101
|
Ueda J, Matsuda Y, Yamahatsu K, Uchida E, Naito Z, Korc M, Ishiwata T. Epithelial splicing regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene 2013; 33:4485-95. [PMID: 24077287 PMCID: PMC4041859 DOI: 10.1038/onc.2013.392] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 12/26/2022]
Abstract
Epithelial splicing regulatory protein 1 (ESRP1) binds the FGFR-2 auxiliary cis-element ISE/ISS-3, located in the intron between exon IIIb and IIIc, and primarily promotes FGFR-2 IIIb expression. Here we assessed the role of ESRP1 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis was performed using anti-ESRP1, FGFR-2 IIIb and FGFR-2 IIIc antibodies in 123 PDAC cases. ESRP1-expression vector and small interference RNA (siRNA) targeting ESRP1 were transfected into human PDAC cells, and cell growth, migration and invasion were analyzed. In vivo heterotopic and orthotopic implantations using ESRP1 overexpression clones were performed and effects on pancreatic tumor volumes and hepatic and pulmonary metastases determined. ESRP1 immunoreactivity was strong in the nuclei of cancer cells in well-to-moderately differentiated PDACs, but weak in poorly-differentiated cancers. Well-to-moderately differentiated cancers also exhibited high FGFR-2 IIIb and low FGFR-2 IIIc expression, whereas this ratio was reversed in the poorly-differentiated cancers. Increased ESRP1 expression was associated with longer survival by comparison with low-ESRP1 expression, and PANC-1 cells engineered to express ESRP1 exhibited increased FGFR-2 IIIb expression and decreased migration and invasion in vitro, whereas ESRP1 siRNA-transfected KLM-1 cells exhibited increased FGFR-2 IIIc expression and increased cell growth, migration and invasion. In vivo, ESRP1-overexpressing clones formed significantly fewer liver metastases as compared with control clones. ESRP1 regulates the expression pattern of FGFR-2 isoforms, attenuates cell growth, migration, invasion, and metastasis, and is a favorable prognostic factor in PDAC. Therefore, devising mechanisms to up-regulate ESRP1 may exert a beneficial therapeutic effect in PDAC.
Collapse
Affiliation(s)
- J Ueda
- 1] Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan [2] Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Y Matsuda
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - K Yamahatsu
- 1] Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan [2] Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - E Uchida
- Department of Surgery for Organ and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Z Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| | - M Korc
- Departments of Medicine, and Biochemistry and Molecular Biology, Indiana University School of Medicine and the Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - T Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
102
|
Fassett JT, Xu X, Kwak D, Wang H, Liu X, Hu X, Bache RJ, Chen Y. Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload. PLoS One 2013; 8:e73887. [PMID: 24086300 PMCID: PMC3784444 DOI: 10.1371/journal.pone.0073887] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/23/2013] [Indexed: 12/02/2022] Open
Abstract
Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r2 = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.
Collapse
Affiliation(s)
- John T. Fassett
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xin Xu
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Huan Wang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xiaoyu Liu
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xinli Hu
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Robert J. Bache
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yingjie Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
103
|
Cam A, Sivaguru M, Gonzalez de Mejia E. Endocytic mechanism of internalization of dietary peptide lunasin into macrophages in inflammatory condition associated with cardiovascular disease. PLoS One 2013; 8:e72115. [PMID: 24039740 PMCID: PMC3764169 DOI: 10.1371/journal.pone.0072115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. Diet influences risk factors associated with CVD and atherosclerosis, a major vascular disease that arises from inflammation. Lunasin, a peptide derived from plant foods such as soybeans, contains a unique Arg-Gly-Asp cell-adhesion motif and inhibits the pathways involved in the inflammatory cascade. The objective was to determine the mechanism by which lunasin is internalized into human THP-1 macrophages, investigate the expression of endocytic membrane proteins in inflammatory conditions and to identify the pathways involved. While lipopolysaccharide (10 nM), vitronectin (130 nM) and a combination of these two molecules enhanced lunasin uptake and increased basal αVβ3 integrin expression, lunasin reduced αVβ3 expression by 25.5, 26.8 and 49.2%, respectively. The pretreatment of cells with brefeldin A (71 µM), an inhibitor of protein trafficking, inhibited lunasin internalization by up to 99.8%. Lunasin increased caveolin-1 expression by up to 204.8%, but did not modulate clathrin. The pretreatment of macrophages with nystatin (54 µM), an inhibitor of caveolae-dependent endocytosis, reduced lunasin internalization. The presence of amantadine (1 mM) and amiloride (1 mM), inhibitors of clathrin-mediated endocytosis and macropinocytosis, abolished lunasin cell entry. Lunasin elicited a transient reduction in intracellular levels of Ca2+ in LPS-induced macrophages. The results suggest that internalization of lunasin into macrophages is amplified in inflammatory conditions and is primarily mediated by endocytic mechanisms that involve integrin signaling, clathrin-coated structures and macropinosomes. Lunasin may be responsible for attenuation of CVD risk factors by interacting with pathways involved in endocytosis and inflammation.
Collapse
Affiliation(s)
- Anthony Cam
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
104
|
Vetterkind S, Poythress RH, Lin QQ, Morgan KG. Hierarchical scaffolding of an ERK1/2 activation pathway. Cell Commun Signal 2013; 11:65. [PMID: 23987506 PMCID: PMC3846746 DOI: 10.1186/1478-811x-11-65] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022] Open
Abstract
Background Scaffold proteins modulate cellular signaling by facilitating assembly of specific signaling pathways. However, there is at present little information if and how scaffold proteins functionally interact with each other. Results Here, we show that two scaffold proteins, caveolin-1 and IQGAP1, are required for phosphorylation of the actin associated pool of extracellular signal regulated kinase 1 and 2 (ERK1/2) in response to protein kinase C activation. We show by immunofluorescence and proximity ligation assays, that IQGAP1 tethers ERK1/2 to actin filaments. Moreover, siRNA experiments demonstrate that IQGAP1 is required for activation of actin-bound ERK1/2. Caveolin-1 is also necessary for phosphorylation of actin-bound ERK1/2 in response to protein kinase C, but is dispensible for ERK1/2 association with actin. Simultaneous knock down of caveolin-1 and IQGAP1 decreases total phorbol ester-induced ERK1/2 phosphorylation to the same degree as single knock down of either caveolin-1 or IQGAP1, indicating that caveolin-1 and IQGAP1 operate in the same ERK activation pathway. We further show that caveolin-1 knock down, but not IQGAP1 knock down, reduces C-Raf phosphorylation in response to phorbol ester stimulation. Conclusions Based on our data, we suggest that caveolin-1 and IQGAP1 assemble distinct signaling modules, which are then linked in a hierarchical arrangement to generate a functional ERK1/2 activation pathway.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
105
|
Nakaya Y, Sukowati EW, Sheng G. Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. ACTA ACUST UNITED AC 2013; 202:637-51. [PMID: 23940118 PMCID: PMC3747297 DOI: 10.1083/jcb.201302075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amniote epiblast cells differentiate into mesoderm and endoderm lineages during gastrulation through a process called epithelial-to-mesenchymal transition (EMT). Molecular regulation of gastrulation EMT is poorly understood. Here we show that epiblast epithelial status was maintained by anchoring microtubules to the basal cortex via CLIP-associated protein (CLASP), a microtubule plus-end tracking protein, and Dystroglycan, a transmembrane protein that bridges the cytoskeleton and basement membrane (BM). Mesoderm formation required down-regulation of CLASP and Dystroglycan, and reducing CLASP activity in pregastrulation epiblast cells caused ectopic BM breakdown and disrupted epiblast integrity. These effects were mediated through the CLASP-binding partner LL5. Live-imaging using EB1-enhanced GFP (eGFP) revealed that reducing CLASP and LL5 levels in the epiblast destabilized basal microtubules. We further show that Dystroglycan is localized to basolateral membrane in epiblast cells. Basal but not lateral localization of Dystroglycan was regulated by CLASP. We propose that epiblast-BM interaction requires CLASP- and Dystroglycan-mediated cortical microtubule anchoring, the disruption of which initiates gastrulation EMT.
Collapse
Affiliation(s)
- Yukiko Nakaya
- Laboratory for Early Embryogenesis, Institute of Physical and Chemical Research RIKEN Center for Developmental Biology, Chuo-Ku Kobe, Hyogo 650-0047, Japan
| | | | | |
Collapse
|
106
|
Glukhova MA, Streuli CH. How integrins control breast biology. Curr Opin Cell Biol 2013; 25:633-41. [PMID: 23886475 PMCID: PMC3807876 DOI: 10.1016/j.ceb.2013.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 02/07/2023]
Abstract
This article explores new ideas about how the ECM-integrin axis controls normal and malignant breast biology. We discuss the role of integrins in mammary stem cells, and how cell-matrix interactions regulate ductal and alveolar development and function. We also examine the contribution of integrins to tissue disorganisation and metastasis, and how an altered stromal and ECM tumour microenvironment affects the cancer cell niche both within primary tumours and at distant sites. Finally, we mention novel strategies for integrin-directed breast cancer treatment.
Collapse
Affiliation(s)
- Marina A Glukhova
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
107
|
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 2013; 86:92-103. [PMID: 23850217 DOI: 10.1016/j.diff.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
108
|
Abstract
Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232-6840, USA
| | | | | |
Collapse
|
109
|
Elad N, Volberg T, Patla I, Hirschfeld-Warneken V, Grashoff C, Spatz JP, Fässler R, Geiger B, Medalia O. The role of integrin-linked kinase in the molecular architecture of focal adhesions. J Cell Sci 2013; 126:4099-107. [PMID: 23843624 DOI: 10.1242/jcs.120295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Integrin-mediated focal adhesions (FAs) are large, multi-protein complexes that link the actin cytoskeleton to the extracellular matrix and take part in adhesion-mediated signaling. These adhesions are highly complex and diverse at the molecular level; thus, assigning particular structural or signaling functions to specific components is highly challenging. Here, we combined functional, structural and biophysical approaches to assess the role of a major FA component, namely, integrin-linked kinase (ILK), in adhesion formation. We show here that ILK plays a key role in the formation of focal complexes, early forms of integrin adhesions, and confirm its involvement in the assembly of fibronectin-bound fibrillar adhesions. Examination of ILK-null fibroblasts by cryo-electron tomography pointed to major structural changes in their FAs, manifested as disarray of the associated actin filaments and an increase in the packing density of FA-related particles. Interestingly, adhesion of the mutant cells to the substrate required a higher ligand density than in control cells. These data indicate that ILK has a key role in integrin adhesion assembly and sub-structure, and in the regulation of the FA-associated cytoskeleton.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer-Sheva 84120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. Dev Biol 2013; 379:16-27. [DOI: 10.1016/j.ydbio.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/18/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
111
|
Gonzalez-Nieves R, Desantis AI, Cutler ML. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms. J Cell Commun Signal 2013; 7:279-93. [PMID: 23765260 PMCID: PMC3889256 DOI: 10.1007/s12079-013-0207-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023] Open
Abstract
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.
Collapse
Affiliation(s)
- Reyda Gonzalez-Nieves
- Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | | | | |
Collapse
|
112
|
Comber K, Huelsmann S, Evans I, Sánchez-Sánchez BJ, Chalmers A, Reuter R, Wood W, Martín-Bermudo MD. A dual role for the βPS integrin myospheroid in mediating Drosophila embryonic macrophage migration. J Cell Sci 2013; 126:3475-84. [PMID: 23704353 PMCID: PMC3730248 DOI: 10.1242/jcs.129700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout embryonic development, macrophages not only act as the first line of defence against infection but also help to sculpt organs and tissues of the embryo by removing dead cells and secreting extracellular matrix components. Key to their function is the ability of embryonic macrophages to migrate and disperse throughout the embryo. Despite these important developmental functions, little is known about the molecular mechanisms underlying embryonic macrophage migration in vivo. Integrins are key regulators of many of the adult macrophage responses, but their role in embryonic macrophages remains poorly characterized. Here, we have used Drosophila macrophages (haemocytes) as a model system to address the role of integrins during embryonic macrophage dispersal in vivo. We show that the main βPS integrin, myospheroid, affects haemocyte migration in two ways; by shaping the three-dimensional environment in which haemocytes migrate and by regulating the migration of haemocytes themselves. Live imaging revealed a requirement for myospheroid within haemocytes to coordinate the microtubule and actin dynamics, and to enable haemocyte developmental dispersal, contact repulsion and inflammatory migration towards wounds.
Collapse
Affiliation(s)
- Kate Comber
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2013; 125:3695-701. [PMID: 23027580 DOI: 10.1242/jcs.095810] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
114
|
Yoshigi M, Pronovost SM, Kadrmas JL. Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify constituents of protein complexes. Proteome Sci 2013; 11:21. [PMID: 23663728 PMCID: PMC3688448 DOI: 10.1186/1477-5956-11-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
Background Here we describe a novel approach used to identify the constituents of protein complexes with high fidelity, using the integrin-associated scaffolding protein PINCH as a test case. PINCH is comprised of five LIM domains, zinc-finger protein interaction modules. In Drosophila melanogaster, PINCH has two known high-affinity binding partners—Integrin-linked kinase (ILK) that binds to LIM1 and Ras Suppressor 1 (RSU1) that binds to LIM5—but has been postulated to bind additional proteins as well. Results To purify PINCH complexes, in parallel we fused different affinity tags (Protein A and Flag) to different locations within the PINCH sequence (N- and C-terminus). We expressed these tagged versions of PINCH both in cell culture (overexpressed in Drosophila S2 cell culture in the presence of endogenous PINCH) and in vivo (at native levels in Drosophila lacking endogenous PINCH). After affinity purification, we analyzed PINCH complexes by a novel 2D-gel electrophoresis analysis, iGEO (interactions by 2D Gel Electrophoresis Overlap), with mass spectrometric identification of individual spots of interest. iGEO allowed the identification of protein partners that associate with PINCH under two independent purification strategies, providing confidence in the significance of the interaction. Proteins identified by iGEO were validated against a highly inclusive list of candidate PINCH interacting proteins identified in previous analyses by MuDPIT mass spectrometry. Conclusions The iGEO strategy confirmed a core complex comprised of PINCH, RSU1, ILK, and ILK binding partner Parvin. Our iGEO method also identified five novel protein partners that specifically interacted with PINCH in Drosophila S2 cell culture. Because of the improved reproducibility of 2D-GE methodology and the increasing affordability of the required labeling reagents, iGEO is a method that is accessible to most moderately well-equipped biological laboratories. The biochemical co-purifications inherent in iGEO allow for rapid and unambiguous identification of the constituents of protein complexes, without the need for extensive follow-up experiments.
Collapse
Affiliation(s)
- Masaaki Yoshigi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | | | | |
Collapse
|
115
|
Moik D, Böttcher A, Makhina T, Grashoff C, Bulus N, Zent R, Fässler R. Mutations in the paxillin-binding site of integrin-linked kinase (ILK) destabilize the pseudokinase domain and cause embryonic lethality in mice. J Biol Chem 2013; 288:18863-71. [PMID: 23658024 DOI: 10.1074/jbc.m113.470476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val(386) and Thr(387) were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins.
Collapse
Affiliation(s)
- Daniel Moik
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
116
|
Radovanac K, Morgner J, Schulz JN, Blumbach K, Patterson C, Geiger T, Mann M, Krieg T, Eckes B, Fässler R, Wickström SA. Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO J 2013; 32:1409-24. [PMID: 23612611 DOI: 10.1038/emboj.2013.90] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Abstract
Integrin-linked kinase (ILK) is an adaptor protein required to establish and maintain the connection between integrins and the actin cytoskeleton. This linkage is essential for generating force between the extracellular matrix (ECM) and the cell during migration and matrix remodelling. The mechanisms by which ILK stability and turnover are regulated are unknown. Here we report that the E3 ligase CHIP-heat shock protein 90 (Hsp90) axis regulates ILK turnover in fibroblasts. The chaperone Hsp90 stabilizes ILK and facilitates the interaction of ILK with α-parvin. When Hsp90 activity is blocked, ILK is ubiquitinated by CHIP and degraded by the proteasome, resulting in impaired fibroblast migration and a dramatic reduction in the fibrotic response to bleomycin in mice. Together, our results uncover how Hsp90 regulates ILK stability and identify a potential therapeutic strategy to alleviate fibrotic diseases.
Collapse
Affiliation(s)
- Korana Radovanac
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Malan D, Elischer A, Hesse M, Wickström SA, Fleischmann BK, Bloch W. Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization. Development 2013; 140:987-95. [PMID: 23404105 DOI: 10.1242/dev.091298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Integrin linked kinase (ILK) connects the ILK-Pinch-Parvin complex with integrin adhesion sites. Because of the functional relevance of integrin-linked signaling for endothelial cell (EC) biology, we have explored this pathway in Ilk(-/-) embryonic stem (ES) cells differentiated into ECs and vessel-like structures. We have focused in particular on the mechanistic relevance of ILK-Pinch-Parvin complex-related signaling for EC development and tube formation. Our analysis revealed that the formation of vessel-like structures was strongly reduced in Ilk(-/-) ES cells and that this phenotype could be rescued by re-expression of ILK in ES cells. ECs were MACS sorted from wild-type (WT) and Ilk(-/-) ES cells and functional analysis using intracellular calcium imaging as the read-out yielded a complete lack of vascular endothelial growth factor- and epidermal growth factor-dependent responses. The possibility of a caveolin 1-related defect was investigated by transfecting WT and Ilk(-/-) ECs with a caveolin 1-EGFP fusion protein. Time-lapse microscopy showed that the prominent phenotype is due to altered dynamics of caveolin 1 and to a lack of positioning of caveolin 1 in the vicinity of the plasma membrane and that it is rescued by re-expressing ILK in the Ilk(-/-) ES cells. We also found that the defect is caused by the perturbed organization of microtubules and cortical actin filaments. Thus, ILK is required as a scaffold to allow actin-microtubule interactions and correct positioning of caveolin 1 close to the plasma membrane. This is crucial for signaling compartmentalization in ECs and explains the key role of ILK for EC development and function.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, NRW, 53105, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Azimifar SB, Böttcher RT, Zanivan S, Grashoff C, Krüger M, Legate KR, Mann M, Fässler R. Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J Cell Sci 2013; 125:435-48. [PMID: 22357970 DOI: 10.1242/jcs.091652] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin and receptor tyrosine kinase signalling networks cooperate to regulate various biological functions. The molecular details underlying the integration of both signalling networks remain largely uncharacterized. Here we identify a signalling module composed of a fibronectin-α5β1-integrin-integrin-linked-kinase (ILK) complex that, in concert with epidermal growth factor (EGF) cues, cooperatively controls the formation of transient actin-based circular dorsal ruffles (DRs) in fibroblasts. DR formation depends on the precise spatial activation of Src at focal adhesions by integrin and EGF receptor signals, in an ILK-dependent manner. In a SILAC-based phosphoproteomics screen we identified the tumour-suppressor Cyld as being required for DR formation induced by α5β1 integrin and EGF receptor co-signalling. Furthermore, EGF-induced Cyld tyrosine phosphorylation is controlled by integrin-ILK and Src as a prerequisite for DR formation. This study provides evidence for a novel function of integrin-ILK and EGF signalling crosstalk in mediating Cyld tyrosine phosphorylation and fast actin-based cytoskeletal rearrangements.
Collapse
Affiliation(s)
- S Babak Azimifar
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013; 14:98-112. [PMID: 23340574 DOI: 10.1038/nrm3512] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| | | |
Collapse
|
120
|
Widmaier M, Rognoni E, Radovanac K, Azimifar SB, Fässler R. Integrin-linked kinase at a glance. J Cell Sci 2013; 125:1839-43. [PMID: 22637643 DOI: 10.1242/jcs.093864] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Moritz Widmaier
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | | | | | | | | |
Collapse
|
121
|
Integrin-linked kinase regulates interphase and mitotic microtubule dynamics. PLoS One 2013; 8:e53702. [PMID: 23349730 PMCID: PMC3549953 DOI: 10.1371/journal.pone.0053702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/03/2012] [Indexed: 01/25/2023] Open
Abstract
Integrin-linked kinase (ILK) localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.
Collapse
|
122
|
Akhtar N, Streuli CH. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 2013; 15:17-27. [PMID: 23263281 PMCID: PMC3701152 DOI: 10.1038/ncb2646] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK.
| | | |
Collapse
|
123
|
|
124
|
Hertzog M, Monteiro P, Le Dez G, Chavrier P. Exo70 subunit of the exocyst complex is involved in adhesion-dependent trafficking of caveolin-1. PLoS One 2012; 7:e52627. [PMID: 23300727 PMCID: PMC3531403 DOI: 10.1371/journal.pone.0052627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
Caveolae are specialized domains of the plasma membrane, which play key roles in signaling, endocytosis and mechanosensing. Using total internal reflection fluorescent microscopy (TIRF-M), we observe that the exocyst subunit Exo70 forms punctuate structures at the plasma membrane and partially localizes with caveolin-1, the main component of caveolae. Upon cell detachment, we found that Exo70 accumulates with caveolin-1-positive vesicular structures. Upon cell re-adhesion, caveolin-1 traffics back to the plasma membrane in a multistep process involving microtubules and actin cytoskeleton. In addition, silencing of Exo70 redirects caveolin-1 to focal adhesions identified by markers such as α5 integrin or vinculin. Based on these findings, we conclude that Exo70 is involved in caveolin-1 recycling to the plasma membrane during re-adhesion of the cells to the substratum.
Collapse
Affiliation(s)
- Maud Hertzog
- Membrane and Cytoskeleton Dynamics, Institut Curie, Research Center, CNRS- UMR144, Paris, France
- * E-mail: (MH); (PC)
| | - Pedro Monteiro
- Membrane and Cytoskeleton Dynamics, Institut Curie, Research Center, CNRS- UMR144, Paris, France
| | - Gaëlle Le Dez
- Membrane and Cytoskeleton Dynamics, Institut Curie, Research Center, CNRS- UMR144, Paris, France
| | - Philippe Chavrier
- Membrane and Cytoskeleton Dynamics, Institut Curie, Research Center, CNRS- UMR144, Paris, France
- * E-mail: (MH); (PC)
| |
Collapse
|
125
|
Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. ACTA ACUST UNITED AC 2012; 198:481-9. [PMID: 22908306 PMCID: PMC3514042 DOI: 10.1083/jcb.201206050] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Directional cell migration requires force generation that relies on the
coordinated remodeling of interactions with the extracellular matrix (ECM),
which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover
requires dynamic microtubules, and three members of the diverse group of
microtubule plus-end-tracking proteins are principally involved in mediating
microtubule interactions with FAs. Microtubules also alter the assembly state of
FAs by modulating Rho GTPase signaling, and recent evidence suggests that
microtubule-mediated clathrin-dependent and -independent endocytosis regulates
FA dynamics. In addition, FA-associated microtubules may provide a polarized
microtubule track for localized secretion of matrix metalloproteases (MMPs).
Thus, different aspects of the molecular mechanisms by which microtubules
control FA turnover in migrating cells are beginning to emerge.
Collapse
Affiliation(s)
- Samantha Stehbens
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
126
|
Yang JB, Gan SQ, Yang YL, Zhang HL, Song TZ, Feng J, Yang JQ, Gao L, Shi GQ, Shen M. [Cloning and expression in follicle anagen of ILK gene in sheep]. YI CHUAN = HEREDITAS 2012; 34:719-26. [PMID: 22698743 DOI: 10.3724/sp.j.1005.2012.00719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Integrin linked kinase (ILK) is a scaffold protein, which plays important roles in hair follicle development. The cDNA sequence of novel ILK gene in sheep was cloned by PCR method and analyzed by bioinformatics. Tissue expression profiling in eight tissues and temporal profiling at different wool follicle anagen stages in skin was analyzed. The results showed that the whole open reading frame (ORF) of ILK gene was 1 359 bp in length, which encoded 452 amino acids. Bioinformatic analysis indicated that the secondary structure of ILK gene was mainly made up of three ankyrin repeats and a kinase domain, and there were multiple phosphorylation and Protein Kinase C sites in this gene. The RT-PCR result confirmed that ILK mRNA was expressed in heart, liver, spleen, lung, skeletal muscle, skin, and small intestine, and the expression level was much higher in skin, spleen, and liver than others. The q-PCR analysis demonstrated that the ex-pression level of ILK was significantly increased from March to May (early follicle anagen initiation) in both sheep breeds, Chinese Merino and Kazakh sheep, and there were certain differences from June to October between the two breeds. The above results indicated that ILK gene may play key roles in regulating secondary follicle growth.
Collapse
Affiliation(s)
- Jian-Bo Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Qin J, Wu C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol 2012; 24:607-13. [PMID: 22763012 DOI: 10.1016/j.ceb.2012.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023]
Abstract
Integrin-linked kinase (ILK) is a widely expressed and evolutionally conserved component of cell-extracellular matrix (ECM) adhesions. Although initially named as a kinase, ILK contains an unusual pseudoactive site that is incapable of catalyzing phosphorylation. Instead, ILK acts as a central component of a heterotrimer (the PINCH-ILK-parvin complex) at ECM adhesions mediating interactions with a large number of proteins via multiple sites including its pseudoactive site. Through higher level protein-protein interactions, this scaffold links integrins to the actin cytoskeleton and catalytic proteins and thereby regulates focal adhesion assembly, cytoskeleton organization and signaling. This review summarizes recent advances in our understanding of the structure and functions of the PINCH-ILK-parvin complex, and discusses emerging new features of the molecular mechanisms by which it regulates diverse cellular, physiological and pathological processes.
Collapse
Affiliation(s)
- Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
128
|
Bhattacharya M, Su G, Su X, Oses-Prieto JA, Li JT, Huang X, Hernandez H, Atakilit A, Burlingame AL, Matthay MA, Sheppard D. IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 303:L12-9. [PMID: 22561460 PMCID: PMC3426434 DOI: 10.1152/ajplung.00375.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
We recently reported that integrin α(v)β(3) is necessary for vascular barrier protection in mouse models of acute lung injury and peritonitis. Here, we used mass spectrometric sequencing of integrin complexes to isolate the novel β(3)-integrin binding partner IQGAP1. Like integrin β(3), IQGAP1 localized to the endothelial cell-cell junction after sphingosine-1-phosphate (S1P) treatment, and IQGAP1 knockdown prevented cortical actin formation and barrier enhancement in response to S1P. Furthermore, knockdown of IQGAP1 prevented localization of integrin α(v)β(3) to the cell-cell junction. Similar to β(3)-null animals, IQGAP1-null mice had increased pulmonary vascular leak compared with wild-type controls 3 days after intratracheal LPS. In an Escherichia coli pneumonia model, IQGAP1 knockout mice had increased lung weights, lung water, and lung extravascular plasma equivalents of (125)I-labeled albumin compared with wild-type controls. Taken together, these experiments indicate that IQGAP1 is necessary for S1P-mediated vascular barrier protection during acute lung injury and is required for junctional localization of the barrier-protective integrin α(v)β(3).
Collapse
Affiliation(s)
- M Bhattacharya
- Lung Biology Center, UCSF, Rock Hall, Rm. 545, 1550 4th St., San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Branch KM, Hoshino D, Weaver AM. Adhesion rings surround invadopodia and promote maturation. Biol Open 2012; 1:711-22. [PMID: 23213464 PMCID: PMC3507228 DOI: 10.1242/bio.20121867] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 12/19/2022] Open
Abstract
Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD) of integrin-linked kinase (ILK) reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.
Collapse
Affiliation(s)
- Kevin M Branch
- Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, TN 37232 , USA
| | | | | |
Collapse
|
130
|
Judah D, Rudkouskaya A, Wilson R, Carter DE, Dagnino L. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling. PLoS One 2012; 7:e36704. [PMID: 22574216 PMCID: PMC3344928 DOI: 10.1371/journal.pone.0036704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/05/2012] [Indexed: 02/06/2023] Open
Abstract
Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.
Collapse
Affiliation(s)
- David Judah
- Department of Physiology and Pharmacology, University of Western Ontario, and Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Alena Rudkouskaya
- Department of Physiology and Pharmacology, University of Western Ontario, and Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Ryan Wilson
- Department of Physiology and Pharmacology, University of Western Ontario, and Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - David E. Carter
- London Regional Genomics Centre, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, University of Western Ontario, and Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
- Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
131
|
Echarri A, Muriel O, Pavón DM, Azegrouz H, Escolar F, Terrón MC, Sanchez-Cabo F, Martínez F, Montoya MC, Llorca O, Del Pozo MA. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 2012; 125:3097-113. [PMID: 22454521 DOI: 10.1242/jcs.090134] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biology of caveolin-1 (Cav1)/caveolae is intimately linked to actin dynamics and adhesion receptors. Caveolar domains are organized in hierarchical levels of complexity from curved or flattened caveolae to large, higher-order caveolar rosettes. We report that stress fibers controlled by Abl kinases and mDia1 determine the level of caveolar domain organization, which conditions the subsequent inward trafficking of caveolar domains induced upon loss of cell adhesion from the extracellular matrix. Abl-deficient cells have fewer stress fibers, a smaller pool of stress-fiber co-aligned Cav1 and increased clustering of Cav1/caveolae at the cell surface. Defective caveolar linkage to stress fibers prevents the formation of big caveolar rosettes upon loss of cell adhesion, correlating with a lack of inward trafficking. Live imaging of stress fibers and Cav1 showed that the actin-linked Cav1 pool loses its spatial organization in the absence of actin polymerization and is dragged and clustered by depolymerizing filaments. We identified mDia1 as the actin polymerization regulator downstream of Abl kinases that controls the stress-fiber-linked Cav1 pool. mDia1 knockdown results in Cav1/caveolae clustering and defective inward trafficking upon loss of cell adhesion. By contrast, cell elongation imposed by the excess of stress fibers induced by active mDia1 flattens caveolae. Furthermore, active mDia1 rescues the actin co-aligned Cav1 pool and Cav1 inward trafficking upon loss of adhesion in Abl-deficient cells. Thus, caveolar domain organization and trafficking are tightly coupled to adhesive and stress fiber regulatory pathways.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, [corrected] Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
White CD, Erdemir HH, Sacks DB. IQGAP1 and its binding proteins control diverse biological functions. Cell Signal 2011; 24:826-34. [PMID: 22182509 DOI: 10.1016/j.cellsig.2011.12.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/04/2011] [Indexed: 12/26/2022]
Abstract
IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.
Collapse
Affiliation(s)
- Colin D White
- Department of Pathology, Beth Israel Deaconess Medical Centre and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
133
|
Ho E, Dagnino L. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2. Mol Biol Cell 2011; 23:492-502. [PMID: 22160594 PMCID: PMC3268727 DOI: 10.1091/mbc.e11-07-0596] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.
Collapse
Affiliation(s)
- Ernest Ho
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
134
|
Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol 2011; 24:116-24. [PMID: 22138388 DOI: 10.1016/j.ceb.2011.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/17/2023]
Abstract
Integrin-dependent cell adhesions come in different shapes and serve in different cell types for tasks ranging from cell-adhesion, migration, and the remodeling of the extracellular matrix to the formation and stabilization of immunological and chemical synapses. A major challenge consists in the identification of adhesion-specific as well as common regulatory mechanisms, motivating the need for a deeper analysis of protein-protein interactions in the context of intact focal adhesions. Specifically, it is critical to understand how small differences in binding of integrins to extracellular ligands and/or cytoplasmic adapter proteins affect the assembly and function of an entire focal adhesion. By using the talin-integrin pair as a starting point, I would like to discuss how specific protein-protein and protein-lipid interactions can control the behavior and function of focal adhesions. By responding to chemical and mechanical cues several allosterically regulated proteins create a dynamic multifunctional protein network that provides both adhesion to the extracellular matrix as well as intracellular signaling in response to mechanical changes in the cellular environment.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- University of Geneva, Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1. Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
135
|
Colello D, Mathew S, Ward R, Pumiglia K, LaFlamme SE. Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J Biol Chem 2011; 287:2520-30. [PMID: 22117069 DOI: 10.1074/jbc.m111.254128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Diane Colello
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
136
|
Boucrot E, Howes MT, Kirchhausen T, Parton RG. Redistribution of caveolae during mitosis. J Cell Sci 2011; 124:1965-72. [PMID: 21625007 DOI: 10.1242/jcs.076570] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae form a specialized platform within the plasma membrane that is crucial for an array of important biological functions, ranging from signaling to endocytosis. Using total internal reflection fluorescence (TIRF) and 3D fast spinning-disk confocal imaging to follow caveola dynamics for extended periods, and electron microscopy to obtain high resolution snapshots, we found that the vast majority of caveolae are dynamic with lifetimes ranging from a few seconds to several minutes. Use of these methods revealed a change in the dynamics and localization of caveolae during mitosis. During interphase, the equilibrium between the arrival and departure of caveolae from the cell surface maintains the steady-state distribution of caveolin-1 (Cav1) at the plasma membrane. During mitosis, increased dynamics coupled to an imbalance between the arrival and departure of caveolae from the cell surface induces a redistribution of Cav1 from the plasma membrane to intracellular compartments. These changes are reversed during cytokinesis. The observed redistribution of Cav1 was reproduced by treatment of interphase cells with nocodazole, suggesting that microtubule rearrangements during mitosis can mediate caveolin relocalization. This study provides new insights into the dynamics of caveolae and highlights precise regulation of caveola budding and recycling during mitosis.
Collapse
Affiliation(s)
- Emmanuel Boucrot
- Department of Cell Biology and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
137
|
Pelikan-Conchaudron A, Le Clainche C, Didry D, Carlier MF. The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration. J Biol Chem 2011; 286:35119-28. [PMID: 21730051 DOI: 10.1074/jbc.m111.258772] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IQGAP1 is a large modular protein that displays multiple partnership and is thought to act as a scaffold in coupling cell signaling to the actin and microtubule cytoskeletons in cell migration, adhesion, and cytokinesis. However the molecular mechanisms underlying the activities of IQGAP1 are poorly understood in part because of its large size, poor solubility and lack of functional assays to challenge biochemical properties in various contexts. We have purified bacterially expressed recombinant human IQGAP1. The protein binds Cdc42, Rac1, and the CRIB domain of N-WASP in a calmodulin-sensitive fashion. We further show that in addition to bundling of filaments via a single N-terminal calponin-homology domain, IQGAP1 actually regulates actin assembly. It caps barbed ends, with a higher affinity for ADP-bound terminal subunits (K(B) = 4 nM). The barbed end capping activity is inhibited by calmodulin, consistent with calmodulin binding to IQGAP1 with a K(C) of 40 nm, both in the absence and presence of Ca(2+) ions. The barbed end capping activity resides in the C-terminal half of IQGAP1. It is possible that the capping activity of IQGAP1 accounts for its stimulation of cell migration. We further find that bacterially expressed recombinant IQGAP1 fragments easily co-purify with nucleic acids that turn out to activate N-WASP protein to branch filaments with Arp2/3 complex. The present results open perspectives for tackling the function of IQGAP1 in more complex reconstituted systems.
Collapse
Affiliation(s)
- Andrea Pelikan-Conchaudron
- Cytoskeleton Dynamics and Motility group, UPR 3289, Laboratoire d'Enzymologie et Biochimie Structurale, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
138
|
White CD, Li Z, Dillon DA, Sacks DB. IQGAP1 protein binds human epidermal growth factor receptor 2 (HER2) and modulates trastuzumab resistance. J Biol Chem 2011; 286:29734-47. [PMID: 21724847 DOI: 10.1074/jbc.m111.220939] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma.
Collapse
Affiliation(s)
- Colin D White
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
139
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
140
|
Adams JR, Schachter NF, Liu JC, Zacksenhaus E, Egan SE. Elevated PI3K signaling drives multiple breast cancer subtypes. Oncotarget 2011; 2:435-47. [PMID: 21646685 PMCID: PMC3248195 DOI: 10.18632/oncotarget.285] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Most human breast tumors have mutations that elevate signaling through a key metabolic pathway that is induced by insulin and a number of growth factors. This pathway serves to activate an enzyme known as phosphatidylinositol 3' kinase (PI3K) as well as to regulate proteins that signal in response to lipid products of PI3K. The specific mutations that activate this pathway in breast cancer can occur in genes coding for tyrosine kinase receptors, adaptor proteins linked to PI3K, catalytic and regulatory subunits of PI3K, serine/threonine kinases that function downstream of PI3K, and also phosphatidylinositol 3' phosphatase tumor suppressors that function to antagonize this pathway. While each genetic change results in net elevation of PI3K pathway signaling, and all major breast cancer subtypes show pathway activation, the specific mutation(s) involved in any one tumor may play an important role in defining tumor subtype, prognosis and even sensitivity to therapy. Here, we describe mouse models of breast cancer with elevated PI3K signaling, and how they may be used to guide development of novel therapeutics.
Collapse
Affiliation(s)
- Jessica R. Adams
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nathan F. Schachter
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C. Liu
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- 3 Division of Cell and Molecular Biology, Toronto General Research Institute–University Health Network, Toronto, Ontario, Canada
- 4 The Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- 1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 101 College St., East Tower
- 2 The Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
141
|
Abstract
Integrin-linked kinase (ILK) is a highly evolutionarily conserved intracellular protein that was originally identified as an integrin-interacting protein, and extensive genetic and biochemical studies have shown that ILK expression is vital during both embryonic development and tissue homeostasis. At the cellular and tissue levels, ILK regulates signaling pathways for cell adhesion-mediated cell survival (anoikis), apoptosis, proliferation and mitosis, migration, invasion, and vascularization and tumor angiogenesis. ILK also has central roles in cardiac and smooth-muscle contractility, and ILK dysregulation causes cardiomyopathies in humans. ILK protein levels are increased in several human cancers and often the expression level predicts poor patient outcome. Abundant evidence has accumulated suggesting that, of the diverse functions of ILK, some may require kinase activity whereas others depend on protein-protein interactions and are, therefore, independent of kinase activity. However, the past several years have seen an ongoing debate about whether ILK indeed functions as a protein serine/threonine kinase. This debate centers on the atypical protein kinase domain of ILK, which lacks some amino-acid residues thought to be essential for phosphotransferase activity. However, similar deficiencies are present in the catalytic domains of other kinases now known to possess protein kinase activity. Numerous studies have shown that ILK phosphorylates peptide substrates in vitro, corresponding to ILK-mediated phosphorylations in intact cells, and a recent report characterizing in vitro phosphotransferase activity of highly purified, full-length ILK, accompanied by detailed enzyme kinetic analyses, shows that, at least in vitro, ILK is a bona fide protein kinase. However, several genetic studies suggest that, not all biological functions of ILK require kinase activity, and that it can function as an adaptor/scaffold protein. Here, we review evidence for and against ILK being an active kinase, and provide a framework for strategies to further analyze the kinase and adaptor functions of ILK in different cellular contexts.
Collapse
|
142
|
Wickström SA, Fässler R. Regulation of membrane traffic by integrin signaling. Trends Cell Biol 2011; 21:266-73. [DOI: 10.1016/j.tcb.2011.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 01/23/2023]
|
143
|
Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett 2011; 585:723-9. [PMID: 21295032 PMCID: PMC3085995 DOI: 10.1016/j.febslet.2011.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/18/2022]
Abstract
Microbial pathogens cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens.
Collapse
Affiliation(s)
- Hugh Kim
- Department of Translational Medicine, Brigham and Women's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
144
|
Legg K. Membrane trafficking: On track for delivery. Nat Rev Mol Cell Biol 2010; 11:817. [PMID: 21081961 DOI: 10.1038/nrm3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|