101
|
Dupont MA, Humbert C, Huber C, Siour Q, Guerrera IC, Jung V, Christensen A, Pouliet A, Garfa-Traoré M, Nitschké P, Injeyan M, Millar K, Chitayat D, Shannon P, Girisha KM, Shukla A, Mechler C, Lorentzen E, Benmerah A, Cormier-Daire V, Jeanpierre C, Saunier S, Delous M. Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Hum Mol Genet 2020; 28:2720-2737. [PMID: 31042281 DOI: 10.1093/hmg/ddz091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52-/- cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms.
Collapse
Affiliation(s)
- Marie Alice Dupont
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Camille Humbert
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Céline Huber
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Siour
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Jung
- Proteomics Platform 3P5-Necker, Paris Descartes-Sorbonne Paris Cité University, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Anni Christensen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Aurore Pouliet
- Genomics Core Facility, Imagine Institute and Structure Fédérative de Recherche Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Meriem Garfa-Traoré
- Cell Imaging Platform UMS 24, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, Paris, France
| | - Patrick Nitschké
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Bioinformatics Core Facility, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Millar
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Charlotte Mechler
- Assistance Publique - Hôpitaux de Paris, Louis Mourier Hospital, Colombes, France
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Valérie Cormier-Daire
- Laboratory of Molecular and Physiopathological bases of osteochondrodysplasia, INSERM, Paris, France.,Department of Genetics, Reference Centre for Skeletal Dysplasia, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
102
|
Daniel E, Barlow HR, Sutton GI, Gu X, Htike Y, Cowdin MA, Cleaver O. Cyp26b1 is an essential regulator of distal airway epithelial differentiation during lung development. Development 2020; 147:dev181560. [PMID: 32001436 PMCID: PMC7044453 DOI: 10.1242/dev.181560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Proper organ development depends on coordinated communication between multiple cell types. Retinoic acid (RA) is an autocrine and paracrine signaling molecule essential for the development of most organs, including the lung. Despite extensive work detailing effects of RA deficiency in early lung morphogenesis, little is known about how RA regulates late gestational lung maturation. Here, we investigate the role of the RA catabolizing protein Cyp26b1 in the lung. Cyp26b1 is highly enriched in lung endothelial cells (ECs) throughout development. We find that loss of Cyp26b1 leads to reduction of alveolar type 1 cells, failure of alveolar inflation and early postnatal lethality in mouse. Furthermore, we observe expansion of distal epithelial progenitors, but no appreciable changes in proximal airways, ECs or stromal populations. Exogenous administration of RA during late gestation partially mimics these defects; however, transcriptional analyses comparing Cyp26b1-/- with RA-treated lungs reveal overlapping, but distinct, responses. These data suggest that defects observed in Cyp26b1-/- lungs are caused by both RA-dependent and RA-independent mechanisms. This work reports crucial cellular crosstalk during lung development involving Cyp26b1-expressing endothelium and identifies a novel RA modulator in lung development.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haley R Barlow
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabrielle I Sutton
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowu Gu
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yadanar Htike
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
103
|
Kidney and organoid single-cell transcriptomics: the end of the beginning. Pediatr Nephrol 2020; 35:191-197. [PMID: 30607565 PMCID: PMC6609508 DOI: 10.1007/s00467-018-4177-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are increasingly being applied to reveal cellular heterogeneity in kidney development and disease. In just the last year, multiple scRNA-seq datasets have been generated from kidney organoids, developing mouse and human kidney, adult kidney, and kidney cancer. The data generated enables a much deeper understanding of biological processes within and between cells. It has also elucidated unforeseen cell lineage relationships, defined the presence of off-target cell types in kidney organoids, and revealed a diverse inflammatory response in a human kidney allograft undergoing rejection. This review summarizes the recent rapid progress in scRNA-seq of the kidney and outlines future directions for single-cell technologies as applied to the kidney.
Collapse
|
104
|
Tran T, Lindström NO, Ransick A, De Sena Brandine G, Guo Q, Kim AD, Der B, Peti-Peterdi J, Smith AD, Thornton M, Grubbs B, McMahon JA, McMahon AP. In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes. Dev Cell 2020; 50:102-116.e6. [PMID: 31265809 DOI: 10.1016/j.devcel.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
105
|
Minuth WW. Shaping of the nephron - a complex, vulnerable, and poorly explored backdrop for noxae impairing nephrogenesis in the fetal human kidney. Mol Cell Pediatr 2020; 7:2. [PMID: 31965387 PMCID: PMC6974545 DOI: 10.1186/s40348-020-0094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background The impairment of nephrogenesis is caused by noxae, all of which are significantly different in molecular composition. These can cause an early termination of nephron development in preterm and low birth weight babies resulting in oligonephropathy. For the fetal human kidney, there was no negative effect reported on the early stages of nephron anlage such as the niche, pretubular aggregate, renal vesicle, or comma-shaped body. In contrast, pathological alterations were identified on subsequently developing S-shaped bodies and glomeruli. While the atypical glomeruli were closely analyzed, the S-shaped bodies and the pre-stages received little attention even though passing the process of nephron shaping. Since micrographs and an explanation about this substantial developmental period were missing, the shaping of the nephron in the fetal human kidney during the phase of late gestation was recorded from a microanatomical point of view. Results The nephron shaping starts with the primitive renal vesicle, which is still part of the pretubular aggregate at this point. Then, during extension of the renal vesicle, a complex separation is observed. The medial part of its distal pole is fixed on the collecting duct ampulla, while the lateral part remains connected with the pretubular aggregate via a progenitor cell strand. A final separation occurs, when the extended renal vesicle develops into the comma-shaped body. Henceforth, internal epithelial folding generates the tubule and glomerulus anlagen. Arising clefts at the medial and lateral aspect indicate an asymmetrical expansion of the S-shaped body. This leads to development of the glomerulus at the proximal pole, whereas in the center and at the distal pole, it results in elongation of the tubule segments. Conclusions The present investigation deals with the shaping of the nephron in the fetal human kidney. In this important developmental phase, the positioning, orientation, and folding of the nephron occur. The demonstration of previously unknown morphological details supports the search for traces left by the impairment of nephrogenesis, enables to refine the assessment in molecular pathology, and provides input for the design of therapeutic concepts prolonging nephrogenesis.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, D-93053, Regensburg, Germany.
| |
Collapse
|
106
|
The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2 + Urine Derived Renal Progenitor Cells. Sci Rep 2020; 10:739. [PMID: 31959818 PMCID: PMC6970988 DOI: 10.1038/s41598-020-57723-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.
Collapse
|
107
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 DOI: 10.0.4.14/s41467-019-13382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 05/24/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
108
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 PMCID: PMC6884507 DOI: 10.1038/s41467-019-13382-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
109
|
Deacon P, Concodora CW, Chung E, Park JS. β-catenin regulates the formation of multiple nephron segments in the mouse kidney. Sci Rep 2019; 9:15915. [PMID: 31685872 PMCID: PMC6828815 DOI: 10.1038/s41598-019-52255-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023] Open
Abstract
The nephron is composed of distinct segments that perform unique physiological functions. Little is known about how multipotent nephron progenitor cells differentiate into different nephron segments. It is well known that β-catenin signaling regulates the maintenance and commitment of mesenchymal nephron progenitors during kidney development. However, it is not fully understood how it regulates nephron segmentation after nephron progenitors undergo mesenchymal-to-epithelial transition. To address this, we performed β-catenin loss-of-function and gain-of-function studies in epithelial nephron progenitors in the mouse kidney. Consistent with a previous report, the formation of the renal corpuscle was defective in the absence of β-catenin. Interestingly, we found that epithelial nephron progenitors lacking β-catenin were able to form presumptive proximal tubules but that they failed to further develop into differentiated proximal tubules, suggesting that β-catenin signaling plays a critical role in proximal tubule development. We also found that epithelial nephron progenitors lacking β-catenin failed to form the distal tubules. Expression of a stable form of β-catenin in epithelial nephron progenitors blocked the proper formation of all nephron segments, suggesting tight regulation of β-catenin signaling during nephron segmentation. This work shows that β-catenin regulates the formation of multiple nephron segments along the proximo-distal axis of the mammalian nephron.
Collapse
Affiliation(s)
- Patrick Deacon
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles W Concodora
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Urology for Children, 200 Bowman Drive, Voorhees, NJ, 08043, USA
| | - Eunah Chung
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
110
|
Minuth W. In Search of Imprints Left by the Impairment of Nephrogenesis. Cells Tissues Organs 2019; 207:69-82. [DOI: 10.1159/000504085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Clinical aspects dealing with the impairment of nephrogenesis in preterm and low birth weight babies were intensely researched. In this context it was shown that quite different noxae can harm nephron formation, and that the morphological damage in the fetal kidney is rather complex. Some pathological findings show that the impairment leads to changes in developing glomeruli that are restricted to the maturation zone of the outer cortex in the fetal human kidney. Other data show also imprints on the stages of nephron anlage including the niche, the pretubular aggregate, the renal vesicle, and comma- and S-shaped bodies located in the overlying nephrogenic zone of the rodent and human kidneys. During our investigations it was noticed that the stages of nephron anlage in the fetal human kidney during the phase of late gestation have not been described in detail. To contribute, these stages were recorded along with corresponding images. The initial nephron formation in the rodent kidney served as a reference. Finally, the known imprints left by the impairment in both specimens were listed and discussed. In sum, the relatively paucity of data on nephron formation in the fetal human kidney during the late phase of gestation is a call to start with intense research so that concepts for a therapeutic prolongation of nephrogenesis can be designed.
Collapse
|
111
|
Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon JA, Zhang K, McMahon AP. Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. iScience 2019; 20:402-414. [PMID: 31622881 PMCID: PMC6817668 DOI: 10.1016/j.isci.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Song Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
112
|
Abstract
There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Victoria 3052, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
113
|
Park J, Liu CL, Kim J, Susztak K. Understanding the kidney one cell at a time. Kidney Int 2019; 96:862-870. [PMID: 31492507 PMCID: PMC6777841 DOI: 10.1016/j.kint.2019.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023]
Abstract
A revolution in cellular measurement technology is underway. Whereas prior studies have been able to analyze only the averaged outputs from renal tissue, we now can accurately monitor genome-wide gene expression, regulation, function, cellular history, and cellular interactions in thousands of individual cells in a single experiment. These methods are key drivers in changing our previous morphotype-based organ and disease descriptions to unbiased genomic definitions and therefore improving our understanding of kidney development, homeostasis, and disease.
Collapse
Affiliation(s)
- Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chang Linda Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
114
|
Wegert J, Zauter L, Appenzeller S, Otto C, Bausenwein S, Vokuhl C, Ernestus K, Furtwängler R, Graf N, Gessler M. High-risk blastemal Wilms tumor can be modeled by 3D spheroid cultures in vitro. Oncogene 2019; 39:849-861. [PMID: 31562394 PMCID: PMC6976522 DOI: 10.1038/s41388-019-1027-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023]
Abstract
In vitro models represent a critical tool in cancer research to study tumor biology and to evaluate new treatment options. Unfortunately, there are no effective preclinical models available that represent Wilms tumor (WT) — the most common pediatric renal tumor. Especially the high-risk blastemal WT subtype is not represented by the few primary cell lines established until now. Here, we describe a new 3D approach for in vitro cultivation of blastemal WT cells, where primary cultures grown in suspension as spheroids could be propagated long-term. Besides blastemal cultures, we could generate spheroids representing epithelial and stromal WT. Spheroid cultures were analyzed by immunohistochemistry in comparison to corresponding tumor sections and were further characterized by RNA sequencing. Histological appearance of spheroids resembled the original tumor and they expressed marker genes characteristic of early renal development and blastemal WT elements. The cultures were amenable to genetic manipulation and they formed xenograft tumors, which resemble the primary human tumor. This collection of WT spheroids that carry different genetic drivers forms a long-sought tool for drug testing and in vitro modeling.
Collapse
Affiliation(s)
- Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Zauter
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Christoph Otto
- Experimental Surgery, Department of General, Visceral, Vascular, and Pediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sabrina Bausenwein
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Vokuhl
- Kiel Pediatric Tumor Registry, Section of Pediatric Pathology, Department of Pathology, University Hospital of Kiel, Kiel, Germany
| | - Karen Ernestus
- Institute for Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Rhoikos Furtwängler
- Pediatric Oncology and Hematology, Children's Hospital, Saarland University and Saarland University Medical Centre, Homburg, Germany
| | - Norbert Graf
- Pediatric Oncology and Hematology, Children's Hospital, Saarland University and Saarland University Medical Centre, Homburg, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany. .,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
115
|
Faraj R, Irizarry-Alfonzo A, Puri P. Molecular characterization of nephron progenitors and their early epithelial derivative structures in the nephrogenic zone of the canine fetal kidney. Eur J Histochem 2019; 63. [PMID: 31544449 PMCID: PMC6763752 DOI: 10.4081/ejh.2019.3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nephron progenitors (NPs) and nephrogenesis have been extensively studied in mice and humans and have provided insights into the mechanisms of renal development, disease and possibility of NP-based therapies. However, molecular features of NPs and their derivatives in the canine fetal kidney (CFK) remain unknown. This study was focused to characterize the expression of potential markers of canine NPs and their derivatives by immuno-fluorescence and western blot analysis. Transcription factors (TFs) SIX1 and SIX2, well-characterized human NP markers, were expressed in NPs surrounding the ureteric bud in the CFK. Canine NPs also expressed ITGA8 and NCAM1, surface markers previously used to isolate NPs from the mouse and human fetal kidneys. TF, PAX2 was detected in the ureteric bud, NPs and their derivative structures such as renal vesicle and S-shaped body. This study highlights the similarities in dog, mouse and human renal development and characterizes markers to identify canine NPs and their derivatives. These results will facilitate the isolation of canine NPs and their functional characterization to develop NP-based therapies for canine renal diseases.
Collapse
Affiliation(s)
- Rawah Faraj
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee.
| | | | | |
Collapse
|
116
|
Yamanaka S, Saito Y, Fujimoto T, Takamura T, Tajiri S, Matsumoto K, Yokoo T. Kidney Regeneration in Later-Stage Mouse Embryos via Transplanted Renal Progenitor Cells. J Am Soc Nephrol 2019; 30:2293-2305. [PMID: 31548350 DOI: 10.1681/asn.2019020148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.
Collapse
Affiliation(s)
- Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Takamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Tajiri
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
117
|
Affiliation(s)
- Denise K Marciano
- Division of Nephrology, Department of Medicine, Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
118
|
Abstract
Kidney organoids are regarded as important tools with which to study the development of the normal and diseased human kidney. Since the first reports of human pluripotent stem cell-derived kidney organoids 5 years ago, kidney organoids have been successfully used to model glomerular and tubular diseases. In parallel, advances in single-cell RNA sequencing have led to identification of a variety of cell types in the organoids, and have shown these to be similar to, but more immature than, human kidney cells in vivo. Protocols for the in vitro expansion of stem cell-derived nephron progenitor cells (NPCs), as well as those for the selective induction of specific lineages, especially glomerular podocytes, have also been reported. Although most current organoids are based on the induction of NPCs, an induction protocol for ureteric buds (collecting duct precursors) has also been developed, and approaches to generate more complex kidney structures may soon be possible. Maturation of organoids is a major challenge, and more detailed analysis of the developing kidney at a single cell level is needed. Eventually, organotypic kidney structures equipped with nephrons, collecting ducts, ureters, stroma and vascular flow are required to generate transplantable kidneys; such attempts are in progress.
Collapse
|
119
|
Zhang Q, Caudle WM, Pi J, Bhattacharya S, Andersen ME, Kaminski NE, Conolly RB. Embracing Systems Toxicology at Single-Cell Resolution. CURRENT OPINION IN TOXICOLOGY 2019; 16:49-57. [PMID: 31768481 PMCID: PMC6876623 DOI: 10.1016/j.cotox.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As systems biology expands its multi-omic spectrum to increasing resolutions, distinguishing cells based on single-cell profiles becomes feasible. Unlike traditional bulk assays that average cellular responses and blur the distinct identities of responsive cells, single-cell technologies enable sensitive detection of small cellular changes and precise identification of those cells perturbed by toxicants. Among the suite of omic technologies that continue to expand and become affordable, single-cell RNA sequencing (scRNA-seq) is at the cutting edge and leading the way to transform systems toxicology. Single-cell systems toxicology can provide a wealth of information to elucidate cell-specific alterations and response trajectories, detect points-of-departure, map and develop dynamical models of toxicity pathways.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - W. Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Quantitative Health Science and Engineering, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | | - Norbert E. Kaminski
- Departments of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rory B. Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, North Carolina, USA
| |
Collapse
|
120
|
Abstract
The vertebrate kidney is comprised of functional units known as nephrons. Defects in nephron development or activity are a common feature of kidney disease. Current medical treatments are unable to ameliorate the dire consequences of nephron deficit or injury. Although there have been tremendous advancements in our understanding of nephron ontogeny and the response to damage, many significant knowledge gaps still remain. The zebrafish embryo kidney, or pronephros, is an ideal model for many renal development and regeneration studies because it is comprised of nephrons that share conserved features with the nephron units that comprise the mammalian metanephric kidney. In this chapter, we provide an overview about the benefits of using the zebrafish pronephros to study the mechanisms underlying nephrogenesis as well as epithelial repair and regeneration. We subsequently detail methods for the spatiotemporal assessment of gene and protein expression in zebrafish embryos that can be used to extend the understanding of nephron development and disease, and thereby create new opportunities to identify therapeutic strategies for regenerative medicine.
Collapse
|
121
|
Deng C, Daley T, De Sena Brandine G, Smith AD. Molecular Heterogeneity in Large-Scale Biological Data: Techniques and Applications. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput sequencing technologies have evolved at a stellar pace for almost a decade and have greatly advanced our understanding of genome biology. In these sampling-based technologies, there is an important detail that is often overlooked in the analysis of the data and the design of the experiments, specifically that the sampled observations often do not give a representative picture of the underlying population. This has long been recognized as a problem in statistical ecology and in the broader statistics literature. In this review, we discuss the connections between these fields, methodological advances that parallel both the needs and opportunities of large-scale data analysis, and specific applications in modern biology. In the process we describe unique aspects of applying these approaches to sequencing technologies, including sequencing error, population and individual heterogeneity, and the design of experiments.
Collapse
Affiliation(s)
- Chao Deng
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Timothy Daley
- Department of Statistics and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Guilherme De Sena Brandine
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew D. Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
122
|
Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell 2019; 25:373-387.e9. [PMID: 31303547 DOI: 10.1016/j.stem.2019.06.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
Human pluripotent stem cell-derived kidney organoids recapitulate developmental processes and tissue architecture, but intrinsic limitations, such as lack of vasculature and functionality, have greatly hampered their application. Here we establish a versatile protocol for generating vascularized three-dimensional (3D) kidney organoids. We employ dynamic modulation of WNT signaling to control the relative proportion of proximal versus distal nephron segments, producing a correlative level of vascular endothelial growth factor A (VEGFA) to define a resident vascular network. Single-cell RNA sequencing identifies a subset of nephron progenitor cells as a potential source of renal vasculature. These kidney organoids undergo further structural and functional maturation upon implantation. Using this kidney organoid platform, we establish an in vitro model of autosomal recessive polycystic kidney disease (ARPKD), the cystic phenotype of which can be effectively prevented by gene correction or drug treatment. Our studies provide new avenues for studying human kidney development, modeling disease pathogenesis, and performing patient-specific drug validation.
Collapse
|
123
|
Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, Goessling W, Wingert RA. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development 2019; 146:dev.172387. [PMID: 31160420 DOI: 10.1242/dev.172387] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Renal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular compartments with discrete physiological identities. Here, from a forward genetic screen using zebrafish, we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that activates the terminal differentiation program of distal segments in the pronephros. We found that tfap2a acts downstream of Iroquois homeobox 3b (irx3b), a distal lineage transcription factor, to operate a circuit consisting of tfap2b, irx1a and genes encoding solute transporters that dictate the specialized metabolic functions of distal nephron segments. Interestingly, this regulatory node is distinct from other checkpoints of differentiation, such as polarity establishment and ciliogenesis. Thus, our studies reveal insights into the genetic control of differentiation, where tfap2a is essential for regulating a suite of segment transporter traits at the final tier of zebrafish pronephros ontogeny. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to facilitate drug discovery and regenerative therapies.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karen H Chen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anna E Levesque
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
124
|
Chambers BE, Wingert RA. Mechanisms of Nephrogenesis Revealed by Zebrafish Chemical Screen: Prostaglandin Signaling Modulates Nephron Progenitor Fate. Nephron Clin Pract 2019; 143:68-76. [PMID: 31216548 DOI: 10.1159/000501037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Nephron development involves the creation of discrete segment populations that are specialized to fulfill unique physiological roles. As such, renal function is reliant on the proper execution of segment patterning programs. Despite the central importance of nephron segmentation, the genetic mechanisms that regulate this process are far from understood, in large part due to the experimental complexities and cost of interrogating these events in the mammalian metanephros. For this reason, forward genetics utilizing phenotypic screening in the zebrafish pronephros provides an avenue to gain novel insights about the mechanisms of nephron segmentation in the vertebrate kidney. Discoveries from zebrafish can highlight possible conserved pathways and provide a useful starting point for reverse genetic analyses with other animal models or in vitro approaches. In this review, we discuss the results of a novel chemical screen using the zebrafish to identify segmentation regulators. Through this screen, we identified for the first time that prostaglandin signaling can modulate nephron segmentation, and that it is normally requisite during development to mitigate segment fate choice in the embryonic kidney. We briefly discuss how these discoveries relate to current knowledge about nephron segmentation. Finally, we explore the possible implications of these findings for understanding renal ontogeny and disease, and how this knowledge may be useful for ongoing research initiatives that are aimed at deciphering how to build or rebuild the human kidney.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA,
| |
Collapse
|
125
|
Gallegos TF, Kamei CN, Rohly M, Drummond IA. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev Biol 2019; 454:44-51. [PMID: 31220433 DOI: 10.1016/j.ydbio.2019.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
Abstract
The zebrafish kidney regenerates after injury by development of new nephrons from resident adult kidney stem cells. Although adult kidney progenitor cells have been characterized by transplantation and single cell RNA seq, signals that stimulate new nephron formation are not known. Here we demonstrate that fibroblast growth factors and FGF signaling is rapidly induced after kidney injury and that FGF signaling is required for recruitment of progenitor cells to sites of new nephron formation. Chemical or dominant negative blockade of Fgfr1 prevented formation of nephron progenitor cell aggregates after injury and during kidney development. Implantation of FGF soaked beads induced local aggregation of lhx1a:EGFP + kidney progenitor cells. Our results reveal a previously unexplored role for FGF signaling in recruitment of renal progenitors to sites of new nephron formation and suggest a role for FGF signaling in maintaining cell adhesion and cell polarity in newly forming kidney epithelia.
Collapse
Affiliation(s)
- Thomas F Gallegos
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | - Caramai N Kamei
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA
| | | | - Iain A Drummond
- Massachusetts General Hospital, Nephrology Division, Boston, MA, 02129, USA; Harvard Medical School Department of Genetics, Boston, MA, 02115, USA.
| |
Collapse
|
126
|
Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells. Stem Cells Int 2019; 2019:3298432. [PMID: 31191670 PMCID: PMC6525793 DOI: 10.1155/2019/3298432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases.
Collapse
|
127
|
Combes AN, Phipson B, Lawlor KT, Dorison A, Patrick R, Zappia L, Harvey RP, Oshlack A, Little MH. Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development 2019; 146:dev.178673. [PMID: 31118232 DOI: 10.1242/dev.178673] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E)18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia .,Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Belinda Phipson
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kynan T Lawlor
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Aude Dorison
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Ralph Patrick
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Luke Zappia
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2033, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Alicia Oshlack
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melissa H Little
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia .,Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
128
|
Yoshimura Y, Nishinakamura R. Podocyte development, disease, and stem cell research. Kidney Int 2019; 96:1077-1082. [PMID: 31420196 DOI: 10.1016/j.kint.2019.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
The glomerular podocyte is one of the major targets of kidney research. Recent establishment of kidney organoids from pluripotent stem cells has enabled the detailed analysis of human podocytes in both development and disease. The podocytes in organoids express slit diaphragm-related genes and proteins and exhibit characteristic morphology, especially upon experimental transplantation. Organoid technology is now used to reproduce hereditary podocyte diseases, and selective podocyte induction methods have also been reported. Moreover, single-cell RNA-sequencing of human fetal and adult kidneys has revealed the detailed molecular features of this cell lineage, as well as serving as references for kidney organoids in which podocytes are still immature. Here, we discuss the recent progress and limitations of podocyte research from the viewpoint of developmental biology and kidney organoids.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
129
|
Hilliard S, Song R, Liu H, Chen CH, Li Y, Baddoo M, Flemington E, Wanek A, Kolls J, Saifudeen Z, El-Dahr SS. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open 2019; 8:bio.042754. [PMID: 31064740 PMCID: PMC6550063 DOI: 10.1242/bio.042754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Six2+ cap mesenchyme cells, also called nephron progenitor cells (NPC), are precursors of all epithelial cell types of the nephron, the filtering unit of the kidney. Current evidence indicates that perinatal ‘old’ NPC have a greater tendency to exit the progenitor niche and differentiate into nascent nephrons than their embryonic ‘young’ counterpart. Understanding the underpinnings of NPC development may offer insights to rejuvenate old NPC and expand the progenitor pool. Here, we compared the chromatin landscape of young and old NPC and found common features reflecting their shared lineage but also intrinsic differences in chromatin accessibility and enhancer landscape supporting the view that old NPC are epigenetically poised for differentiation. Annotation of open chromatin regions and active enhancers uncovered the transcription factor Bach2 as a potential link between the pro-renewal MAPK/AP1 and pro-differentiation Six2/b-catenin pathways that might be of critical importance in regulation of NPC fate. Our data provide the first glimpse of the dynamic chromatin landscape of NPC and serve as a platform for future studies of the impact of genetic or environmental perturbations on the epigenome of NPC. Summary: An investigation of the chromatin landscape of mouse nephron progenitors across their life span supports the view that old nephron progenitors are epigenetically poised for differentiation.
Collapse
Affiliation(s)
- Sylvia Hilliard
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Renfang Song
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hongbing Liu
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chao-Hui Chen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Li
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology & Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Erik Flemington
- Department of Pathology & Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alanna Wanek
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
130
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
131
|
Reilly ML, Stokman MF, Magry V, Jeanpierre C, Alves M, Paydar M, Hellinga J, Delous M, Pouly D, Failler M, Martinovic J, Loeuillet L, Leroy B, Tantau J, Roume J, Gregory-Evans CY, Shan X, Filges I, Allingham JS, Kwok BH, Saunier S, Giles RH, Benmerah A. Loss-of-function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum Mol Genet 2019; 28:778-795. [PMID: 30388224 PMCID: PMC6381319 DOI: 10.1093/hmg/ddy381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Diderot University, Department of Life Sciences, Paris, France
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, JE Utrecht, Netherlands
| | - Virginie Magry
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Cecile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marine Alves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Jacqueline Hellinga
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Daniel Pouly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marion Failler
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Antoine Béclère Hospital, AP-HP, Clamart, France
- INSERM U-788, Génétique/Neurogénétique, 94270 Le Kremlin-Bicêtre, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker–Enfants Malades, AP-HP, Paris, France
| | - Brigitte Leroy
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Julia Tantau
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Joelle Roume
- Service de Génétique, Centre hospitalier intercommunal de Poissy, 78100 Saint Germain en Laye, France
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xianghong Shan
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
132
|
Vanslambrouck JM, Woodard LE, Suhaimi N, Williams FM, Howden SE, Wilson SB, Lonsdale A, Er PX, Li J, Maksimovic J, Oshlack A, Wilson MH, Little MH. Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1. Kidney Int 2019; 95:1153-1166. [PMID: 30827514 DOI: 10.1016/j.kint.2018.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Division of Genomics of Development and Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Lauren E Woodard
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Norseha Suhaimi
- Division of Genomics of Development and Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sara E Howden
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Andrew Lonsdale
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Pei X Er
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Joan Li
- Division of Genomics of Development and Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Jovana Maksimovic
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia
| | - Matthew H Wilson
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Division of Genomics of Development and Disease, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia; Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
133
|
Munro DAD, Wineberg Y, Tarnick J, Vink CS, Li Z, Pridans C, Dzierzak E, Kalisky T, Hohenstein P, Davies JA. Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. eLife 2019; 8:43271. [PMID: 30758286 PMCID: PMC6374076 DOI: 10.7554/elife.43271] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
The origins and functions of kidney macrophages in the adult have been explored, but their roles during development remain largely unknown. Here we characterise macrophage arrival, localisation, heterogeneity, and functions during kidney organogenesis. Using genetic approaches to ablate macrophages, we identify a role for macrophages in nephron progenitor cell clearance as mouse kidney development begins. Throughout renal organogenesis, most kidney macrophages are perivascular and express F4/80 and CD206. These macrophages are enriched for mRNAs linked to developmental processes, such as blood vessel morphogenesis. Using antibody-mediated macrophage-depletion, we show macrophages support vascular anastomoses in cultured kidney explants. We also characterise a subpopulation of galectin-3+ (Gal3+) myeloid cells within the developing kidney. Our findings may stimulate research into macrophage-based therapies for renal developmental abnormalities and have implications for the generation of bioengineered kidney tissues. The kidneys clean our blood by filtering out waste products while ensuring that useful components, like nutrients, remain in the bloodstream. Blood enters the kidneys through a network of intricately arranged blood vessels, which associate closely with the ‘cleaning tubes’ that carry out filtration. Human kidneys start developing during the early phases of embryonic development. During this process, the newly forming blood vessels and cleaning tubes must grow in the right places for the adult kidney to work properly. Macrophages are cells of the immune system that clear away foreign, diseased, or damaged cells. They are also thought to encourage growth of the developing kidney, but how exactly they do this has remained unknown. Munro et al. therefore wanted to find out when macrophages first appeared in the embryonic kidney and how they might help control their development. Experiments using mice revealed that the first macrophages arrived in the kidney early during its development, alongside newly forming blood vessels. Further investigation using genetically modified mice that did not have macrophages revealed that these immune cells were needed at this stage to clear away misplaced kidney cells and help ‘set the scene’ for future development. At later stages, macrophages in the kidney interacted closely with growing blood vessels. As well as producing molecules linked with blood vessel formation, the macrophages wrapped around the vessels themselves, sometimes even eating cells lining the vessels and the blood cells carried within them. These observations suggested that macrophages actively shaped the network of blood vessels developing within the kidneys. Experiments removing macrophages from kidney tissue confirmed this: in normal kidneys, the blood vessels grew into a continuous network, but in kidneys lacking macrophages, far fewer connections formed between the vessels. This work sheds new light on how the complex structures in the adult kidney first arise and could be useful in future research. For example, adding macrophages to simplified, laboratory-grown ‘mini-kidneys’ could make them better models to study kidney growth, while patients suffering from kidney diseases might benefit from new drugs targeting macrophages.
Collapse
Affiliation(s)
- David AD Munro
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yishay Wineberg
- Department of Bioengineering, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Julia Tarnick
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chris S Vink
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zhuan Li
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Dzierzak
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomer Kalisky
- Department of Bioengineering, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Peter Hohenstein
- Leiden University Medical Center, Leiden University, Leiden, The Netherlands.,The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
134
|
Hochane M, van den Berg PR, Fan X, Bérenger-Currias N, Adegeest E, Bialecka M, Nieveen M, Menschaart M, Chuva de Sousa Lopes SM, Semrau S. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol 2019; 17:e3000152. [PMID: 30789893 PMCID: PMC6400406 DOI: 10.1371/journal.pbio.3000152] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2019] [Indexed: 01/30/2023] Open
Abstract
The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.
Collapse
Affiliation(s)
- Mazène Hochane
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | | | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esmée Adegeest
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
135
|
Lawlor KT, Zappia L, Lefevre J, Park JS, Hamilton NA, Oshlack A, Little MH, Combes AN. Nephron progenitor commitment is a stochastic process influenced by cell migration. eLife 2019; 8:41156. [PMID: 30676318 PMCID: PMC6363379 DOI: 10.7554/elife.41156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here, we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, Australia
| | - Luke Zappia
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - James Lefevre
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nicholas A Hamilton
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
136
|
Combes AN, Zappia L, Er PX, Oshlack A, Little MH. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med 2019; 11:3. [PMID: 30674341 DOI: 10.0.4.162/s13073-019-0615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Human kidney organoids hold promise for studying development, disease modelling and drug screening. However, the utility of stem cell-derived kidney tissues will depend on how faithfully these replicate normal fetal development at the level of cellular identity and complexity. METHODS Here, we present an integrated analysis of single cell datasets from human kidney organoids and human fetal kidney to assess similarities and differences between the component cell types. RESULTS Clusters in the combined dataset contained cells from both organoid and fetal kidney with transcriptional congruence for key stromal, endothelial and nephron cell type-specific markers. Organoid enriched neural, glial and muscle progenitor populations were also evident. Major transcriptional differences between organoid and human tissue were likely related to technical artefacts. Cell type-specific comparisons revealed differences in stromal, endothelial and nephron progenitor cell types including expression of WNT2B in the human fetal kidney stroma. CONCLUSIONS This study supports the fidelity of kidney organoids as models of the developing kidney and affirms their potential in disease modelling and drug screening.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, VIC, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Luke Zappia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Pei Xuan Er
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa H Little
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, VIC, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
137
|
Combes AN, Zappia L, Er PX, Oshlack A, Little MH. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med 2019; 11:3. [PMID: 30674341 PMCID: PMC6345028 DOI: 10.1186/s13073-019-0615-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/14/2019] [Indexed: 01/12/2023] Open
Abstract
Background Human kidney organoids hold promise for studying development, disease modelling and drug screening. However, the utility of stem cell-derived kidney tissues will depend on how faithfully these replicate normal fetal development at the level of cellular identity and complexity. Methods Here, we present an integrated analysis of single cell datasets from human kidney organoids and human fetal kidney to assess similarities and differences between the component cell types. Results Clusters in the combined dataset contained cells from both organoid and fetal kidney with transcriptional congruence for key stromal, endothelial and nephron cell type-specific markers. Organoid enriched neural, glial and muscle progenitor populations were also evident. Major transcriptional differences between organoid and human tissue were likely related to technical artefacts. Cell type-specific comparisons revealed differences in stromal, endothelial and nephron progenitor cell types including expression of WNT2B in the human fetal kidney stroma. Conclusions This study supports the fidelity of kidney organoids as models of the developing kidney and affirms their potential in disease modelling and drug screening. Electronic supplementary material The online version of this article (10.1186/s13073-019-0615-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, VIC, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Luke Zappia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Pei Xuan Er
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa H Little
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, VIC, Australia. .,Murdoch Children's Research Institute, Melbourne, VIC, Australia. .,School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
138
|
Yoshimura Y, Taguchi A, Tanigawa S, Yatsuda J, Kamba T, Takahashi S, Kurihara H, Mukoyama M, Nishinakamura R. Manipulation of Nephron-Patterning Signals Enables Selective Induction of Podocytes from Human Pluripotent Stem Cells. J Am Soc Nephrol 2019; 30:304-321. [PMID: 30635375 DOI: 10.1681/asn.2018070747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous research has elucidated the signals required to induce nephron progenitor cells (NPCs) from pluripotent stem cells (PSCs), enabling the generation of kidney organoids. However, selectively controlling differentiation of NPCs to podocytes has been a challenge. METHODS We investigated the effects of various growth factors in cultured mouse embryonic NPCs during three distinct steps of nephron patterning: from NPC to pretubular aggregate, from the latter to epithelial renal vesicle (RV), and from RV to podocyte. We then applied the findings to human PSC-derived NPCs to establish a method for selective induction of human podocytes. RESULTS Mouse NPC differentiation experiments revealed that phase-specific manipulation of Wnt and Tgf-β signaling is critical for podocyte differentiation. First, optimal timing and intensity of Wnt signaling were essential for mesenchymal-to-epithelial transition and podocyte differentiation. Then, inhibition of Tgf-β signaling supported domination of the RV proximal domain. Inhibition of Tgf-β signaling in the third phase enriched the podocyte fraction by suppressing development of other nephron lineages. The resultant protocol enabled successful induction of human podocytes from PSCs with >90% purity. The induced podocytes exhibited global gene expression signatures comparable to those of adult human podocytes, had podocyte morphologic features (including foot process-like and slit diaphragm-like structures), and showed functional responsiveness to drug-induced injury. CONCLUSIONS Elucidation of signals that induce podocytes during the nephron-patterning process enabled us to establish a highly efficient method for selective induction of human podocytes from PSCs. These PSC-derived podocytes show molecular, morphologic, and functional characteristics of podocytes, and offer a new resource for disease modeling and nephrotoxicity testing.
Collapse
Affiliation(s)
- Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and.,Departments of Nephrology and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and .,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Junji Yatsuda
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; and
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| |
Collapse
|
139
|
Tham MS, Smyth IM. Cellular and molecular determinants of normal and abnormal kidney development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e338. [DOI: 10.1002/wdev.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ming S. Tham
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
- Department of Biochemistry and Molecular Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| |
Collapse
|
140
|
|
141
|
Brazovskaja A, Treutlein B, Camp JG. High-throughput single-cell transcriptomics on organoids. Curr Opin Biotechnol 2018; 55:167-171. [PMID: 30504008 DOI: 10.1016/j.copbio.2018.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
Three-dimensional (3D) tissues grown in culture from human stem cells offer the incredible opportunity to analyze and manipulate human development, and to generate patient-specific models of disease. Methods to sequence DNA and RNA in single cells are being used to analyze these so-called 'organoid' systems in high-resolution. Single-cell transcriptomics has been used to quantitate the similarity of organoid cells to primary tissue counterparts in the brain, intestine, liver, and kidney, as well as identify cell-specific responses to environmental variables and disease conditions. The merging of these two technologies, single-cell genomics and organoids, will have profound impact on personalized medicine in the near future.
Collapse
Affiliation(s)
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technical University Munich, 80333 Munich, Germany.
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
142
|
Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell 2018; 23:869-881.e8. [PMID: 30449713 DOI: 10.1016/j.stem.2018.10.010] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/09/2018] [Accepted: 10/06/2018] [Indexed: 12/18/2022]
Abstract
Kidney organoids derived from human pluripotent stem cells have great utility for investigating organogenesis and disease mechanisms and, potentially, as a replacement tissue source, but how closely organoids derived from current protocols replicate adult human kidney is undefined. We compared two directed differentiation protocols by single-cell transcriptomics of 83,130 cells from 65 organoids with single-cell transcriptomes of fetal and adult kidney cells. Both protocols generate a diverse range of kidney cells with differing ratios, but organoid-derived cell types are immature, and 10%-20% of cells are non-renal. Reconstructing lineage relationships by pseudotemporal ordering identified ligands, receptors, and transcription factor networks associated with fate decisions. Brain-derived neurotrophic factor (BDNF) and its cognate receptor NTRK2 were expressed in the neuronal lineage during organoid differentiation. Inhibiting this pathway improved organoid formation by reducing neurons by 90% without affecting kidney differentiation, highlighting the power of single-cell technologies to characterize and improve organoid differentiation.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kohei Uchimura
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Erinn L Donnelly
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
143
|
Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9:1588. [PMID: 30483151 PMCID: PMC6240607 DOI: 10.3389/fphys.2018.01588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
144
|
Lindström NO, De Sena Brandine G, Ransick A, McMahon AP. Single-Cell RNA Sequencing of the Adult Mouse Kidney: From Molecular Cataloging of Cell Types to Disease-Associated Predictions. Am J Kidney Dis 2018; 73:140-142. [PMID: 30241960 DOI: 10.1053/j.ajkd.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|