101
|
Abstract
Sickle-cell disease affects millions of individuals worldwide, but the global incidence is concentrated in Africa. The burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, we review scientific breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal haemoglobin production in human beings and the development of genome editing technology now support the design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, QC, Canada; Université de Montréal, Montreal, QC, Canada.
| | - Daniel E Bauer
- Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
102
|
Huang J, Liu X, Li D, Shao Z, Cao H, Zhang Y, Trompouki E, Bowman TV, Zon LI, Yuan GC, Orkin SH, Xu J. Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. Dev Cell 2016; 36:9-23. [PMID: 26766440 DOI: 10.1016/j.devcel.2015.12.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/15/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022]
Abstract
Enhancers are the primary determinants of cell identity, but the regulatory components controlling enhancer turnover during lineage commitment remain largely unknown. Here we compare the enhancer landscape, transcriptional factor occupancy, and transcriptomic changes in human fetal and adult hematopoietic stem/progenitor cells and committed erythroid progenitors. We find that enhancers are modulated pervasively and direct lineage- and stage-specific transcription. GATA2-to-GATA1 switch is prevalent at dynamic enhancers and drives erythroid enhancer commissioning. Examination of lineage-specific enhancers identifies transcription factors and their combinatorial patterns in enhancer turnover. Importantly, by CRISPR/Cas9-mediated genomic editing, we uncover functional hierarchy of constituent enhancers within the SLC25A37 super-enhancer. Despite indistinguishable chromatin features, we reveal through genomic editing the functional diversity of several GATA switch enhancers in which enhancers with opposing functions cooperate to coordinate transcription. Thus, genome-wide enhancer profiling coupled with in situ enhancer editing provide critical insights into the functional complexity of enhancers during development.
Collapse
Affiliation(s)
- Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dan Li
- Harvard College, Cambridge, MA 02138, USA
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Cao
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Eirini Trompouki
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Teresa V Bowman
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
103
|
Smith OK, Kim R, Fu H, Martin MM, Lin CM, Utani K, Zhang Y, Marks AB, Lalande M, Chamberlain S, Libbrecht MW, Bouhassira EE, Ryan MC, Noble WS, Aladjem MI. Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics Chromatin 2016; 9:18. [PMID: 27168766 PMCID: PMC4862150 DOI: 10.1186/s13072-016-0067-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Eukaryotic genome duplication starts at discrete sequences (replication origins) that coordinate cell cycle progression, ensure genomic stability and modulate gene expression. Origins share some sequence features, but their activity also responds to changes in transcription and cellular differentiation status. RESULTS To identify chromatin states and histone modifications that locally mark replication origins, we profiled origin distributions in eight human cell lines representing embryonic and differentiated cell types. Consistent with a role of chromatin structure in determining origin activity, we found that cancer and non-cancer cells of similar lineages exhibited highly similar replication origin distributions. Surprisingly, our study revealed that DNase hypersensitivity, which often correlates with early replication at large-scale chromatin domains, did not emerge as a strong local determinant of origin activity. Instead, we found that two distinct sets of chromatin modifications exhibited strong local associations with two discrete groups of replication origins. The first origin group consisted of about 40,000 regions that actively initiated replication in all cell types and preferentially colocalized with unmethylated CpGs and with the euchromatin markers, H3K4me3 and H3K9Ac. The second group included origins that were consistently active in cells of a single type or lineage and preferentially colocalized with the heterochromatin marker, H3K9me3. Shared origins replicated throughout the S-phase of the cell cycle, whereas cell-type-specific origins preferentially replicated during late S-phase. CONCLUSIONS These observations are in line with the hypothesis that differentiation-associated changes in chromatin and gene expression affect the activation of specific replication origins.
Collapse
Affiliation(s)
- Owen K. Smith
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - RyanGuk Kim
- />In Silico Solutions, Falls Church, VA 22033 USA
| | - Haiqing Fu
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Melvenia M. Martin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Chii Mei Lin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Koichi Utani
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ya Zhang
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna B. Marks
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Marc Lalande
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Stormy Chamberlain
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Maxwell W. Libbrecht
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
| | - Eric E. Bouhassira
- />Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - William S. Noble
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
- />Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Mirit I. Aladjem
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
104
|
Romano O, Peano C, Tagliazucchi GM, Petiti L, Poletti V, Cocchiarella F, Rizzi E, Severgnini M, Cavazza A, Rossi C, Pagliaro P, Ambrosi A, Ferrari G, Bicciato S, De Bellis G, Mavilio F, Miccio A. Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Sci Rep 2016; 6:24724. [PMID: 27095295 PMCID: PMC4837375 DOI: 10.1038/srep24724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,INSERM UMR 1163, Laboratory of chromatin and gene regulation during development, Paris, France
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | | | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | | | | | - Ermanno Rizzi
- Institute of Biomedical Technologies, CNR, Milan, Italy.,Telethon Foundation, Milan, Italy
| | | | - Alessia Cavazza
- Dana Farber Cancer Institute, Harvard Medical School, Boston, US
| | - Claudia Rossi
- San Raffaele-Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Pasqualepaolo Pagliaro
- Az. Osp. Policlinico Universitario di Bologna, Policlinico S. Orsola-Malpighi, Unità Operativa di Immunoematologia e Trasfusionale, Bologna, Italy
| | | | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Silvio Bicciato
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genethon, Evry, France
| | - Annarita Miccio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,INSERM UMR 1163, Laboratory of chromatin and gene regulation during development, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
105
|
Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. Proc Natl Acad Sci U S A 2016; 113:4434-9. [PMID: 27044088 DOI: 10.1073/pnas.1521754113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.
Collapse
|
106
|
A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation. Sci Rep 2016; 6:22656. [PMID: 26949222 PMCID: PMC4780077 DOI: 10.1038/srep22656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/18/2016] [Indexed: 11/24/2022] Open
Abstract
Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs’ function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR’s combinational modulation pattern by constructing a CR-CR interaction network.
Collapse
|
107
|
Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. Br J Haematol 2016; 173:206-18. [PMID: 26846448 DOI: 10.1111/bjh.13938] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Red blood cells (RBCs) are generated from haematopoietic stem and progenitor cells (HSPCs) through the step-wise process of differentiation known as erythropoiesis. In this review, we discuss our current understanding of erythropoiesis and highlight recent advances in this field. During embryonic development, erythropoiesis occurs in three distinct waves comprising first, the yolk sac-derived primitive RBCs, followed sequentially by the erythro-myeloid progenitor (EMP) and HSPC-derived definitive RBCs. Recent work has highlighted the complexity and variability that may exist in the hierarchical arrangement of progenitors responsible for erythropoiesis. Using recently defined cell surface markers, it is now possible to enrich for erythroid progenitors and precursors to a much greater extent than has been possible before. While a great deal of knowledge has been gained on erythropoiesis from model organisms, our understanding of this process is currently being refined through human genetic studies. Genes mutated in erythroid disorders can now be identified more rapidly by the use of next-generation sequencing techniques. Genome-wide association studies on erythroid traits in healthy populations have also revealed new modulators of erythropoiesis. All of these recent developments have significant promise not only for increasing our understanding of erythropoiesis, but also for improving our ability to intervene when RBC production is perturbed in disease.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
108
|
Wang H, Liu C, Cheng J, Liu J, Zhang L, He C, Shen WH, Jin H, Xu L, Zhang Y. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements. PLoS Genet 2016; 12:e1005771. [PMID: 26760036 PMCID: PMC4711971 DOI: 10.1371/journal.pgen.1005771] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs. Polycomb group proteins (PcGs) are essential for development in both animals and plants. Studies in plants are advantageous for elucidation of specific effects of PcGs during development, since most PcG mutants are viable in plants but not in animals. Previous efforts in genetic study of plant PcGs revealed that different PcGs have both common and unique effects on plant development, but the mechanisms underlying the specific regulation of different developmental programs by PcGs are still far from clear. In this study, we quantitatively compared the change in H3K27me3 and gene expression profiles between mutants of key PcG members on a genome-wide scale in Arabidopsis seedlings, and successfully unraveled different developmental programs that are specifically regulated by different combinations of PcGs. This context specific effect of PcGs is closely associated with different sets of transcription factor binding motifs. Together, we revealed on a genome-wide scale that different combinations of PcGs, as well as their association with the binding sites of different TFs, serve to explain the specific regulation of different developmental programs by PcGs.
Collapse
Affiliation(s)
- Hua Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunmei Liu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingfei Cheng
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Liu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Chongsheng He
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Hong Jin
- Department of Chemistry, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| |
Collapse
|
109
|
Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli ML, Andrieu-Soler C, Lenhard B, Grosveld F, Soler E. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun 2015; 6:8893. [PMID: 26593974 PMCID: PMC4673834 DOI: 10.1038/ncomms9893] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. Conserved sets of transcription factors (TFs) regulate hematopoiesis. Here, Stadhouders et al. show that IRF2BP2 is a component of the LDB1 TF complex and together with its co-repressor ETO2, enhances transcriptional repression, which plays a crucial role at the erythroid progenitor stage.
Collapse
Affiliation(s)
- Ralph Stadhouders
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alba Cico
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Tharshana Stephen
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Supat Thongjuea
- Computational Biology Unit, Bergen Center for Computational Science, N-5008 Bergen, Norway.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Petros Kolovos
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - H Irem Baymaz
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Xiao Yu
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Jeroen Demmers
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Vilma Barroca
- CEA/DSV/iRCM/SCSR, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Christel Kockx
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Wilfred van Ijcken
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marie-Laure Arcangeli
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic and Leukemic Stem cells, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Boris Lenhard
- Department of Molecular Sciences, Faculty of Medicine, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Laboratory of Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
110
|
Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527:192-7. [PMID: 26375006 PMCID: PMC4644101 DOI: 10.1038/nature15521] [Citation(s) in RCA: 666] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
Abstract
Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.
Collapse
Affiliation(s)
- Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elenoe C Smith
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Ophir Shalem
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Diane D Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sara P Garcia
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Takahiro Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
111
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
112
|
A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis. PLoS Genet 2015; 11:e1005526. [PMID: 26452208 PMCID: PMC4599908 DOI: 10.1371/journal.pgen.1005526] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022] Open
Abstract
Circulating red blood cells (RBCs) are essential for tissue oxygenation and homeostasis. Defective terminal erythropoiesis contributes to decreased generation of RBCs in many disorders. Specifically, ineffective nuclear expulsion (enucleation) during terminal maturation is an obstacle to therapeutic RBC production in vitro. To obtain mechanistic insights into terminal erythropoiesis we focused on FOXO3, a transcription factor implicated in erythroid disorders. Using an integrated computational and experimental systems biology approach, we show that FOXO3 is essential for the correct temporal gene expression during terminal erythropoiesis. We demonstrate that the FOXO3-dependent genetic network has critical physiological functions at key steps of terminal erythropoiesis including enucleation and mitochondrial clearance processes. FOXO3 loss deregulated transcription of genes implicated in cell polarity, nucleosome assembly and DNA packaging-related processes and compromised erythroid enucleation. Using high-resolution confocal microscopy and imaging flow cytometry we show that cell polarization is impaired leading to multilobulated Foxo3-/- erythroblasts defective in nuclear expulsion. Ectopic FOXO3 expression rescued Foxo3-/- erythroblast enucleation-related gene transcription, enucleation defects and terminal maturation. Remarkably, FOXO3 ectopic expression increased wild type erythroblast maturation and enucleation suggesting that enhancing FOXO3 activity may improve RBCs production. Altogether these studies uncover FOXO3 as a novel regulator of erythroblast enucleation and terminal maturation suggesting FOXO3 modulation might be therapeutic in disorders with defective erythroid maturation. Red blood cells (RBCs) are highly specialized cells that transport oxygen throughout the body and are essential for survival. However, RBCs have a limited lifespan and need to be replenished continuously by stem cells in the bone marrow. Mammalian RBCs are unique in that in order to fully mature they exclude their nucleus and other organelles. Mechanisms involved in these processes are not well understood at the molecular level. Defects in any of the these processes may lead to red blood cell defects, a decreased capacity to transport oxygen and/or a block in red blood cell production in vitro. Therefore, understanding how these processes are regulated at the molecular level can lead to promising new therapies for red blood cell defects and improved methods of generating red blood cells in a dish. Here, using an integrated computational and experimental biology approach, we found that the nuclear factor FOXO3 is a crucial regulator of red blood cell production by coordinating the expression of many of the genes specific for terminal maturation of red blood cells. Furthermore we found that FOXO3 can even increase the production of normal red blood cells in culture raising the possibility that enhancing FOXO3 may have a therapeutic use. Our studies identify FOXO3 as a novel regulator of RBC enucleation and terminal erythropoiesis.
Collapse
|
113
|
Amanatiadou EP, Papadopoulos GL, Strouboulis J, Vizirianakis IS. GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies. PLoS One 2015; 10:e0140077. [PMID: 26447946 PMCID: PMC4598024 DOI: 10.1371/journal.pone.0140077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
The clear connection between ribosome biogenesis dysfunction and specific hematopoiesis-related disorders prompted us to examine the role of critical lineage-specific transcription factors in the transcriptional regulation of ribosomal protein (RP) genes during terminal erythroid differentiation. By applying EMSA and ChIP methodologies in mouse erythroleukemia cells we show that GATA1 and PU.1 bind in vitro and in vivo the proximal promoter region of the RPS19 gene which is frequently mutated in Diamond-Blackfan Anemia. Moreover, ChIPseq data analysis also demonstrates that several RP genes are enriched as potential GATA1 and PU.1 gene targets in mouse and human erythroid cells, with GATA1 binding showing an association with higher ribosomal protein gene expression levels during terminal erythroid differentiation in human and mouse. Our results suggest that RP gene expression and hence balanced ribosome biosynthesis may be specifically and selectively regulated by lineage specific transcription factors during hematopoiesis, a finding which may be clinically relevant to ribosomopathies.
Collapse
Affiliation(s)
- Elsa P. Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giorgio L. Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- * E-mail: (JS); (ISV)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (JS); (ISV)
| |
Collapse
|
114
|
Murtha M, Strino F, Tokcaer-Keskin Z, Sumru Bayin N, Shalabi D, Xi X, Kluger Y, Dailey L. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells. Stem Cells 2015; 33:378-91. [PMID: 25335464 DOI: 10.1002/stem.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022]
Abstract
Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.
Collapse
Affiliation(s)
- Matthew Murtha
- Department of Microbiology, New York University School of Medicine, New York, New York, USA; Department of Microbiology Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Almamun M, Levinson BT, Gater ST, Schnabel RD, Arthur GL, Davis JW, Taylor KH. Genome-wide DNA methylation analysis in precursor B-cells. Epigenetics 2015; 9:1588-95. [PMID: 25484143 PMCID: PMC4622941 DOI: 10.4161/15592294.2014.983379] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182–200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.
Collapse
Key Words
- CG dinucleotide
- CLP, common lymphoid progenitor cells
- CpGI, CpG island
- DMRs, differentially methylated regions
- DNA methylation
- FDR, false discovery rate.
- H3K27ac, histone H3 lysine 27 acetylation
- H3K4me1, histone H3 lysine 4 monomethylation
- HCB, human umbilical cord blood
- HSCs, haematopoietic stem cells
- MBDs, methyl CpG binding domains
- MIRA-seq, methylated CpG island recovery assay (MIRA) followed by next generation sequencing
- MeCP2, methyl CpG binding protein 2
- Pre-B, precursor B-cell; CD
- Pro-B, progenitor B-cell
- ROIs, regions of interest
- TFs, transcription factors
- acute lymphoblastic leukemia; CpG
- cluster of differentiation; ALL
- enhancer
- next-generation sequencing
- precursor B-cell
- umbilical cord blood
Collapse
Affiliation(s)
- Md Almamun
- a Department of Pathology and Anatomical Sciences ; University of Missouri-Columbia ; Columbia , MO USA
| | | | | | | | | | | | | |
Collapse
|
116
|
The biology of pediatric acute megakaryoblastic leukemia. Blood 2015; 126:943-9. [PMID: 26186939 DOI: 10.1182/blood-2015-05-567859] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non-DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis.
Collapse
|
117
|
Madrigal P, Krajewski P. Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform. BioData Min 2015; 8:20. [PMID: 26140054 PMCID: PMC4488123 DOI: 10.1186/s13040-015-0051-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Larger variation exists in epigenomes than in genomes, as a single genome shapes the identity of multiple cell types. With the advent of next-generation sequencing, one of the key problems in computational epigenomics is the poor understanding of correlations and quantitative differences between large scale data sets. RESULTS Here we bring to genomics a scenario of functional principal component analysis, a finite Karhunen-Loève transform, and explicitly decompose the variation in the coverage profiles of 27 chromatin mark ChIP-seq datasets at transcription start sites for H1, one of the most used human embryonic stem cell lines. Using this approach we identify positive correlations between H3K4me3 and H3K36me3, as well as between H3K9ac and H3K36me3, so far undetected by the most commonly used Pearson correlation between read enrichment coverages. We uncover highly negative correlations between H2A.Z, H3K4me3, and several histone acetylation marks, but these occur only between principal components of first and second order. We also demonstrate that levels of gene expression correlate significantly with scores of components of order higher than one, demonstrating that transcriptional regulation by histone marks escapes simple one-to-one relationships. This correlations were higher in significance and magnitude in protein coding genes than in non-coding RNAs. CONCLUSIONS In summary, we present a methodology to explore and uncover novel patterns of epigenomic variability and covariability in genomic data sets by using a functional eigenvalue decomposition of genomic data. R code is available at: http://github.com/pmb59/KLTepigenome.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479 Poland ; Present address: Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK ; Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479 Poland
| |
Collapse
|
118
|
Dogan N, Wu W, Morrissey CS, Chen KB, Stonestrom A, Long M, Keller CA, Cheng Y, Jain D, Visel A, Pennacchio LA, Weiss MJ, Blobel GA, Hardison RC. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics Chromatin 2015; 8:16. [PMID: 25984238 PMCID: PMC4432502 DOI: 10.1186/s13072-015-0009-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies. Results TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0009-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nergiz Dogan
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA ; Bioinformatics Core, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218 USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Kuan-Bei Chen
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Aaron Stonestrom
- Division of Hematology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ; Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Maria Long
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Yong Cheng
- Department of Genetics, Mail Stop-5120, Stanford University, Stanford, CA 94305 USA
| | - Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 84-171, Berkeley, CA 94720 USA ; DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 84-171, Berkeley, CA 94720 USA ; DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ; Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 304 Wartik Laboratory, University Park, PA 16802 USA
| |
Collapse
|
119
|
Göttgens B. Regulatory network control of blood stem cells. Blood 2015; 125:2614-20. [PMID: 25762179 DOI: 10.1182/blood-2014-08-570226] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are characterized by their ability to execute a wide range of cell fate choices, including self-renewal, quiescence, and differentiation into the many different mature blood lineages. Cell fate decision making in HSCs, as indeed in other cell types, is driven by the interplay of external stimuli and intracellular regulatory programs. Given the pivotal nature of HSC decision making for both normal and aberrant hematopoiesis, substantial research efforts have been invested over the last few decades into deciphering some of the underlying mechanisms. Central to the intracellular decision making processes are transcription factor proteins and their interactions within gene regulatory networks. More than 50 transcription factors have been shown to affect the functionality of HSCs. However, much remains to be learned about the way in which individual factors are connected within wider regulatory networks, and how the topology of HSC regulatory networks might affect HSC function. Nevertheless, important progress has been made in recent years, and new emerging technologies suggest that the pace of progress is likely to accelerate. This review will introduce key concepts, provide an integrated view of selected recent studies, and conclude with an outlook on possible future directions for this field.
Collapse
Affiliation(s)
- Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
120
|
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Mol Cell Biol 2015; 35:2103-18. [PMID: 25870109 DOI: 10.1128/mcb.01370-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs), is a prerequisite for the transcription of protein-coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA, are also necessary for tightly regulated transcription initiation. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. By ablating TAF10 specifically in erythroid cells in vivo, we observed a differentiation block accompanied by deregulated GATA1 target genes, including Gata1 itself, suggesting functional cross talk between GATA1 and TAF10. Additionally, we analyzed by mass spectrometry the composition of TFIID and SAGA complexes in mouse and human cells and found that their global integrity is maintained, with minor changes, during erythroid cell differentiation and development. In agreement with our functional data, we show that TAF10 interacts directly with GATA1 and that TAF10 is enriched on the GATA1 locus in human fetal erythroid cells. Thus, our findings demonstrate a cross talk between canonical TFIID and SAGA complexes and cell-specific transcription activators during development and differentiation.
Collapse
|
121
|
Glass K, Quackenbush J, Spentzos D, Haibe-Kains B, Yuan GC. A network model for angiogenesis in ovarian cancer. BMC Bioinformatics 2015; 16:115. [PMID: 25888305 PMCID: PMC4408593 DOI: 10.1186/s12859-015-0551-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
Background We recently identified two robust ovarian cancer subtypes, defined by the expression of genes involved in angiogenesis, with significant differences in clinical outcome. To identify potential regulatory mechanisms that distinguish the subtypes we applied PANDA, a method that uses an integrative approach to model information flow in gene regulatory networks. Results We find distinct differences between networks that are active in the angiogenic and non-angiogenic subtypes, largely defined by a set of key transcription factors that, although previously reported to play a role in angiogenesis, are not strongly differentially-expressed between the subtypes. Our network analysis indicates that these factors are involved in the activation (or repression) of different genes in the two subtypes, resulting in differential expression of their network targets. Mechanisms mediating differences between subtypes include a previously unrecognized pro-angiogenic role for increased genome-wide DNA methylation and complex patterns of combinatorial regulation. Conclusions The models we develop require a shift in our interpretation of the driving factors in biological networks away from the genes themselves and toward their interactions. The observed regulatory changes between subtypes suggest therapeutic interventions that may help in the treatment of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0551-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly Glass
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA. .,Brigham and Women's Hospital, Boston, MA, USA.
| | - John Quackenbush
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA.
| | - Dimitrios Spentzos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9, Canada.
| | - Guo-Cheng Yuan
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
122
|
Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 2015; 16:144-54. [PMID: 25650801 PMCID: PMC4517609 DOI: 10.1038/nrm3949] [Citation(s) in RCA: 716] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, UC San Diego
- Department of Medicine, UC San Diego
| |
Collapse
|
123
|
Lessard S, Beaudoin M, Benkirane K, Lettre G. Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors. Genome Med 2015; 7:1. [PMID: 25606059 PMCID: PMC4298057 DOI: 10.1186/s13073-014-0122-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that plays an important role during mammalian development. Around birth in humans, the main site of red blood cell production moves from the fetal liver to the bone marrow. DNA methylation changes at the β-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. Understanding this globin switch may improve the treatment of patients with sickle cell disease and β-thalassemia, two of the most common Mendelian diseases in the world. The goal of our study was to describe and compare the genome-wide patterns of DNA methylation in fetal and adult human erythroblasts. Methods We used the Illumina HumanMethylation 450 k BeadChip to measure DNA methylation at 402,819 CpGs in ex vivo-differentiated erythroblasts from 12 fetal liver and 12 bone marrow CD34+ donors. Results We identified 5,937 differentially methylated CpGs that overlap with erythroid enhancers and binding sites for erythropoiesis-related transcription factors. Combining this information with genome-wide association study results, we show that erythroid enhancers define particularly promising genomic regions to identify new genetic variants associated with fetal hemoglobin (HbF) levels in humans. Many differentially methylated CpGs are located near genes with unanticipated roles in red blood cell differentiation and proliferation. For some of these new candidate genes, we confirm the correlation between DNA methylation and gene expression levels in red blood cell progenitors. We also provide evidence that DNA methylation and genetic variation at the β-globin locus independently control globin gene expression in adult erythroblasts. Conclusions Our DNA methylome maps confirm the widespread dynamic changes in DNA methylation that occur during human erythropoiesis. These changes tend to happen near erythroid enhancers, further highlighting their importance in erythroid regulation and HbF production. Finally, DNA methylation may act independently of the transcription factor BCL11A to repress fetal hemoglobin production. This provides cues on strategies to more efficiently re-activate HbF production in sickle cell disease and β-thalassemia patients. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0122-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Lessard
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec H1T 1C8 Canada ; Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec H3T 1J4 Canada
| | - Mélissa Beaudoin
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec H1T 1C8 Canada
| | - Karim Benkirane
- Hôpital Maisonneuve-Rosemont, 5415 Boul. de l'Assomption, Montréal, Québec H1T 2M4 Canada
| | - Guillaume Lettre
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec H1T 1C8 Canada ; Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec H3T 1J4 Canada
| |
Collapse
|
124
|
Xu J, Shao Z, Li D, Xie H, Kim W, Huang J, Taylor JE, Pinello L, Glass K, Jaffe JD, Yuan GC, Orkin SH. Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell 2015; 57:304-316. [PMID: 25578878 DOI: 10.1016/j.molcel.2014.12.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/20/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Polycomb repressive complex 2 (PRC2) plays crucial roles in transcriptional regulation and stem cell development. However, the context-specific functions associated with alternative subunits remain largely unexplored. Here we show that the related enzymatic subunits EZH1 and EZH2 undergo an expression switch during blood cell development. An erythroid-specific enhancer mediates transcriptional activation of EZH1, and a switch from GATA2 to GATA1 controls the developmental EZH1/2 switch by differential association with EZH1 enhancers. We further examine the in vivo stoichiometry of the PRC2 complexes by quantitative proteomics and reveal the existence of an EZH1-SUZ12 subcomplex lacking EED. EZH1 together with SUZ12 form a non-canonical PRC2 complex, occupy active chromatin, and positively regulate gene expression. Loss of EZH2 expression leads to repositioning of EZH1 to EZH2 targets. Thus, the lineage- and developmental stage-specific regulation of PRC2 subunit composition leads to a switch from canonical silencing to non-canonical functions during blood stem cell specification.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Shao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Li
- Harvard College, Cambridge, MA 02138, USA
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Woojin Kim
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jordan E Taylor
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Kimberly Glass
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
125
|
Org T, Duan D, Ferrari R, Montel-Hagen A, Van Handel B, Kerényi MA, Sasidharan R, Rubbi L, Fujiwara Y, Pellegrini M, Orkin SH, Kurdistani SK, Mikkola HK. Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J 2015; 34:759-77. [PMID: 25564442 PMCID: PMC4369313 DOI: 10.15252/embj.201490542] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Roberto Ferrari
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Amelie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Marc A Kerényi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuko Fujiwara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Hanna Ka Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
126
|
Ishikawa Y, Maeda M, Pasham M, Aguet F, Tacheva-Grigorova SK, Masuda T, Yi H, Lee SU, Xu J, Teruya-Feldstein J, Ericsson M, Mullally A, Heuser J, Kirchhausen T, Maeda T. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica 2014; 100:439-51. [PMID: 25552701 DOI: 10.3324/haematol.2014.119537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Manami Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mithun Pasham
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Francois Aguet
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Silvia K Tacheva-Grigorova
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Takeshi Masuda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hai Yi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Hematology, General Hospital of Chengdu Military Region, Chengdu, China
| | - Sung-Uk Lee
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Xu
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA Department of Pediatrics Harvard Medical School, Boston, MA, USA Program in Cellular & Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA, USA Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
127
|
Ulirsch JC, Lacy JN, An X, Mohandas N, Mikkelsen TS, Sankaran VG. Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation. PLoS Genet 2014; 10:e1004890. [PMID: 25521328 PMCID: PMC4270484 DOI: 10.1371/journal.pgen.1004890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is one of the best understood examples of cellular differentiation. Morphologically, erythroid differentiation proceeds in a nearly identical fashion between humans and mice, but recent evidence has shown that networks of gene expression governing this process are divergent between species. We undertook a systematic comparative analysis of six histone modifications and four transcriptional master regulators in primary proerythroblasts and erythroid cell lines to better understand the underlying basis of these transcriptional differences. Our analyses suggest that while chromatin structure across orthologous promoters is strongly conserved, subtle differences are associated with transcriptional divergence between species. Many transcription factor (TF) occupancy sites were poorly conserved across species (∼25% for GATA1, TAL1, and NFE2) but were more conserved between proerythroblasts and cell lines derived from the same species. We found that certain cis-regulatory modules co-occupied by GATA1, TAL1, and KLF1 are under strict evolutionary constraint and localize to genes necessary for erythroid cell identity. More generally, we show that conserved TF occupancy sites are indicative of active regulatory regions and strong gene expression that is sustained during maturation. Our results suggest that evolutionary turnover of TF binding sites associates with changes in the underlying chromatin structure, driving transcriptional divergence. We provide examples of how this framework can be applied to understand epigenomic variation in specific regulatory regions, such as the β-globin gene locus. Our findings have important implications for understanding epigenomic changes that mediate variation in cellular differentiation across species, while also providing a valuable resource for studies of hematopoiesis. The process whereby blood progenitor cells differentiate into red blood cells, known as erythropoiesis, is very similar between mice and humans. Yet, while studies of this process in mouse have substantially improved our knowledge of human erythropoiesis, recent work has shown a significant divergence in global gene expression across species, suggesting that extrapolation from mouse models to human is not always straightforward. In order to better understand these differences, we have performed a comparative epigenomic analysis of six histone modifications and four master transcription factors. By globally comparing chromatin structure across primary cells and model cell lines in both species, we discovered that while chromatin structure is well conserved at orthologous promoters, subtle changes are predictive of species-specific gene expression. Furthermore, we discovered that the genomic localizations of master transcription factors are poorly conserved, and species-specific losses or gains are associated with changes to the underlying chromatin structure and concomitant gene expression. By using our comparative epigenomics framework, we identified a putative human-specific cis-regulatory module that drives expression of human, but not mouse, GDF15, a gene implicated in iron homeostasis. Our results provide a resource to aid researchers in interpreting genetic and epigenetic differences between species.
Collapse
Affiliation(s)
- Jacob C. Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica N. Lacy
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Xiuli An
- New York Blood Center, New York, New York, United States of America
| | - Narla Mohandas
- New York Blood Center, New York, New York, United States of America
| | - Tarjei S. Mikkelsen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
128
|
Andersson R. Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 2014; 37:314-23. [PMID: 25450156 DOI: 10.1002/bies.201400162] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene transcription is strictly controlled by the interplay of regulatory events at gene promoters and gene-distal regulatory elements called enhancers. Despite extensive studies of enhancers, we still have a very limited understanding of their mechanisms of action and their restricted spatio-temporal activities. A better understanding would ultimately lead to fundamental insights into the control of gene transcription and the action of regulatory genetic variants involved in disease. Here, I review and discuss pros and cons of state-of-the-art genomics methods to localize and infer the activity of enhancers. Among the different approaches, profiling of enhancer RNAs yields the highest specificity and may be superior in detecting in vivo activity. I discuss their apparent similarities to promoters, which challenge the established view of enhancers and promoters as distinct entities, and present a unifying model of regulatory elements in transcriptional regulation, in which activity, transcriptional output and regulatory function is context specific.
Collapse
Affiliation(s)
- Robin Andersson
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| |
Collapse
|
129
|
Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 2014; 28:2597-612. [PMID: 25395663 PMCID: PMC4248291 DOI: 10.1101/gad.253302.114] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here, Li et al. show that inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell (HSPC) formation. HSCs from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos expressed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ )or IFN-α signaling and zebrafish lacking IFN-γ and IFN-ϕ activity had fewer AGM HSPCs. IRF2-occupied genes identified in human fetal liver CD34+ HSPCs were actively transcribed in human and mouse HSPCs. Identifying signaling pathways that regulate hematopoietic stem and progenitor cell (HSPC) formation in the embryo will guide efforts to produce and expand HSPCs ex vivo. Here we show that sterile tonic inflammatory signaling regulates embryonic HSPC formation. Expression profiling of progenitors with lymphoid potential and hematopoietic stem cells (HSCs) from aorta/gonad/mesonephros (AGM) regions of midgestation mouse embryos revealed a robust innate immune/inflammatory signature. Mouse embryos lacking interferon γ (IFN-γ) or IFN-α signaling and zebrafish morphants lacking IFN-γ and IFN-ϕ activity had significantly fewer AGM HSPCs. Conversely, knockdown of IFN regulatory factor 2 (IRF2), a negative regulator of IFN signaling, increased expression of IFN target genes and HSPC production in zebrafish. Chromatin immunoprecipitation (ChIP) combined with sequencing (ChIP-seq) and expression analyses demonstrated that IRF2-occupied genes identified in human fetal liver CD34+ HSPCs are actively transcribed in human and mouse HSPCs. Furthermore, we demonstrate that the primitive myeloid population contributes to the local inflammatory response to impact the scale of HSPC production in the AGM region. Thus, sterile inflammatory signaling is an evolutionarily conserved pathway regulating the production of HSPCs during embryonic development.
Collapse
Affiliation(s)
- Yan Li
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Virginie Esain
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Li Teng
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jian Xu
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Wanda Kwan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Isaura M Frost
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amanda D Yzaguirre
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Xiongwei Cai
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marijke W Maijenburg
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Joanna Tober
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Elaine Dzierzak
- The University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | - Stuart H Orkin
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA; Department of Bioengineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Nancy A Speck
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
130
|
Pimkin M, Kossenkov AV, Mishra T, Morrissey CS, Wu W, Keller CA, Blobel GA, Lee D, Beer MA, Hardison RC, Weiss MJ. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res 2014; 24:1932-44. [PMID: 25319996 PMCID: PMC4248311 DOI: 10.1101/gr.164178.113] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors.
Collapse
Affiliation(s)
- Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Pediatric Residency Program, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia 19019, Pennsylvania, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
131
|
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res 2014; 24:1945-62. [PMID: 25319994 PMCID: PMC4248312 DOI: 10.1101/gr.164830.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
132
|
Luyten A, Zang C, Liu XS, Shivdasani RA. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes Dev 2014; 28:1827-39. [PMID: 25128499 PMCID: PMC4197967 DOI: 10.1101/gad.240101.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In blood, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct lineages. Luyten et al. present genome-wide analyses on chromatin dynamics and transcription factor binding at successive stages in primary mouse blood cell differentiation. The results reveal surprising features of enhancer delineation in a self-renewing tissue, distinct from the strategy applied in self-renewing intestinal crypts. This study provides a useful foundation to consider classical observations on cellular reprogramming and lineage plasticity in hematopoiesis. Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington’s notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.
Collapse
Affiliation(s)
- Annouck Luyten
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02215, USA;
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
133
|
Li B, Ding L, Yang C, Kang B, Liu L, Story MD, Pace BS. Characterization of transcription factor networks involved in umbilical cord blood CD34+ stem cells-derived erythropoiesis. PLoS One 2014; 9:e107133. [PMID: 25211130 PMCID: PMC4161396 DOI: 10.1371/journal.pone.0107133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
Fetal stem cells isolated from umbilical cord blood (UCB) possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for β-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs) associated with the γ/β-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The γ/β-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip. After data normalization, Gene Set Enrichment Analysis identified transcription factors (TFs) with significant changes in expression during the γ/β-globin switch. Forty-five TFs were silenced by day 56 (Profile-1) and 30 TFs were activated by day 56 (Profile-2). Both GSEA datasets were analyzed using the MIMI Cytoscape platform, which discovered TFNs centered on KLF4 and GATA2 (Profile-1) and KLF1 and GATA1 for Profile-2 genes. Subsequent shRNA studies in KU812 leukemia cells and human erythroid progenitors generated from UCB-CD34+ cells supported a negative role of MAFB in γ-globin regulation. The characteristics of erythroblasts derived from UCB-CD34+ stem cells including prolonged γ-globin expression combined with unique TFNs support novel mechanisms controlling the γ/β-globin switch during UCB-derived erythropoiesis.
Collapse
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lianghao Ding
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinrang Yang
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Baolin Kang
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
| | - Li Liu
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Michael D. Story
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Betty S. Pace
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
134
|
Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 2014; 39:381-99. [PMID: 25129887 DOI: 10.1016/j.tibs.2014.07.002] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity have been identified for many TFs based on 3D structures of protein-DNA complexes. More recently, structural views have been complemented with data from high-throughput in vitro and in vivo explorations of the DNA-binding preferences of many TFs. Together, these approaches have greatly expanded our understanding of TF-DNA interactions. However, the mechanisms by which TFs select in vivo binding sites and alter gene expression remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding, while demonstrating that a biophysical understanding of these many factors will be central to understanding TF function.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tianyin Zhou
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ana Carolina Dantas Machado
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA.
| | - Remo Rohs
- Molecular and Computational Biology Program, Departments of Biological Sciences, Chemistry, Physics, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
135
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
136
|
Transcriptional divergence and conservation of human and mouse erythropoiesis. Proc Natl Acad Sci U S A 2014; 111:4103-8. [PMID: 24591581 DOI: 10.1073/pnas.1401598111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease.
Collapse
|
137
|
Abstract
Red blood cells (RBCs), which constitute the most abundant cell type in the body, come in two distinct flavors- primitive and definitive. Definitive RBCs in mammals circulate as smaller, anucleate cells during fetal and postnatal life, while primitive RBCs circulate transiently in the early embryo as large, nucleated cells before ultimately enucleating. Both cell types are formed from lineage-committed progenitors that generate a series of morphologically identifiable precursors that enucleate to form mature RBCs. While definitive erythroid precursors mature extravascularly in the fetal liver and postnatal marrow in association with macrophage cells, primitive erythroid precursors mature as a semi-synchronous cohort in the embryonic bloodstream. While the cytoskeletal network is critical for the maintenance of cell shape and the deformability of definitive RBCs, little is known about the components and function of the cytoskeleton in primitive erythroblasts. Erythropoietin (EPO) is a critical regulator of late-stage definitive, but not primitive, erythroid progenitor survival. However, recent studies indicate that EPO regulates multiple aspects of terminal maturation of primitive murine and human erythroid precursors, including cell survival, proliferation, and the rate of terminal maturation. Primitive and definitive erythropoiesis share central transcriptional regulators, including Gata1 and Klf1, but are also characterized by the differential expression and function of other regulators, including myb, Sox6, and Bcl11A. Flow cytometry-based methodologies, developed to purify murine and human stage-specific erythroid precursors, have enabled comparative global gene expression studies and are providing new insights into the biology of erythroid maturation.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
138
|
Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E, Verp S, Offner S, Marquis J, Kapopoulou A, Vanicek J, Trono D. [A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy]. Med Sci (Paris) 2014; 30:12-5. [PMID: 24472449 DOI: 10.1051/medsci/20143001003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Isabelle Barde
- School of Life Sciences and Frontiers in Genetics Program
| | | | - Ray Marcel Marin-Florez
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Suisse
| | | | - Elisa Laurenti
- School of Life Sciences and Frontiers in Genetics Program - Adresse actuelle : Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Verp
- School of Life Sciences and Frontiers in Genetics Program
| | - Sandra Offner
- School of Life Sciences and Frontiers in Genetics Program
| | - Julien Marquis
- School of Life Sciences and Frontiers in Genetics Program
| | | | - Jiri Vanicek
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Suisse
| | - Didier Trono
- School of Life Sciences and Frontiers in Genetics Program
| |
Collapse
|
139
|
Pinello L, Xu J, Orkin SH, Yuan GC. Analysis of chromatin-state plasticity identifies cell-type-specific regulators of H3K27me3 patterns. Proc Natl Acad Sci U S A 2014; 111:E344-53. [PMID: 24395799 PMCID: PMC3903219 DOI: 10.1073/pnas.1322570111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin states are highly cell-type-specific, but the underlying mechanisms for the establishment and maintenance of their genome-wide patterns remain poorly understood. Here we present a computational approach for investigation of chromatin-state plasticity. We applied this approach to investigate an ENCODE ChIP-seq dataset profiling the genome-wide distributions of the H3K27me3 mark in 19 human cell lines. We found that the high plasticity regions (HPRs) can be divided into two functionally and mechanistically distinct subsets, which correspond to CpG island (CGI) proximal or distal regions, respectively. Although the CGI proximal HPRs are typically associated with continuous variation across different cell-types, the distal HPRs are associated with binary-like variations. We developed a computational approach to predict putative cell-type-specific modulators of H3K27me3 patterns and validated the predictions by comparing with public ChIP-seq data. Furthermore, we applied this approach to investigate mechanisms for poised enhancer establishment in primary human erythroid precursors. Importantly, we predicted and experimentally validated that the principal hematopoietic regulator T-cell acute lymphocytic leukemia-1 (TAL1) is involved in regulating H3K27me3 variations in collaboration with the transcription factor growth factor independent 1B (GFI1B), providing fresh insights into the context-specific role of TAL1 in erythropoiesis. Our approach is generally applicable to investigate the regulatory mechanisms of epigenetic pathways in establishing cellular identity.
Collapse
Affiliation(s)
- Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| | - Jian Xu
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215
| |
Collapse
|
140
|
Madzo J, Liu H, Rodriguez A, Vasanthakumar A, Sundaravel S, Caces DBD, Looney TJ, Zhang L, Lepore JB, Macrae T, Duszynski R, Shih AH, Song CX, Yu M, Yu Y, Grossman R, Raumann B, Verma A, He C, Levine RL, Lavelle D, Lahn BT, Wickrema A, Godley LA. Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep 2013; 6:231-244. [PMID: 24373966 DOI: 10.1016/j.celrep.2013.11.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic stem cell differentiation involves the silencing of self-renewal genes and induction of a specific transcriptional program. Identification of multiple covalent cytosine modifications raises the question of how these derivatized bases influence stem cell commitment. Using a replicative primary human hematopoietic stem/progenitor cell differentiation system, we demonstrate dynamic changes of 5-hydroxymethylcytosine (5-hmC) during stem cell commitment and differentiation to the erythroid lineage. Genomic loci that maintain or gain 5-hmC density throughout erythroid differentiation contain binding sites for erythroid transcription factors and several factors not previously recognized as erythroid-specific factors. The functional importance of 5-hmC was demonstrated by impaired erythroid differentiation, with augmentation of myeloid potential, and disrupted 5-hmC patterning in leukemia patient-derived CD34+ stem/early progenitor cells with TET methylcytosine dioxygenase 2 (TET2) mutations. Thus, chemical conjugation and affinity purification of 5-hmC-enriched sequences followed by sequencing serve as resources for deciphering functional implications for gene expression during stem cell commitment and differentiation along a particular lineage.
Collapse
Affiliation(s)
- Jozef Madzo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Alexis Rodriguez
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sriram Sundaravel
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Donne Bennett D Caces
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Timothy J Looney
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Li Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Janet B Lepore
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Trisha Macrae
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Robert Duszynski
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Alan H Shih
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Chun-Xiao Song
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Miao Yu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Yiting Yu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Grossman
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Brigitte Raumann
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Don Lavelle
- Department of Medicine, University of Illinois, Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Bruce T Lahn
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
141
|
Maroz A, Stachorski L, Emmrich S, Reinhardt K, Xu J, Shao Z, Käbler S, Dertmann T, Hitzler J, Roberts I, Vyas P, Juban G, Hennig C, Hansen G, Li Z, Orkin S, Reinhardt D, Klusmann JH. GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia 2013; 28:1259-70. [PMID: 24336126 PMCID: PMC4047213 DOI: 10.1038/leu.2013.373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
Transient leukemia (TL) is evident in 5–10% of all neonates with Down syndrome (DS) and associated with N-terminal truncating GATA1-mutations (GATA1s). Here we report that TL cell clones generate abundant eosinophils in a substantial fraction of patients. Sorted eosinophils from patients with TL and eosinophilia carried the same GATA1s-mutation as sorted TL-blasts, consistent with their clonal origin. TL-blasts exhibited a genetic program characteristic of eosinophils and differentiated along the eosinophil lineage in vitro. Similarly, ectopic expression of Gata1s, but not Gata1, in wild-type CD34+-hematopoietic stem and progenitor cells induced hyperproliferation of eosinophil promyelocytes in vitro. While GATA1s retained the function of GATA1 to induce eosinophil genes by occupying their promoter regions, GATA1s was impaired in its ability to repress oncogenic MYC and the pro-proliferative E2F transcription network. ChIP-seq indicated reduced GATA1s occupancy at the MYC promoter. Knockdown of MYC, or the obligate E2F-cooperation partner DP1, rescued the GATA1s-induced hyperproliferative phenotype. In agreement, terminal eosinophil maturation was blocked in Gata1Δe2 knockin mice, exclusively expressing Gata1s, leading to accumulation of eosinophil precursors in blood and bone marrow. These data suggest a direct relationship between the N-terminal truncating mutations of GATA1 and clonal eosinophilia in DS patients.
Collapse
Affiliation(s)
- A Maroz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - L Stachorski
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - S Emmrich
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Xu
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Shao
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Käbler
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - T Dertmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Hitzler
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Roberts
- Oxford University Department of Paediatrics, Childrens Hospital and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | - P Vyas
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - G Juban
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - C Hennig
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - G Hansen
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Z Li
- Division of Genetics, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Orkin
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J-H Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
142
|
Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013; 342:253-7. [PMID: 24115442 PMCID: PMC4018826 DOI: 10.1126/science.1242088] [Citation(s) in RCA: 489] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
- Harvard Medical School, Boston, MA, 02115
| | - Sophia C. Kamran
- Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Boston, MA, 02115
| | - Samuel Lessard
- Montreal Heart Institute and Université Montréal, Montreal, Quebec, H1T 1C8, Canada
| | - Jian Xu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
- Harvard Medical School, Boston, MA, 02115
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
| | - Carrie Lin
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
| | - Zhen Shao
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
| | | | - Elenoe C. Smith
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Peter J. Sabo
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, 98195
| | - Jeff Vierstra
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, 98195
| | - Richard A. Voit
- Department of Pediatrics, Stanford University, Palo Alto, CA, 94304
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115
- Harvard School of Public Health, Boston, MA, 02115
| | | | | | - Guillaume Lettre
- Montreal Heart Institute and Université Montréal, Montreal, Quebec, H1T 1C8, Canada
| | - Stuart H. Orkin
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
- Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Boston, MA, 02115
| |
Collapse
|
143
|
Yang Y, Wang H, Chang KH, Qu H, Zhang Z, Xiong Q, Qi H, Cui P, Lin Q, Ruan X, Yang Y, Li Y, Shu C, Li Q, Wakeland EK, Yan J, Hu S, Fang X. Transcriptome dynamics during human erythroid differentiation and development. Genomics 2013; 102:431-441. [PMID: 24121002 DOI: 10.1016/j.ygeno.2013.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/22/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
To explore the mechanisms controlling erythroid differentiation and development, we analyzed the genome-wide transcription dynamics occurring during the differentiation of human embryonic stem cells (HESCs) into the erythroid lineage and development of embryonic to adult erythropoiesis using high throughput sequencing technology. HESCs and erythroid cells at three developmental stages: ESER (embryonic), FLER (fetal), and PBER (adult) were analyzed. Our findings revealed that the number of expressed genes decreased during differentiation, whereas the total expression intensity increased. At each of the three transitions (HESCs-ESERs, ESERs-FLERs, and FLERs-PBERs), many differentially expressed genes were observed, which were involved in maintaining pluripotency, early erythroid specification, rapid cell growth, and cell-cell adhesion and interaction. We also discovered dynamic networks and their central nodes in each transition. Our study provides a fundamental basis for further investigation of erythroid differentiation and development, and has implications in using ESERs for transfusion product in clinical settings.
Collapse
Affiliation(s)
- Yadong Yang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai Wang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai-Hsin Chang
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hongzhu Qu
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaojun Zhang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Xiong
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Heyuan Qi
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyan Ruan
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaran Yang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajuan Li
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang Shu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanzhen Li
- Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Edward K Wakeland
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiangwei Yan
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Fang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
144
|
Hricik T, Federici G, Zeuner A, Alimena G, Tafuri A, Tirelli V, Varricchio L, Masiello F, Ciaffoni F, Vaglio S, Petricoin EF, Girelli G, Levine RL, Migliaccio ARF. Transcriptomic and phospho-proteomic analyzes of erythroblasts expanded in vitro from normal donors and from patients with polycythemia vera. Am J Hematol 2013; 88:723-9. [PMID: 23720412 DOI: 10.1002/ajh.23487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/02/2023]
Abstract
Erythropoiesis is a tightly regulated process which becomes decoupled from its normal differentiation program in patients with polycythemia vera (PV). Somatic mutations in JAK2 are commonly associated with this myeloid proliferative disorder. To gain insight into the molecular events that are required for abnormally developing erythroid cells to escape dependence on normal growth signals, we performed in vitro expansion of mature erythroblasts (ERY) from seven normal healthy donors and from seven polycythemic patients in the presence of IL3, EPO, SCF for 10, 11, or 13 days. Normal ERYs required exposure to the glucocorticoid dexamethasone (Dex) for expansion, while PV-derived ERYs expanded in the absence of dexamethasone. RNA expression profiling revealed enrichment of two known oncogenes, GPR56 and RAB4a, in PV-derived ERYs along with reduced expression levels of transcription factor TAL1 (ANOVA FDR < 0.05). While both normal and polycythemic-derived ERYs integrated signaling cascades for growth, they did so via different signaling pathways which are represented by their differential phospho-profiles. Our results show that normal ERYs displayed greater levels of phosphorylation of EGFR, PDGFRβ, TGFβ, and cKit, while PV-derived ERYs were characterized by increased phosphorylation of cytoplasmic kinases in the JAK/STAT, PI3K, and GATA1 pathways. Together these data suggest that PV erythroblast expansion and maturation may be maintained and enriched in the absence of dexamethasone through reduced TAL1 expression and by accessing additional signaling cascades. Members of this acquired repertoire may provide important insight into the pathogenesis of aberrant erythropoiesis in myeloproliferative neoplasms such as polycythemia vera.
Collapse
Affiliation(s)
- Todd Hricik
- Human Oncology and Pathogenesis Program and Leukemia Service; Memorial Sloan-Kettering Cancer Center; New York; New York
| | | | - Ann Zeuner
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore di Sanità; Rome; Italy
| | | | - Agostino Tafuri
- Cellular Biotechnologies and Hematology; La Sapienza University; Rome; Italy
| | - Valentina Tirelli
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore di Sanità; Rome; Italy
| | - Lilian Varricchio
- Department of Hematology/Oncology; Mount Sinai School of Medicine; New York; New York
| | - Francesca Masiello
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore di Sanità; Rome; Italy
| | | | | | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas; Virginia
| | | | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia Service; Memorial Sloan-Kettering Cancer Center; New York; New York
| | | |
Collapse
|
145
|
Bluteau O, Langlois T, Rivera-Munoz P, Favale F, Rameau P, Meurice G, Dessen P, Solary E, Raslova H, Mercher T, Debili N, Vainchenker W. Developmental changes in human megakaryopoiesis. J Thromb Haemost 2013; 11:1730-41. [PMID: 23782903 DOI: 10.1111/jth.12326] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The molecular bases of the cellular changes that occur during human megakaryocyte (MK) ontogeny remain unknown, and may be important for understanding the significance of MK differentiation from human embryonic stem cells (hESCs) METHODS We optimized the differentiation of MKs from hESCs, and compared these with MKs obtained from primary human hematopoietic tissues at different stages of development. RESULTS Transcriptome analyses revealed a close relationship between hESC-derived and fetal liver-derived MKs, and between neonate-derived and adult-derived MKs. Major changes in the expression profiles of cell cycle and transcription factors (TFs), including MYC and LIN28b, and MK-specific regulators indicated that MK maturation progresses during ontogeny towards an increase in MK ploidy and a platelet-forming function. Important genes, including CXCR4, were regulated by an on-off mechanism during development. DISCUSSION Our analysis of the pattern of TF network and signaling pathways was consistent with a growing specialization of MKs towards hemostasis during ontogeny, and support the idea that MKs derived from hESCs reflect primitive hematopoiesis.
Collapse
Affiliation(s)
- O Bluteau
- Institut National de la Sante et de la Recherche Medicale, UMR 1009, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris-Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Rothenberg EV. Epigenetic mechanisms and developmental choice hierarchies in T-lymphocyte development. Brief Funct Genomics 2013; 12:512-24. [PMID: 23922132 DOI: 10.1093/bfgp/elt027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three interlocking problems in gene regulation are: how to explain genome-wide targeting of transcription factors in different cell types, how prior transcription factor action can establish an 'epigenetic state' that changes the options for future transcription factor action, and how directly a sequence of developmental decisions can be memorialized in a hierarchy of repression structures applied to key genes of the 'paths not taken'. This review uses the finely staged process of T-cell lineage commitment as a test case in which to examine how changes in developmental status are reflected in changes in transcription factor expression, transcription factor binding distribution across genomic sites, and chromatin modification. These are evaluated in a framework of reciprocal effects of previous chromatin structure features on transcription factor access and of transcription factor binding on other factors and on future chromatin structure.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. Tel.: +1 626 395 4992; Fax: +1 626 449 0756;
| |
Collapse
|
147
|
Woo AJ, Wieland K, Huang H, Akie TE, Piers T, Kim J, Cantor AB. Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. J Clin Invest 2013; 123:40609. [PMID: 23863621 PMCID: PMC3726146 DOI: 10.1172/jci40609] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/02/2013] [Indexed: 01/14/2023] Open
Abstract
About 10% of Down syndrome (DS) infants are born with a transient myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20%-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). Somatic mutations leading to the exclusive production of a short GATA1 isoform (GATA1s) occur in all cases of DS-TMD and DS-AMKL. Mice engineered to exclusively produce GATA1s have marked megakaryocytic progenitor (MkP) hyperproliferation during early fetal liver (FL) hematopoiesis, but not during postnatal BM hematopoiesis, mirroring the spontaneous resolution of DS-TMD. The mechanisms that underlie these developmental stage-specific effects are incompletely understood. Here, we report a striking upregulation of type I IFN-responsive gene expression in prospectively isolated mouse BM- versus FL-derived MkPs. Exogenous IFN-α markedly reduced the hyperproliferation FL-derived MkPs of GATA1s mice in vitro. Conversely, deletion of the α/β IFN receptor 1 (Ifnar1) gene or injection of neutralizing IFN-α/β antibodies increased the proliferation of BM-derived MkPs of GATA1s mice beyond the initial postnatal period. We also found that these differences existed in human FL versus BM megakaryocytes and that primary DS-TMD cells expressed type I IFN-responsive genes. We propose that increased type I IFN signaling contributes to the developmental stage-specific effects of GATA1s and possibly the spontaneous resolution of DS-TMD.
Collapse
Affiliation(s)
- Andrew J. Woo
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Karen Wieland
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Hui Huang
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Thomas E. Akie
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Taylor Piers
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jonghwan Kim
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Alan B. Cantor
- Division of Pediatric Hematology-Oncology, Boston Children’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA.
Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
148
|
LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood 2013; 122:1034-41. [PMID: 23798711 DOI: 10.1182/blood-2012-12-472308] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and β-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels >30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype.
Collapse
|
149
|
Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S, O'Brien K, Fujiwara Y, Peng C, Nguyen M, Orkin SH. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife 2013; 2:e00633. [PMID: 23795291 PMCID: PMC3687337 DOI: 10.7554/elife.00633] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022] Open
Abstract
Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI:http://dx.doi.org/10.7554/eLife.00633.001.
Collapse
Affiliation(s)
- Marc A Kerenyi
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Zhen Shao
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yu-Jung Hsu
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Guoji Guo
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Kassandra O'Brien
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Cong Peng
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Minh Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
- Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
150
|
Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 2013; 23:1210-23. [PMID: 23636943 PMCID: PMC3730096 DOI: 10.1101/gr.152306.112] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have integrated and analyzed a large number of data sets from a variety of genomic assays using a novel computational pipeline to provide a global view of estrogen receptor 1 (ESR1; a.k.a. ERα) enhancers in MCF-7 human breast cancer cells. Using this approach, we have defined a class of primary transcripts (eRNAs) that are transcribed uni- or bidirectionally from estrogen receptor binding sites (ERBSs) with an average transcription unit length of ∼3–5 kb. The majority are up-regulated by short treatments with estradiol (i.e., 10, 25, or 40 min) with kinetics that precede or match the induction of the target genes. The production of eRNAs at ERBSs is strongly correlated with the enrichment of a number of genomic features that are associated with enhancers (e.g., H3K4me1, H3K27ac, EP300/CREBBP, RNA polymerase II, open chromatin architecture), as well as enhancer looping to target gene promoters. In the absence of eRNA production, strong enrichment of these features is not observed, even though ESR1 binding is evident. We find that flavopiridol, a CDK9 inhibitor that blocks transcription elongation, inhibits eRNA production but does not affect other molecular indicators of enhancer activity, suggesting that eRNA production occurs after the assembly of active enhancers. Finally, we show that an enhancer transcription “signature” based on GRO-seq data can be used for de novo enhancer prediction across cell types. Together, our studies shed new light on the activity of ESR1 at its enhancer sites and provide new insights about enhancer function.
Collapse
Affiliation(s)
- Nasun Hah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|