCLUSIONS Abnormal sensory reactivity is common in preterm infants; is associated with immaturity at birth, severe white matter injury and lower primary caregiver education; and predicts neurodevelopmental delays. Early identification of abnormal sensory reactivity of very preterm infants may promote parental support and education and may facilitate improved neurodevelopment.
Collapse
Affiliation(s)
- Olena Chorna
- Vanderbilt Kennedy Center, Nashville, Tennessee, USA
| | - Jessica E Solomon
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, Tennessee, USA
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann R Stark
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathalie L Maitre
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
143
|
Brown CJ, Miller SP, Booth BG, Andrews S, Chau V, Poskitt KJ, Hamarneh G. Structural network analysis of brain development in young preterm neonates. Neuroimage 2014; 101:667-80. [DOI: 10.1016/j.neuroimage.2014.07.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/12/2014] [Accepted: 07/20/2014] [Indexed: 12/16/2022] Open
|
144
|
Cimadevilla JM, Roldán L, París M, Arnedo M, Roldán S. Spatial learning in a virtual reality-based task is altered in very preterm children. J Clin Exp Neuropsychol 2014; 36:1002-8. [DOI: 10.1080/13803395.2014.963520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
145
|
Smyser CD, Snyder AZ, Shimony JS, Mitra A, Inder TE, Neil JJ. Resting-State Network Complexity and Magnitude Are Reduced in Prematurely Born Infants. Cereb Cortex 2014; 26:322-333. [PMID: 25331596 DOI: 10.1093/cercor/bhu251] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature birth is associated with high rates of motor and cognitive disability. Investigations have described resting-state functional magnetic resonance imaging (rs-fMRI) correlates of prematurity in older children, but comparable data in the neonatal period remain scarce. We studied 25 term-born control infants within the first week of life and 25 very preterm infants (born at gestational ages ranging from 23 to 29 weeks) without evident structural injury at term equivalent postmenstrual age. Conventional resting-state network (RSN) mapping revealed only modest differences between the term and prematurely born infants, in accordance with previous work. However, clear group differences were observed in quantitative analyses based on correlation and covariance matrices representing the functional MRI time series extracted from 31 regions of interest in 7 RSNs. In addition, the maximum likelihood dimensionality estimates of the group-averaged covariance matrices in the term and preterm infants were 5 and 3, respectively, indicating that prematurity leads to a reduction in the complexity of rs-fMRI covariance structure. These findings highlight the importance of quantitative analyses of rs-fMRI data and suggest a more sensitive method for delineating the effects of preterm birth in infants without evident structural injury.
Collapse
Affiliation(s)
| | - Abraham Z Snyder
- Department of Neurology.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anish Mitra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
146
|
Kim DJ, Davis EP, Sandman CA, Sporns O, O'Donnell BF, Buss C, Hetrick WP. Longer gestation is associated with more efficient brain networks in preadolescent children. Neuroimage 2014; 100:619-27. [PMID: 24983711 PMCID: PMC4138264 DOI: 10.1016/j.neuroimage.2014.06.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/22/2014] [Indexed: 12/21/2022] Open
Abstract
Neurodevelopmental benefits of increased gestation have not been fully characterized in terms of network organization. Since brain function can be understood as an integrated network of neural information from distributed brain regions, investigation of the effects of gestational length on network properties is a critical goal of human developmental neuroscience. Using diffusion tensor imaging and fiber tractography, we investigated the effects of gestational length on the small-world attributes and rich club organization of 147 preadolescent children, whose gestational length ranged from 29 to 42 weeks. Higher network efficiency was positively associated with longer gestation. The longer gestation was correlated with increased local efficiency in the posterior medial cortex, including the precuneus, cuneus, and superior parietal regions. Rich club organization was also observed indicating the existence of highly interconnected structural hubs formed in preadolescent children. Connectivity among rich club members and from rich club regions was positively associated with the length of gestation, indicating the higher level of topological benefits of structural connectivity from longer gestation in the predominant regions of brain networks. The findings provide evidence that longer gestation is associated with improved topological organization of the preadolescent brain, characterized by the increased communication capacity of the brain network and enhanced directional strength of brain connectivity with central hub regions.
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO 80208, USA; Department of Psychiatry and Human Behavior, University of California Irvine, USA
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, University of California Irvine, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Claudia Buss
- Institut für Medizinische Psychologie, Charité Centrum für Human-und Gesundheitswissenschaften, Charité Universitätsmedizin, Berlin, Germany
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA.
| |
Collapse
|
147
|
Kostović I, Sedmak G, Vukšić M, Judaš M. The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci Ther 2014; 21:74-82. [PMID: 25312583 DOI: 10.1111/cns.12333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/31/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
The human fetal cerebral cortex develops through a series of partially overlapping histogenetic events which occur in transient cellular compartments, such as the subplate zone. The subplate serves as waiting compartment for cortical afferent fibers, the major site of early synaptogenesis and neuronal differentiation and the hub of the transient fetal cortical circuitry. Thus, the subplate has an important but hitherto neglected role in the human fetal cortical connectome. The subplate is also an important compartment for radial and tangential migration of future cortical neurons. We review the diversity of subplate neuronal phenotypes and their involvement in cortical circuitry and discuss the complexity of late neuronal migration through the subplate as well as its potential relevance for pathogenesis of migration disorders and cortical dysplasia. While migratory neurons may become misplaced within the subplate, they can easily survive by being involved in early subplate circuitry; this can enhance their subsequent survival even if they have immature or abnormal physiological activity and misrouted connections and thus survive into adulthood. Thus, better understanding of subplate developmental history and various subsets of its neurons may help to elucidate certain types of neuronal disorders, including those accompanied by epilepsy.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | | |
Collapse
|
148
|
Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014; 276:48-71. [PMID: 24378955 DOI: 10.1016/j.neuroscience.2013.12.044] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- J Dubois
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France.
| | - G Dehaene-Lambertz
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
| | - S Kulikova
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| | - C Poupon
- CEA, NeuroSpin Center, UNIRS, Gif-sur-Yvette, France
| | - P S Hüppi
- Geneva University Hospitals, Department of Pediatrics, Division of Development and Growth, Geneva, Switzerland; Harvard Medical School, Children's Hospital, Department of Neurology, Boston, MA, USA
| | - L Hertz-Pannier
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| |
Collapse
|
149
|
Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. Eur J Paediatr Neurol 2014; 18:578-90. [PMID: 24775377 DOI: 10.1016/j.ejpn.2014.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/12/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Preterm born very-low-birth-weight (VLBW: birth weight ≤1500 g) survivors have increased risk of perinatal brain injury that may cause deviant brain development and later neuroimpairments, including reduced cognitive functioning. AIMS In this long-term follow up study of three year-cohorts (birth years 1986-88) of VLBW subjects and term born controls with normal birth weight, the aim was to examine differences in brain volumes at age 20 years. In addition, the relationships between brain volumes and cognitive abilities and perinatal variables were explored. METHODS Forty-four VLBW subjects and 60 controls were assessed with cognitive testing (Wechsler Adult Intelligence Scale - WAIS-III) and structural MRI at 1.5 T, using the FreeSurfer 5.1 software for volumetric analysis. A subpopulation had MRI performed also at age 15, and for this group changes in brain volumes with age were examined. RESULTS The VLBW subjects had smaller brain volumes, especially of thalamus, globus pallidus and parts of the corpus callosum, and larger lateral ventricles than controls at age 20. However, no significant group differences in longitudinal change from age 15 to 20 were observed. The most immature and smallest VLBW subjects at birth, and those with the highest perinatal morbidity, showed most pronounced volume deviations. Positive associations between several brain volumes and full IQ, as well as three of four IQ indices in the VLBW group, were observed. CONCLUSION Reduced volumes of grey and white matter and ventricular dilatation in VLBW young adults may indicate permanent effects on brain development from perinatal brain injury with influence on later cognitive function.
Collapse
|
150
|
Brittain PJ, Froudist Walsh S, Nam KW, Giampietro V, Karolis V, Murray RM, Bhattacharyya S, Kalpakidou A, Nosarti C. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task. NEUROIMAGE-CLINICAL 2014; 6:54-63. [PMID: 25379416 PMCID: PMC4215530 DOI: 10.1016/j.nicl.2014.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 10/25/2022]
Abstract
Very preterm birth (VPT; < 33 weeks of gestation) is associated with an increased risk of learning disability, which contributes to more VPT-born children repeating grades and underachieving in school. Learning problems associated with VPT birth may be caused by pathophysiological alterations in neurodevelopment resulting from perinatal brain insult; however, adaptive neuroplastic processes may subsequently occur in the developing preterm brain which ameliorate, to an extent, the potential sequelae of altered neurophysiology. Here, we used functional magnetic resonance imaging (fMRI) to compare neuronal activation in 24 VPT individuals and 22 controls (CT) in young adulthood during a learning task consisting of the encoding and subsequent recognition of repeated visual paired associates. Structural MRI data were also collected and analysed in order to explore possible structure-function associations. Whilst the two groups did not differ in their learning ability, as demonstrated by their capacity to recognize previously-seen and previously-unseen visual pairs, between-group differences in linear patterns of Blood Oxygenation Level Dependant (BOLD) activity were observed across the four repeated blocks of the task for both the encoding and recognition conditions, suggesting that the way learning takes place differs between the two groups. During encoding, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the cerebellum, the anterior cingulate gyrus, the midbrain/substantia nigra, medial temporal (including parahippocampal) gyrus and inferior and superior frontal gyri. During the recognition condition, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the claustrum and the posterior cerebellum. Structural analysis revealed smaller grey matter volume in right middle temporal gyrus in VPT individuals compared to controls, however volume in this region was not significantly associated with functional activation. These results demonstrate that although cognitive task performance between VPT individuals and controls may be comparable on certain measures, differences in BOLD signal may also be evident, some of which could represent compensatory neural processes following VPT-related brain insult.
Collapse
Affiliation(s)
- Philip J Brittain
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Sean Froudist Walsh
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Kie-Woo Nam
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Vyacheslav Karolis
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Robin M Murray
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Anastasia Kalpakidou
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Neurodevelopment and Mental Health Group, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|