101
|
|
102
|
Wu Z, Su M, Tong C, Wu M, Liu J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat Commun 2018; 9:136. [PMID: 29321558 PMCID: PMC5762918 DOI: 10.1038/s41467-017-02469-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. Traveling waves in the cell cortex can propagate much faster than actin waves, and the mechanism is unknown. Here the authors propose a mechanochemical feedback model for traveling waves that incorporates membrane shape changes and recruitment of F-BAR proteins that enables fast wave propagation.
Collapse
Affiliation(s)
- Zhanghan Wu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maohan Su
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Cheesan Tong
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore.
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
103
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
104
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
105
|
SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 2017; 37:1159-1174. [PMID: 29234151 PMCID: PMC5861093 DOI: 10.1038/s41388-017-0029-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Slit-Robo GTPase-activating protein 1 (SRGAP1) functions as a GAP for Rho-family GTPases and downstream of Slit-Robo signaling. We aim to investigate the biological function of SRGAP1 and reveal its regulation by deregulated microRNAs (miRNAs) in gastric cancer (GC). mRNA and protein expression of SRGAP1 were examined by quantitative reverse transcription PCR (qRT-PCR) and western blot. The biological role of SRGAP1 was demonstrated through siRNA-mediated knockdown experiments. The regulation of SRGAP1 by miR-340 and miR-124 was confirmed by western blot, dual luciferase activity assays and rescue experiments. SRGAP1 is overexpressed in 9 out of 12 (75.0%) GC cell lines. In primary GC samples from TCGA cohort, SRGAP1 shows gene amplification in 5/258 (1.9%) of cases and its mRNA expression demonstrates a positive correlation with copy number gain. Knockdown of SRGAP1 in GC cells suppressed cell proliferation, reduced colony formation, and significantly inhibited cell invasion and migration. Luciferase reporter assays revealed that SRGAP1 knockdown significantly inhibited Wnt/β-catenin pathway. In addition, SRGAP1 was found to be a direct target of two tumor-suppressive miRNAs, miR-340 and miR-124. Concordantly, these two miRNAs were downregulated in primary gastric tumors and these decreasing levels w5ere associated with poor outcomes. Expression of miR-340 and SRGAP1 displayed a reverse relationship in primary samples and re-expressed SRGAP1, rescued the anti-cancer effects of miR-340. Taken together, these data strongly suggest that, apart from gene amplification and mutation, the activation of SRGAP1 in GC is partly due to the downregulation of tumor-suppressive miRNAs, miR-340 and miR-124. Thus SRGAP1 is overexpressed in gastric carcinogenesis and plays an oncogenic role through activating Wnt/β-catenin pathway.
Collapse
|
106
|
Seemann E, Sun M, Krueger S, Tröger J, Hou W, Haag N, Schüler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B. Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 2017; 6. [PMID: 29202928 PMCID: PMC5716666 DOI: 10.7554/elife.29854] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.
Collapse
Affiliation(s)
- Eric Seemann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Minxuan Sun
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Krueger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jessica Tröger
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Wenya Hou
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Natja Haag
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Susann Schüler
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Huebner
- Institute for Human Genetics, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Bernd Romeike
- Institute of Pathology, Division of Neuropathology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
107
|
Yang Y, Xiong D, Pipathsouk A, Weiner OD, Wu M. Clathrin Assembly Defines the Onset and Geometry of Cortical Patterning. Dev Cell 2017; 43:507-521.e4. [PMID: 29161594 PMCID: PMC5826602 DOI: 10.1016/j.devcel.2017.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
Assembly of the endocytic machinery is a constitutively active process that is important for the organization of the plasma membrane, signal transduction, and membrane trafficking. Existing research has focused on the stochastic nature of endocytosis. Here, we report the emergence of the collective dynamics of endocytic proteins as periodic traveling waves on the cell surface. Coordinated clathrin assembly provides the earliest spatial cue for cortical waves and sets the direction of propagation. Surprisingly, the onset of clathrin waves, but not individual endocytic events, requires feedback from downstream factors, including FBP17, Cdc42, and N-WASP. In addition to the localized endocytic assembly at the plasma membrane, intracellular clathrin and phosphatidylinositol-3,4-bisphosphate predict the excitability of the plasma membrane and modulate the geometry of traveling waves. Collectively, our data demonstrate the multiplicity of clathrin functions in cortical pattern formation and provide important insights regarding the nucleation and propagation of single-cell patterns.
Collapse
Affiliation(s)
- Yang Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ding Xiong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Anne Pipathsouk
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Min Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
108
|
Mallik B, Kumar V. Regulation of actin-Spectrin cytoskeleton by ICA69 at the Drosophila neuromuscular junction. Commun Integr Biol 2017. [PMCID: PMC5824968 DOI: 10.1080/19420889.2017.1381806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bin-Amphiphysin-Rvs (BAR) domain containing proteins with their membrane deforming properties have emerged as key players in shaping up neuronal morphology and regulating cytoskeletal dynamics. However, the in vivo contexts in which BAR-domain proteins integrate membrane dynamics with cytoskeletal rearrangements remain poorly understood. Recently, we identified islet cell autoantigen 69 kDa as one of the N-BAR-domain containing proteins which regulate synaptic development and organization at the Drosophila neuromuscular junction. ICA69 genetically functions downstream of Rab2 to regulate synapse morphology. We found that ICA69 alters Spectrin level at the Drosophila NMJ, and redistributes actin regulatory proteins in cultured cells suggesting that ICA69 may regulate NMJ organization by regulating actin-Spectrin cytoskeleton. We propose a model in which ICA69 genetically interact with components of actin regulatory proteins for cytoskeleton dynamics to regulate NMJ development and synapse organization.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
109
|
Cowling BS, Prokic I, Tasfaout H, Rabai A, Humbert F, Rinaldi B, Nicot AS, Kretz C, Friant S, Roux A, Laporte J. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J Clin Invest 2017; 127:4477-4487. [PMID: 29130937 DOI: 10.1172/jci90542] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1-/- Dnm2+/- mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1-/- mice die perinatally from a skeletal muscle defect, Bin1-/- Dnm2+/- mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.
Collapse
Affiliation(s)
- Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Aymen Rabai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Anne-Sophie Nicot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre of Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
110
|
Manni MM, Derganc J, Čopič A. Crowd-Sourcing of Membrane Fission. Bioessays 2017; 39. [DOI: 10.1002/bies.201700117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Marco M. Manni
- Université Côte d'Azur; CNRS, IPMC; 06560 Valbonne France
| | - Jure Derganc
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; 1000 Ljubljana Slovenia
| | - Alenka Čopič
- Institut Jacques Monod, CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité 75013 Paris France
| |
Collapse
|
111
|
Galli V, Sebastian R, Moutel S, Ecard J, Perez F, Roux A. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab. eLife 2017; 6:25197. [PMID: 29022874 PMCID: PMC5658065 DOI: 10.7554/elife.25197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023] Open
Abstract
Dynamin is a large GTPase that forms a helical collar at the neck of endocytic pits, and catalyzes membrane fission (Schmid and Frolov, 2011; Ferguson and De Camilli, 2012). Dynamin fission reaction is strictly dependent on GTP hydrolysis, but how fission is mediated is still debated (Antonny et al., 2016): GTP energy could be spent in membrane constriction required for fission, or in disassembly of the dynamin polymer to trigger fission. To follow dynamin GTP hydrolysis at endocytic pits, we generated a conformation-specific nanobody called dynab, that binds preferentially to the GTP hydrolytic state of dynamin-1. Dynab allowed us to follow the GTPase activity of dynamin-1 in real-time. We show that in fibroblasts, dynamin GTP hydrolysis occurs as stochastic bursts, which are randomly distributed relatively to the peak of dynamin assembly. Thus, dynamin disassembly is not coupled to GTPase activity, supporting that the GTP energy is primarily spent in constriction.
Collapse
Affiliation(s)
- Valentina Galli
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Rafael Sebastian
- Department of Computer Sciences, Universidad de Valencia, Valencia, Spain
| | - Sandrine Moutel
- Institut Curie, PSL Research University, Paris, France.,Translational Department, Institut Curie, Paris, France
| | - Jason Ecard
- Institut Curie, PSL Research University, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Paris, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| |
Collapse
|
112
|
Hohendahl A, Talledge N, Galli V, Shen PS, Humbert F, De Camilli P, Frost A, Roux A. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 2017; 6:26856. [PMID: 28933693 PMCID: PMC5663480 DOI: 10.7554/elife.26856] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.
Collapse
Affiliation(s)
- Annika Hohendahl
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Nathaniel Talledge
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Valentina Galli
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| |
Collapse
|
113
|
Daste F, Walrant A, Holst MR, Gadsby JR, Mason J, Lee JE, Brook D, Mettlen M, Larsson E, Lee SF, Lundmark R, Gallop JL. Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature. J Cell Biol 2017; 216:3745-3765. [PMID: 28923975 PMCID: PMC5674896 DOI: 10.1083/jcb.201704061] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
How the membrane environment informs when and where actin is polymerized in clathrin-mediated endocytosis is unclear. Daste et al. show that high membrane curvature stimulates PI(3,4)P2 dephosphorylation by INPP4A and that PI(3)P recruits SNX9 in conjunction with both PI(4,5)P2 and high membrane curvature. Furthermore, they find that Lowe syndrome mimics this membrane microenvironment with the aberrant formation of a PI(4,5)P2/PI(3)P intermediate, giving rise to actin comets. The conditional use of actin during clathrin-mediated endocytosis in mammalian cells suggests that the cell controls whether and how actin is used. Using a combination of biochemical reconstitution and mammalian cell culture, we elucidate a mechanism by which the coincidence of PI(4,5)P2 and PI(3)P in a curved vesicle triggers actin polymerization. At clathrin-coated pits, PI(3)P is produced by the INPP4A hydrolysis of PI(3,4)P2, and this is necessary for actin-driven endocytosis. Both Cdc42⋅guanosine triphosphate and SNX9 activate N-WASP–WIP- and Arp2/3-mediated actin nucleation. Membrane curvature, PI(4,5)P2, and PI(3)P signals are needed for SNX9 assembly via its PX–BAR domain, whereas signaling through Cdc42 is activated by PI(4,5)P2 alone. INPP4A activity is stimulated by high membrane curvature and synergizes with SNX9 BAR domain binding in a process we call curvature cascade amplification. We show that the SNX9-driven actin comets that arise on human disease–associated oculocerebrorenal syndrome of Lowe (OCRL) deficiencies are reduced by inhibiting PI(3)P production, suggesting PI(3)P kinase inhibitors as a therapeutic strategy in Lowe syndrome.
Collapse
Affiliation(s)
- Frederic Daste
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Astrid Walrant
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jonathan R Gadsby
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Julia Mason
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Ji-Eun Lee
- Department of Chemistry, University of Cambridge, Cambridge, England, UK
| | - Daniel Brook
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Marcel Mettlen
- University of Texas Southwestern Medical Center, Dallas, TX
| | - Elin Larsson
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, England, UK
| | | | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
114
|
Takemura K, Hanawa-Suetsugu K, Suetsugu S, Kitao A. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature. Sci Rep 2017; 7:6808. [PMID: 28754893 PMCID: PMC5533756 DOI: 10.1038/s41598-017-06334-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight “zeppelin-shaped” dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
115
|
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 2017; 273:156-79. [PMID: 27558334 DOI: 10.1111/imr.12439] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis, the regulated uptake of large particles (>0.5 μm in diameter), is essential for tissue homeostasis and is also an early, critical component of the innate immune response. Phagocytosis can be conceptually divided into three stages: phagosome, formation, maturation, and resolution. Each of these involves multiple reactions that require exquisite spatial and temporal orchestration. The molecular events underlying these stages are being unraveled and the current state of knowledge is briefly summarized in this article.
Collapse
Affiliation(s)
- Roni Levin
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
116
|
Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J Neurosci 2017; 36:6097-115. [PMID: 27251629 DOI: 10.1523/jneurosci.3804-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.
Collapse
|
117
|
Mold Alkaloid Cytochalasin D Modifies the Morphology and Secretion of fMLP-, LPS-, or PMA-Stimulated Neutrophils upon Adhesion to Fibronectin. Mediators Inflamm 2017; 2017:4308684. [PMID: 28740333 PMCID: PMC5504967 DOI: 10.1155/2017/4308684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Neutrophils play an essential role in innate immunity due to their ability to migrate into infected tissues and kill microbes with bactericides located in their secretory granules. Neutrophil transmigration and degranulation are tightly regulated by actin cytoskeleton. Invading pathogens produce alkaloids that cause the depolymerization of actin, such as the mold alkaloid cytochalasin D. We studied the effect of cytochalasin D on the morphology and secretion of fMLP-, LPS-, or PMA-stimulated human neutrophils upon adhesion to fibronectin. Electron microscopy showed that the morphology of the neutrophils adherent to fibronectin in the presence of various stimuli differed. But in the presence of cytochalasin D, all stimulated neutrophils exhibited a uniform nonspread shape and developed thread-like membrane tubulovesicular extensions (cytonemes) measuring 200 nm in diameter. Simultaneous detection of neutrophil secretory products by mass spectrometry showed that all tested stimuli caused the secretion of MMP-9, a key enzyme in the neutrophil migration. Cytochalasin D impaired the MMP-9 secretion but initiated the release of cathepsin G and other granular bactericides, proinflammatory agents. The release of bactericides apparently occurs through the formation, shedding, and lysis of cytonemes. The production of alkaloids which modify neutrophil responses to stimulation via actin depolymerization may be part of the strategy of pathogen invasion.
Collapse
|
118
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
119
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
120
|
Aggarwal A, Hitchen TL, Ootes L, McAllery S, Wong A, Nguyen K, McCluskey A, Robinson PJ, Turville SG. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017; 18:392-410. [PMID: 28321960 DOI: 10.1111/tra.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
Abstract
CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Tina L Hitchen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Lars Ootes
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Andrew Wong
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Khanh Nguyen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| |
Collapse
|
121
|
Sochacki KA, Dickey AM, Strub MP, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 2017; 19:352-361. [PMID: 28346440 DOI: 10.1038/ncb3498] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Dozens of proteins capture, polymerize and reshape the clathrin lattice during clathrin-mediated endocytosis (CME). How or if this ensemble of proteins is organized in relation to the clathrin coat is unknown. Here, we map key molecules involved in CME at the nanoscale using correlative super-resolution light and transmission electron microscopy. We localize 19 different endocytic proteins (amphiphysin1, AP2, β2-arrestin, CALM, clathrin, DAB2, dynamin2, EPS15, epsin1, epsin2, FCHO2, HIP1R, intersectin, NECAP, SNX9, stonin2, syndapin2, transferrin receptor, VAMP2) on thousands of individual clathrin structures, generating a comprehensive molecular architecture of endocytosis with nanoscale precision. We discover that endocytic proteins distribute into distinct spatial zones in relation to the edge of the clathrin lattice. The presence or concentrations of proteins within these zones vary at distinct stages of organelle development. We propose that endocytosis is driven by the recruitment, reorganization and loss of proteins within these partitioned nanoscale zones.
Collapse
Affiliation(s)
- Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrea M Dickey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
122
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
123
|
Meng DF, Xie P, Peng LX, Sun R, Luo DH, Chen QY, Lv X, Wang L, Chen MY, Mai HQ, Guo L, Guo X, Zheng LS, Cao L, Yang JP, Wang MY, Mei Y, Qiang YY, Zhang ZM, Yun JP, Huang BJ, Qian CN. CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:21. [PMID: 28129778 PMCID: PMC5273811 DOI: 10.1186/s13046-016-0483-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignancy in Southern China and Southeast Asia. In this study, we investigated the functional and molecular mechanisms by which CDC42-interacting protein 4 (CIP4) influences NPC. Methods The expression levels of CIP4 were examined by Western blot, qRT-PCR or IHC. MTT assay was used to detect the proliferative rate of NPC cells. The invasive abilities were examined by matrigel and transwell assay. The metastatic abilities of NPC cells were revealed in BALB/c nude mice. Results We report that CIP4 is required for NPC cell motility and invasion. CIP4 promotes the activation of N-WASP that controls invadopodia formation and activates EGFR signaling, which induces downstream MMP2 (matrix metalloproteinase 2) upregulation. In addition, CIP4 could promote NPC metastasis by activating the EGFR pathway. In nude mouse models, distant metastasis was significantly inhibited in CIP4-silenced groups. High CIP4 expression is an independent adverse prognostic factor of overall survival (OS) and distant metastasis-free survival (DMFS). Conclusion We identify the critical role of CIP4 in metastasis of NPC which suggest that CIP4 may be a potential therapeutic target of NPC patients.
Collapse
Affiliation(s)
- Dong-Fang Meng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li Cao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Meng-Yao Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Radiotherapy Department, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Yuan Qiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Meng Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
124
|
Purushothaman LK, Arlt H, Kuhlee A, Raunser S, Ungermann C. Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion. Mol Biol Cell 2017; 28:783-791. [PMID: 28100638 PMCID: PMC5349785 DOI: 10.1091/mbc.e16-08-0582] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
How does a Rab function in both recycling and fusion? An endosomal subcomplex of the SNX-BAR retromer can bind to Ypt7 and compete with the HOPS complex. Assembly of the full retromer then results in displacement of Ypt7. These data explain how domain formation and Ypt7 participation can be coordinated. Endosomes are the major protein-sorting hubs of the endocytic pathway. They sort proteins destined for degradation into internal vesicles while in parallel recycling receptors via tubular carriers back to the Golgi. Tubule formation depends on the Rab7/Ypt7-interacting retromer complex, consisting of the sorting nexin dimer (SNX-BAR) and the trimeric cargo selection complex (CSC). Fusion of mature endosomes with the lysosome-like vacuole also requires Rab7/Ypt7. Here we solve a major problem in understanding this dual function of endosomal Rab7/Ypt7, using a fully reconstituted system, including purified, full-length yeast SNX-BAR and CSC, whose overall structure we present. We reveal that the membrane-active SNX-BAR complex displaces Ypt7 from cargo-bound CSC during formation of recycling tubules. This explains how a single Rab can coordinate recycling and fusion on endosomes.
Collapse
Affiliation(s)
- Latha Kallur Purushothaman
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Henning Arlt
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Anne Kuhlee
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
125
|
Chandrasekaran R, Kenworthy AK, Lacy DB. Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis. PLoS Pathog 2016; 12:e1006070. [PMID: 27942025 PMCID: PMC5152916 DOI: 10.1371/journal.ppat.1006070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection affects a significant number of hospitalized patients in the United States. Two homologous exotoxins, TcdA and TcdB, are the major virulence factors in C. difficile pathogenesis. The toxins are glucosyltransferases that inactivate Rho family-GTPases to disrupt host cellular function and cause fluid secretion, inflammation, and cell death. Toxicity depends on receptor binding and subsequent endocytosis. TcdB has been shown to enter cells by clathrin-dependent endocytosis, but the mechanism of TcdA uptake is still unclear. Here, we utilize a combination of RNAi-based knockdown, pharmacological inhibition, and cell imaging approaches to investigate the endocytic mechanism(s) that contribute to TcdA uptake and subsequent cytopathic and cytotoxic effects. We show that TcdA uptake and cellular intoxication is dynamin-dependent but does not involve clathrin- or caveolae-mediated endocytosis. Confocal microscopy using fluorescently labeled TcdA shows significant colocalization of the toxin with PACSIN2-positive structures in cells during entry. Disruption of PACSIN2 function by RNAi-based knockdown approaches inhibits TcdA uptake and toxin-induced downstream effects in cells indicating that TcdA entry is PACSIN2-dependent. We conclude that TcdA and TcdB utilize distinct endocytic mechanisms to intoxicate host cells. Clostridium difficile is a bacterial pathogen that causes nearly half a million infections each year in the United States. It infects the human colon and causes diarrhea, colitis and, in some cases, death. C. difficile infection is mediated by the action of two large homologous toxins, TcdA and TcdB. Disruption of host cell function by these toxins requires entry into cells. There are multiple ways for pathogens and virulence factors such as viruses and toxins to enter host cells. The entry mechanism is often directed by a cell surface receptor and can impact the trafficking and virulence properties of the pathogenic factor. Investigating the internalization strategy can provide critical insight into the mechanism of action for specific pathogens and virulence factors. In our current study, we sought to determine the strategy utilized by TcdA to enter host cells. We show that TcdA uptake occurs by a clathrin- and caveolae-independent endocytic mechanism that is mediated by PACSIN2 and dynamin. We also show that TcdA and TcdB can utilize different routes of entry, which may have implications regarding their cytotoxic mechanisms. In summary, our results provide new insights into the mechanism of cellular intoxication by TcdA and the role of PACSIN2 in endocytosis.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
126
|
Dar S, Pucadyil TJ. The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission. Mol Biol Cell 2016; 28:152-160. [PMID: 28035046 PMCID: PMC5221619 DOI: 10.1091/mbc.e16-09-0640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022] Open
Abstract
Classical dynamins engage in rapid vesicle release during synaptic vesicle recycling and contain a lipid-binding domain called the pleckstrin-homology domain (PHD). An analysis of a reengineered dynamin construct lacking the PHD shows that the PHD acts as a catalyst to enhance the rates of dynamin-induced membrane fission. Classical dynamins bind the plasma membrane–localized phosphatidylinositol-4,5-bisphosphate using the pleckstrin-homology domain (PHD) and engage in rapid membrane fission during synaptic vesicle recycling. This domain is conspicuously absent among extant bacterial and mitochondrial dynamins, however, where loop regions manage membrane recruitment. Inspired by the core design of bacterial and mitochondrial dynamins, we reengineered the classical dynamin by replacing its PHD with a polyhistidine or polylysine linker. Remarkably, when recruited via chelator or anionic lipids, respectively, the reengineered dynamin displayed the capacity to constrict and sever membrane tubes. However, when analyzed at single-event resolution, the tube-severing process displayed long-lived, highly constricted prefission intermediates that contributed to 10-fold reduction in bulk rates of membrane fission. Our results indicate that the PHD acts as a catalyst in dynamin-induced membrane fission and rationalize its adoption to meet the physiologic requirement of a fast-acting membrane fission apparatus.
Collapse
Affiliation(s)
- Srishti Dar
- Indian Institute of Science Education and Research, Pashan, Pune Maharashtra 411008, India
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pashan, Pune Maharashtra 411008, India
| |
Collapse
|
127
|
Agrawal H, Liu L, Sharma P. Revisiting the curvature-mediated interactions between proteins in biological membranes. SOFT MATTER 2016; 12:8907-8918. [PMID: 27725970 DOI: 10.1039/c6sm01572g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins embedded in soft biological membranes experience a long-range force mediated by elastic curvature deformations. The classical linearized Helfrich-Canham Hamiltonian based derivations reveal the nature of the force between a pair of proteins to be repulsive in the zero-temperature limit and the interaction potential is inversely proportional to the fourth power of the distance separating the inclusions. Such a result is the starting point to understand many-body interactions between proteins in biological membranes and the study of their clustering or, more broadly, self-organization. A key observation regarding this widely quoted result is that any two (mechanically rigid) proteins will experience an identical force. In other words, there is no specificity in the currently employed continuum models that purport to explain protein interactions. In this work we argue that each protein has a unique mechanical signature based on its interaction with the surrounding lipid bilayer membrane and cannot be treated as a non-specific rigid object. We modify the classical Helfrich-Canham theory of curvature elasticity to incorporate protein-membrane specificity, discuss the estimation of the new model parameters via atomistic simulations and re-evaluate the curvature-mediated force between proteins. We find that the incorporation of protein-specificity can reduce the interaction force by several orders of magnitude. Our result may provide at least one plausible reason behind why in some computational and experimental studies, a net attractive force between proteins is in evidence.
Collapse
Affiliation(s)
- Himani Agrawal
- Department of Mechanical Engineering, University of Houston, TX, USA
| | - Liping Liu
- Department of Mathematics and Department of Mechanical Aerospace Engineering, Rutgers University, NJ, USA.
| | - Pradeep Sharma
- Department of Mechanical Engineering and Department of Physics, University of Houston, TX, USA.
| |
Collapse
|
128
|
Watson JR, Nietlispach D, Owen D, Mott HR. (1)H, (13)C and (15)N resonance assignments of the Cdc42-binding domain of TOCA1. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:407-411. [PMID: 26988723 PMCID: PMC5039218 DOI: 10.1007/s12104-016-9677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
TOCA1 is a downstream effector protein of the small GTPase, Cdc42. It is a multi-domain protein that includes a membrane binding F-BAR domain, a homology region 1 (HR1) domain, which binds selectively to active Cdc42 and an SH3 domain. TOCA1 is involved in the regulation of actin dynamics in processes such as endocytosis, filopodia formation, neurite elongation, cell motility and invasion. Structural insight into the interaction between TOCA1 and Cdc42 will contribute to our understanding of the role of TOCA1 in actin dynamics. The (1)H, (15)N and (13)C NMR backbone and sidechain resonance assignment of the HR1 domain (12 kDa) presented here provides the foundation for structural studies of the domain and its interactions.
Collapse
Affiliation(s)
- Joanna R Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
129
|
Pyburn TM, Foegeding NJ, González-Rivera C, McDonald NA, Gould KL, Cover TL, Ohi MD. Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin. Mol Microbiol 2016; 102:22-36. [PMID: 27309820 PMCID: PMC5035229 DOI: 10.1111/mmi.13443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.
Collapse
Affiliation(s)
- Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Christian González-Rivera
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
| |
Collapse
|
130
|
Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S. Membrane fission by dynamin: what we know and what we need to know. EMBO J 2016; 35:2270-2284. [PMID: 27670760 PMCID: PMC5090216 DOI: 10.15252/embj.201694613] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/25/2016] [Indexed: 12/04/2022] Open
Abstract
The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.
Collapse
Affiliation(s)
- Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, Valbonne, France
| | - Christopher Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Chen
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Oliver Daumke
- Department of Crystallography, Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| | - Katja Faelber
- Department of Crystallography, Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| | - Marijn Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Tom Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Martin Lenz
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Harry H Low
- Department of Life Sciences, Imperial College, London, UK
| | | | | | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Aurélien Roux
- Department of Biochemistry and Swiss NCCR Chemical Biology, University of Geneva, Geneva 4, Switzerland
| | - Sandra Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
131
|
Gleason AM, Nguyen KCQ, Hall DH, Grant BD. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol Biol Cell 2016; 27:mbc.E16-02-0116. [PMID: 27630264 PMCID: PMC5170557 DOI: 10.1091/mbc.e16-02-0116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 11/11/2022] Open
Abstract
Syndapin/Pascin family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports have also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of syndapin effects on the earlier step of endocytic uptake, and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only C. elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact, and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together our results provide strong evidence for an in vivo function of syndapin in endocytic recycling, and suggest that syndapin promotes transport via endosomal fission.
Collapse
Affiliation(s)
- Adenrele M Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
132
|
Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck. Proc Natl Acad Sci U S A 2016; 113:E5552-61. [PMID: 27601635 DOI: 10.1073/pnas.1524412113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.
Collapse
|
133
|
Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes. Proc Natl Acad Sci U S A 2016; 113:E5117-24. [PMID: 27531962 DOI: 10.1073/pnas.1605259113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function.
Collapse
|
134
|
Simunovic M, Prévost C, Callan-Jones A, Bassereau P. Physical basis of some membrane shaping mechanisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0034. [PMID: 27298443 PMCID: PMC4920286 DOI: 10.1098/rsta.2016.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 05/24/2023]
Abstract
In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Mijo Simunovic
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Coline Prévost
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, 75205 Paris Cedex 13, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| |
Collapse
|
135
|
Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation. Proc Natl Acad Sci U S A 2016; 113:7834-9. [PMID: 27342861 DOI: 10.1073/pnas.1603513113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation.
Collapse
|
136
|
Hohendahl A, Roux A, Galli V. Structural insights into the centronuclear myopathy-associated functions of BIN1 and dynamin 2. J Struct Biol 2016; 196:37-47. [PMID: 27343996 PMCID: PMC5039012 DOI: 10.1016/j.jsb.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
Centronuclear myopathies (CNMs) are genetic diseases whose symptoms are muscle weakness and atrophy (wasting) and centralised nuclei. Recent human genetic studies have isolated several groups of mutations. Among them, many are found in two interacting proteins essential to clathrin-mediated endocytosis, dynamin and the BIN-Amphiphysin-Rvs (BAR) protein BIN1/amphiphysin 2. In this review, by using structural and functional data from the study of endocytosis mainly, we discuss how the CNM mutations could affect the structure and the function of these ubiquitous proteins and cause the muscle-specific phenotype. The literature shows that both proteins are involved in the plasma membrane tubulation required for T-tubule biogenesis. However, this system also requires the regulation of the dynamin-mediated membrane fission, and the formation of a stable protein-scaffold to maintain the T-tubule structure. We discuss how the specific functions, isoforms and partners (myotubularin in particular) of these two proteins can lead to the establishment of muscle-specific features.
Collapse
Affiliation(s)
- Annika Hohendahl
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland.
| | - Valentina Galli
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
137
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
138
|
Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis. Dev Cell 2016; 35:725-36. [PMID: 26702831 DOI: 10.1016/j.devcel.2015.11.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/12/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending.
Collapse
|
139
|
Watson JR, Fox HM, Nietlispach D, Gallop JL, Owen D, Mott HR. Investigation of the Interaction between Cdc42 and Its Effector TOCA1: HANDOVER OF Cdc42 TO THE ACTIN REGULATOR N-WASP IS FACILITATED BY DIFFERENTIAL BINDING AFFINITIES. J Biol Chem 2016; 291:13875-90. [PMID: 27129201 PMCID: PMC4919469 DOI: 10.1074/jbc.m116.724294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/23/2022] Open
Abstract
Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.
Collapse
Affiliation(s)
- Joanna R Watson
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Helen M Fox
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and the Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel Nietlispach
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Jennifer L Gallop
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and the Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Darerca Owen
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Helen R Mott
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| |
Collapse
|
140
|
Hutchison JB, Karunanayake Mudiyanselage APKK, Weis RM, Dinsmore AD. Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles. SOFT MATTER 2016; 12:2465-2472. [PMID: 26822233 DOI: 10.1039/c5sm02496j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The binding affinity of a curvature-sensing protein domain (N-BAR) is measured as a function of applied osmotic stress while the membrane curvature is nearly constant. Varying the osmotic stress allows us to control membrane tension, which provides a probe of the mechanism of binding. We study the N-BAR domain of the Drosophila amphiphysin and monitor its binding on 50 nm-radius vesicles composed of 90 mol% DOPC and 10 mol% PIP. We find that the bound fraction of N-BAR is enhanced by a factor of approximately 6.5 when the tension increases from zero to 2.6 mN m(-1). This tension-induced response can be explained by the hydrophobic insertion mechanism. From the data we extract a hydrophobic domain area that is consistent with known structure. These results indicate that membrane stress and strain could play a major role in the previously reported curvature-affinity of N-BAR.
Collapse
Affiliation(s)
- Jaime B Hutchison
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab 411, 666 North Pleasant Street, Amherst, MA 01003, USA.
| | | | - Robert M Weis
- Department of Chemistry, University of Massachusetts Amherst, USA
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab 411, 666 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
141
|
Suetsugu S. Higher-order assemblies of BAR domain proteins for shaping membranes. Microscopy (Oxf) 2016; 65:201-10. [DOI: 10.1093/jmicro/dfw002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/09/2016] [Indexed: 02/07/2023] Open
|
142
|
Cerqueira OLD, Truesdell P, Baldassarre T, Vilella-Arias SA, Watt K, Meens J, Chander H, Osório CAB, Soares FA, Reis EM, Craig AWB. CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis. Oncotarget 2016; 6:9397-408. [PMID: 25823823 PMCID: PMC4496225 DOI: 10.18632/oncotarget.3351] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
Signaling via epidermal growth factor receptor (EGFR) and Src kinase pathways promote triple-negative breast cancer (TNBC) cell invasion and tumor metastasis. Here, we address the role of Cdc42-interacting protein-4 (CIP4) in TNBC metastasis in vivo, and profile CIP4 expression in human breast cancer patients. In human TNBC cells, CIP4 knock-down (KD) led to less sustained activation of Erk kinase and impaired cell motility compared to control cells. This correlated with significant defects in 3D invasion of surrounding extracellular matrix by CIP4 KD TNBC cells when grown as spheroid colonies. In mammary orthotopic xenograft assays using both human TNBC cells (MDA-MB-231, HCC 1806) and rat MTLn3 cells, CIP4 silencing had no overt effect on tumor growth, but significantly reduced the incidence of lung metastases in each tumor model. In human invasive breast cancers, high CIP4 levels was significantly associated with high tumor stage, TNBC and HER2 subtypes, and risk of progression to metastatic disease. Together, these results implicate CIP4 in promoting metastasis in TNBCs.
Collapse
Affiliation(s)
- Otto L D Cerqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Tomas Baldassarre
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Santiago A Vilella-Arias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Jalna Meens
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Harish Chander
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Cynthia A B Osório
- Department of Anatomic Pathology, A.C. Camargo Hospital, São Paulo, SP, Brazil
| | - Fernando A Soares
- Department of Anatomic Pathology, A.C. Camargo Hospital, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Oncogenômica, São Paulo, SP, Brazil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Oncogenômica, São Paulo, SP, Brazil
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
143
|
Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain. Sci Rep 2016; 6:19565. [PMID: 26822536 PMCID: PMC4731787 DOI: 10.1038/srep19565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022] Open
Abstract
FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.
Collapse
|
144
|
Mesarec L, Góźdź W, Iglič VK, Kralj S, Iglič A. Closed membrane shapes with attached BAR domains subject to external force of actin filaments. Colloids Surf B Biointerfaces 2016; 141:132-140. [PMID: 26854580 DOI: 10.1016/j.colsurfb.2016.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Veronika Kralj Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; Jožef Stefan Institute, P.O. Box 3000, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
145
|
McDonald NA, Takizawa Y, Feoktistova A, Xu P, Ohi MD, Vander Kooi CW, Gould KL. The Tubulation Activity of a Fission Yeast F-BAR Protein Is Dispensable for Its Function in Cytokinesis. Cell Rep 2016; 14:534-546. [PMID: 26776521 PMCID: PMC4731314 DOI: 10.1016/j.celrep.2015.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/23/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022] Open
Abstract
F-BAR proteins link cellular membranes to the actin cytoskeleton in many biological processes. Here we investigated the function of the Schizosaccharomyces pombe Imp2 F-BAR domain in cytokinesis and find that it is critical for Imp2's role in contractile ring constriction and disassembly. To understand mechanistically how the F-BAR domain functions, we determined its structure, elucidated how it interacts with membranes, and identified an interaction between dimers that allows helical oligomerization and membrane tubulation. Using mutations that block either membrane binding or tubulation, we find that membrane binding is required for Imp2's cytokinetic function but that oligomerization and tubulation, activities often deemed central to F-BAR protein function, are dispensable. Accordingly, F-BARs that do not have the capacity to tubulate membranes functionally substitute for the Imp2 F-BAR, establishing that its major role is as a cell-cycle-regulated bridge between the membrane and Imp2 protein partners, rather than as a driver of membrane curvature.
Collapse
Affiliation(s)
- Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ping Xu
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
146
|
Jelerčič U, Gov NS. Pearling instability of membrane tubes driven by curved proteins and actin polymerization. Phys Biol 2015; 12:066022. [PMID: 26716426 DOI: 10.1088/1478-3975/12/6/066022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilization through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization that they recruit. The pearling instability can serve as the initiation for fission of the tube into vesicles. We find that adsorbed curved proteins are more likely to stabilize the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in vivo and in vitro experiments.
Collapse
Affiliation(s)
- U Jelerčič
- Jožef Stefan Institute, Department of Theoretical Physics, Jamova 39, SI-1000 Ljubljana, Slovenia. Department of Chemical Physics, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | | |
Collapse
|
147
|
Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Rep 2015; 13:2597-2609. [PMID: 26686642 DOI: 10.1016/j.celrep.2015.11.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022] Open
Abstract
F-BAR domain proteins regulate and sense membrane curvature by interacting with negatively charged phospholipids and assembling into higher-order scaffolds. However, regulatory mechanisms controlling these interactions are poorly understood. Here, we show that Drosophila Nervous Wreck (Nwk) is autoregulated by a C-terminal SH3 domain module that interacts directly with its F-BAR domain. Surprisingly, this autoregulation does not mediate a simple "on-off" switch for membrane remodeling. Instead, the isolated Nwk F-BAR domain efficiently assembles into higher-order structures and deforms membranes only within a limited range of negative membrane charge, and autoregulation elevates this range. Thus, autoregulation could either reduce membrane binding or promote higher-order assembly, depending on local cellular membrane composition. Our findings uncover an unexpected mechanism by which lipid composition directs membrane remodeling.
Collapse
|
148
|
Itoh Y, Kida K, Hanawa-Suetsugu K, Suetsugu S. Yeast Ivy1p Is a Putative I-BAR-domain Protein with pH-sensitive Filament Forming Ability in vitro. Cell Struct Funct 2015; 41:1-11. [PMID: 26657738 DOI: 10.1247/csf.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo
| | | | | | | |
Collapse
|
149
|
Ukken FP, Bruckner JJ, Weir KL, Hope SJ, Sison SL, Birschbach RM, Hicks L, Taylor KL, Dent EW, Gonsalvez GB, O'Connor-Giles KM. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. J Cell Sci 2015; 129:166-77. [PMID: 26567222 PMCID: PMC4732300 DOI: 10.1242/jcs.178699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.
Collapse
Affiliation(s)
- Fiona P Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kurt L Weir
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah J Hope
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha L Sison
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan M Birschbach
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W Dent
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate M O'Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
150
|
Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P, Callan-Jones A, Bassereau P. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat Commun 2015; 6:8529. [PMID: 26469246 PMCID: PMC4634128 DOI: 10.1038/ncomms9529] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/30/2015] [Indexed: 02/03/2023] Open
Abstract
BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia. The inverted-BAR domain protein IRSp53 associates with the inner leaflet of tubular membranes such as filopodia. Here, Prévost et al. demonstrate that the I-BAR domain of IRSp53 senses negative membrane curvature, and undergoes phase separation which may aid its clustering upon filopodia generation.
Collapse
Affiliation(s)
- Coline Prévost
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.,Université Paris-Diderot, 75205 Paris Cedex 05, France
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - John Manzi
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | - Emmanuel Lemichez
- INSERM, U1065, UNSA, Centre Méditerranéen de Médecine Moléculaire, C3M, 06204 Nice Cedex 3, France
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Callan-Jones
- CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75205 Paris Cedex 13, France.,Université Paris-Diderot, 75205 Paris Cedex 05, France
| | - Patricia Bassereau
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| |
Collapse
|