101
|
Jones BC, Kelley LC, Loskutov YV, Marinak KM, Kozyreva VK, Smolkin MB, Pugacheva EN. Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior. Mol Cancer Res 2017; 15:670-682. [PMID: 28235899 DOI: 10.1158/1541-7786.mcr-16-0411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/14/2016] [Accepted: 02/04/2017] [Indexed: 01/22/2023]
Abstract
Commonly upregulated in human cancers, the scaffolding protein NEDD9/HEF1 is a known regulator of mesenchymal migration and cancer cell plasticity. However, the functional role of NEDD9 as a regulator of different migration/invasion modes in the context of breast cancer metastasis is currently unknown. Here, it is reported that NEDD9 is necessary for both mesenchymal and amoeboid individual cell migration/invasion in triple-negative breast cancer (TNBC). NEDD9 deficiency results in acquisition of the amoeboid morphology, but severely limits all types of cell motility. Mechanistically, NEDD9 promotes mesenchymal migration via VAV2-dependent Rac1 activation, and depletion of VAV2 impairs the ability of NEDD9 to activate Rac1. In addition, NEDD9 supports a mesenchymal phenotype through stimulating polymerization of actin via promoting CTTN phosphorylation in an AURKA-dependent manner. Interestingly, an increase in RhoA activity in NEDD9-depleted cells does not facilitate a switch to functional amoeboid motility, indicating a role of NEDD9 in the regulation of downstream RhoA signaling effectors. Simultaneous depletion of NEDD9 or inhibition of AURKA in combination with inhibition of the amoeboid driver ROCK results in an additional decrease in cancer cell migration/invasion. Finally, we confirmed that a dual targeting strategy is a viable and efficient therapeutic approach to hinder the metastasis of breast cancer in xenograft models, showcasing the important need for further clinical evaluation of this regimen to impede the spread of disease and improve patient survival.Implications: This study provides new insight into the therapeutic benefit of combining NEDD9 depletion with ROCK inhibition to reduce tumor cell dissemination and discovers a new regulatory role of NEDD9 in the modulation of VAV2-dependent activation of Rac1 and actin polymerization. Mol Cancer Res; 15(6); 670-82. ©2017 AACR.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Laura C Kelley
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Yuriy V Loskutov
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kristina M Marinak
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Varvara K Kozyreva
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
102
|
Coelho NM, Arora PD, van Putten S, Boo S, Petrovic P, Lin AX, Hinz B, McCulloch CA. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction. Cell Rep 2017; 18:1774-1790. [DOI: 10.1016/j.celrep.2017.01.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
|
103
|
Abstract
Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
104
|
Lehmann S, te Boekhorst V, Odenthal J, Bianchi R, van Helvert S, Ikenberg K, Ilina O, Stoma S, Xandry J, Jiang L, Grenman R, Rudin M, Friedl P. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells. Curr Biol 2017; 27:392-400. [DOI: 10.1016/j.cub.2016.11.057] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/27/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
105
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
106
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
107
|
Bon E, Driffort V, Gradek F, Martinez-Caceres C, Anchelin M, Pelegrin P, Cayuela ML, Marionneau-Lambot S, Oullier T, Guibon R, Fromont G, Gutierrez-Pajares JL, Domingo I, Piver E, Moreau A, Burlaud-Gaillard J, Frank PG, Chevalier S, Besson P, Roger S. SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer. Nat Commun 2016; 7:13648. [PMID: 27917859 PMCID: PMC5150224 DOI: 10.1038/ncomms13648] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed ‘mesenchymal' and ‘amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the β4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced β4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing β4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid–mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of β4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/β4 represents a metastasis-suppressor gene. The capacity of cancer cells to migrate is intimately linked to their ability to induce metastasis. Here the authors show that the sodium channel β4 subunit regulates breast cancer cell migration via inhibition of RhoA activation, independently from its function as an auxiliary protein of the sodium channel.
Collapse
Affiliation(s)
- Emeline Bon
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Virginie Driffort
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Frédéric Gradek
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Carlos Martinez-Caceres
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Monique Anchelin
- Telomerase, Cancer and Aging Group, Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Pablo Pelegrin
- Inflammation and Experimental Surgery Unit, CIBERehd, Murcia's BioHealth Research Institute IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | - Maria-Luisa Cayuela
- Telomerase, Cancer and Aging Group, Hospital Virgen de la Arrixaca, E-30120 Murcia, Spain
| | | | - Thibauld Oullier
- Cancéropôle du Grand Ouest, Plateforme In Vivo, 44000 Nantes, France
| | - Roseline Guibon
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Gaëlle Fromont
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Jorge L Gutierrez-Pajares
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Isabelle Domingo
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Eric Piver
- CHRU de Tours, 2 Boulevard Tonnellé, 37000 Tours, France.,Inserm, U966, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Alain Moreau
- Inserm, U966, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Laboratoire de Biologie Cellulaire-Microscopie Electronique, Faculté de Médecine, Université François-Rabelais de Tours, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe G Frank
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences Pharmaceutiques, Université François-Rabelais de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences Pharmaceutiques, Université François-Rabelais de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.,UFR Sciences et Techniques, Département de Physiologie Animale, Université François-Rabelais de Tours, Parc de Grandmont, 37200 Tours, France.,Institut Universitaire de France, 1, Rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
108
|
Martin E, Ouellette MH, Jenna S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol 2016; 215:483-498. [PMID: 27821782 PMCID: PMC5119937 DOI: 10.1083/jcb.201604015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 01/13/2023] Open
Abstract
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell-cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis.
Collapse
Affiliation(s)
- Emmanuel Martin
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Marie-Hélène Ouellette
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Sarah Jenna
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
109
|
Sun TY, Haberman AM, Greco V. Preclinical Advances with Multiphoton Microscopy in Live Imaging of Skin Cancers. J Invest Dermatol 2016; 137:282-287. [PMID: 27847119 DOI: 10.1016/j.jid.2016.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023]
Abstract
Conventional, static analyses have historically been the bedrock and tool of choice for the study of skin cancers. Over the past several years, in vivo imaging of tumors using multiphoton microscopy has emerged as a powerful preclinical tool for revealing detailed cellular behaviors from the earliest moments of tumor development to the final steps of metastasis. Multiphoton microscopy allows for deep tissue penetration with relatively minor phototoxicity, rendering it an effective tool for the long-term observation of tumor evolution. This review highlights some of the recent preclinical insights gained using multiphoton microscopy and suggests future advances that could enhance its power in revealing the mysteries of skin tumor biology.
Collapse
Affiliation(s)
- Thomas Yang Sun
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA; Departments of Dermatology and Cell Biology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
110
|
The cancer/testis antigen MAGEC2 promotes amoeboid invasion of tumor cells by enhancing STAT3 signaling. Oncogene 2016; 36:1476-1486. [PMID: 27775077 DOI: 10.1038/onc.2016.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The biological function of MAGEC2, a cancer/testis antigen highly expressed in various cancers, remains largely unknown. Here we demonstrate that expression of MAGEC2 induces rounded morphology and amoeboid-like movement of tumor cells in vitro and promotes tumor metastasis in vivo. The pro-metastasis effect of MAGEC2 was mediated by signal transducer and activator of transcription 3 (STAT3) activation. Mechanistically, MAGEC2 interacts with STAT3 and inhibits the polyubiquitination and proteasomal degradation of STAT3 in the nucleus of tumor cells, resulting in accumulation of phosphorylated STAT3 and enhanced transcriptional activity. Notably, expression levels of MAGEC2 and phosphorylated STAT3 are positively correlated and both are associated with incidence of metastasis in human hepatocellular carcinoma. This study not only reveals a previously unappreciated role of MAGEC2 in promoting tumor metastasis, but also identifies a new molecular mechanism by which MAGEC2 sustains hyperactivation of STAT3 in the nucleus of tumor cells. Thus, MAGEC2 may represent a new antitumor metastasis target for treatment of cancer.
Collapse
|
111
|
Mak M, Spill F, Kamm RD, Zaman MH. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. J Biomech Eng 2016; 138:021004. [PMID: 26639083 DOI: 10.1115/1.4032188] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.
Collapse
|
112
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|
113
|
de Miguel FJ, Pajares MJ, Martínez-Terroba E, Ajona D, Morales X, Sharma RD, Pardo FJ, Rouzaut A, Rubio A, Montuenga LM, Pio R. A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Mol Oncol 2016; 10:1437-1449. [PMID: 27555542 DOI: 10.1016/j.molonc.2016.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/14/2023] Open
Abstract
Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.
Collapse
Affiliation(s)
- Fernando J de Miguel
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain
| | - María J Pajares
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Elena Martínez-Terroba
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Ajona
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Xabier Morales
- Program in Immunology and Immunotherapy, CIMA, 31008 Pamplona, Spain
| | - Ravi D Sharma
- Group of Bioinformatics, CEIT and TECNUN, University of Navarra, 20018 San Sebastian, Spain
| | - Francisco J Pardo
- Department of Pathology, Clinica Universidad de Navarra, 31080 Pamplona, Spain
| | - Ana Rouzaut
- Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain; Program in Immunology and Immunotherapy, CIMA, 31008 Pamplona, Spain
| | - Angel Rubio
- Group of Bioinformatics, CEIT and TECNUN, University of Navarra, 20018 San Sebastian, Spain
| | - Luis M Montuenga
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Histology and Pathology, School of Medicine, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain.
| | - Ruben Pio
- Program in Solid Tumors and Biomarkers, CIMA, 31008 Pamplona, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, 31008 Pamplona, Spain; Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
114
|
Abstract
Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom WC1E 6BT; .,Institute for the Physics of Living Systems, University College London, London, United Kingdom, WC1E 6BT
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| |
Collapse
|
115
|
Dinicola S, Fabrizi G, Masiello MG, Proietti S, Palombo A, Minini M, Harrath AH, Alwasel SH, Ricci G, Catizone A, Cucina A, Bizzarri M. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Exp Cell Res 2016; 345:37-50. [DOI: 10.1016/j.yexcr.2016.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
|
116
|
Kopanska KS, Alcheikh Y, Staneva R, Vignjevic D, Betz T. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion. PLoS One 2016; 11:e0156442. [PMID: 27271249 PMCID: PMC4896628 DOI: 10.1371/journal.pone.0156442] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/13/2016] [Indexed: 01/08/2023] Open
Abstract
The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM) dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid’s surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor.
Collapse
Affiliation(s)
- Katarzyna S. Kopanska
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005, Paris, France
- Centre National de la Recherche Scientifique, UMR168, 25 rue d'Ulm, 75248 Paris cedex 05, France
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Yara Alcheikh
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005, Paris, France
- Centre National de la Recherche Scientifique, UMR168, 25 rue d'Ulm, 75248 Paris cedex 05, France
| | - Ralitza Staneva
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Danijela Vignjevic
- Institute Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Timo Betz
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005, Paris, France
- Centre National de la Recherche Scientifique, UMR168, 25 rue d'Ulm, 75248 Paris cedex 05, France
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
- * E-mail:
| |
Collapse
|
117
|
Gandalovičová A, Vomastek T, Rosel D, Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 2016; 7:25022-49. [PMID: 26872368 PMCID: PMC5041887 DOI: 10.18632/oncotarget.7214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology, Academy of Sciences of The Czech Republic, Videňská, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| |
Collapse
|
118
|
Gefen A, Weihs D. Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells. J Biomech 2016; 49:1321-1329. [DOI: 10.1016/j.jbiomech.2015.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/28/2022]
|
119
|
Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res 2016; 5. [PMID: 27158478 PMCID: PMC4856114 DOI: 10.12688/f1000research.7909.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the spread of cancer cells around the body and the cause of the majority of cancer deaths. Metastasis is a very complex process in which cancer cells need to dramatically modify their cytoskeleton and cope with different environments to successfully colonize a secondary organ. In this review, we discuss recent findings pointing at Rho-ROCK or actomyosin force (or both) as major drivers of many of the steps required for metastatic success. We propose that these are important drug targets that need to be considered in the clinic to palliate metastatic disease.
Collapse
Affiliation(s)
- Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Gaia Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Fanshawe Bruce
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, London, SE1 7EH, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
120
|
Boateng LR, Bennin D, De Oliveira S, Huttenlocher A. Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. J Biol Chem 2016; 291:13987-13998. [PMID: 27129278 DOI: 10.1074/jbc.m116.725739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Mammalian actin-binding protein-1 (mAbp1) is an adaptor protein that binds actin and modulates scission during endocytosis. Recent studies suggest that mAbp1 impairs cell invasion; however, the mechanism for the inhibitory effects of mAbp1 remain unclear. We performed a yeast two-hybrid screen and identified the adaptor protein, FHL2, as a novel binding partner that interacts with the N-terminal actin depolymerizing factor homology domain (ADFH) domain of mAbp1. Here we report that depletion of mAbp1 or ectopic expression of the ADFH domain of mAbp1 increased Rho GTPase signaling and breast cancer cell invasion. Moreover, cell invasion induced by the ADFH domain of mAbp1 required the expression of FHL2. Taken together, our findings show that mAbp1 and FHL2 are novel binding partners that differentially regulate Rho GTPase signaling and MTLn3 breast cancer cell invasion.
Collapse
Affiliation(s)
- Lindsy R Boateng
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - David Bennin
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sofia De Oliveira
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706
| | - Anna Huttenlocher
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
121
|
Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 2016; 7:10997. [PMID: 26975831 PMCID: PMC4796365 DOI: 10.1038/ncomms10997] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
Collapse
|
122
|
Tumor-induced remote ECM network orientation steers angiogenesis. Sci Rep 2016; 6:22580. [PMID: 26931404 PMCID: PMC4773852 DOI: 10.1038/srep22580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
Tumor angiogenesis promotes tumor growth and metastasis. Here, we use automated sequential microprinting of tumor and endothelial cells in extracellular matrix (ECM) scaffolds to study its mechanical aspects. Quantitative reflection microscopy shows that tumor spheroids induce radial orientation of the surrounding collagen fiber network up to a distance of five times their radius. Across a panel of ~20 different human tumor cell lines, remote collagen orientation is correlated with local tumor cell migration behavior. Tumor induced collagen orientation requires contractility but is remarkably resistant to depletion of collagen-binding integrins. Microvascular endothelial cells undergo directional migration towards tumor spheroids once they are within the tumor-oriented collagen fiber network. Laser ablation experiments indicate that an intact physical connection of the oriented network with the tumor spheroid is required for mechanical sensing by the endothelial cells. Together our findings indicate that, in conjunction with described activities of soluble angiogenic factors, remote physical manipulation of the ECM network by the tumor can help to steer angiogenesis.
Collapse
|
123
|
Zeng Y, Xie H, Qiao Y, Wang J, Zhu X, He G, Li Y, Ren X, Wang F, Liang L, Ding Y. Formin-like2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer. Cancer Sci 2016; 106:1385-93. [PMID: 26258642 PMCID: PMC4638017 DOI: 10.1111/cas.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/16/2015] [Accepted: 08/02/2015] [Indexed: 12/26/2022] Open
Abstract
Formin-like2 (FMNL2) is a member of the diaphanous-related formins family, which act as effectors and upstream modulators of Rho GTPases signaling and control the actin-dependent processes, such as cell motility or invasion. FMNL2 has been identified as promoting the motility and metastasis in colorectal carcinoma (CRC). However, whether FMNL2 regulates Rho signaling to promote cancer cell invasion remains unclear. In this study, we demonstrated an essential role for FMNL2 in the activations of Rho/ROCK pathway, SRF transcription or actin assembly, and subsequent CRC cell invasion. FMNL2 could activate Rho/ROCK pathway, and required ROCK to promote CRC cell invasion. Moreover, FMNL2 promoted the formation of filopodia and stress fiber, and activated the SRF transcription in a Rho-dependent manner. We also demonstrated that FMNL2 was necessary for LPA-induced invasion, RhoA/ROCK activation, actin assembly and SRF activation. FMNL2 was an essential component of LPA signal transduction toward RhoA by directly interacting with LARG. LARG silence inhibited RhoA/ROCK pathway and CRC cell invasion. Collectively, these data indicate that FMNL2, acting as upstream of RhoA by interacting with LARG, can promote actin assembly and CRC cell invasion through a Rho/ROCK-dependent mechanism.
Collapse
Affiliation(s)
- Yuanfeng Zeng
- Department of Pathology, Southern Medical University, Guangzhou, China.,Department of Pathology, the People's Hospital, Nanchang, China
| | - Huijun Xie
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yudan Qiao
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jianmei Wang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiling Zhu
- Department of Pathology, Southern Medical University, Guangzhou, China.,Department of Oncology, General Hospital of Armed Police Forces, Beijing, China
| | - Guoyang He
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yuling Li
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiaoli Ren
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Feifei Wang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
124
|
Konen J, Wilkinson S, Lee B, Fu H, Zhou W, Jiang Y, Marcus AI. LKB1 kinase-dependent and -independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion. Mol Biol Cell 2016; 27:1069-84. [PMID: 26864623 PMCID: PMC4814216 DOI: 10.1091/mbc.e15-08-0569] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase-mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment.
Collapse
Affiliation(s)
- Jessica Konen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322
| | - Scott Wilkinson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302
| | - Haian Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Department of Pharmacology, Emory University, Atlanta, GA 30322
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322
| |
Collapse
|
125
|
Jerrell RJ, Parekh A. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 2016; 84:119-129. [PMID: 26826790 DOI: 10.1016/j.biomaterials.2016.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/17/2023]
Abstract
ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.
Collapse
Affiliation(s)
- Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
126
|
Herraiz C, Calvo F, Pandya P, Cantelli G, Rodriguez-Hernandez I, Orgaz JL, Kang N, Chu T, Sahai E, Sanz-Moreno V. Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination. J Natl Cancer Inst 2016; 108:djv289. [PMID: 26464464 PMCID: PMC4712681 DOI: 10.1093/jnci/djv289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/22/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Abnormal cell migration and invasion underlie metastasis, and actomyosin contractility is a key regulator of tumor invasion. The links between cancer migratory behavior and DNA damage are poorly understood. METHODS Using 3D collagen systems to recapitulate melanoma extracellular matrix, we analyzed the relationship between the actomyosin cytoskeleton of migrating cells and DNA damage. We used multiple melanoma cell lines and microarray analysis to study changes in gene expression and in vivo intravital imaging (n = 7 mice per condition) to understand how DNA damage impacts invasive behavior. We used Protein Tissue Microarrays (n = 164 melanomas) and patient databases (n = 354 melanoma samples) to investigate the associations between markers of DNA damage and actomyosin cytoskeletal features. Data were analyzed with Student's and multiple t tests, Mann-Whitney's test, one-way analysis of variance, and Pearson correlation. All statistical tests were two-sided. RESULTS Melanoma cells with low levels of Rho-ROCK-driven actomyosin are subjected to oxidative stress-dependent DNA damage and ATM-mediated p53 protein stabilization. This results in a specific transcriptional signature enriched in DNA damage/oxidative stress responsive genes, including Tumor Protein p53 Inducible Protein 3 (TP53I3 or PIG3). PIG3, which functions in DNA damage repair, uses an unexpected catalytic mechanism to suppress Rho-ROCK activity and impair tumor invasion in vivo. This regulation was suppressed by antioxidants. Furthermore, PIG3 levels decreased while ROCK1/2 levels increased in human metastatic melanomas (ROCK1 vs PIG3; r = -0.2261, P < .0001; ROCK2 vs PIG3: r = -0.1381, P = .0093). CONCLUSIONS The results suggest using Rho-kinase inhibitors to reactivate the p53-PIG3 axis as a novel therapeutic strategy; we suggest that the use of antioxidants in melanoma should be very carefully evaluated.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Fernando Calvo
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Pahini Pandya
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Gaia Cantelli
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Irene Rodriguez-Hernandez
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Jose L Orgaz
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - NaRa Kang
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Tinghine Chu
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Erik Sahai
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH)
| | - Victoria Sanz-Moreno
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH).
| |
Collapse
|
127
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
128
|
Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces. Clin Exp Metastasis 2015; 33:151-65. [PMID: 26567111 PMCID: PMC4761374 DOI: 10.1007/s10585-015-9765-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded ‘amoeboid-like’ mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar ‘mesenchymal-like’ mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.
Collapse
|
129
|
Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex. Sci Rep 2015; 5:16432. [PMID: 26561036 PMCID: PMC4642337 DOI: 10.1038/srep16432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023] Open
Abstract
A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.
Collapse
|
130
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|
131
|
Sun W, Lim CT, Kurniawan NA. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. J R Soc Interface 2015; 11:rsif.2014.0638. [PMID: 25100319 DOI: 10.1098/rsif.2014.0638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings.
Collapse
Affiliation(s)
- Wei Sun
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | | |
Collapse
|
132
|
Wang ZM, Yang DS, Liu J, Liu HB, Ye M, Zhang YF. ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour Biol 2015; 37:3757-64. [PMID: 26468018 DOI: 10.1007/s13277-015-4115-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
The objective of this study is to determine the effects of Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y-27632 on the growth, invasion, and migration of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma (TSCC). The methods of the study are as follows: After being routinely cultured for 24 h, Tca8113 and CAL-27 cells were treated with Y-27632 solution. The morphological change of Y-27632-treated cells was observed under an optical microscope and an inverted microscope; MTT assay was performed to measure the optical density (OD) of cells and calculate cell growth inhibition rate; the change of apoptosis was detected by AnnexinV-FITC/PI assay; cell invasion and migration were measured by Transwell assay. The results were as follows: (1) With increasing concentration of Y-27632, cell morphology changed and cell apoptosis appeared; (2) MTT assay showed that inhibition effect of Y-27632 on Tca8113 and CAL-27 cells was enhanced with increasing concentrations and time (all P < 0.01); (3) Apoptosis showed that, compared with controls, the number of apoptosis cells in experimental groups was significantly increased (all P < 0.01). Apoptosis rate was elevated with increasing concentrations of Y-27632; (4) Transwell assay showed, after a treatment with Y-27632, the number of migrated and invaded Tca8113 and CAL-27 cells in each group was statistically different (all P < 0.01); compared with controls, the number of migrated cell in groups treated with Y-27632 was decreased and less Tca8113 and CAL-27 cells in experimental groups passed through polycarbonate membrane (all P < 0.05). The study concludes that Y-27632 can inhibit the growth, invasion, and migration of Tca8113 and CAL-27 cells, suggesting that Y-27632 may be therapeutically useful in TSCC.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Dong-Sheng Yang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jie Liu
- Experimental Technology Center of China Medical University, No. 77 Puhe Road, Shenbeixin District, Shenyang, 110122, China
| | - Hong-Bo Liu
- Department of Statistics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbeixin District, Shenyang, 110122, China
| | - Ming Ye
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu-Fei Zhang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
133
|
Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep 2015; 5:14748. [PMID: 26458510 PMCID: PMC4602187 DOI: 10.1038/srep14748] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022] Open
Abstract
Tumor cell invasion requires the molecular and physical adaptation of both the cell and its microenvironment. Here we show that tumor cells are able to switch between the use of microvesicles and invadopodia to facilitate invasion through the extracellular matrix. Invadopodia formation accompanies the mesenchymal mode of migration on firm matrices and is facilitated by Rac1 activation. On the other hand, during invasion through compliant and deformable environments, tumor cells adopt an amoeboid phenotype and release microvesicles. Notably, firm matrices do not support microvesicle release, whereas compliant matrices are not conducive to invadopodia biogenesis. Furthermore, Rac1 activation is required for invadopodia function, while its inactivation promotes RhoA activation and actomyosin contractility required for microvesicle shedding. Suppression of RhoA signaling blocks microvesicle formation but enhances the formation of invadopodia. Finally, we describe Rho-mediated pathways involved in microvesicle biogenesis through the regulation of myosin light chain phosphatase. Our findings suggest that the ability of tumor cells to switch between the aforementioned qualitatively distinct modes of invasion may allow for dissemination across different microenvironments.
Collapse
|
134
|
Deng S, Wang W, Li X, Zhang P. Common genetic polymorphisms in pre-microRNAs and risk of bladder cancer. World J Surg Oncol 2015; 13:297. [PMID: 26458899 PMCID: PMC4603775 DOI: 10.1186/s12957-015-0683-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
Background At present, inconsistent association between single nucleotide polymorphism (SNP) in pre-miRNAs (hsa-mir-196a2 rs11614913 C/T, hsa-mir-499 rs3746444 A/G, and hsa-mir-146a rs2910164 C/G) and bladder cancer were obtained in limited studies. We performed a case–control study to test whether these three common polymorphisms are associated with bladder cancer. One hundred fifty-nine patients affected by bladder cancer and 298 unrelated healthy subjects were enrolled in the study. Methods Using polymerase chain reaction–restriction fragment length polymorphism assay (PCR–RFLP), genotypes of these three SNPs were determined, and their associations with bladder cancer, as well as with clinic pathological factors, and tumor progression were analyzed. Results No association between bladder cancer risk and variant allele of hsa-mir-196a2 rs11614913 C/T, hsa-mir-499 rs3746444 A/G, or hsa-mir-146a rs2910164 C/G was observed. Heterozygous genotype (CT genotype) of rs11614913 was associated with a significantly decreased bladder cancer risk (P = 0.004, OR = 0.56, 95 % CI = 0.38–0.83). Further stratified analyses showed that rs2910164 is associated with the tumor stage in a recessive model and with metastasis in a dominant model (P = 0.012, OR = 0.20, 95 % CI = 0.05–0.72 and P = 0.04, OR = 2.63, 95 % CI = 1.03–6.67, respectively). No association between hsa-mir-499 rs3746444 A/G and bladder cancer was observed. Conclusions Our results suggested hsa-mir-196a2 rs11614913 C/T is associated with a significantly decreased risk of bladder cancer and hsa-mir-146a rs2910164 GG genotype is associated with clinical stage and metastasis in bladder cancer.
Collapse
Affiliation(s)
- Shi Deng
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxuexiang Street, Chengdu, 610041, PR China.
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Chengdu, PR China.
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxuexiang Street, Chengdu, 610041, PR China.
| | - Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxuexiang Street, Chengdu, 610041, PR China.
| |
Collapse
|
135
|
Dufour AC, Olivo-Marin JC, Guillen N. Amoeboid movement in protozoan pathogens. Semin Cell Dev Biol 2015; 46:128-34. [PMID: 26459974 DOI: 10.1016/j.semcdb.2015.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, is a protozoan parasite characterised by its amoeboid motility, which is essential to its survival and invasion of the human host. Elucidating the molecular mechanisms leading to invasion of human tissues by E. histolytica requires a quantitative understanding of how its cytoskeleton deforms and tailors its mode of migration to the local microenvironment. Here we review the wide range of methods available to extract biophysical information from amoeboid cells, from interventional techniques to computational modelling approaches, and discuss how recent developments in bioimaging and bioimage informatics can complement our understanding of cellular morphodynamics at the intracellular level.
Collapse
Affiliation(s)
- Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, Department of Cell Biology & Infection, Paris, France; INSERM U786, Paris, France.
| |
Collapse
|
136
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
137
|
Krause M, Wolf K. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability. Cell Adh Migr 2015; 9:357-66. [PMID: 26301444 DOI: 10.1080/19336918.2015.1061173] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Efficient tumor cell invasion into the surrounding desmoplastic stroma is a hallmark of cancer progression and involves the navigation through available small tissue spaces existent within the dense stromal network. Such navigation includes the reciprocal adaptation of the moving tumor cell, including the nucleus as largest and stiffest organelle, to pre-existent or de-novo generated extracellular matrix (ECM) gaps, pores and trails within stromal compartments. Within the context of migration, we briefly summarize physiological and tumor-related changes in ECM geometries as well as tissue proteolysis. We then focus on mechanisms that ensure the successful translocation of a nucleus through a confining pore by cytoskeleton-mediated coupling, as well as regulators of cell and nuclear deformability such as chromatin organization and nuclear lamina expression. In summary, understanding dynamic nuclear mechanics during migration in response to confined space will add to a better conceptual appreciation of cancer invasion and progression.
Collapse
Affiliation(s)
- Marina Krause
- a Department of Cell Biology ; Radboud University Medical Center ; Nijmegen , The Netherlands
| | - Katarina Wolf
- a Department of Cell Biology ; Radboud University Medical Center ; Nijmegen , The Netherlands
| |
Collapse
|
138
|
Morley S, Hager MH, Pollan SG, Knudsen B, Di Vizio D, Freeman MR. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian J Androl 2015; 16:530-5. [PMID: 24589458 PMCID: PMC4104075 DOI: 10.4103/1008-682x.122877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | | | | | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Medicine and Biomedical Sciences, and The Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA; Urological Diseases Research Center, Boston Children's Hospital; Department of Surgery, Harvard Medical School, Boston, MA and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
139
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
140
|
Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis 2015; 4:e163. [PMID: 26280654 PMCID: PMC4632072 DOI: 10.1038/oncsis.2015.21] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/30/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer, the fourth most common noncutaneous malignancy in the United States, is characterized by high recurrence rate, with a subset of these cancers progressing to a deadly muscle invasive form of disease. Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA, thus potentially modulating signaling pathways in recipient cells. Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion and gain migratory and invasive properties to become mesenchymal stem cells. EMT has been implicated in the initiation of metastasis for cancer progression. We investigated the ability of bladder cancer-shed exosomes to induce EMT in urothelial cells. Exosomes were isolated by ultracentrifugation from T24 or UMUC3 invasive bladder cancer cell conditioned media or from patient urine or bladder barbotage samples. Exosomes were then added to the urothelial cells and EMT was assessed. Urothelial cells treated with bladder cancer exosomes showed an increased expression in several mesenchymal markers, including α-smooth muscle actin, S100A4 and snail, as compared with phosphate-buffered saline (PBS)-treated cells. Moreover, treatment of urothelial cells with bladder cancer exosomes resulted in decreased expression of epithelial markers E-cadherin and β-catenin, as compared with the control, PBS-treated cells. Bladder cancer exosomes also increased the migration and invasion of urothelial cells, and this was blocked by heparin pretreatment. We further showed that exosomes isolated from patient urine and bladder barbotage samples were able to induce the expression of several mesenchymal markers in recipient urothelial cells. In conclusion, the research presented here represents both a new insight into the role of exosomes in transition of bladder cancer into invasive disease, as well as an introduction to a new platform for exosome research in urothelial cells.
Collapse
|
141
|
Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation. Oncogene 2015; 35:2287-98. [PMID: 26257063 DOI: 10.1038/onc.2015.291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023]
Abstract
The unique characteristic of head and neck squamous cell carcinoma (HNSCC) is that local invasion rather than distant metastasis is the major route for dissemination. Therefore, targeting the locally invasive cancer cells is more important than preventing systemic metastasis in HNSCC and other invasive-predominant cancers. We previously demonstrate a specific mechanism for HNSCC local invasion: the epithelial-mesenchymal transition (EMT) regulator Twist1 represses microRNA let-7i expression, leading to the activation of the small GTPase Rac1 and engendering the mesenchymal-mode movement in three-dimensional (3D) culture. However, targeting the EMT regulator is relatively difficult because of its transcription factor nature and the strategy for confining HNSCC invasion to facilitate local treatment is limited. Imipramine blue (IB) is a newly identified anti-invasive compound that effectively inhibits glioma invasion. Here we demonstrate that in HNSCC cells, a noncytotoxic dose of IB represses mesenchymal-mode migration in two-and-a-half-dimensional/3D culture system. IB suppresses EMT and stemness of HNSCC cells through inhibition of Twist1-mediated let-7i downregulation and Rac1 activation and the EMT signalling. Mechanistically, IB inhibits reactive oxygen species-induced nuclear factor-κB pathway activation. Importantly, IB promotes degradation of the EMT inducer Twist1 by enhancing F-box and leucine-rich repeat protein 14 (FBXL14)-mediated polyubiquitination of Twist1. Together, this study demonstrates the potent anti-invasion and EMT-inhibition effect of IB, suggesting the potential of IB in treating local invasion-predominant cancers.
Collapse
|
142
|
Grzincic EM, Murphy CJ. Gold Nanorods Indirectly Promote Migration of Metastatic Human Breast Cancer Cells in Three-Dimensional Cultures. ACS NANO 2015; 9:6801-6816. [PMID: 26118624 DOI: 10.1021/acsnano.5b03362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanomaterials are intensively studied for applications in disease detection, diagnosis and therapeutics, and this has motivated considerable research to determine their interaction with biomolecules, cells and cell behaviors. However, few studies look at how nanomaterials alter the extracellular matrix (ECM) and cell-ECM interactions. Nanomaterials in the body would interact with the entire cellular environment, and it is imperative to account for this when studying the impact of nanomaterials on living systems. Furthermore, recent evidence finds that migration rates of cells in 2D can be affected by nanomaterials, and uptake of the nanomaterials is not necessary to exert an effect. In this study, three-dimensional nested type I collagen matrices were utilized as a model ECM to study how gold nanorods affect the migration of MDA-MB-231 human breast cancer cells. Spontaneous cell migration through collagen containing gold nanorods was found to increase with increasing concentrations of gold nanorods, independent of intracellular uptake of the nanorods. Gold nanorods in the collagen matrix were found to alter collagen mechanical properties and structure, molecular diffusion, cellular adhesion, cell morphology, mode of migration and protease expression. Correlation between decreased cellular adhesion and rounded cell morphology and locomotion in nanorod-containing collagen suggests the induction of an amoeboid-like migratory phenotype.
Collapse
Affiliation(s)
- Elissa M Grzincic
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
143
|
Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Rep 2015; 5:12136. [PMID: 26179371 PMCID: PMC4503992 DOI: 10.1038/srep12136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors.
Collapse
|
144
|
Abstract
Systemic metastasis is the dissemination of cancer cells from the primary tumor to distant organs and is the primary cause of death in cancer patients. How do cancer cells leave the primary tumor mass? The ability of the tumor cells to form different types of actin-rich protrusions including invasive protrusions (invadopodia) and locomotory protrusions (lamellipodia [2D] or pseudopodia [3D]), facilitate the invasion and dissemination of the tumor cells. Rho-family of p21 small GTPases plays a direct role in regulating the actin dynamics in these intracellular compartments. Recent studies have shown that the signaling molecules including RhoC/p190RhoGEF/p190RhoGAP acts as a “molecular compass” in order to direct the spatial and temporal dynamics of the formation of these invasive and locomotory protrusions leading to efficient invasion.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA; Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA; Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA; Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine of Yeshiva University; Bronx, NY USA
| |
Collapse
|
145
|
Rubinstein B, Pinto IM. Epithelia migration: a spatiotemporal interplay between contraction and adhesion. Cell Adh Migr 2015; 9:340-4. [PMID: 26176587 PMCID: PMC4955367 DOI: 10.1080/19336918.2015.1008329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 10/23/2022] Open
Abstract
Epithelial tissues represent 60% of the cells that form the human body and where more than 90% of all cancers derived. Epithelia transformation and migration involve altered cell contractile mechanics powered by an actomyosin-based cytoskeleton and influenced by cell-cell and cell-extracellular matrix interactions. A balance between contractile and adhesive forces regulates a large number of cellular and tissue properties crucial for epithelia migration and tumorigenesis. In this review, the forces driving normal epithelia transformation into highly motile and invasive cells and tissues will be discussed.
Collapse
|
146
|
Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015; 36:13-22. [PMID: 26183445 DOI: 10.1016/j.ceb.2015.06.004] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/08/2015] [Accepted: 06/27/2015] [Indexed: 12/16/2022]
Abstract
Metastasis begins with the invasion of tumor cells into the stroma and migration toward the blood stream. Human pathology studies suggest that tumor cells invade collectively as strands, cords and clusters of cells into the stroma, which is dramatically reorganized during cancer progression. Cancer cells in intravital mouse models and in vitro display many 'modes' of migration, from single isolated cells with round or elongated phenotypes to loosely-/non-adherent 'streams' of cells or collective migration of cell strands and sheets. The tumor microenvironment, and in particular stroma organization, influences the mode and dynamics of invasion. Future studies will clarify how the combination of stromal network structure, tumor cell signaling and extracellular signaling cues influence cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Andrew G Clark
- Institut Curie, PSL Research University, 75005 Paris, France; CNRS, UMR144, 75005 Paris, France.
| | | |
Collapse
|
147
|
RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation via the RhoGEF GEF-H1. Sci Rep 2015; 5:11759. [PMID: 26152517 PMCID: PMC4495419 DOI: 10.1038/srep11759] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/18/2023] Open
Abstract
RalA and RalB proteins are key mediators of oncogenic Ras signaling in human oncogenesis. Herein we investigated the mechanistic contribution of Ral proteins to invasion of lung cancer A549 cells after induction of epithelial-mesenchymal transition (EMT) with TGFβ. We show that TGFβ-induced EMT promotes dissemination of A549 cells in a 2/3D assay, independently of proteolysis, by activating the Rho/ROCK pathway which generates actomyosin-dependent contractility forces that actively remodel the extracellular matrix, as assessed by Traction Force microscopy. RalB, but not RalA, is required for matrix deformation and cell dissemination acting via the RhoGEF GEF-H1, which associates with the Exocyst complex, a major Ral effector. Indeed, uncoupling of the Exocyst subunit Sec5 from GEF-H1 impairs RhoA activation, generation of traction forces and cell dissemination. These results provide a novel molecular mechanism underlying the control of cell invasion by RalB via a cross-talk with the Rho pathway.
Collapse
|
148
|
The regulatory roles of ROCK and MRCK kinases in the plasticity of cancer cell migration. Cancer Lett 2015; 361:185-96. [DOI: 10.1016/j.canlet.2015.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022]
|
149
|
Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, Marshall CJ. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res 2015; 75:2272-84. [PMID: 25840982 DOI: 10.1158/0008-5472.can-14-2156] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
Abstract
There is an urgent need to identify new therapeutic opportunities for metastatic melanoma. Fragment-based screening has led to the discovery of orally available, ATP-competitive AKT kinase inhibitors, AT13148 and CCT129254. These compounds also inhibit the Rho-kinases ROCK 1 and ROCK 2 and we show they potently inhibit ROCK activity in melanoma cells in culture and in vivo. Treatment of melanoma cells with CCT129254 or AT13148 dramatically reduces cell invasion, impairing both "amoeboid-like" and mesenchymal-like modes of invasion in culture. Intravital imaging shows that CCT129254 or AT13148 treatment reduces the motility of melanoma cells in vivo. CCT129254 inhibits melanoma metastasis when administered 2 days after orthotopic intradermal injection of the cells, or when treatment starts after metastases have arisen. Mechanistically, our data suggest that inhibition of ROCK reduces the ability of melanoma cells to efficiently colonize the lungs. These results suggest that these novel inhibitors of ROCK may be beneficial in the treatment of metastasis.
Collapse
Affiliation(s)
- Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom.
| | - Afshan McCarthy
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - John Caldwell
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Michelle D Garrett
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Maggie Yeo
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sandra Kuemper
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
150
|
Parker R, Vella LJ, Xavier D, Amirkhani A, Parker J, Cebon J, Molloy MP. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma. Front Oncol 2015; 5:95. [PMID: 26029660 PMCID: PMC4432663 DOI: 10.3389/fonc.2015.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023] Open
Abstract
The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype.
Collapse
Affiliation(s)
- Robert Parker
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Laura J Vella
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Dylan Xavier
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Jimmy Parker
- NHS Trust Southport and Ormskirk General Hospital , Ormskirk , UK
| | - Jonathan Cebon
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|