101
|
Marquardt S, Escalante-Chong R, Pho N, Wang J, Churchman LS, Springer M, Buratowski S. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 2014; 157:1712-23. [PMID: 24949978 DOI: 10.1016/j.cell.2014.04.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022]
Abstract
In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI/SNF, facilitated divergent transcription by promoting rapid nucleosome turnover. We propose that these chromatin-mediated effects control divergent transcription initiation, complementing downstream pathways linked to early termination and degradation of the noncoding RNAs.
Collapse
Affiliation(s)
- Sebastian Marquardt
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Renan Escalante-Chong
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Nam Pho
- Research Computing Group, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jue Wang
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
102
|
Kato M, Lin SJ. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 23:49-58. [PMID: 25096760 DOI: 10.1016/j.dnarep.2014.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
Collapse
Affiliation(s)
- Michiko Kato
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
103
|
Getting down to the core of histone modifications. Chromosoma 2014; 123:355-71. [PMID: 24789118 DOI: 10.1007/s00412-014-0465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The identification of an increasing number of posttranslationally modified residues within histone core domains is furthering our understanding of how nucleosome dynamics are regulated. In this review, we first discuss how the targeting of specific histone H3 core residues can directly influence the nucleosome structure and then apply this knowledge to provide functional reasoning for their localization to distinct genomic regions. While we focus mainly on transcriptional implications, the principles discussed in this review can also be applied to their roles in other cellular processes. Finally, we highlight some examples of how aberrant modifications of core histone residues can facilitate the pathogenesis of some diseases.
Collapse
|
104
|
Abstract
Lysine acetylation is a key mechanism that regulates chromatin structure; aberrant acetylation levels have been linked to the development of several diseases. Acetyl-lysine modifications create docking sites for bromodomains, which are small interaction modules found on diverse proteins, some of which have a key role in the acetylation-dependent assembly of transcriptional regulator complexes. These complexes can then initiate transcriptional programmes that result in phenotypic changes. The recent discovery of potent and highly specific inhibitors for the BET (bromodomain and extra-terminal) family of bromodomains has stimulated intensive research activity in diverse therapeutic areas, particularly in oncology, where BET proteins regulate the expression of key oncogenes and anti-apoptotic proteins. In addition, targeting BET bromodomains could hold potential for the treatment of inflammation and viral infection. Here, we highlight recent progress in the development of bromodomain inhibitors, and their potential applications in drug discovery.
Collapse
|
105
|
Hst3 is turned over by a replication stress-responsive SCF(Cdc4) phospho-degron. Proc Natl Acad Sci U S A 2014; 111:5962-7. [PMID: 24715726 DOI: 10.1073/pnas.1315325111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hst3 is the histone deacetylase that removes histone H3K56 acetylation. H3K56 acetylation is a cell-cycle- and damage-regulated chromatin marker, and proper regulation of H3K56 acetylation is important for replication, genomic stability, chromatin assembly, and the response to and recovery from DNA damage. Understanding the regulation of enzymes that regulate H3K56 acetylation is of great interest, because the loss of H3K56 acetylation leads to genomic instability. HST3 is controlled at both the transcriptional and posttranscriptional level. Here, we show that Hst3 is targeted for turnover by the ubiquitin ligase SCF(Cdc4) after phosphorylation of a multisite degron. In addition, we find that Hst3 turnover increases in response to replication stress in a Rad53-dependent way. Turnover of Hst3 is promoted by Mck1 activity in both conditions. The Hst3 degron contains two canonical Cdc4 phospho-degrons, and the phosphorylation of each of these is required for efficient turnover both in an unperturbed cell cycle and in response to replication stress.
Collapse
|
106
|
Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae. G3-GENES GENOMES GENETICS 2014; 4:1059-69. [PMID: 24700328 PMCID: PMC4065249 DOI: 10.1534/g3.114.011205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA damage response (DDR) is a dynamic process that is crucial for protecting the cell from challenges to genome integrity. Although many genome-wide studies in Saccharomyces cerevisiae have identified genes that contribute to resistance to DNA-damaging agents, more work is needed to elucidate the changes in genetic interaction networks in response to DNA lesions. Here we used conditional epistatic miniarray profiling to analyze the genetic interaction networks of the DDR genes RTT107, SLX4, and HRQ1 under three DNA-damaging conditions: camptothecin, hydroxyurea, and methyl methanesulfonate. Rtt107 and its interaction partner Slx4 are targets of the checkpoint kinase Mec1, which is central to the DDR-signaling cascades. Hrq1 recently was identified as a novel member of the RecQ helicase family in S. cerevisiae but is still poorly characterized. The conditional genetic networks that we generated revealed functional insights into all three genes and showed that there were varied responses to different DNA damaging agents. We observed that RTT107 had more genetic interactions under camptothecin conditions than SLX4 or HRQ1, suggesting that Rtt107 has an important role in response to this type of DNA lesion. Although RTT107 and SLX4 function together, they also had many distinct genetic interactions. In particular, RTT107 and SLX4 showed contrasting genetic interactions for a few genes, which we validated with independently constructed strains. Interestingly, HRQ1 had a genetic interaction profile that correlated with that of SLX4 and both were enriched for very similar gene ontology terms, suggesting that they function together in the DDR.
Collapse
|
107
|
Delgoshaie N, Tang X, Kanshin ED, Williams EC, Rudner AD, Thibault P, Tyers M, Verreault A. Regulation of the histone deacetylase Hst3 by cyclin-dependent kinases and the ubiquitin ligase SCFCdc4. J Biol Chem 2014; 289:13186-96. [PMID: 24648511 DOI: 10.1074/jbc.m113.523530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).
Collapse
Affiliation(s)
- Neda Delgoshaie
- From the Institute for Research in Immunology and Cancer, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Wierman MB, Smith JS. Yeast sirtuins and the regulation of aging. FEMS Yeast Res 2014; 14:73-88. [PMID: 24164855 PMCID: PMC4365911 DOI: 10.1111/1567-1364.12115] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/29/2022] Open
Abstract
The sirtuins are a phylogenetically conserved family of NAD(+) -dependent protein deacetylases that consume one molecule of NAD(+) for every deacetylated lysine side chain. Their requirement for NAD(+) potentially makes them prone to regulation by fluctuations in NAD(+) or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro-longevity factor for replicative life span (RLS), defined as the number of times a mother cell divides (buds) before senescing. Deleting SIR2 shortens RLS, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction (CR) on life span, not only in yeast, but also in higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as CR.
Collapse
Affiliation(s)
- Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
109
|
Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun 2014; 4:2203. [PMID: 23892279 PMCID: PMC3929392 DOI: 10.1038/ncomms3203] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022] Open
Abstract
Histone acetylation has long been determined as a highly dynamic modification associated with open chromatin and transcriptional activation. Here we develop a metabolic labelling scheme using stable isotopes to study the kinetics of acetylation turnover at 19 distinct lysines on histones H3, H4 and H2A. Using human HeLa S3 cells, the analysis reveals 12 sites of histone acetylation with fast turnover and 7 sites stable over a 30 h experiment. The sites showing fast turnover (anticipated from classical radioactive measurements of whole histones) have half-lives between ~1-2 h. To support this finding, we use a broad-spectrum deacetylase inhibitor to verify that only fast turnover sites display 2-10-fold increases in acetylation whereas long-lived sites clearly do not. Most of these stable sites lack extensive functional studies or localization within global chromatin, and their role in non-genetic mechanisms of inheritance is as yet unknown.
Collapse
|
110
|
Han J, Zhang H, Zhang H, Wang Z, Zhou H, Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 2014; 155:817-29. [PMID: 24209620 DOI: 10.1016/j.cell.2013.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 05/12/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
111
|
Desvoyes B, Fernández-Marcos M, Sequeira-Mendes J, Otero S, Vergara Z, Gutierrez C. Looking at plant cell cycle from the chromatin window. FRONTIERS IN PLANT SCIENCE 2014; 5:369. [PMID: 25120553 PMCID: PMC4110626 DOI: 10.3389/fpls.2014.00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- *Correspondence: Crisanto Gutierrez, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid 28049, Spain e-mail:
| |
Collapse
|
112
|
A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability. PLoS Genet 2013; 9:e1003899. [PMID: 24204308 PMCID: PMC3812082 DOI: 10.1371/journal.pgen.1003899] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023] Open
Abstract
Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations. Mutations strongly predispose humans to cancer and many other diseases. Despite significant progress, we still do not fully understand the molecular mechanisms that protect us from mutations. Human DNA is part of a highly organized complex called chromatin. Chromatin regulates our development, metabolism, and behavior. Special enzymes modify chromatin by the addition and removal of chemical groups. Acetylation and deacetylation of chromatin have been conserved during evolution. The involvement of chromatin and its modifications in the protection of DNA from mutations is poorly understood. The yeast Saccharomyces cerevisiae is an excellent model for studying the connection between chromatin modifications and mutations. Using this model, we found that the deacetylation and acetylation of chromatin on histone H3 lysine 56 are required for preventing a wide range of spontaneous mutations. Future studies will determine whether acetylation and deacetylation of chromatin are involved in protecting DNA from mutations in human cells.
Collapse
|
113
|
Froyd CA, Kapoor S, Dietrich F, Rusche LN. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. PLoS Genet 2013; 9:e1003935. [PMID: 24204326 PMCID: PMC3814328 DOI: 10.1371/journal.pgen.1003935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022] Open
Abstract
Deacetylases of the Sir2 or sirtuin family are thought to regulate life cycle progression and life span in response to nutrient availability. This family has undergone successive rounds of duplication and diversification, enabling the enzymes to perform a wide variety of biological functions. Two evolutionarily conserved functions of yeast Sir2 proteins are the generation of repressive chromatin in subtelomeric domains and the suppression of unbalanced recombination within the tandem rDNA array. Here, we describe the function of the Sir2 ortholog ClHst1 in the yeast Clavispora lusitaniae, an occasional opportunistic pathogen. ClHst1 was localized to the non-transcribed spacer regions of the rDNA repeats and deacetylated histones at these loci, indicating that, like other Sir2 proteins, ClHst1 modulates chromatin structure at the rDNA repeats. However, we found no evidence that ClHst1 associates with subtelomeric regions or impacts gene expression directly. This surprising observation highlights the plasticity of sirtuin function. Related yeast species, including Candida albicans, possess an additional Sir2 family member. Thus, it is likely that the ancestral Candida SIR2/HST1 gene was duplicated and subfunctionalized, such that HST1 retained the capacity to regulate rDNA whereas SIR2 had other functions, perhaps including the generation of subtelomeric chromatin. After subsequent species diversification, the SIR2 paralog was apparently lost in the C. lusitaniae lineage. Thus, C. lusitaniae presents an opportunity to discover how subtelomeric chromatin can be reconfigured.
Collapse
Affiliation(s)
- Cara A. Froyd
- Biochemistry Department, Duke University, Durham, North Carolina, United States of America
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Fred Dietrich
- Department of Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Laura N. Rusche
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
114
|
Martínez-Redondo P, Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 2013; 4:148-63. [PMID: 24020006 DOI: 10.1177/1947601913483767] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The members of the Sir2 family, or sirtuins, are major regulators of the response to different types of stress. The members of the family have adapted to increasing complexities throughout evolution and have become diversified by increasing their number, specificity, and localization and acquiring novel functions. Sirtuins have been consistently implicated in the cross-talk between the genomic information and environment from the prokaryotes onward. Evidence suggests that in the transition to eukaryotes, histones became one of the basic and most conserved targets of the family, to the extent that in yeast and mammals, sirtuins were originally described as NAD(+)-dependent histone deacetylases and classified as class III histone deacetylases. A growing number of studies have determined that sirtuins also target a wide range of nonhistone proteins. Many of these targets are also directly or indirectly related to chromatin regulation. The number of targets has grown considerably in the last decade but has provoked an ill-founded discussion that neglects the importance of histones as sirtuin targets. In this review, we summarize our knowledge regarding the range of sirtuin targets described to date and discuss the different functional implications of histone and nonhistone targets throughout evolution.
Collapse
Affiliation(s)
- Paloma Martínez-Redondo
- Cancer Epigenetics and Biology Program, Chromatin Biology Laboratory, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | | |
Collapse
|
115
|
Downey M, Knight B, Vashisht AA, Seller CA, Wohlschlegel JA, Shore D, Toczyski DP. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 2013; 23:1638-48. [PMID: 23973296 PMCID: PMC3982851 DOI: 10.1016/j.cub.2013.06.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND In eukaryotes, ribosome biosynthesis involves the coordination of ribosomal RNA and ribosomal protein (RP) production. In S. cerevisiae, the regulation of ribosome biosynthesis occurs largely at the level of transcription. The transcription factor Ifh1 binds at RP genes and promotes their transcription when growth conditions are favorable. Although Ifh1 recruitment to RP genes has been characterized, little is known about the regulation of promoter-bound Ifh1. RESULTS We used a novel whole-cell-extract screening approach to identify Spt7, a member of the SAGA transcription complex, and the RP transactivator Ifh1 as highly acetylated nonhistone species. We report that Ifh1 is modified by acetylation specifically in an N-terminal domain. These acetylations require the Gcn5 histone acetyltransferase and are reversed by the sirtuin deacetylases Hst1 and Sir2. Ifh1 acetylation is regulated by rapamycin treatment and stress and limits the ability of Ifh1 to act as a transactivator at RP genes. CONCLUSIONS Our data suggest a novel mechanism of regulation whereby Gcn5 functions to titrate the activity of Ifh1 following its recruitment to RP promoters to provide more than an all-or-nothing mode of transcriptional regulation. We provide insights into how the action of histone acetylation machineries converges with nutrient-sensing pathways to regulate important aspects of cell growth.
Collapse
Affiliation(s)
- Michael Downey
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - Britta Knight
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - Charles A. Seller
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Dr. South BSRB 377A, Los Angeles, California, 90095, USA
| | - David Shore
- Department of Molecular Biology, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, 1450 3 Street, San Francisco, California, 94158, U.S.A
| |
Collapse
|
116
|
Bosch-Presegué L, Vaquero A. Sirtuins in stress response: guardians of the genome. Oncogene 2013; 33:3764-75. [DOI: 10.1038/onc.2013.344] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022]
|
117
|
Oppikofer M, Kueng S, Gasser SM. SIR–nucleosome interactions: Structure–function relationships in yeast silent chromatin. Gene 2013; 527:10-25. [DOI: 10.1016/j.gene.2013.05.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
|
118
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
119
|
Acetylation of Chromatin-Associated Histone H3 Lysine 56 Inhibits the Development of Encysted Artemia Embryos. PLoS One 2013; 8:e68374. [PMID: 23840851 PMCID: PMC3686719 DOI: 10.1371/journal.pone.0068374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background As a response to harsh environments, the crustacean artemia produces diapause gastrula embryos (cysts), in which cell division and embryonic development are totally arrested. This dormant state can last for very long periods but be terminated by specific environmental stimuli. Thus, artemia is an ideal model organism in which to study cell cycle arrest and embryonic development. Principal Finding Our study focuses on the roles of H3K56ac in the arrest of cell cycle and development during artemia diapause formation and termination. We found that the level of H3K56ac on chromatin increased during diapause formation, and decreased upon diapause termination, remaining basal level throughout subsequent embryonic development. In both HeLa cells and artemia, blocking the deacetylation with nicotinamide, a histone deacetylase inhibitor, increased the level of H3K56ac on chromatin and induced an artificial cell cycle arrest. Furthermore, we found that this arrest of the cell cycle and development was induced by H3K56ac and dephosphorylation of the checkpoint protein, retinoblastoma protein. Conclusions/Significance These results have revealed the dynamic change in H3K56ac on chromatin during artemia diapause formation and termination. Thus, our findings provide insight into the regulation of cell division during arrest of artemia embryonic development and provide further insight into the functions of H3K56ac.
Collapse
|
120
|
Fiedler KL, Cotter RJ. Using glycinylation, a chemical derivatization technique, for the quantitation of ubiquitinated proteins. Anal Chem 2013; 85:5827-34. [PMID: 23682733 PMCID: PMC3713787 DOI: 10.1021/ac400398s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quantitation of lysine post-translational modifications (PTMs) by bottom-up mass spectrometry is convoluted by the need for analogous derivatives and the production of different tryptic peptides from the unmodified and modified versions of a protein. Chemical derivatization of lysines prior to enzymatic digestion circumvents these problems and has proven to be a successful method for lysine PTM quantitation. The most notable example is the use of deuteroacetylation to quantitate lysine acetylation. In this work, levels of lysine ubiquitination were quantitated using a structurally homologous label that is chemically similar to the diglycine (GlyGly) tag, which is left at the ubiquitination site upon trypsinolysis. The LC-MS analysis of a chemically equivalent monoglycine (Gly) tag that is analogous to the corresponding GlyGly tag proved that the monoglycine tag can be used for the quantitation of ubiquitination. A glycinylation protocol was then established for the derivatization of proteins to label unmodified lysine residues with a single glycine tag. Ubiquitin multimers were used to show that after glycinylation and tryptic digestion, the mass spectrometric response from the corresponding analogous tagged peptides could be compared for relative quantitation. For a proof of principle regarding the applicability of this technique to the analysis of ubiquitination in biological samples, the glycinylation technique was used to quantitate the increase in monoubiquitinated histone H2B that is observed in yeast which lacks the enzyme responsible for deubiquitinating H2B-K123, compared to wild-type yeast.
Collapse
Affiliation(s)
- Katherine L Fiedler
- Johns Hopkins University School of Medicine, Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular Sciences, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
121
|
Sites of acetylation on newly synthesized histone H4 are required for chromatin assembly and DNA damage response signaling. Mol Cell Biol 2013; 33:3286-98. [PMID: 23775118 DOI: 10.1128/mcb.00460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.
Collapse
|
122
|
Cotter RJ. High energy collisions on tandem time-of-flight mass spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:657-74. [PMID: 23519928 PMCID: PMC3664224 DOI: 10.1007/s13361-012-0518-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 05/15/2023]
Abstract
Long before the introduction of matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), Orbitraps, and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were, nonetheless, some clear advantages for sectors over their low collision energy counterparts. Time-of-flight (TOF) mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective, we recount our own journey to produce high performance TOFs and tandem TOFs, describing the basic theory, problems, and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages, and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging, and the characterization of microorganisms.
Collapse
Affiliation(s)
- Robert J Cotter
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
123
|
Fiedler KL, Bheda P, Dai J, Boeke JD, Wolberger C, Cotter RJ. A quantitative analysis of histone methylation and acetylation isoforms from their deuteroacetylated derivatives: application to a series of knockout mutants. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:608-15. [PMID: 23674285 PMCID: PMC3784001 DOI: 10.1002/jms.3198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
The core histones, H2A, H2B, H3 and H4, undergo post-translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono-, di- and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high-performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom-up liquid chromatography-mass spectrometric analysis. The deuteroacetylation of unmodified or mono-methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification 'cross-talk' by correlating different PTMs on the same histone tail.
Collapse
Affiliation(s)
- Katherine L Fiedler
- Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 2013; 340:195-9. [PMID: 23580526 DOI: 10.1126/science.1229758] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histone variant H2A.Z plays key roles in gene expression, DNA repair, and centromere function. H2A.Z deposition is controlled by SWR-C chromatin remodeling enzymes that catalyze the nucleosomal exchange of canonical H2A with H2A.Z. Here we report that acetylation of histone H3 on lysine 56 (H3-K56Ac) alters the substrate specificity of SWR-C, leading to promiscuous dimer exchange in which either H2A.Z or H2A can be exchanged from nucleosomes. This result was confirmed in vivo, where genome-wide analysis demonstrated widespread decreases in H2A.Z levels in yeast mutants with hyperacetylated H3K56. Our work also suggests that a conserved SWR-C subunit may function as a "lock" that prevents removal of H2A.Z from nucleosomes. Our study identifies a histone modification that regulates a chromatin remodeling reaction and provides insights into how histone variants and nucleosome turnover can be controlled by chromatin regulators.
Collapse
Affiliation(s)
- Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
125
|
Guan X, Rastogi N, Parthun MR, Freitas MA. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics 2013; 12:2048-59. [PMID: 23592332 DOI: 10.1074/mcp.m112.026716] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper we describe an approach that combines stable isotope labeling of amino acids in cells culture, high mass accuracy liquid chromatography tandem mass spectrometry and a novel data analysis approach to accurately determine relative peptide post-translational modification levels. This paper describes the application of this approach to the discovery of novel histone modification crosstalk networks in Saccharomyces cerevisiae. Yeast histone mutants were generated to mimic the presence/absence of 44 well-known modifications on core histones H2A, H2B, H3, and H4. In each mutant strain the relative change in H3 K79 methylation and H3 K56 acetylation were determined using stable isotope labeling of amino acids in cells culture. This approach showed relative changes in H3 K79 methylation and H3 K56 acetylation that are consistent with known histone crosstalk networks. More importantly, this study revealed additional histone modification sites that affect H3 K79 methylation and H3 K56 acetylation.
Collapse
Affiliation(s)
- Xiaoyan Guan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
126
|
A small molecule inhibitor of fungal histone acetyltransferase Rtt109. Bioorg Med Chem Lett 2013; 23:2853-9. [PMID: 23587423 DOI: 10.1016/j.bmcl.2013.03.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
The histone acetyltransferase Rtt109 is the sole enzyme responsible for acetylation of histone H3 lysine 56 (H3K56) in fungal organisms. Loss of Rtt109 renders fungal cells extremely sensitive to genotoxic agents, and prevents pathogenesis in several clinically important species. Here, via a high throughput chemical screen of >300,000 compounds, we discovered a chemical inhibitor of Rtt109 that does not inhibit other acetyltransferase enzymes. This compound inhibits Rtt109 regardless of which histone chaperone cofactor protein (Asf1 or Vps75) is present, and appears to inhibit Rtt109 via a tight-binding, uncompetitive mechanism.
Collapse
|
127
|
Jack APM, Bussemer S, Hahn M, Pünzeler S, Snyder M, Wells M, Csankovszki G, Solovei I, Schotta G, Hake SB. H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization. PLoS One 2013; 8:e51765. [PMID: 23451023 PMCID: PMC3579866 DOI: 10.1371/journal.pone.0051765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56 (H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3 sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly, we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel, functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional roles in heterochromatin formation and/or maintenance.
Collapse
Affiliation(s)
- Antonia P. M. Jack
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Silva Bussemer
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Hahn
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Pünzeler
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martha Snyder
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Wells
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gyorgyi Csankovszki
- Department of MCDB, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Irina Solovei
- LMU Biozentrum, Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Gunnar Schotta
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra B. Hake
- Center for Integrated Protein Science Munich (CIPSM) at the Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
128
|
Nucleosome assembly factors CAF-1 and HIR modulate epigenetic switching frequencies in an H3K56 acetylation-associated manner in Candida albicans. EUKARYOTIC CELL 2013; 12:591-603. [PMID: 23417560 DOI: 10.1128/ec.00334-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CAF-1 and HIR are highly conserved histone chaperone protein complexes that function in the assembly of nucleosomes onto chromatin. CAF-1 is characterized as having replication-coupled nucleosome activity, whereas the HIR complex can assemble nucleosomes independent of replication. Histone H3K56 acetylation, controlled by the acetyltransferase Rtt109 and deacetylase Hst3, also plays a significant role in nucleosome assembly. In this study, we generated a set of deletion mutants to genetically characterize pathway-specific and overlapping functions of CAF-1 and HIR in C. albicans. Their roles in epigenetic maintenance of cell type were examined by using the white-opaque switching system in C. albicans. We show that CAF-1 and HIR play conserved roles in UV radiation recovery, repression of histone gene expression, correct chromosome segregation, and stress responses. Unique to C. albicans, the cac2Δ/Δ mutant shows increased sensitivity to the Hst3 inhibitor nicotinamide, while the rtt109Δ/Δ cac2Δ/Δ and hir1Δ/Δ cac2Δ/Δ mutants are resistant to nicotinamide. CAF-1 plays a major role in maintaining cell types, as the cac2Δ/Δ mutant exhibited increased switching frequencies in both directions and switched at a high frequency to opaque in response to nicotinamide. Like the rtt109Δ/Δ mutant, the hir1Δ/Δ cac2Δ/Δ double mutant is defective in maintaining the opaque cell fate and blocks nicotinamide-induced opaque formation, and the defects are suppressed by ectopic expression of the master white-opaque regulator Wor1. Our data suggest an overlapping function of CAF-1 and HIR in epigenetic regulation of cell fate determination in an H3K56 acetylation-associated manner.
Collapse
|
129
|
Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H. A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS One 2013; 8:e54011. [PMID: 23342062 PMCID: PMC3544673 DOI: 10.1371/journal.pone.0054011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.
Collapse
Affiliation(s)
- Mayumi Hachinohe
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Midori Yamane
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Akazawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Ohsawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mayumi Ohno
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuzu Terashita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Masumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
130
|
Trickey M, Fujimitsu K, Yamano H. Anaphase-promoting complex/cyclosome-mediated proteolysis of Ams2 in the G1 phase ensures the coupling of histone gene expression to DNA replication in fission yeast. J Biol Chem 2013; 288:928-37. [PMID: 23195958 PMCID: PMC3543042 DOI: 10.1074/jbc.m112.410241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Histone transcription and deposition are tightly regulated with the DNA replication cycle to maintain genetic integrity. Ams2 is a GATA-containing transcription factor responsible for core histone gene expression and for CENP-A loading at centromeres in fission yeast. Ams2 levels are cell cycle-regulated, and after the S phase Ams2 is degraded by the SCF(pof3) ubiquitin ligase; however, the regulation of Ams2 in G(1) or meiosis is poorly understood. Here we show that another ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) targets Ams2 for destruction in G(1). Ubiquitylation and destruction of Ams2 is dependent upon a coactivator Cdh1/Ste9 and the KEN box in the C terminus of Ams2. We also find that stabilization of Ams2 sensitizes cells to the anti-microtubule drug thiabendazole and the histone deacetylase inhibitor tricostatin A when a histone deacetylase gene hst4 is deleted, suggesting that histone acetylation together with Ams2 stability ensures the coupling of mitosis to DNA replication. Furthermore, in meiosis, the failure of the APC/C-mediated destruction of Ams2 is deleterious, and pre-meiotic DNA replication is barely completed. These data suggest that Ams2 destruction via both the APC/C and the SCF ubiquitin ligases underlies the coordination of histone expression and DNA replication.
Collapse
Affiliation(s)
- Michelle Trickey
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| | - Kazuyuki Fujimitsu
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| | - Hiroyuki Yamano
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| |
Collapse
|
131
|
Discovery of lysine post-translational modifications through mass spectrometric detection. Essays Biochem 2012; 52:147-63. [PMID: 22708569 DOI: 10.1042/bse0520147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complexity of an organism's proteome is in part due to the diversity of post-translational modifications present that can direct the location and function of a protein. To address the growing interest in characterizing these modifications, mass spectrometric-based proteomics has emerged as one of the most essential experimental platforms for their discovery. In searching for post-translational modifications within a target set of proteins to global surveys of particularly modified proteins within a given proteome, various experimental MS (mass spectrometry) and allied techniques have been developed. Out of 20 naturally encoded amino acids, lysine is essentially the most highly post-translationally modified residue. This chapter provides a succinct overview of such methods for the characterization of protein lysine modifications as broadly classified, such as methylation and ubiquitination.
Collapse
|
132
|
Sulli G, Di Micco R, d'Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 2012; 12:709-20. [PMID: 22952011 DOI: 10.1038/nrc3344] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of DNA lesions and the resulting activation of DNA damage response (DDR) pathways are both affected by the chromatin status at the site of damaged DNA. In turn, DDR activation affects the chromatin at both the damaged site and across the whole genome. Cellular senescence and cancer are associated with the engagement of the DDR pathways and with profound chromatin changes. In this Opinion article, we discuss the interplay between chromatin and DDR factors in the context of cellular senescence that is induced by oncogenes and in cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan 20139, Italy
| | | | | |
Collapse
|
133
|
Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol Cell Biol 2012; 32:4337-49. [PMID: 22907759 DOI: 10.1128/mcb.00871-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.
Collapse
|
134
|
Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett 2012; 586:2692-704. [DOI: 10.1016/j.febslet.2012.04.045] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/05/2023]
|
135
|
Chen H, Fan M, Pfeffer LM, Laribee RN. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res 2012; 40:6534-46. [PMID: 22553361 PMCID: PMC3413144 DOI: 10.1093/nar/gks345] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epigenetic changes in chromatin through histone post-translational modifications are essential for altering gene transcription in response to environmental cues. How histone modifications are regulated by environmental stimuli remains poorly understood yet this process is critical for delineating how epigenetic pathways are influenced by the cellular environment. We have used the target of rapamycin (TOR) pathway, which transmits environmental nutrient signals to control cell growth, as a model to delineate mechanisms underlying this phenomenon. A chemical genomics screen using the TOR inhibitor rapamycin against a histone H3/H4 mutant library identified histone H3 lysine 56 acetylation (H3K56ac) as a chromatin modification regulated by TOR signaling. We demonstrate this acetylation pathway functions in TOR-dependent cell growth in part by contributing directly to ribosomal RNA (rRNA) biogenesis. Specifically, H3K56ac creates a chromatin environment permissive to RNA polymerase I transcription and nascent rRNA processing by regulating binding of the high mobility group protein Hmo1 and the small ribosomal subunit (SSU) processome complex. Overall, these studies identify a novel chromatin regulatory role for TOR signaling and support a specific function for H3K56ac in ribosomal DNA (rDNA) gene transcription and nascent rRNA processing essential for cell growth.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
136
|
Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci U S A 2012; 109:E916-25. [PMID: 22474337 DOI: 10.1073/pnas.1121471109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.
Collapse
|
137
|
Lopes da Rosa J, Kaufman PD. Chromatin-mediated Candida albicans virulence. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:349-55. [PMID: 21888998 PMCID: PMC3243783 DOI: 10.1016/j.bbagrm.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Candida albicans is the most prevalent human fungal pathogen. To successfully propagate an infection, this organism relies on the ability to change morphology, express virulence-associated genes and resist DNA damage caused by the host immune system. Many of these events involve chromatin alterations that are crucial for virulence. This review will focus on the studies that have been conducted on how chromatin function affects pathogenicity of C. albicans and other fungi. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Jessica Lopes da Rosa
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Paul D. Kaufman
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| |
Collapse
|
138
|
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:792-808. [PMID: 22026817 DOI: 10.1111/j.1365-313x.2011.04831.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.
Collapse
Affiliation(s)
- Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
139
|
Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 2012; 13:168-82. [DOI: 10.1038/nrm3286] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
140
|
Hersman E, Nelson DM, Griffith WP, Jelinek C, Cotter RJ. Analysis of Histone Modifications from Tryptic Peptides of Deuteroacetylated Isoforms. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 312:5-16. [PMID: 22389584 PMCID: PMC3289288 DOI: 10.1016/j.ijms.2011.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The in vitro deuteroacetylation of histones obtained from biological sources has been used previously in bottom-up mass spectrometry analyses to quantitate the percent of endogenous acetylation of specific lysine sites and/or peptides. In this report, derivatization of unmodified lysine residues on histones is used in combination with high performance mass spectrometry, including combined HPLC MS/MS, to distinguish and quantitate endogenously acetylated isoforms occurring within the same tryptic peptide sequence and to extend this derivatization strategy to other post-translational modifications, specifically methylation, dimethylation and trimethylation. The in vitro deuteroacetylation of monomethylated lysine residues is observed, though dimethylated or trimethylated residues are not derivatised. Comparison of the relative intensities ascribed to the deuteroacetylated and monomethylated species with the deuteroacetylated but unmethylated analog, provides an opportunity to estimate the percent of methylation at that site. In addition to the observed fragmentation patterns, the very high mass accuracy available on the Orbitrap mass spectrometer can be used to confirm the structural isoforms, and in particular to distinguish between trimethylated and acetylated species.
Collapse
Affiliation(s)
- Elisabeth Hersman
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
141
|
Zunder RM, Antczak AJ, Berger JM, Rine J. Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proc Natl Acad Sci U S A 2012; 109:E144-53. [PMID: 22198837 PMCID: PMC3271894 DOI: 10.1073/pnas.1119095109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone chaperone Rtt106 binds histone H3 acetylated at lysine 56 (H3K56ac) and facilitates nucleosome assembly during several molecular processes. Both the structural basis of this modification-specific recognition and how this recognition informs Rtt106 function are presently unclear. Guided by our crystal structure of Rtt106, we identified two regions on its double-pleckstrin homology domain architecture that mediated histone binding. When histone binding was compromised, Rtt106 localized properly to chromatin but failed to deliver H3K56ac, leading to replication and silencing defects. By mutating analogous regions in the structurally homologous chromatin-reorganizer Pob3, we revealed a conserved histone-binding function for a basic patch found on both proteins. In contrast, a loop connecting two β-strands was required for histone binding by Rtt106 but was dispensable for Pob3 function. Unlike Rtt106, Pob3 histone binding was modification-independent, implicating the loop of Rtt106 in H3K56ac-specific recognition in vivo. Our studies described the structural origins of Rtt106 function, identified a conserved histone-binding surface, and defined a critical role for Rtt106:H3K56ac-binding specificity in silencing and replication-coupled nucleosome turnover.
Collapse
Affiliation(s)
- Rachel M. Zunder
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Andrew J. Antczak
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James M. Berger
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| |
Collapse
|
142
|
Drogaris P, Villeneuve V, Pomiès C, Lee EH, Bourdeau V, Bonneil E, Ferbeyre G, Verreault A, Thibault P. Histone deacetylase inhibitors globally enhance h3/h4 tail acetylation without affecting h3 lysine 56 acetylation. Sci Rep 2012; 2:220. [PMID: 22355734 PMCID: PMC3256565 DOI: 10.1038/srep00220] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/20/2011] [Indexed: 11/09/2022] Open
|
143
|
Masumoto H, Nakato R, Kanemaki M, Shirahige K, Hachinohe M. The inheritance of histone modifications depends upon the location in the chromosome in Saccharomyces cerevisiae. PLoS One 2012; 6:e28980. [PMID: 22216151 PMCID: PMC3244422 DOI: 10.1371/journal.pone.0028980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023] Open
Abstract
Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Faculty of Life and Environmental Sciences, Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
144
|
Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 2011; 32:154-72. [PMID: 22025679 DOI: 10.1128/mcb.05415-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication.
Collapse
|
145
|
Abstract
Alterations of chromatin structure have been shown to be crucial for response to cell signaling and for programmed gene expression in development. Posttranslational histone modifications influence changes in chromatin structure both directly and by targeting or activating chromatin-remodeling complexes. Histone modifications intersect with cell signaling pathways to control gene expression and can act combinatorially to enforce or reverse epigenetic marks in chromatin. Through their recognition by protein complexes with enzymatic activities cross talk is established between different modifications and with other epigenetic pathways, including noncoding RNAs (ncRNAs) and DNA methylation. Here, we review the functions of histone modifications and their exploitation in the programming of gene expression during several events in development.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
146
|
Abstract
Acetylation of lysine residues is a post-translational modification with broad relevance
to cellular signalling and disease biology. Enzymes that ‘write’
(histone acetyltransferases, HATs) and ‘erase’ (histone deacetylases,
HDACs) acetylation sites are an area of extensive research in current drug development,
but very few potent inhibitors that modulate the ‘reading process’
mediated by acetyl lysines have been described. The principal readers of
ɛ-N-acetyl lysine (Kac) marks are
bromodomains (BRDs), which are a diverse family of evolutionary conserved
protein-interaction modules. The conserved BRD fold contains a deep, largely hydrophobic
acetyl lysine binding site, which represents an attractive pocket for the development of
small, pharmaceutically active molecules. Proteins that contain BRDs have been implicated
in the development of a large variety of diseases. Recently, two highly potent and
selective inhibitors that target BRDs of the BET (bromodomains and extra-terminal) family
provided compelling data supporting targeting of these BRDs in inflammation and in an
aggressive type of squamous cell carcinoma. It is likely that BRDs will emerge alongside
HATs and HDACs as interesting targets for drug development for the large number of
diseases that are caused by aberrant acetylation of lysine residues.
Collapse
|
147
|
Zee BM, Young NL, Garcia BA. Quantitative proteomic approaches to studying histone modifications. CURRENT CHEMICAL GENOMICS 2011; 5:106-14. [PMID: 21966350 PMCID: PMC3178935 DOI: 10.2174/1875397301005010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/26/2011] [Accepted: 04/25/2011] [Indexed: 11/22/2022]
Abstract
Histone post-translational modifications (PTMs) positively and negatively regulate gene expression, and are consequently a vital influence on the genomic profile of all eukaryotic species. The study of histone PTMs using classical methods in molecular biology, such as immunofluorescence and Western blotting, is challenging given the technical issues of the approaches, and chemical diversity and combinatorial patterns of the modifications. In light of these many technical limitations, mass spectrometry (MS) is emerging as the most unbiased and rigorous experimental platform to identify and quantify histone PTMs in a high-throughput manner. This review covers the latest developments in mass spectrometry for the analysis of histone PTMs, with the hope of inspiring the continued integration of proteomic, genomic and epigenetic research.
Collapse
Affiliation(s)
- Barry M Zee
- 415 Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
148
|
Parthun MR. Histone acetyltransferase 1: more than just an enzyme? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:256-63. [PMID: 24459728 DOI: 10.1016/j.bbagrm.2011.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH2-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Mark R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
149
|
Stevenson JS, Liu H. Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol Microbiol 2011; 81:1078-91. [PMID: 21749487 DOI: 10.1111/j.1365-2958.2011.07754.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How different cell types with the same genotype are formed and heritability maintained is a fundamental question in biology. We utilized white-opaque switching in Candida albicans as a system to study mechanisms of cell-type formation and maintenance. Each cell type has tractable characters, which are maintained over many cell divisions. Cell-type specification is under the control of interlocking transcriptional feedback loops, with Wor1 being the master regulator of the opaque cell type. Here we show that deletion of RTT109, encoding the acetyltransferase for histone H3K56, impairs stochastic and environmentally stimulated white-opaque switching. Ectopic expression of WOR1 mostly bypasses the requirement for RTT109, but opaque cells lacking RTT109 cannot be maintained. We have also discovered that nicotinamide induces opaque cell formation, and this activity of nicotinamide requires RTT109. Reducing the copy number of HST3, which encodes the H3K56 deacetylase, also leads to increased opaque formation. We further show that the Hst3 level is downregulated in the presence of genotoxins and ectopic expression of HST3 blocks genotoxin induced switching. This finding links genotoxin induced switching to Hst3 regulation. Together, these findings suggest RTT109 and HST3 genes play an important role in the regulation of white-opaque switching in C. albicans.
Collapse
Affiliation(s)
- John S Stevenson
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
150
|
Li Q, Burgess R, Zhang Z. All roads lead to chromatin: Multiple pathways for histone deposition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:238-46. [PMID: 21763476 DOI: 10.1016/j.bbagrm.2011.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022]
Abstract
Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)(2) tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)(2) tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)(2) tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|