101
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
102
|
Abstract
Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.
Collapse
Affiliation(s)
- Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
103
|
Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M, Leo D, Alexopoulou D, Dell'Anno MT, Ciabatti E, Orlando M, Studer M, Dahl A, Gainetdinov RR, Taverna S, Benfenati F, Broccoli V. Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming. Cell Stem Cell 2015; 17:719-734. [PMID: 26526726 DOI: 10.1016/j.stem.2015.09.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 06/21/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
Abstract
Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.
Collapse
Affiliation(s)
- Gaia Colasante
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Gabriele Lignani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Alicia Rubio
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Latefa Yekhlef
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Sessa
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Silvio Sacchetti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Dimitra Alexopoulou
- Deep Sequencing Group, Biotechnology Center TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | | | - Ernesto Ciabatti
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy
| | - Marta Orlando
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Studer
- University of Nice-Sophia Antipolis, 06108 Nice, France; INSERM, iBV, UMR 1091, 06108 Nice, France
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center TU Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Raul R Gainetdinov
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stefano Taverna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Vania Broccoli
- Division of Neuroscience, Ospedale San Raffaele, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|
104
|
Jia S, Wildner H, Birchmeier C. Insm1 controls the differentiation of pulmonary neuroendocrine cells by repressing Hes1. Dev Biol 2015; 408:90-8. [PMID: 26453796 DOI: 10.1016/j.ydbio.2015.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/06/2015] [Accepted: 10/06/2015] [Indexed: 11/15/2022]
Abstract
Epithelial progenitor cells of the lung generate all cell types of the mature airway epithelium, among them the neuroendocrine cells. The balance between formation of pulmonary neuroendocrine and non-neuroendocrine cells is controlled by Notch signaling. The Notch target gene Hes1 is expressed by non-neuroendocrine and absent in neuroendocrine cells. The transcription factor Ascl1 is expressed in a complementary pattern and provides key regulatory information that specifies the neuroendocrine cell fate. The molecular events that occur after the induction of the neuroendocrine differentiation program have received little attention. Here we show that Insm1 is expressed in pulmonary neuroendocrine cells, and that Insm1 expression is not initiated in the lung of Ascl1 mutant mice. We use mouse genetics to show that pulmonary neuroendocrine cells depend on Insm1 for their differentiation. Mutation of Insm1 blocks terminal differentiation, upregulates Hes1 protein in neuroendocrine cells and interferes with maintenance of Ascl1 expression. We show that Insm1 binds to the Hes1 promoter and represses Hes1, and we propose that the Insm1-dependent Hes1 repression is required for neuroendocrine development. Our work demonstrates that Insm1 is a key factor regulating differentiation of pulmonary neuroendocrine cells.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hendrik Wildner
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
105
|
Beckervordersandforth R, Zhang CL, Lie DC. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018879. [PMID: 26430216 DOI: 10.1101/cshperspect.a018879] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
106
|
Costa A, Sanchez-Guardado L, Juniat S, Gale JE, Daudet N, Henrique D. Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development 2015; 142:1948-59. [PMID: 26015538 DOI: 10.1242/dev.119149] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration.
Collapse
Affiliation(s)
- Aida Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luis Sanchez-Guardado
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| | - Stephanie Juniat
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Nicolas Daudet
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia, Lisboa 1400-038, Portugal
| |
Collapse
|
107
|
Zhou X, Liu F, Tian M, Xu Z, Liang Q, Wang C, Li J, Liu Z, Tang K, He M, Yang Z. Transcription factors COUP-TFI and COUP-TFII are required for the production of granule cells in the mouse olfactory bulb. Development 2015; 142:1593-605. [PMID: 25922524 DOI: 10.1242/dev.115279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian subventricular zone (SVZ) of the lateral ventricle. Primary NSCs generate rapidly dividing intermediate progenitor cells, which in turn generate neuroblasts that migrate along the rostral migratory stream (RMS) to the olfactory bulb (OB). Here, we have examined the role of the COUP-TFI and COUP-TFII orphan nuclear receptor transcription factors in mouse OB interneuron development. We observed that COUP-TFI is expressed in a gradient of low rostral to high caudal within the postnatal SVZ neural stem/progenitor cells. COUP-TFI is also expressed in a large number of migrating neuroblasts in the SVZ and RMS, and in mature interneurons in the OB. By contrast, very few COUP-TFII-expressing (+) cells exist in the SVZ-RMS-OB pathway. Conditional inactivation of COUP-TFI resulted in downregulation of tyrosine hydroxylase expression in the OB periglomerular cells and upregulation of COUP-TFII expression in the SVZ, RMS and OB deep granule cell layer. In COUP-TFI/COUP-TFII double conditional mutant SVZ, cell proliferation was increased through the upregulation of the proneural gene Ascl1. Furthermore, COUP-TFI/II-deficient neuroblasts had impaired migration, resulting in ectopic accumulation of calretinin (CR)+ and NeuN+ cells, and an increase in apoptotic cell death in the SVZ. Finally, we found that most Pax6+ and a subset of CR+ granular cells were lost in the OB. Taken together, these results suggest that COUP-TFI/II coordinately regulate the proliferation, migration and survival of a subpopulation of Pax6+ and CR+ granule cells in the OB.
Collapse
Affiliation(s)
- Xing Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Fang Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Miao Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qifei Liang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Chunyang Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jiwen Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhidong Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi Province 330031, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
108
|
Urban S, Kobi D, Ennen M, Langer D, Le Gras S, Ye T, Davidson I. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells. J Cell Sci 2015; 128:2303-18. [PMID: 25991548 DOI: 10.1242/jcs.168849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) treated with all-trans retinoic acid differentiate into a homogenous population of glutamatergic neurons. Although differentiation is initiated through activation of target genes by the retinoic acid receptors, the downstream transcription factors specifying neuronal fate are less well characterised. Here, we show that the transcription factor Brn2 (also known as Pou3f2) is essential for the neuronal differentiation programme. By integrating results from RNA-seq following Brn2 silencing with results from Brn2 ChIP-seq, we identify a set of Brn2 target genes required for the neurogenic programme. Further integration of Brn2 ChIP-seq data from retinoic-acid-treated ESCs and P19 cells with data from ESCs differentiated into neuronal precursors by Fgf2 treatment and that from fibroblasts trans-differentiated into neurons by ectopic Brn2 expression showed that Brn2 occupied a distinct but overlapping set of genomic loci in these differing conditions. However, a set of common binding sites and target genes defined the core of the Brn2-regulated neuronal programme, among which was that encoding the transcription factor Zic1. Small hairpin RNA (shRNA)-mediated silencing of Zic1 prevented ESCs from differentiating into neuronal precursors, thus defining a hierarchical Brn2-Zic1 axis that is essential to specify neural fate in retinoic-acid-treated ESCs.
Collapse
Affiliation(s)
- Sylvia Urban
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Dominique Kobi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Marie Ennen
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Diana Langer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Tao Ye
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France Equipe Labellisée of the Ligue Nationale Contre le Cancer, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| |
Collapse
|
109
|
Abstract
Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.
Collapse
|
110
|
Raposo AASF, Vasconcelos FF, Drechsel D, Marie C, Johnston C, Dolle D, Bithell A, Gillotin S, van den Berg DLC, Ettwiller L, Flicek P, Crawford GE, Parras CM, Berninger B, Buckley NJ, Guillemot F, Castro DS. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Rep 2015; 10:1544-1556. [PMID: 25753420 PMCID: PMC5383937 DOI: 10.1016/j.celrep.2015.02.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 01/02/2023] Open
Abstract
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program. Genome-wide binding of Ascl1 correlates with transcription activation Ascl1 can bind to both open and closed chromatin in proliferating cells Ascl1 promotes local chromatin accessibility at its target sites Chromatin dynamics at Ascl1 sites regulates temporal progression of its program
Collapse
Affiliation(s)
| | | | | | - Corentine Marie
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France
| | - Caroline Johnston
- Centre for the Cellular Basis of Behavior, Institute of Psychiatry, King's College London, London SE5 9NU, UK
| | - Dirk Dolle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Angela Bithell
- University of Reading, School of Pharmacy, Hopkins Life Sciences Building, Reading RG6 6AP, UK
| | | | | | - Laurence Ettwiller
- Centre for Organismal Studies (COS), Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Gregory E Crawford
- Institute of Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Carlos M Parras
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06, UMR-S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, 75013 Paris, France
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | | | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
111
|
Teodorczyk M, Schmidt MHH. Notching on Cancer's Door: Notch Signaling in Brain Tumors. Front Oncol 2015; 4:341. [PMID: 25601901 PMCID: PMC4283135 DOI: 10.3389/fonc.2014.00341] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022] Open
Abstract
Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University of Mainz School of Medicine , Mainz , Germany
| |
Collapse
|
112
|
Vasconcelos FF, Castro DS. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Front Cell Neurosci 2014; 8:412. [PMID: 25520623 PMCID: PMC4251449 DOI: 10.3389/fncel.2014.00412] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Proneural transcription factors (TFs) such as Ascl1 function as master regulators of neurogenesis in vertebrates, being both necessary and sufficient for the activation of a full program of neuronal differentiation. Novel insights into the dynamics of Ascl1 expression at the cellular level, combined with the progressive characterization of its transcriptional program, have expanded the classical view of Ascl1 as a differentiation factor in neurogenesis. These advances resulted in a new model, whereby Ascl1 promotes sequentially the proliferation and differentiation of neural/stem progenitor cells. The multiple activities of Ascl1 are associated with the activation of distinct direct targets at progressive stages along the neuronal lineage. How this temporal pattern is established is poorly understood. Two modes of Ascl1 expression recently described (oscillatory vs. sustained) are likely to be of importance, together with additional mechanistic determinants such as the chromatin landscape and other transcriptional pathways. Here we revise these latest findings, and discuss their implications to the gene regulatory functions of Ascl1 during neurogenesis.
Collapse
Affiliation(s)
| | - Diogo S Castro
- Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
113
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
114
|
Voelkel JE, Harvey JA, Adams JS, Lassiter RN, Stark MR. FGF and Notch signaling in sensory neuron formation: A multifactorial approach to understanding signaling pathway hierarchy. Mech Dev 2014; 134:55-66. [DOI: 10.1016/j.mod.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
|
115
|
Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene 2014; 554:114-9. [PMID: 25445282 DOI: 10.1016/j.gene.2014.10.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
Growing number of long intergenic noncoding RNAs (lincRNAs) have recently been identified in mammals as new modulators in cancer origination and progression involved in a broad range of biological processes. Long intergenic noncoding RNA POU3F3 (linc-POU3F3) has been characterized as a highly conserved functional transcription regulator in esophageal squamous cell carcinoma. The contributions of this lincRNA to glioblastoma remain unknown. In this present study, we investigated the expression pattern and functional role of linc-POU3F3 in glioma by using real-time PCR and gain-/loss-of-function studies. The results revealed that linc-POU3F3 levels were extraordinarily associated with the tumor WHO grade. In related biochemical assays, overexpression of linc-POU3F3 promotes cell viability and proliferation in glioma cells, whereas knockdown of linc-POU3F3 showed the opposite effect. As expected, we also found that linc-POU3F3 expression was negatively correlated with the mRNA level of POU3F3 (the evolutionarily conserved neighbor gene of linc-POU3F3). Our results indicate that linc-POU3F3 might affect glioma development via altering expression level of POU3F3, and lead us to believe that linc-POU3F3 may also have a crucial regulatory role in glioma progression.
Collapse
|
116
|
Mateo JL, van den Berg DLC, Haeussler M, Drechsel D, Gaber ZB, Castro DS, Robson P, Lu QR, Crawford GE, Flicek P, Ettwiller L, Wittbrodt J, Guillemot F, Martynoga B. Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Res 2014; 25:41-56. [PMID: 25294244 PMCID: PMC4317172 DOI: 10.1101/gr.173435.114] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I (NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs. We use machine learning to highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We validate our predictions by functional analysis of the bHLH TF OLIG2. This TF makes an important contribution to NS cell self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes promoting neuronal differentiation and stem cell quiescence.
Collapse
Affiliation(s)
- Juan L Mateo
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Debbie L C van den Berg
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Maximilian Haeussler
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Daniela Drechsel
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Zachary B Gaber
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paul Robson
- Developmental Cellomics Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Gregory E Crawford
- Institute of Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laurence Ettwiller
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany; New England Biolabs, Inc., Ipswich, Massachusetts 01938-2723, USA
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - François Guillemot
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom;
| |
Collapse
|
117
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Imayoshi I, Kageyama R. Oscillatory control of bHLH factors in neural progenitors. Trends Neurosci 2014; 37:531-8. [PMID: 25149265 DOI: 10.1016/j.tins.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/02/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
The mammalian brain consists of a complex ensemble of neurons and glia. Their production during development and remodeling is tightly controlled by various regulatory mechanisms in neural progenitor cells (NPCs). Among such regulations, basic helix-loop-helix (bHLH) factors have key functions in the self-renewal, multipotency, and fate determination of NPCs. Here, we highlight the importance of the expression dynamics of bHLH factors in these processes. The oscillatory expression of multiple bHLH factors is correlated with the multipotent and self-renewable state, whereas sustained expression of a selected bHLH factor regulates fate determination. We also discuss potential mechanisms by which a single bHLH factor can exhibit versatile functions in NPC regulation as well as the hierarchical structure of the bHLH factor oscillatory network.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; The Hakubi Center, Kyoto University, Kyoto 606-8501, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
119
|
Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res 2014; 359:333-41. [PMID: 25038743 DOI: 10.1007/s00441-014-1947-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Neuronal and neuroendocrine cells possess the capacity for Ca(2+)-regulated discharge of messenger molecules, which they release into synapses or the blood stream, respectively. The neural-crest-derived sympathoadrenal lineage gives rise to the sympathetic neurons of the autonomic nervous system and the neuroendocrine chromaffin cells of the adrenal medulla. These cells provide an excellent model system for studying common and distinct developmental mechanisms underlying the acquisition of neuroendocrine and neuronal properties. As catecholaminergic cells, they possess common markers related to noradrenaline synthesis, storage and release, but they also display diverging gene expression patterns and are morphologically and functionally different. The precise mechanisms that underlie the diversification of sympathoadrenal cells into neurons and neuroendocrine cells are not fully understood. However, in the past we could show that the establishment of a chromaffin phenotype does not depend on signals from the adrenal cortex and that chromaffin cells and sympathetic neurons apparently differ from the onset of their catecholaminergic differentiation. Nevertheless, the cues that specifically induce neuroendocrine features remain elusive. The early development of the progenitors of chromaffin cells and sympathetic neurons depends on a common set of transcription factors with overlapping but distinct influences on their development. In addition to the well-defined role of transcription factors as developmental regulators, our understanding of post-transcriptional gene regulation by microRNAs has substantially increased within the last few decades. This review highlights the major similarities and differences between chromaffin cells and sympathetic neurons, summarizes our current knowledge of the roles of selected transcription factors, microRNAs and environmental signals for the neuroendocrine differentiation of sympathoadrenal cells, and draws comparisons with the development of other endocrine and neuronal cells.
Collapse
|
120
|
Borromeo MD, Meredith DM, Castro DS, Chang JC, Tung KC, Guillemot F, Johnson JE. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development 2014; 141:2803-12. [PMID: 24924197 DOI: 10.1242/dev.105866] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The proper balance of excitatory and inhibitory neurons is crucial for normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors (TFs), Ascl1 and Ptf1a, have contrasting functions in specifying these neurons. To understand how Ascl1 and Ptf1a function in this process, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a directly regulate distinct homeodomain TFs that specify excitatory or inhibitory neuronal fates. In addition, Ascl1 directly regulates genes with roles in several steps of the neurogenic program, including Notch signaling, neuronal differentiation, axon guidance and synapse formation. By contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Ascl1 and Ptf1a bind sequences primarily enriched for a specific E-Box motif (CAGCTG) and for secondary motifs used by Sox, Rfx, Pou and homeodomain factors. Ptf1a also binds sequences uniquely enriched in the CAGATG E-box and in the binding motif for its co-factor Rbpj, providing two factors that influence the specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding of how these DNA-binding proteins function in neuronal development, particularly as key regulators of homeodomain TFs required for neuronal subtype specification.
Collapse
Affiliation(s)
- Mark D Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David M Meredith
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, Molecular Neurobiology Laboratory, Oeiras, Portugal
| | - Joshua C Chang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuang-Chi Tung
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francois Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
121
|
Li W, Zheng J, Deng J, You Y, Wu H, Li N, Lu J, Zhou Y. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology 2014; 146:1714-26.e5. [PMID: 24631494 DOI: 10.1053/j.gastro.2014.03.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Thousands of long intergenic non-protein coding RNAs (lincRNAs) have been identified in mammals via genome-wide sequencing studies. Many are functional, but are expressed aberrantly by cancer cells. We investigated whether levels of lincRNAs are altered during the development of esophageal squamous cell carcinoma (ESCC). METHODS We used quantitative real-time polymerase chain reaction to measure levels of 26 highly conserved lincRNAs in ESCC and surrounding nontumor tissues. A total of 182 ESCC and paired adjacent nontumor tissue samples were collected from patients undergoing tylectomy at The First Affiliate Hospital of Soochow University from 2001 through 2009; another 178 ESCC tissue pairs were collected from Guangzhou Medical University from 2002 through 2009. LincRNAs were expressed from lentiviral vectors or knocked down with small hairpin RNAs in Eca-109 and TE-1 cells. RESULTS Levels of a lincRNA encoded by a gene located next to POU3F3 (linc-POU3F3) were significantly higher in ESCC than neighboring nontumor tissues. In RNA immunoprecipitation assays, linc-POU3F3 was associated with the EZH2 messenger RNA (mRNA). Overexpression of linc-POU3F3 in cell lines increased their proliferation and ability to form colonies, and reduced the expression of POU3F3 mRNA, whereas knockdown of linc-POU3F3 increased the levels of POU3F3 mRNA. CpG islands in POU3F3 were densely hypermethylated in cell lines that overexpressed linc-POU3F3; methylation at these sites was reduced by knockdown of linc-POU3F3. Pharmacologic inhibition of EZH2 increased the levels of POU3F3 mRNA and significantly reduced binding of DNA methyltransferase (DNMT)1, DNMT3A, and DNMT3B to POU3F3. ESCC cells with knockdown of linc-POU3F3 formed xenograft tumors more slowly in mice than control ESCC cells. CONCLUSIONS Levels of linc-POU3F3 are increased in ESCC samples from patients compared with nontumor tissues. This noncoding RNA contributes to the development of ESCC by interacting with EZH2 to promote methylation of POU3F3, which encodes a transcription factor.
Collapse
MESH Headings
- Adult
- Animals
- Base Sequence
- Binding Sites
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Cell Line, Tumor
- Cell Proliferation
- China
- CpG Islands
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- DNA Methyltransferase 3A
- Enhancer of Zeste Homolog 2 Protein
- Enzyme Inhibitors/pharmacology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/surgery
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Molecular Sequence Data
- POU Domain Factors/genetics
- POU Domain Factors/metabolism
- Polycomb Repressive Complex 2/antagonists & inhibitors
- Polycomb Repressive Complex 2/genetics
- Polycomb Repressive Complex 2/metabolism
- RNA, Long Noncoding/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Transfection
- Tumor Burden
- Up-Regulation
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Wei Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jian Zheng
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jieqiong Deng
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Yonghe You
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Na Li
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
122
|
Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development 2014; 141:1671-82. [PMID: 24715457 DOI: 10.1242/dev.102988] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Kageyama R, Shimojo H, Imayoshi I. Dynamic expression and roles of Hes factors in neural development. Cell Tissue Res 2014; 359:125-33. [PMID: 24850276 DOI: 10.1007/s00441-014-1888-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
The basic helix-loop-helix factors Hes1 and Hes5 repress the expression of proneural factors such as Ascl1, thereby inhibiting neuronal differentiation and maintaining neural progenitor cells (NPCs). Hes1 expression oscillates by negative feedback with a period of about 2-3 h in proliferating NPCs. Induction of sustained expression of Hes1 in NPCs inhibits their cell-cycle progression, suggesting that the oscillatory expression of Hes1 is important for the proliferation of NPCs. Hes1 oscillation drives the oscillatory expression of proneural factors such as Ascl1 by periodic repression. By contrast, in differentiating neurons, Hes1 expression disappears and the expression of proneural factors is up-regulated and sustained. A new optogenetics approach that induces Ascl1 expression by blue light illumination demonstrated that sustained expression of Ascl1 induces neuronal differentiation, whereas oscillatory expression of Ascl1 activates the proliferation of NPCs. These results together indicate that Hes1 regulates the oscillatory versus sustained expression of the proneural factor Ascl1, which in turn regulates the proliferation of NPCs and the subsequent processes of cell-cycle exit and neuronal fate determination, depending on the expression dynamics.
Collapse
Affiliation(s)
- Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan,
| | | | | |
Collapse
|
124
|
Nasu M, Yada S, Igarashi A, Sutoo D, Akiyama K, Ito M, Yoshida N, Ueda S. Mammalian-specific sequences in pou3f2 contribute to maternal behavior. Genome Biol Evol 2014; 6:1145-56. [PMID: 24709564 PMCID: PMC4040985 DOI: 10.1093/gbe/evu072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 11/16/2022] Open
Abstract
Various mutations have occurred during evolution among orthologs, genes in different species that diverged from a common ancestral gene by speciation. Here, we report the remarkable deterioration of a characteristic mammalian maternal behavior, pup retrieval, in nonmammalized mice, in which the transcription factor Pou3f2 was replaced with the Xenopus ortholog lacking all of the homopolymeric amino acid repeats of mammalian POU3F2. Most of the pups born to the nonmammalized mice died within days after birth, depending on the dam genotype alone. Quantitative immunohistochemical analysis revealed decreases in the rate-limiting enzymes of dopamine and serotonin synthesis in various brain structures. Similar results were obtained in knock-in mice in which all of the homopolymeric amino acid repeats of mammalian POU3F2 were removed. Pup retrieval behavior in mammals is thus strongly related to monoamine neurotransmitter levels via the acquisition of homopolymeric amino acid repeats during mammalian evolution.
Collapse
Affiliation(s)
- Makoto Nasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Saori Yada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Atsushi Igarashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Den'etsu Sutoo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, JapanInstitute of Medical Science, University of Tsukuba, Japan
| | - Kayo Akiyama
- Institute of Medical Science, University of Tsukuba, Japan
| | - Meguru Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Nobuaki Yoshida
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| |
Collapse
|
125
|
Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 2014; 71:1395-415. [PMID: 24196748 PMCID: PMC11113277 DOI: 10.1007/s00018-013-1501-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon-anterior diencephalon (DLX2 type), posterior diencephalon-midbrain (GATA2 type) and hindbrain-spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.
Collapse
Affiliation(s)
- Kaia Achim
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, PO Box 66, 00014 Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
126
|
Imayoshi I, Kageyama R. bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells. Neuron 2014; 82:9-23. [DOI: 10.1016/j.neuron.2014.03.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
|
127
|
RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis. J Neurosci 2014; 34:2169-90. [PMID: 24501358 DOI: 10.1523/jneurosci.4077-13.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascl1 are key cell fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors, which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an intermixed neuronal component. A core abnormality in both tumor groups is overactive RAS/ERK signaling, a pro-proliferative signal whose contributions to cell differentiation in oncogenesis are largely unexplored. We found that RAS/ERK activation levels differ in two distinct human tumors associated with constitutively active BRAF. Pilocytic astrocytomas, which contain abnormal glial cells, have higher ERK activation levels than gangliogliomas, which contain abnormal neuronal and glial cells. Using in vivo gain of function and loss of function in the mouse embryonic neocortex, we found that RAS/ERK signals control a proneural genetic switch, inhibiting Neurog2 expression while inducing Ascl1, a competing lineage determinant. Furthermore, we found that RAS/ERK levels control Ascl1's fate specification properties in murine cortical progenitors--at higher RAS/ERK levels, Ascl1(+) progenitors are biased toward proliferative glial programs, initiating astrocytomas, while at moderate RAS/ERK levels, Ascl1 promotes GABAergic neuronal and less glial differentiation, generating glioneuronal tumors. Mechanistically, Ascl1 is phosphorylated by ERK, and ERK phosphoacceptor sites are necessary for Ascl1's GABAergic neuronal and gliogenic potential. RAS/ERK signaling thus acts as a rheostat to influence neural cell fate selection in both normal cortical development and gliomagenesis, controlling Neurog2-Ascl1 expression and Ascl1 function.
Collapse
|
128
|
Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC DEVELOPMENTAL BIOLOGY 2014; 14:2. [PMID: 24472470 PMCID: PMC3903015 DOI: 10.1186/1471-213x-14-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
Notch signalling acts in virtually every tissue during the lifetime of metazoans. Recent studies have pointed to multiple roles for Notch in stem cells during quiescence, proliferation, temporal specification, and maintenance of the niche architecture. Skeletal muscle has served as an excellent paradigm to examine these diverse roles as embryonic, foetal, and adult skeletal muscle stem cells have different molecular signatures and functional properties, reflecting their developmental specification during ontology. Notably, Notch signalling has emerged as a major regulator of all muscle stem cells. This review will provide an overview of Notch signalling during myogenic development and postnatally, and underscore the seemingly opposing contextual activities of Notch that have lead to a reassessment of its role in myogenesis.
Collapse
Affiliation(s)
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 rue du Dr, Roux, 75015 Paris, France.
| |
Collapse
|
129
|
Besch R, Berking C. POU transcription factors in melanocytes and melanoma. Eur J Cell Biol 2014; 93:55-60. [DOI: 10.1016/j.ejcb.2013.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/23/2023] Open
|
130
|
Abstract
Proneural genes encode evolutionarily conserved basic-helix-loop-helix transcription factors. In Drosophila, proneural genes are required and sufficient to confer a neural identity onto naïve ectodermal cells, inducing delamination and subsequent neuronal differentiation. In vertebrates, proneural genes are expressed in cells that already have a neural identity, but they are still required and sufficient to initiate neurogenesis. In all organisms, proneural genes control neurogenesis by regulating Notch-mediated lateral inhibition and initiating the expression of downstream differentiation genes. The general mode of proneural gene function has thus been elucidated. However, the regulatory mechanisms that spatially and temporally control proneural gene function are only beginning to be deciphered. Understanding how proneural gene function is regulated is essential, as aberrant proneural gene expression has recently been linked to a variety of human diseases-ranging from cancer to neuropsychiatric illnesses and diabetes. Recent insights into proneural gene function in development and disease are highlighted herein.
Collapse
Affiliation(s)
- Carol Huang
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Department of Pathology & Laboratory Medicine, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
131
|
Kawaguchi D, Furutachi S, Kawai H, Hozumi K, Gotoh Y. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun 2013; 4:1880. [PMID: 23695674 PMCID: PMC3675328 DOI: 10.1038/ncomms2895] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/17/2013] [Indexed: 01/26/2023] Open
Abstract
Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis. Neural stem cells in the adult brain maintain their pool size while producing new neurons. Kawaguchi et al. show that, during neural stem cell mitosis in the adult mouse subventricular zone, the Notch ligand Dll1 is asymmetrically segregated to one daughter cell, which undergoes differentiation.
Collapse
Affiliation(s)
- Daichi Kawaguchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
132
|
Yamamizu K, Piao Y, Sharov A, Zsiros V, Yu H, Nakazawa K, Schlessinger D, Ko M. Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 2013; 1:545-59. [PMID: 24371809 PMCID: PMC3871400 DOI: 10.1016/j.stemcr.2013.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/17/2022] Open
Abstract
A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. Lineage-determining single TFs are identified based on the correlation matrix A proof of concept is demonstrated for ESC differentiation by 21 TFs TFs orchestrate global gene expression changes via direct binding to target genes Transfections of synthetic TF mRNAs generate desired differentiated cells
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei A. Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Veronika Zsiros
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Yu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Minoru S.H. Ko
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, CREST, Tokyo160-8582, Japan
- Corresponding author
| |
Collapse
|
133
|
Parallel evolution of chordate cis-regulatory code for development. PLoS Genet 2013; 9:e1003904. [PMID: 24282393 PMCID: PMC3836708 DOI: 10.1371/journal.pgen.1003904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations. Vertebrates share many aspects of early development with our closest chordate ancestors, the tunicates. However, whilst the repertoire of genes that orchestrate development is essentially the same in the two lineages, the genomic code that regulates these genes appears to be very different, even though it is highly conserved within vertebrates themselves. Using comparative genomics, we have identified a parallel developmental code in tunicates and confirmed that this code, despite a lack of sequence conservation, associates with a similar repertoire of genes. However, the organisation of the code spatially is very different in the two lineages, strongly suggesting that most of it arose independently in vertebrates and tunicates, and in most cases lacking any direct sequence ancestry. We have assayed elements of the tunicate code, and found that at least some of them can regulate gene expression in zebrafish embryos. Our results suggest that regulatory code has arisen independently in different animal lineages but possesses some common functionality because its evolution has been driven by a similar cohort of developmental transcription factors. Our work helps illuminate how complex, stable gene regulatory networks evolve and become fixed within lineages.
Collapse
|
134
|
Misra K, Luo H, Li S, Matise M, Xiang M. Asymmetric activation of Dll4-Notch signaling by Foxn4 and proneural factors activates BMP/TGFβ signaling to specify V2b interneurons in the spinal cord. Development 2013; 141:187-98. [PMID: 24257627 DOI: 10.1242/dev.092536] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During development of the ventral spinal cord, the V2 interneurons emerge from p2 progenitors and diversify into two major subtypes, V2a and V2b, that play key roles in locomotor coordination. Dll4-mediated Notch activation in a subset of p2 precursors constitutes the crucial first step towards generating neuronal diversity in this domain. The mechanism behind the asymmetric Notch activation and downstream signaling events are, however, unknown at present. We show here that the Ascl1 and Neurog basic helix-loop-helix (bHLH) proneural factors are expressed in a mosaic pattern in p2 progenitors and that Foxn4 is required for setting and maintaining this expression mosaic. By binding directly to a conserved Dll4 enhancer, Foxn4 and Ascl1 activate Dll4 expression, whereas Neurog proteins prevent this effect, thereby resulting in asymmetric activation of Dll4 expression in V2 precursors expressing different combinations of proneural and Foxn4 transcription factors. Lineage tracing using the Cre-LoxP system reveals selective expression of Dll4 in V2a precursors, whereas Dll4 expression is initially excluded from V2b precursors. We provide evidence that BMP/TGFβ signaling is activated in V2b precursors and that Dll4-mediated Notch signaling is responsible for this activation. Using a gain-of-function approach and by inhibiting BMP/TGFβ signal transduction with pathway antagonists and RNAi knockdown, we further demonstrate that BMP/TGFβ signaling is both necessary and sufficient for V2b fate specification. Our data together thus suggest that the mosaic expression of Foxn4 and proneural factors may serve as the trigger to initiate asymmetric Dll4-Notch and subsequent BMP/TGFβ signaling events required for neuronal diversity in the V2 domain.
Collapse
Affiliation(s)
- Kamana Misra
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
135
|
Wilkinson G, Dennis D, Schuurmans C. Proneural genes in neocortical development. Neuroscience 2013; 253:256-73. [PMID: 23999125 DOI: 10.1016/j.neuroscience.2013.08.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Abstract
Neurons, astrocytes and oligodendrocytes arise from CNS progenitor cells at defined times and locations during development, with transcription factors serving as key determinants of these different neural cell fates. An emerging theme is that the transcription factors that specify CNS cell fates function in a context-dependent manner, regulated by post-translational modifications and epigenetic alterations that partition the genome (and hence target genes) into active or silent domains. Here we profile the critical roles of the proneural genes, which encode basic-helix-loop-helix (bHLH) transcription factors, in specifying neural cell identities in the developing neocortex. In particular, we focus on the proneural genes Neurogenin 1 (Neurog1), Neurog2 and Achaete scute-like 1 (Ascl1), which are each expressed in a distinct fashion in the progenitor cell pools that give rise to all of the neuronal and glial cell types of the mature neocortex. Notably, while the basic functions of these proneural genes have been elucidated, it is becoming increasingly evident that tight regulatory controls dictate when, where and how they function. Current efforts to better understand how proneural gene function is regulated will not only improve our understanding of neocortical development, but are also critical to the future development of regenerative therapies for the treatment of neuronal degeneration or disease.
Collapse
Affiliation(s)
- G Wilkinson
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
136
|
Izumi K, Housam R, Kapadia C, Stallings VA, Medne L, Shaikh TH, Kublaoui BM, Zackai EH, Grimberg A. Endocrine phenotype of 6q16.1-q21 deletion involving SIM1
and Prader-Willi syndrome-like features. Am J Med Genet A 2013; 161A:3137-43. [DOI: 10.1002/ajmg.a.36149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/30/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Ryan Housam
- Division of Endocrinology and Diabetes; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Chirag Kapadia
- Division of Endocrinology; Phoenix Children's Hospital; Phoenix Arizona
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology and Nutrition; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics, Perelman School of Medicine; University of Pennsylvania; Philadelphia Pennsylvania
| | - Livija Medne
- Division of Neurology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Tamim H. Shaikh
- Department of Pediatrics; University of Colorado School of Medicine; Aurora Colorado
| | - Bassil M. Kublaoui
- Division of Endocrinology and Diabetes; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics, Perelman School of Medicine; University of Pennsylvania; Philadelphia Pennsylvania
| | - Elaine H. Zackai
- Division of Human Genetics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics, Perelman School of Medicine; University of Pennsylvania; Philadelphia Pennsylvania
| | - Adda Grimberg
- Division of Endocrinology and Diabetes; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics, Perelman School of Medicine; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
137
|
Webb AE, Pollina EA, Vierbuchen T, Urbán N, Ucar D, Leeman DS, Martynoga B, Sewak M, Rando TA, Guillemot F, Wernig M, Brunet A. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 2013; 4:477-91. [PMID: 23891001 DOI: 10.1016/j.celrep.2013.06.035] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/11/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs). Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors, and FOXO3 shares common targets with the proneuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the prolongevity transcription factor FOXO3 and the cell-fate determinant ASCL1 and raises the possibility that FOXO3's ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool.
Collapse
Affiliation(s)
- Ashley E Webb
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Braun S, Machado R, Jessberger S. Temporal control of retroviral transgene expression in newborn cells in the adult brain. Stem Cell Reports 2013; 1:114-22. [PMID: 24052947 PMCID: PMC3757750 DOI: 10.1016/j.stemcr.2013.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/11/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) generate new neurons throughout life in distinct areas of the adult mammalian brain. Besides classical transgenesis-based approaches, retrovirus-mediated genetic manipulation is frequently used to study mechanisms that regulate neurogenesis in the nervous system. Here, we show that fusion of a tamoxifen-regulatable estrogen receptor (ERT2) motif to transcription factors (i.e., ASCL1 and NEUROD1) enables temporal control of transgene expression in adult mouse NSPCs in vitro and in vivo. Thus, the approach described here represents a versatile strategy for regulating gene expression to study gene function in dividing cells and their progeny. Inducible TF-ERT2 vectors enable increased neuronal differentiation of NSPCs in vitro TF-ERT2 vectors allow temporal control of TFs in transduced NSPCs in the adult brain Versatile strategy to genetically manipulate neurogenic cells in the adult brain
Collapse
Affiliation(s)
- Simon M.G. Braun
- Brain Research Institute, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Raquel A.C. Machado
- Brain Research Institute, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Sebastian Jessberger
- Brain Research Institute, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Corresponding author
| |
Collapse
|
139
|
Chang JC, Meredith DM, Mayer PR, Borromeo MD, Lai HC, Ou YH, Johnson JE. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell 2013; 25:182-95. [PMID: 23639443 DOI: 10.1016/j.devcel.2013.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 01/05/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022]
Abstract
Generating a balanced network of inhibitory and excitatory neurons during development requires precise transcriptional control. In the dorsal spinal cord, Ptf1a, a basic helix-loop-helix (bHLH) transcription activator, maintains this delicate balance by inducing homeodomain (HD) transcription factors such as Pax2 to specify the inhibitory lineage while suppressing HD factors such as Tlx1/3 that specify the excitatory lineage. We uncover the mechanism by which Ptf1a represses excitatory cell fate in the inhibitory lineage. We identify Prdm13 as a direct target of Ptf1a and reveal that Prdm13 actively represses excitatory cell fate by binding to regulatory sequences near the Tlx1 and Tlx3 genes to silence their expression. Prdm13 acts through multiple mechanisms, including interactions with the bHLH factor Ascl1, to repress Ascl1 activation of Tlx3. Thus, Prdm13 is a key component of a highly coordinated transcriptional network that determines the balance of inhibitory versus excitatory neurons in the dorsal spinal cord.
Collapse
Affiliation(s)
- Joshua C Chang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Pollak J, Wilken MS, Ueki Y, Cox KE, Sullivan JM, Taylor RJ, Levine EM, Reh TA. ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development 2013; 140:2619-31. [PMID: 23637330 PMCID: PMC3666387 DOI: 10.1242/dev.091355] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 12/14/2022]
Abstract
Non-mammalian vertebrates have a robust ability to regenerate injured retinal neurons from Müller glia (MG) that activate the gene encoding the proneural factor Achaete-scute homolog 1 (Ascl1; also known as Mash1 in mammals) and de-differentiate into progenitor cells. By contrast, mammalian MG have a limited regenerative response and fail to upregulate Ascl1 after injury. To test whether ASCL1 could restore neurogenic potential to mammalian MG, we overexpressed ASCL1 in dissociated mouse MG cultures and intact retinal explants. ASCL1-infected MG upregulated retinal progenitor-specific genes and downregulated glial genes. Furthermore, ASCL1 remodeled the chromatin at its targets from a repressive to an active configuration. MG-derived progenitors differentiated into cells that exhibited neuronal morphologies, expressed retinal subtype-specific neuronal markers and displayed neuron-like physiological responses. These results indicate that a single transcription factor, ASCL1, can induce a neurogenic state in mature MG.
Collapse
Affiliation(s)
- Julia Pollak
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Wilken
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Yumi Ueki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Kristen E. Cox
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Jane M. Sullivan
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Russell J. Taylor
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
141
|
Bery A, Martynoga B, Guillemot F, Joly JS, Rétaux S. Characterization of enhancers active in the mouse embryonic cerebral cortex suggests Sox/Pou cis-regulatory logics and heterogeneity of cortical progenitors. Cereb Cortex 2013; 24:2822-34. [PMID: 23720416 DOI: 10.1093/cercor/bht126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We aimed to identify cis-regulatory elements that control gene expression in progenitors of the cerebral cortex. A list of 975 putative enhancers were retrieved from a ChIP-Seq experiment performed in NS5 mouse stem cells with antibodies to Sox2, Brn2/Pou3f2, or Brn1/Pou3f3. Through a selection pipeline including gene ontology and expression pattern, we reduced the number of candidate enhancer sequences to 20. Ex vivo electroporation of green fluorescent pProtein (GFP) reporter constructs in the telencephalon of mouse embryos showed that 35% of the 20 selected candidate sequences displayed enhancer activity in the developing cortex at E13.5. In silico transcription factor binding site (TFBS) searches and mutagenesis experiments showed that enhancer activity is related to the presence of Sox/Pou TFBS pairs in the sequence. Comparative genomic analyses showed that enhancer activity is not related to the evolutionary conservation of the sequence. Finally, the combination of in utero electroporation of GFP reporter constructs with immunostaining for Tbr2 (basal progenitor marker) and phospho-histoneH3 (mitotic activity marker) demonstrated that each enhancer is specifically active in precise subpopulations of progenitors in the cortical germinal zone, highlighting the heterogeneity of these progenitors in terms of cis-regulation.
Collapse
Affiliation(s)
| | | | | | - Jean-Stéphane Joly
- Equipe Morphogenesis of the Chordate Nervous System, UPR3294 N&D, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France and
| | | |
Collapse
|
142
|
Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K, Rubenstein JLR. Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants. J Comp Neurol 2013; 521:1561-84. [PMID: 23042297 PMCID: PMC3615175 DOI: 10.1002/cne.23242] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/14/2022]
Abstract
Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss-of-function mutants. Eliminating Gsx2 function from the Dlx1/2 mutants rescued the increased expression of Ascl1 and Hes5 (Notch signaling mediators) and Olig2 (oligodendrogenesis mediator). In addition, Dlx1/2;Gsx2 mutants, like Dlx1/2;Ascl1 mutants, exacerbated the Gsx2 and Dlx1/2 patterning and differentiation phenotypes, particularly in the lateral ganglionic eminence (LGE) caudal ganglionic eminence (CGE), and septum, including loss of GAD1 expression. On the other hand, eliminating Gsx1 function from the Dlx1/2 mutants (Dlx1/2;Gsx1 mutants) did not severely exacerbate their phenotype; on the contrary, it resulted in a partial rescue of medial ganglionic eminence (MGE) properties, including interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and -2 have distinct interactions with Dlx1 and -2. Gsx2 interaction is strongest in the LGE, CGE, and septum, whereas the Gsx1 interaction is strongest in the MGE. From these studies, and earlier studies, we present a model of the transcriptional network that regulates early steps of subcortical development.
Collapse
Affiliation(s)
- Bei Wang
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San FranciscoSan Francisco, California 94158-2324
| | - Jason E Long
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San FranciscoSan Francisco, California 94158-2324
| | - Pierre Flandin
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San FranciscoSan Francisco, California 94158-2324
| | - Ramon Pla
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San FranciscoSan Francisco, California 94158-2324
| | - Ronald R Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnati, Ohio 45229
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnati, Ohio 45229
| | - John LR Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San FranciscoSan Francisco, California 94158-2324
| |
Collapse
|
143
|
Vieceli FM, Simões-Costa M, Turri JA, Kanno T, Bronner M, Yan CYI. The transcription factor chicken Scratch2 is expressed in a subset of early postmitotic neural progenitors. Gene Expr Patterns 2013; 13:189-96. [PMID: 23570883 DOI: 10.1016/j.gep.2013.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Scratch proteins are members of the Snail superfamily which have been shown to regulate invertebrate neural development. However, in vertebrates, little is known about the function of Scratch or its relationship to other neural transcription factors. We report the cloning of chicken Scratch2 (cScrt2) and describe its expression pattern in the chick embryo from HH15 through HH29. cScrt2 was detected in cranial ganglia, the nasal placode and neural tube. At all stages examined, cScrt2 expression is only detected within a subregion of the intermediate zone of the neural tube. cScrt2 is also expressed in the developing dorsal root ganglia from HH22-23 onwards and becomes limited to its dorsal medial domain at HH29. phospho-Histone H3 and BrdU-labeling revealed that the cScrt2 expression domain is located immediately external to the proliferative region. In contrast, cScrt2 domain overlapped almost completely with that of the postmitotic neural transcription factor NeuroM/Ath3/NEUROD4. Together, these data define cScrt2-positive cells as a subset of immediately postmitotic neural progenitors. Previous data has shown that Scrt2 is a repressor of E-box-driven transcription whereas NeuroM is an E-box-transactivator. In light of these data, the co-localization detected here suggests that Scrt2 and NeuroM may have opposing roles during definition of neural subtypes.
Collapse
|
144
|
Hutchins AP, Choo SH, Mistri TK, Rahmani M, Woon CT, Keow Leng Ng C, Jauch R, Robson P. Co-Motif Discovery Identifies an Esrrb-Sox2-DNA Ternary Complex as a Mediator of Transcriptional Differences Between Mouse Embryonic and Epiblast Stem Cells. Stem Cells 2013; 31:269-81. [DOI: 10.1002/stem.1279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
|
145
|
Xu P, Zhang A, Jiang R, Qiu M, Kang C, Jia Z, Wang G, Han L, Fan X, Pu P. The different role of Notch1 and Notch2 in astrocytic gliomas. PLoS One 2013; 8:e53654. [PMID: 23349727 PMCID: PMC3549979 DOI: 10.1371/journal.pone.0053654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022] Open
Abstract
It is well known that Notch signaling plays either oncogenic or tumor suppressive role in a variety of tumors, depending on the cellular context. However, in our previous study, we found that Notch1 was overexpressed while Notch2 downregulated in the majority of astrocytic gliomas with different grades as well as in glioblastoma cell lines U251 and A172. We had knocked down Notch1 by siRNA in glioblastoma cells, and identified that the cell growth and invasion were inhibited, whereas cell apoptosis was induced either in vitro or in vivo. For further clarification of the role of Notch2 in pathogenesis of gliomas, enforced overexpression of Notch2 was carried out with transfection of Notch2 expression plasmid in glioma cells and the cell growth, invasion and apoptosis were examined in vitro and in vivo in the present study, and siRNA targeting Notch1 was used as a positive control in vivo. The results showed that upregulating Notch2 had the effect of suppressing cell growth and invasion as well as inducing apoptosis, just the same as the results of knocking down Notch1. Meanwhile, the activity of core signaling pathway–EGFR/PI3K/AKT in astrocytic glioma cells was repressed. Thus, the present study reveals, for the first time, that Notch1 and Notch2 play different roles in the biological processes of astrocytic gliomas. Knocking down the Notch1 or enforced overexpression of Notch2 both modulate the astrocytic glioma phenotype, and the mechanism by which Notch1 and 2 play different roles in the glioma growth should be further investigated.
Collapse
Affiliation(s)
- Peng Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Anling Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Mingzhe Qiu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Zhifan Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Guangxiu Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
| | - Xing Fan
- Assistant Professor of Neurosurgery and Cell & Developmental Biology, University of Michigan Medical School, Department of Neurosurgery, Ann Arbor, Michigan, United States of America
- * E-mail: (XF); (PYP)
| | - Peiyu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Neurological Institute, Tianjin, People’s Republic of China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, People’s Republic of China
- * E-mail: (XF); (PYP)
| |
Collapse
|
146
|
Arai Y, Huttner WB, Calegari F. Neural Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
147
|
Dheedene A, Maes M, Vergult S, Menten B. A de novo POU3F3 Deletion in a Boy with Intellectual Disability and Dysmorphic Features. Mol Syndromol 2013; 5:32-5. [DOI: 10.1159/000356060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
|
148
|
Tan X, Zhang L, Qin J, Tian M, Zhu H, Dong C, Zhao H, Jin G. Transplantation of neural stem cells co-transfected with Nurr1 and Brn4 for treatment of Parkinsonian rats. Int J Dev Neurosci 2012; 31:82-7. [PMID: 23085081 DOI: 10.1016/j.ijdevneu.2012.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/17/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) tranplantation has great potential for the treatment of neurodegenerative disease such as Parkinson's disease (PD). However, the usage of NSCs is limited because the differentiation of NSCs into specific dopaminergic neurons has proven difficult. We have recently demonstrated that transgenic expression of Nurr1 could induce the differentiation of NSCs into tyrosine hydroxylase (TH) immunoreactive dopaminergic neurons, and forced co-expression of Nurr1 with Brn4 caused a dramatic increase in morphological and phenotypical maturity of these neurons. In this study, we investigated the effect of transplanted NSCs in PD model rats. The results showed that overexpression of Nurr1 promoted NSCs to differentiate into dopaminergic neurons in vivo, increased the level of dopamine (DA) neurotransmitter in the striatum, resulting in behavioral improvement of PD rats. Importantly, co-expression of Nurr1 and Brn4 in NSCs significantly increased the maturity and viability of dopaminergic neurons, further raised the DA amount in the striatum and reversed the behavioral deficit of the PD rats. Our findings provide a new potential and strategy for the use of NSCs in cell replacement therapy for PD.
Collapse
Affiliation(s)
- Xuefeng Tan
- Department of Anatomy and Neurobiology, the Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Martynoga B, Drechsel D, Guillemot F. Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 2012; 4:4/10/a008359. [PMID: 23028117 DOI: 10.1101/cshperspect.a008359] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian nervous system is the most complex organ of any living organism. How this complexity is generated during neural development is just beginning to be elucidated. This article discusses the signaling, transcriptional, and epigenetic mechanisms that are involved in neural development. The first part focuses on molecules that control neuronal numbers through regulation of the timing of onset of neurogenesis, the timing of the neuronal-to-glial switch, and the rate of progenitor proliferation. The second part focuses on molecules that control neuronal diversity by generating spatially or temporally distinct populations of neuronal progenitors. Most of the studies discussed in this article are focused on the developing mammalian cerebral cortex, because this is one of the main model systems for neural developmental studies and many of the mechanisms identified in this tissue also operate elsewhere in the developing brain and spinal cord.
Collapse
Affiliation(s)
- Ben Martynoga
- Division of Molecular Neurobiology, National Institute for Medical Research, Mill Hill, London NW71AA, United Kingdom
| | | | | |
Collapse
|
150
|
Schmidt-Strassburger U, Schips TG, Maier HJ, Kloiber K, Mannella F, Braunstein KE, Holzmann K, Ushmorov A, Liebau S, Boeckers TM, Wirth T. Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 2012; 26:4990-5001. [PMID: 22935140 DOI: 10.1096/fj.12-208587] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inactivation of FoxO proteins by phosphorylation is the result of a number of stimuli, including the insulin/IGF pathway. We were interested in the consequence of blunting this pathway by employing transgenic mice with tetracycline-controllable conditional expression of a constitutively active allele of FOXO3 under the control of the forebrain-specific CaMKIIα promoter. Although transgene-expressing mice were viable, brain weight was reduced by 30% in adult animals. Brains showed an isocortex compression with normal cortical layering, and a size reduction in regions known to depend on adult neurogenesis, i.e., the olfactory bulbs and the dentate gyrus. On postnatal activation of the transgene, adult neurogenesis was also severely affected. Investigating the molecular basis of this phenotype, we observed enhanced apoptosis starting from embryonic day E10.5 and a subsequent loss of progenitors in the ventricular/subventricular zones, but not in the isocortex or the striatum of adult mice. The enhanced apoptosis was accompanied by increased expression of PIK3IP1, which we identified as a direct transcriptional target of FOXO3. Transfection of Pik3ip1 into differentiating neural progenitors resulted in a significant reduction of viable cells. We therefore conclude that neural progenitors are particularly vulnerable to FOXO3-induced apoptosis, which is mediated by PIK3IP1, a negative PI3 kinase regulator.
Collapse
Affiliation(s)
- Uta Schmidt-Strassburger
- Institute of Physiological Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|