101
|
Abstract
Primary cilia are small, antenna-like structures that detect mechanical and chemical cues and transduce extracellular signals. While mammalian primary cilia were first reported in the late 1800s, scientific interest in these sensory organelles has burgeoned since the beginning of the twenty-first century with recognition that primary cilia are essential to human health. Among the most common clinical manifestations of ciliary dysfunction are renal cysts. The molecular mechanisms underlying renal cystogenesis are complex, involving multiple aberrant cellular processes and signaling pathways, while initiating molecular events remain undefined. Autosomal Dominant Polycystic Kidney Disease is the most common renal cystic disease, caused by disruption of polycystin-1 and polycystin-2 transmembrane proteins, which evidence suggests must localize to primary cilia for proper function. To understand how the absence of these proteins in primary cilia may be remediated, we review intracellular trafficking of polycystins to the primary cilium. We also examine the controversial mechanisms by which primary cilia transduce flow-mediated mechanical stress into intracellular calcium. Further, to better understand ciliary function in the kidney, we highlight the LKB1/AMPK, Wnt, and Hedgehog developmental signaling pathways mediated by primary cilia and misregulated in renal cystic disease.
Collapse
|
102
|
Walentek P, Quigley IK. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia. Genesis 2017; 55:10.1002/dvg.23001. [PMID: 28095645 PMCID: PMC5276738 DOI: 10.1002/dvg.23001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases.
Collapse
Affiliation(s)
- Peter Walentek
- Department of Molecular and Cell Biology; Genetics, Genomics and Development Division; Developmental and Regenerative Biology Group; University of California, Berkeley, CA 94720, USA
| | - Ian K. Quigley
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
103
|
Al-Jassar C, Andreeva A, Barnabas DD, McLaughlin SH, Johnson CM, Yu M, van Breugel M. The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase. Structure 2016; 25:146-156. [PMID: 28017521 PMCID: PMC5222566 DOI: 10.1016/j.str.2016.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Cilia are thin cell projections with essential roles in cell motility, fluid movement, sensing, and signaling. They are templated from centrioles that dock against the plasma membrane and subsequently extend their peripheral microtubule array. The molecular mechanisms underpinning cilia assembly are incompletely understood. Cep104 is a key factor involved in cilia formation and length regulation that rides on the ends of elongating and shrinking cilia. It is mutated in Joubert syndrome, a genetically heterogeneous ciliopathy. Here we provide structural and biochemical data that Cep104 contains a tubulin-binding TOG (tumor overexpressed gene) domain and a novel C2HC zinc finger array. Furthermore, we identify the kinase Nek1, another ciliopathy-associated protein, as a potential binding partner of this array. Finally, we show that Nek1 competes for binding to Cep104 with the distal centriole-capping protein CP110. Our data suggest a model for Cep104 activity during ciliogenesis and provide a novel link between Cep104 and Nek1.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Minmin Yu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
104
|
Guen VJ, Gamble C, Perez DE, Bourassa S, Zappel H, Gärtner J, Lees JA, Colas P. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle 2016; 15:678-88. [PMID: 27104747 DOI: 10.1080/15384101.2016.1147632] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.
Collapse
Affiliation(s)
- Vincent J Guen
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France.,b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Carly Gamble
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France
| | - Dahlia E Perez
- b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Sylvie Bourassa
- c Proteomics Platform, Centre Hospitalier Universitaire de Québec (CHUQ) , Québec , Canada
| | - Hildegard Zappel
- d Universitätsmedizin Göttingen, Department of Child and Adolescent Health, Division of Neuropediatrics , Göttingen , Germany
| | - Jutta Gärtner
- d Universitätsmedizin Göttingen, Department of Child and Adolescent Health, Division of Neuropediatrics , Göttingen , Germany
| | - Jacqueline A Lees
- b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Pierre Colas
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France
| |
Collapse
|
105
|
Lee J, Yi S, Kang YE, Chang JY, Kim JT, Sul HJ, Kim JO, Kim JM, Kim J, Porcelli AM, Kim KS, Shong M. Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy. Oncotarget 2016; 7:79117-79130. [PMID: 27816963 PMCID: PMC5346702 DOI: 10.18632/oncotarget.12997] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jung Tae Kim
- Department of Medical Science, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Hae Joung Sul
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jong Ok Kim
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Bologna, Italy and Interdepartmental Industrial Research Center on Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Jung-gu, Daejeon 35015, Republic of Korea
| |
Collapse
|
106
|
Li J, Ma X, Su G, Giesy JP, Xiao Y, Zhou B, Letcher RJ, Liu C. Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:50-58. [PMID: 27552037 DOI: 10.1016/j.envpol.2016.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is considered a re-emerging environmental pollutant, and exposure to environmentally relevant concentrations has been shown to cause individual developmental toxicity in zebrafish and the water flea (Daphnia magna). However, multigenerational effects during exposure to TDCIPP and after subsequent recovery were unknown. In the present study, individuals of a model aquatic organism, the ciliated protozoan, T. thermophila were exposed to environmentally-relevant concentrations of TDCIPP (0, 300 or 3000 ng/L) for 60 days (e.g., theoretically 372 generations) followed by a 60-day period of recovery, during which T. thermophila were not exposed to TDCIPP. During exposure and after exposure, effects at the molecular, histological, individual and population levels were examined. Multigenerational exposure to 300 or 3000 ng TDCIPP/L for 60 days significantly decreased numbers of individuals, sizes of individuals, expressed as length and width of bodies, number of cilia, and depth and diameter of basal bodies of cilia, and up-regulated expressions of genes related to assembly and maintenance of cilia. Complete or partial recoveries of theoretical sizes of populations as well as sizes of individuals and expressions of genes were observed during the 60-day recovery period. Effects on number of cilia and depth and diameter of basal body of cilia were not reversible and could still be observed long after cease of TDCIPP exposure. Collectedly, and shown for the first time, multigenerational effects to T. thermophila were caused by exposure to environmentally relevant concentrations of TDCIPP. Also, there were multi-generational effects at the population level that were not caused by carry-over exposure to TDCIPP. The "permanent" alterations and their potential significance are discussed.
Collapse
Affiliation(s)
- Jing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyong Su
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210089, China
| | - Yuan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Robert J Letcher
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, China.
| |
Collapse
|
107
|
Lepanto P, Badano JL, Zolessi FR. Neuron's little helper: The role of primary cilia in neurogenesis. NEUROGENESIS 2016; 3:e1253363. [PMID: 28090545 DOI: 10.1080/23262133.2016.1253363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/27/2023]
Abstract
The generation of new neurons involves a great variety of cell-extrinsic and cell-intrinsic signals. The primary cilium, long regarded as an "evolutionary vestige," has emerged as an essential signaling hub in many cells, including neural progenitors and differentiating neurons. Most progenitors harbor an apically-localized primary cilium, which is assembled and disassembled following the cell cycle, while the presence, position and length of this organelle appears to be even more variable in differentiating neurons. One of the main extracellular cues acting through the cilium is Sonic Hedgehog, which modulates spatial patterning, the progression of the cell cycle and the timing of neurogenesis. Other extracellular signals appear to bind to cilia-localized receptors and affect processes such as dendritogenesis. All the observed dynamics, as well as the many signaling pathways depending on cilia, indicate this organelle as an important structure involved in neurogenesis.
Collapse
Affiliation(s)
- Paola Lepanto
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Flavio R Zolessi
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
108
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016; 38:1234-1245. [PMID: 27774671 DOI: 10.1002/bies.201600154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
109
|
Primary cilia: a link between hormone signalling and endocrine-related cancers? Biochem Soc Trans 2016; 44:1227-1234. [DOI: 10.1042/bst20160149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Primary cilia are sensory organelles that play a role as signalling hubs. Disruption of primary cilia structure and function is increasingly recognised in a range of cancers, with a growing body of evidence suggesting that ciliary disruption contributes to tumourigenesis. This review considers the role of primary cilia in the pathogenesis of endocrine-related cancers.
Collapse
|
110
|
Ronquillo CC, Hanke-Gogokhia C, Revelo MP, Frederick JM, Jiang L, Baehr W. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB J 2016; 30:3400-3412. [PMID: 27328943 PMCID: PMC5789158 DOI: 10.1096/fj.201600511r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
Null mutations in the human IQCB1/NPHP5 (nephrocystin-5) gene that encodes NPHP5 are the most frequent cause of Senior-Løken syndrome, a ciliopathy that is characterized by Leber congenital amaurosis and nephronophthisis. We generated germline Nphp5-knockout mice by placing a β-Geo gene trap in intron 4, thereby truncating NPHP5 at Leu87 and removing all known functional domains. At eye opening, Nphp5-/- mice exhibited absence of scotopic and photopic electroretinogram responses, a phenotype that resembles Leber congenital amaurosis. Outer segment transmembrane protein accumulation in Nphp5-/- endoplasmic reticulum was evident as early as postnatal day (P)6. EGFP-CETN2, a centrosome and transition zone marker, identified basal bodies in Nphp5-/- photoreceptors, but without fully developed transition zones. Ultrastructure of P6 and 10 Nphp5-/- photoreceptors revealed aberrant transition zones of reduced diameter. Nphp5-/- photoreceptor degeneration was complete at 1 mo of age but was delayed significantly in Nphp5-/-;Nrl-/- (cone only) retina. Nphp5-/- mouse embryonic fibroblast developed normal cilia, and Nphp5-/- kidney histology at 1 yr of age showed no significant pathology. Results establish that nephrocystin-5 is essential for photoreceptor outer segment formation but is dispensable for kidney and mouse embryonic fibroblast ciliary formation.-Ronquillo, C. C., Hanke-Gogokhia, C., Revelo, M. P., Frederick, J. M., Jiang, L., Baehr, W. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation.
Collapse
Affiliation(s)
- Cecinio C Ronquillo
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA; Department of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Jeanne M Frederick
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Li Jiang
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA;
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA; Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
111
|
Primary cilia are present on human blood and bone marrow cells and mediate Hedgehog signaling. Exp Hematol 2016; 44:1181-1187.e2. [PMID: 27612547 DOI: 10.1016/j.exphem.2016.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023]
Abstract
Primary cilia are nonmotile, microtubule-based organelles that are present on the cellular membrane of all eukaryotic cells. Functional cilia are required for the response to developmental signaling pathways such as Hedgehog (Hh) and Wnt/β-catenin. Although the Hh pathway has been shown to be active in leukemia and other blood cancers, there have been no reports describing the presence of primary cilia in human blood or leukemia cells. In the present study, we show that nearly all human blood and bone marrow cells have primary cilia (97-99%). In contrast, primary cilia on AML cell lines (KG1, KG1a, and K562) were less frequent (10-36% of cells) and were often shorter and dysmorphic, with less well-defined basal bodies. Finally, we show that treatment of blood cells with the Hh pathway ligand Sonic Hedgehog (SHh) causes translocation of Smoothened (SMO) to the primary cilia and activation of Hh target genes, demonstrating that primary cilia in blood cells are functional and participate in Hh signaling. Loss of primary cilia on leukemia cells may have important implications for aberrant pathway activation and response to SMO inhibitors currently in clinical development.
Collapse
|
112
|
Kukic I, Rivera-Molina F, Toomre D. The IN/OUT assay: a new tool to study ciliogenesis. Cilia 2016; 5:23. [PMID: 27493724 PMCID: PMC4972980 DOI: 10.1186/s13630-016-0044-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
Abstract
Background Nearly all cells have a primary cilia on their surface, which functions as a cellular antennae. Primary cilia assembly begins intracellularly and eventually emerges extracellularly. However, current ciliogenesis assays, which detect cilia length and number, do not monitor ciliary stages. Methods We developed a new assay that detects antibody access to a fluorescently tagged ciliary transmembrane protein, which revealed three ciliary states: classified as ‘inside,’ ‘outside,’ or ‘partial’ cilia. Results Strikingly, most cilia in RPE cells only partially emerged and many others were long and intracellular, which would be indistinguishable by conventional assays. Importantly, these states switch with starvation-induced ciliogenesis and the cilia can emerge both on the dorsal and ventral surface of the cell. Our assay further allows new molecular and functional studies of the ‘ciliary pocket,’ a deep plasma membrane invagination whose function is unclear. Molecularly, we show colocalization of EHD1, Septin 9 and glutamylated tubulin with the ciliary pocket. Conclusions Together, the IN/OUT assay is not only a new tool for easy and quantifiable visualization of different ciliary stages, but also allows molecular characterization of intermediate ciliary states. Electronic supplementary material The online version of this article (doi:10.1186/s13630-016-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ira Kukic
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510 USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510 USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
113
|
Neonatal seizures induced by pentylenetetrazol or kainic acid disrupt primary cilia growth on developing mouse cortical neurons. Exp Neurol 2016; 282:119-27. [PMID: 27181411 DOI: 10.1016/j.expneurol.2016.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
Abstract
Neonatal or early-life seizures (ELS) are often associated with life-long neurophysiological, cognitive and behavioral deficits, but the underlying mechanisms contributing to these deficits remain poorly understood. Newborn, post-migratory cortical neurons sprout ciliary buds (procilia) that mature into primary cilia. Disruption of the growth or signaling capabilities of these cilia has been linked to atypical neurite outgrowth from neurons and abnormalities in neuronal circuitry. Here, we tested the hypothesis that generalized seizures induced by pentylenetetrazol (PTZ) or kainic acid (KA) during early postnatal development impair neuronal and/or glial ciliogenesis. Mice received PTZ (50 or 100mg/kg), KA (2mg/kg), or saline either once at birth (P0), or once daily from P0 to P4. Using immunohistochemistry and electron microscopy, the cilia of neurons and glia were examined at P7, P14, and P42. A total of 83 regions were analyzed, representing 13 unique neocortical and hippocampal regions. Neuronal cilia were identified by co-expression of NeuN and type 3 adenylyl cyclase (ACIII) or somatostatin receptor 3 (SSTR3), while glial cilia were identified by co-expression of GFAP, Arl13b, and gamma-tubulin. We found that PTZ exposure at either P0 or from P0 to P4 induced convulsive behavior, followed by acute and lasting effects on neuronal cilia lengths that varied depending on the cortical region, PTZ dose, injection frequency, and time post-PTZ. Both increases and decreases in neuronal cilia length were observed. No changes in the length of glial cilia were observed under any of the test conditions. Lastly, we found that a single KA seizure at P0 led to similar abnormalities in neuronal cilia lengths. Our results suggest that seizure(s) occurring during early stages of cortical development induce persistent and widespread changes in neuronal cilia length. Given the impact neuronal cilia have on neuronal differentiation, ELS-induced changes in ciliogenesis may contribute to long-term pathology and abnormal cortical function.
Collapse
|
114
|
Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. Design Principles of Length Control of Cytoskeletal Structures. Annu Rev Biophys 2016; 45:85-116. [PMID: 27145876 DOI: 10.1146/annurev-biophys-070915-094206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly. Significantly, these models make experimentally testable predictions that distinguish different mechanisms of length control. Although the primary focus of this review is on cytoskeletal structures, we believe that the broader principles and mechanisms discussed herein will apply to a range of other subcellular structures whose sizes are tightly controlled and are linked to their functions.
Collapse
Affiliation(s)
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454
| | - Predrag Jelenkovic
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454;
| |
Collapse
|
115
|
TbFlabarin, a flagellar protein of Trypanosoma brucei, highlights differences between Leishmania and Trypanosoma flagellar-targeting signals. Exp Parasitol 2016; 166:97-107. [PMID: 27060615 DOI: 10.1016/j.exppara.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/26/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.
Collapse
|
116
|
Hamamoto A, Yamato S, Katoh Y, Nakayama K, Yoshimura K, Takeda S, Kobayashi Y, Saito Y. Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal 2016; 28:572-84. [PMID: 26946173 DOI: 10.1016/j.cellsig.2016.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Melanin-concentrating hormone (MCH) receptor 1 (MCHR1) is a class A G-protein-coupled receptor (GPCR). The MCH-MCHR1 system has been implicated in the regulation of feeding, emotional processing, and sleep in rodents. Recent work revealed that MCHR1 is selectively expressed in neuronal primary cilia of the central nervous system. Cilia have various chemosensory functions in many types of cell, and ciliary dysfunction is associated with ciliopathies such as polycystic kidney disease and obesity. Although dynamic modulation of neuronal cilia length is observed in obese mice, the functional interaction of neuronal ciliary GPCR and its endogenous ligand has not yet been elucidated. We report here that MCH treatment significantly reduced cilia length in hTERT-RPE1 cells (hRPE1 cells) transfected with MCHR1. Quantitative analyses indicated that MCH-induced cilia shortening progressed in a dose-dependent manner with an EC50 lower than 1nM when cells were treated for 6h. Although the assembly and disassembly of primary cilia are tightly coupled to the cell cycle, cell cycle reentry was not a determinant of MCH-induced cilia shortening. We confirmed that MCH elicited receptor internalization, Ca(2+) mobilization, ERK and Akt phosphorylation, and inhibition of cyclic AMP accumulation in MCHR1-expressing hRPE1 cells. Among these diverse pathways, we revealed that Gi/o-dependent Akt phosphorylation was an important component in the initial stage of MCH-induced cilia length shortening. Furthermore, induction of fewer cilia by Kif3A siRNA treatment significantly decreased the MCH-mediated phosphorylation of Akt, indicating the functional importance of the MCHR1-Akt pathway in primary cilia. Taken together, the present data suggest that the MCH-MCHR1 axis may modulate the sensitivity of cells to external environments by controlling the cilia length. Therefore, further characterization of MCHR1 as a ciliary GPCR will provide a potential molecular mechanism to link cilia length control with obesity.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Shogo Yamato
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
117
|
A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects. PLoS Genet 2016; 12:e1005785. [PMID: 26859289 PMCID: PMC4747337 DOI: 10.1371/journal.pgen.1005785] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.
Collapse
|
118
|
Cellular Mechanisms of Ciliary Length Control. Cells 2016; 5:cells5010006. [PMID: 26840332 PMCID: PMC4810091 DOI: 10.3390/cells5010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT) system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Collapse
|
119
|
Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors. J Biol Chem 2016; 291:7142-55. [PMID: 26814127 DOI: 10.1074/jbc.m115.710954] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Zhijian Wu
- the NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Cecilia D Gerstner
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Jeanne M Frederick
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Houbin Zhang
- the Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan, China, the School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan, China, and
| | - Wolfgang Baehr
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
120
|
Hunter EL, Sale WS, Alford LM. Analysis of Axonemal Assembly During Ciliary Regeneration in Chlamydomonas. Methods Mol Biol 2016; 1454:237-43. [PMID: 27514926 DOI: 10.1007/978-1-4939-3789-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chlamydomonas reinhardtii is an outstanding model genetic organism for study of assembly of cilia. Here, methods are described for synchronization of ciliary regeneration in Chlamydomonas to analyze the sequence in which ciliary proteins assemble. In addition, the methods described allow analysis of the mechanisms involved in regulation of ciliary length, the proteins required for ciliary assembly, and the temporal expression of genes encoding ciliary proteins. Ultimately, these methods can contribute to discovery of conserved genes that when defective lead to abnormal ciliary assembly and human disease.
Collapse
Affiliation(s)
- Emily L Hunter
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Lea M Alford
- Department of Cell Biology, Emory University, 465 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
| |
Collapse
|
121
|
DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005733. [PMID: 26657059 PMCID: PMC4686109 DOI: 10.1371/journal.pgen.1005733] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/19/2015] [Indexed: 01/11/2023] Open
Abstract
Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis. Cells detect cues in their environment using many different receptor and channel proteins, most of which localize to the plasma membrane of the cell. Some of these receptors and channels localize to a specialized sensory organelle, the primary cilium, that extends from the cell like a small antenna. Almost all cells of the human body have one or more cilia. Defects in cilium structure or function have been implicated in many diseases. Many studies have shown that the length of cilia is regulated and can be modulated by environmental signals. Several genes have been identified that function in cilium length regulation and it is clear that transport of proteins inside the cilium plays an important role. Here, we identify several genes of a MAP kinase cascade that modulate the length of cilia of the nematode Caenorhabditis elegans. Interestingly, this regulation seems not to be mediated by the transport system in the cilia, but by modulation of endocytosis. Our results suggest that regulated delivery and removal of proteins and/or lipids at the base of the cilium contributes to the regulation of cilium length.
Collapse
|
122
|
Haemmerle CADS, Nogueira MI, Watanabe IS. The neural elements in the lining of the ventricular-subventricular zone: making an old story new by high-resolution scanning electron microscopy. Front Neuroanat 2015; 9:134. [PMID: 26578896 PMCID: PMC4623158 DOI: 10.3389/fnana.2015.00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/09/2015] [Indexed: 11/13/2022] Open
Abstract
The classical description of the neural elements that compose the lining of brain ventricles introduces us to the single layer of ependymal cells. However, new findings, especially in the lateral ventricle (LV)—the major niche for the generation of new neurons in the adult brain—have provided information about additional cell elements that influence the organization of this part of the ventricular system and produce important contributions to neurogenesis. To complement the cell neurochemistry findings, we present a three-dimensional in situ description that demonstrates the anatomical details of the different types of ciliated cells and the innervation of these elements. After processing adult rat brains for ultrastructural analysis by high-resolution scanning electron microscopy (HRSEM) and transmission electron microscopy, we observed a heterogeneous pattern of cilia distribution at the different poles of the LV surface. Furthermore, we describe the particular three-dimensional aspects of the ciliated cells of the LV, in addition the fiber bundles and varicose axons surrounding these cells. Therefore, we provide a unique ultrastructural description of the three-dimensional in situ organization of the LV surface, highlighting its innervation, to corroborate the available neurochemical and functional findings regarding the factors that regulate this neurogenic niche.
Collapse
Affiliation(s)
- Carlos Alexandre Dos Santos Haemmerle
- Laboratory of Ultrastructure of Cells and Tissues, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Maria Inês Nogueira
- Laboratory of Neurosciences, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil ; Institute of Psychology, Center for Neuroscience and Behavior, University of São Paulo São Paulo, Brazil
| | - Ii-Sei Watanabe
- Laboratory of Ultrastructure of Cells and Tissues, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
123
|
Shnitsar I, Bashkurov M, Masson GR, Ogunjimi AA, Mosessian S, Cabeza EA, Hirsch CL, Trcka D, Gish G, Jiao J, Wu H, Winklbauer R, Williams RL, Pelletier L, Wrana JL, Barrios-Rodiles M. PTEN regulates cilia through Dishevelled. Nat Commun 2015; 6:8388. [PMID: 26399523 PMCID: PMC4598566 DOI: 10.1038/ncomms9388] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies.
Collapse
Affiliation(s)
- Iryna Shnitsar
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Mikhail Bashkurov
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Glenn R Masson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Abiodun A Ogunjimi
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sherly Mosessian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Eduardo Aguiar Cabeza
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Daniel Trcka
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Gerald Gish
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Roger L Williams
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Laurence Pelletier
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Miriam Barrios-Rodiles
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| |
Collapse
|
124
|
Chevalier B, Adamiok A, Mercey O, Revinski DR, Zaragosi LE, Pasini A, Kodjabachian L, Barbry P, Marcet B. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat Commun 2015; 6:8386. [PMID: 26381333 PMCID: PMC4595761 DOI: 10.1038/ncomms9386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the assembly of an apical actin network, required for proper basal bodies anchoring. Identification of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a key regulator of this process. Protection of RRAS messenger RNA against miR-34/449 binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A, a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role played by miR-34/449 in coordinating several steps of a complex differentiation programme by regulating distinct signalling pathways. MicroRNAs of the miR-34/449 family initiate formation of multiciliated cells through the suppression of cell cycle genes and Notch. Here the authors show that miR-34/449 also regulate the assembly of an apical actin network necessary for basal body anchoring by regulating the expression of R-Ras.
Collapse
Affiliation(s)
- Benoît Chevalier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Anna Adamiok
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Olivier Mercey
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Diego R Revinski
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Laure-Emmanuelle Zaragosi
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Andrea Pasini
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Laurent Kodjabachian
- Aix-Marseille Université, CNRS, UMR7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| | - Brice Marcet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR-7275, 660 route des Lucioles, 06560 Sophia-Antipolis, France.,University of Nice-Sophia-Antipolis (UNS), Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Valbonne, 06560 Sophia-Antipolis, France
| |
Collapse
|
125
|
Lin H, Zhang Z, Guo S, Chen F, Kessler JM, Wang YM, Dutcher SK. A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures. PLoS Genet 2015; 11:e1005508. [PMID: 26348919 PMCID: PMC4562644 DOI: 10.1371/journal.pgen.1005508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhengyan Zhang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Suyang Guo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fan Chen
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan M. Kessler
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yan Mei Wang
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
126
|
Affiliation(s)
- Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
127
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
128
|
Cortés CR, Metzis V, Wicking C. Unmasking the ciliopathies: craniofacial defects and the primary cilium. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:637-53. [PMID: 26173831 DOI: 10.1002/wdev.199] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 12/29/2022]
Abstract
Over the past decade, the primary cilium has emerged as a pivotal sensory organelle that acts as a major signaling hub for a number of developmental signaling pathways. In that time, a vast number of proteins involved in trafficking and signaling have been linked to ciliary assembly and/or function, demonstrating the importance of this organelle during embryonic development. Given the central role of the primary cilium in regulating developmental signaling, it is not surprising that its dysfunction results in widespread defects in the embryo, leading to an expanding class of human congenital disorders known as ciliopathies. These disorders are individually rare and phenotypically variable, but together they affect virtually every vertebrate organ system. Features of ciliopathies that are often overlooked, but which are being reported with increasing frequency, are craniofacial abnormalities, ranging from subtle midline defects to full-blown orofacial clefting. The challenge moving forward is to understand the primary mechanism of disease given the link between the primary cilium and a number of developmental signaling pathways (such as hedgehog, platelet-derived growth factor, and WNT signaling) that are essential for craniofacial development. Here, we provide an overview of the diversity of craniofacial abnormalities present in the ciliopathy spectrum, and reveal those defects in common across multiple disorders. Further, we discuss the molecular defects and potential signaling perturbations underlying these anomalies. This provides insight into the mechanisms leading to ciliopathy phenotypes more generally and highlights the prevalence of widespread dysmorphologies resulting from cilia dysfunction.
Collapse
Affiliation(s)
- Claudio R Cortés
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Vicki Metzis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
129
|
Kessler K, Wunderlich I, Uebe S, Falk NS, Gießl A, Brandstätter JH, Popp B, Klinger P, Ekici AB, Sticht H, Dörr HG, Reis A, Roepman R, Seemanová E, Thiel CT. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Sci Rep 2015; 5:11649. [PMID: 26130459 PMCID: PMC4486972 DOI: 10.1038/srep11649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex.
Collapse
Affiliation(s)
- Kristin Kessler
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ina Wunderlich
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie S Falk
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Gießl
- Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia Klinger
- Department of Orthopaedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eva Seemanová
- Department of Clinical Genetics, Institute of Biology and Medical Genetics, 2nd Medical School, Charles University, Prague, Czech Republic
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
130
|
Inaba M, Buszczak M, Yamashita YM. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 2015; 523:329-32. [PMID: 26131929 PMCID: PMC4586072 DOI: 10.1038/nature14602] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
Stem cell niches provide resident stem cells with signals that specify their identity. Niche signals act over a short range such that only stem cells but not their differentiating progeny receive the self-renewing signals. However, the cellular mechanisms that limit niche signalling to stem cells remain poorly understood. Here we show that the Drosophila male germline stem cells form previously unrecognized structures, microtubule-based nanotubes, which extend into the hub, a major niche component. Microtubule-based nanotubes are observed specifically within germline stem cell populations, and require intraflagellar transport proteins for their formation. The bone morphogenetic protein (BMP) receptor Tkv localizes to microtubule-based nanotubes. Perturbation of microtubule-based nanotubes compromises activation of Dpp signalling within germline stem cells, leading to germline stem cell loss. Moreover, Dpp ligand and Tkv receptor interaction is necessary and sufficient for microtubule-based nanotube formation. We propose that microtubule-based nanotubes provide a novel mechanism for selective receptor-ligand interaction, contributing to the short-range nature of niche-stem-cell signalling.
Collapse
Affiliation(s)
- Mayu Inaba
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA [3] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yukiko M Yamashita
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA
| |
Collapse
|
131
|
Antenna Mechanism of Length Control of Actin Cables. PLoS Comput Biol 2015; 11:e1004160. [PMID: 26107518 PMCID: PMC4480850 DOI: 10.1371/journal.pcbi.1004160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023] Open
Abstract
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control. Based on published cell experiments, we propose a novel mechanism of length control of actin cables in budding yeast cells. The key feature of this “antenna mechanism” is negative feedback of the cable length on the activity of formins, which are proteins that attach to the growing ends of actin filaments and catalyse their polymerization. We recently showed that the protein Smy1 is critical for maintaining proper cable length in yeast cells. Smy1 proteins are delivered to the formins by directed motion of myosin motors toward the growing end, and they transiently inhibit actin cable polymerization when bound to the formins. This provides negative feedback resulting in an average rate of cable assembly that diminishes with cable length. Here we incorporate this antenna mechanism into a physical model of cable polymerization and provide experimentally testable predictions for the dependence of the length distribution of cables on the concentration of Smy1, and on mutations that affect its affinity to formins.
Collapse
|
132
|
Abstract
Ciliary growth rates are limited by the availability of precursors at the growing tip. A new paper reveals that the early rapid growth of nascent cilia is supported by F-actin-facilitated delivery of IFT proteins to basal bodies.
Collapse
Affiliation(s)
- Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6.
| |
Collapse
|
133
|
Karam A, Tebbe L, Weber C, Messaddeq N, Morlé L, Kessler P, Wolfrum U, Trottier Y. A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice. Neurobiol Dis 2015; 80:15-28. [PMID: 25989602 DOI: 10.1016/j.nbd.2015.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia--including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells--which exert various functions during tissue development and homeostasis. In the photoreceptor cilium, HTT is present in all subciliary compartments from the base of the cilium and adjacent centriole to the tip of the axoneme. In HD mice, photoreceptor cilia are abnormally elongated, have hyperacetylated alpha-tubulin and show mislocalization of the intraflagellar transport proteins IFT57 and IFT88. As a consequence, intraflagellar transport function is perturbed and leads to aberrant accumulation of outer segment proteins in the photoreceptor cell bodies and disruption of outer segment integrity, all of which precede overt cell death. Strikingly, endogenous mouse HTT is strongly reduced in cilia and accumulates in photoreceptor cell bodies, suggesting that HTT loss function contributes to structural and functional defects of photoreceptor cilia in HD mouse. Our results indicate that cilia pathology participates in HD physiopathology and may represent a therapeutic target.
Collapse
Affiliation(s)
- Alice Karam
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Lars Tebbe
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Chantal Weber
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nadia Messaddeq
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laurette Morlé
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, 69622, France
| | - Pascal Kessler
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany; Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
134
|
TTBK2: a tau protein kinase beyond tau phosphorylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575170. [PMID: 25950000 PMCID: PMC4407412 DOI: 10.1155/2015/575170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.
Collapse
|
135
|
Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev Biol 2015; 408:292-304. [PMID: 25848696 DOI: 10.1016/j.ydbio.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Proton pump inhibitors (PPIs), which target gastric H(+)/K(+)ATPase (ATP4), are among the most commonly prescribed drugs. PPIs are used to treat ulcers and as a preventative measure against gastroesophageal reflux disease in hospitalized patients. PPI treatment correlates with an increased risk for airway infections, i.e. community- and hospital-acquired pneumonia. The cause for this correlation, however, remains elusive. The Xenopus embryonic epidermis is increasingly being used as a model to study airway-like mucociliary epithelia. Here we use this model to address how ATP4 inhibition may affect epithelial function in human airways. We demonstrate that atp4a knockdown interfered with the generation of cilia-driven extracellular fluid flow. ATP4a and canonical Wnt signaling were required in the epidermis for expression of foxj1, a transcriptional regulator of motile ciliogenesis. The ATP4/Wnt module activated foxj1 downstream of ciliated cell fate specification. In multiciliated cells (MCCs) of the epidermis, ATP4a was also necessary for normal myb expression, apical actin formation, basal body docking and alignment of basal bodies. Furthermore, ATP4-dependent Wnt/β-catenin signaling in the epidermis was a prerequisite for foxa1-mediated specification of small secretory cells (SSCs). SSCs release serotonin and other substances into the medium, and thereby regulate ciliary beating in MCCs and protect the epithelium against infection. Pharmacological inhibition of ATP4 in the mature mucociliary epithelium also caused a loss of MCCs and led to impaired mucociliary clearance. These data strongly suggest that PPI-associated pneumonia in human patients might, at least in part, be linked to dysfunction of mucociliary epithelia of the airways.
Collapse
Affiliation(s)
- Peter Walentek
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany; Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Christina Müller
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Richard M Harland
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| |
Collapse
|
136
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
137
|
Ishikawa H, Marshall WF. Efficient live fluorescence imaging of intraflagellar transport in mammalian primary cilia. Methods Cell Biol 2015; 127:189-201. [PMID: 25837392 DOI: 10.1016/bs.mcb.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intraflagellar transport (IFT) is a motile process critical for building most cilia, including those of mammalian cells. Defects in IFT lead to short or missing cilia, and in animals can cause defects in development, for example, in hedgehog-mediated signaling, as well as disease symptoms such as polycystic kidney disease or retinal degeneration. Understanding how IFT works is thus a high priority in ciliary biology. Imaging of living cells has played a key role in understanding the mechanism of IFT and this is particularly the case in mammalian cells where biochemical analysis of IFT is extremely difficult due to the difficulty of isolating cilia away from the rest of the cell. Imaging IFT in living mammalian cells requires solution to several problems: constructing cell lines that express fluorescent-protein-tagged IFT proteins, obtaining cell populations with a high degree of ciliation, confocal or TIRF imaging with sufficient time resolution and signal-to-noise ratio to observe the majority of IFT particles as they travel back and forth inside the cilium, and analyzing the image data to extract quantitative measurements of IFT. We describe optimized solutions to each of these technical challenges. Using the approaches described here, mammalian cultured cells become powerful platforms for quantitative analysis of IFT dynamics.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
138
|
Jiang YY, Lechtreck K, Gaertig J. Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila. Methods Cell Biol 2015; 127:445-56. [PMID: 25837403 DOI: 10.1016/bs.mcb.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Live imaging has become a powerful tool in studies of ciliary proteins. Tetrahymena thermophila is an established ciliated model with well-developed genetic and biochemical approaches, but its large size, complex shape, and the large number of short and overlapping cilia, have made live imaging of ciliary proteins challenging. Here we describe a method that combines paralysis of cilia by nickel ions and total internal reflection microscopy for live imaging of fluorescent proteins inside cilia of Tetrahymena. Using this method, we quantitatively documented the intraflagellar transport in Tetrahymena.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
139
|
Abstract
The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Iain M Hagan
- Cancer Research UK Manchester Institute, University of Manchester, Withington, Manchester M20 4BX, United Kingdom
| | - David M Glover
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
140
|
Barbelanne M, Hossain D, Chan DP, Peränen J, Tsang WY. Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum Mol Genet 2014; 24:2185-200. [PMID: 25552655 DOI: 10.1093/hmg/ddu738] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Proper functioning of cilia, hair-like structures responsible for sensation and locomotion, requires nephrocystin-5 (NPHP5) and a multi-subunit complex called the Bardet-Biedl syndrome (BBS)ome, but their precise relationship is not understood. The BBSome is involved in the trafficking of membrane cargos to cilia. While it is known that a loss of any single subunit prevents ciliary trafficking of the BBSome and its cargos, the mechanisms underlying ciliary entry of this complex are not well characterized. Here, we report that a transition zone protein NPHP5 contains two separate BBS-binding sites and interacts with the BBSome to mediate its integrity. Depletion of NPHP5, or expression of NPHP5 mutant missing one binding site, specifically leads to dissociation of BBS2 and BBS5 from the BBSome and loss of ciliary BBS2 and BBS5 without compromising the ability of the other subunits to traffic into cilia. Depletion of Cep290, another transition zone protein that directly binds to NPHP5, causes additional dissociation of BBS8 and loss of ciliary BBS8. Furthermore, delivery of BBSome cargos, smoothened, VPAC2 and Rab8a, to the ciliary compartment is completely disabled in the absence of single BBS subunits, but is selectively impaired in the absence of NPHP5 or Cep290. These findings define a new role of NPHP5 and Cep290 in controlling integrity and ciliary trafficking of the BBSome, which in turn impinge on the delivery of ciliary cargo.
Collapse
Affiliation(s)
- Marine Barbelanne
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Delowar Hossain
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada and
| | - David Puth Chan
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada and
| |
Collapse
|
141
|
Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J Allergy Clin Immunol 2014; 134:1282-1292. [DOI: 10.1016/j.jaci.2014.07.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
|
142
|
Abstract
Cilia are force-generating and -sensing organelles that serve as mechanical interfaces between the cell and the extracellular environment. Cilia are present in tissues that adaptively respond to mechanical loading and fluid flow, and defects in ciliary function can lead to diseases affecting these tissues. As might be expected for a mechanical interface, the formation of cilia is, itself, regulated by mechanical forces, and these links between mechanics and ciliary formation are providing new entry points for dissecting the regulatory pathways of ciliogenesis.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| | - Wallace F Marshall
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| |
Collapse
|
143
|
Abstract
The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke-central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation.
Collapse
Affiliation(s)
- Peter Satir
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Thomas Heuser
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| | - Winfield S Sale
- Peter Satir ( ) is affiliated with the Department of Anatomy and Structural Biology at Albert Einstein College of Medicine, in New York, New York. Thomas Heuser is affiliated with the Electron Microscopy Facility, in the Campus Science Support Facilities of the Campus Vienna Biocenter, in Vienna, Austria. Winfield S. Sale is affiliated with the Department of Cell Biology at Emory University, in Atlanta, Georgia
| |
Collapse
|
144
|
A function for the Joubert syndrome protein Arl13b in ciliary membrane extension and ciliary length regulation. Dev Biol 2014; 397:225-36. [PMID: 25448689 DOI: 10.1016/j.ydbio.2014.11.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 11/20/2022]
Abstract
Cilia perform a variety of functions in a number of developmental and physiological contexts, and are implicated in the pathogenesis of a wide spectrum of human disorders. While the ciliary axoneme is assembled by intraflagellar transport, how ciliary membrane length is regulated is not completely understood. Here, we show that zebrafish embryos as well as mammalian cells overexpressing the ciliary membrane protein Arl13b, an ARF family small GTPase that is essential for ciliary differentiation, showed pronounced increase in ciliary length. Intriguingly, this increase in cilia length occurred as a function of the amounts of overexpressed Arl13b. While the motility of Arl13b overexpressing excessively long motile cilia was obviously disrupted, surprisingly, the abnormally long immotile primary cilia seemed to retain their signaling capacity. arl13b is induced by FoxJ1 and Rfx, and these ciliogenic transcription factors are unable to promote ciliary length increase when Arl13b activity is inhibited. Conversely, overexpression of Arl13b was sufficient to restore ciliary length in zebrafish embryos deficient in FoxJ1 function. We show that Arl13b increases cilia length by inducing protrusion of the ciliary membrane, which is then followed by the extension of the axonemal microtubules. Using mutant versions of Arl13b, one of which has been shown to be causative of the ciliopathy Joubert syndrome, we establish that the GTPase activity of the protein is essential for ciliary membrane extension. Taken together, our findings identify Arl13b as an important effector of ciliary membrane biogenesis and ciliary length regulation, and provide insights into possible mechanisms of dysfunction of the protein in Joubert syndrome.
Collapse
|
145
|
Wartchow EP, Jaffe R, Mierau GW. Ciliary inclusion disease: report of a new primary ciliary dyskinesia variant. Pediatr Dev Pathol 2014; 17:465-9. [PMID: 25299134 DOI: 10.2350/14-06-1504-oa.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biopsies from 6 children with clinical presentations suggestive of primary ciliary dyskinesia (PCD) displayed respiratory epithelial cells with disorganized accumulations of basal bodies within the cytoplasm and large intracytoplasmic vesicles into which projected numerous microvilli and cilia. Microvilli, but few cilia, were present at the cell surface. Ultrastructural study revealed a variety of nonspecific abnormalities but demonstrated the cilia generally to be morphologically normal, suggesting that the cause of cilia malfunction was not any recognized primary cause or secondary effect. Repeat studies from 2 patients produced similar findings. It is proposed that this entity, termed ciliary inclusion disease, represents a variant form of PCD manifesting as a consequence of improper ciliogenesis caused by inhibited cytoskeleton-regulated migration of basal bodies to the luminal surface of the airway respiratory epithelial cells.
Collapse
Affiliation(s)
- Eric P Wartchow
- 1 Children's Hospital Colorado, Department of Pathology, Aurora, CO, USA
| | | | | |
Collapse
|
146
|
Verleyen D, Luyten FP, Tylzanowski P. Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the zebrafish Kupffer's vesicle. PLoS One 2014; 9:e110484. [PMID: 25335082 PMCID: PMC4204907 DOI: 10.1371/journal.pone.0110484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
GPR22 is an orphan G protein-coupled receptor (GPCR). Since the ligand of the receptor is currently unknown, its biological function has not been investigated in depth. Many GPCRs and their intracellular effectors are targeted to cilia. Cilia are highly conserved eukaryotic microtubule-based organelles that protrude from the membrane of most mammalian cells. They are involved in a large variety of physiological processes and diseases. However, the details of the downstream pathways and mechanisms that maintain cilia length and structure are poorly understood. We show that morpholino knock down or overexpression of gpr22 led to defective left-right (LR) axis formation in the zebrafish embryo. Specifically, defective LR patterning included randomization of the left-specific lateral plate mesodermal genes (LPM) (lefty1, lefty2, southpaw and pitx2a), resulting in randomized cardiac looping. Furthermore, gpr22 inactivation in the Kupffer’s vesicle (KV) alone was still able to generate the phenotype, indicating that Gpr22 mainly regulates LR asymmetry through the KV. Analysis of the KV cilia by immunofluorescence and transmission electron microscopy (TEM), revealed that gpr22 knock down or overexpression resulted in changes of cilia length and structure. Further, we found that Gpr22 does not act upstream of the two cilia master regulators, Foxj1a and Rfx2. To conclude, our study characterized a novel player in the field of ciliogenesis.
Collapse
Affiliation(s)
- Daphne Verleyen
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
- * E-mail:
| |
Collapse
|
147
|
Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One 2014; 9:e108470. [PMID: 25243405 PMCID: PMC4171540 DOI: 10.1371/journal.pone.0108470] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.
Collapse
Affiliation(s)
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
148
|
The role of tubulin in the mitochondrial metabolism and arrangement in muscle cells. J Bioenerg Biomembr 2014; 46:421-34. [PMID: 25209018 DOI: 10.1007/s10863-014-9579-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.
Collapse
|
149
|
Wang W, Wu T, Kirschner MW. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. eLife 2014; 3:e03083. [PMID: 25139956 PMCID: PMC4135350 DOI: 10.7554/elife.03083] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary cilium has an important role in signaling; defects in structure are associated with a variety of human diseases. Much of the most basic biology of this organelle is poorly understood, even basic mechanisms, such as control of growth and resorption. We show that the activity of the anaphase-promoting complex (APC), an E3 that regulates the onset of anaphase, destabilizes axonemal microtubules in the primary cilium. Furthermore, the metaphase APC co-activator, Cdc20, is specifically recruited to the basal body of primary cilia. Inhibition of APC-Cdc20 activity increases the ciliary length, while overexpression of Cdc20 suppresses cilium formation. APC-Cdc20 activity is required for the timely resorption of the cilium after serum stimulation. In addition, APC regulates the stability of axonemal microtubules through targeting Nek1, the ciliary kinase, for proteolysis. These data demonstrate a novel function of APC beyond cell cycle control and implicate critical role of ubiquitin-mediated proteolysis in ciliary disassembly. DOI:http://dx.doi.org/10.7554/eLife.03083.001 The majority of cells in the human body have small hair-like structures that project from the cell surface. These structures, known as primary cilia, are involved in sensing light and touch, and they are also required for an organism to develop normally. Defects in cilia result in a wide range of human diseases that are collectively known as ciliopathies. These include polycystic kidney disease and Bardet–Biedl syndrome. Ciliary disorders can also affect almost every organ in the body leading to blindness, obesity, diabetes, and cancer. Cilia are dynamic structures that are dis-assembled when cells start to divide and are then re-assembled when cells are quiescent. The anaphase promoting complex (APC) has a critical role during cell division and targets key proteins that need to be degraded at specific times during this process. APC is localized in the basal body, which is found at the bottom of cilia, and it works together with a number of proteins which assist its function. Wang et al. now report that a complex formed by APC and its co-activator protein Cdc20 has two functions at the basal body: it is needed to maintain the optimal length of the cilia in quiescent cells and to shorten the cilia when cells exit from quiescent stage. Wang et al. also investigated the role of Nek1, an enzyme that is localised in the basal body. It was found that reducing the level of Nek1 in quiescent cells resulted in the formation of defective cilia, suggesting that this enzyme controls the stability and integrity of cilia. Moreover, when cells undergo division, the APC-Cdc20 complex targets the Nek1 enzyme, causing it to be degraded and allowing the cilia to be disassembled. A detailed understanding of how cells maintain the length of cilia could lead to the development of new approaches for the treatment of human ciliopathies. DOI:http://dx.doi.org/10.7554/eLife.03083.002
Collapse
Affiliation(s)
- Weiping Wang
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Tao Wu
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
150
|
Lee YL, Santé J, Comerci CJ, Cyge B, Menezes LF, Li FQ, Germino GG, Moerner WE, Takemaru KI, Stearns T. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell 2014; 25:2919-33. [PMID: 25103236 PMCID: PMC4230582 DOI: 10.1091/mbc.e14-02-0735] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cby1 localizes to centrioles and antagonizes canonical Wnt signaling. Cby1−/− mice have cystic kidneys, and Cby1 facilitates primary cilium formation and ciliary recruitment of Arl13b. Cby1 localizes to a distal centriolar domain with Ofd1 and Ahi1, and the amount of Ahi1 at the transition zone is reduced in Cby1−/− cells. Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Cby1, the mammalian orthologue of the Drosophila Chibby protein, localizes to mature centrioles, is important for ciliogenesis in multiciliated airway epithelia in mice, and antagonizes canonical Wnt signaling via direct regulation of β-catenin. We report that deletion of the mouse Cby1 gene results in cystic kidneys, a phenotype common to ciliopathies, and that Cby1 facilitates the formation of primary cilia and ciliary recruitment of the Joubert syndrome protein Arl13b. Localization of Cby1 to the distal end of mature centrioles depends on the centriole protein Ofd1. Superresolution microscopy using both three-dimensional SIM and STED reveals that Cby1 localizes to an ∼250-nm ring at the distal end of the mature centriole, in close proximity to Ofd1 and Ahi1, a component of the transition zone between centriole and cilium. The amount of centriole-localized Ahi1, but not Ofd1, is reduced in Cby1−/− cells. This suggests that Cby1 is required for efficient recruitment of Ahi1, providing a possible molecular mechanism for the ciliogenesis defect in Cby1−/− cells.
Collapse
Affiliation(s)
- Yin Loon Lee
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Joshua Santé
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Colin J Comerci
- Department of Chemistry, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Benjamin Cyge
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Luis F Menezes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Gregory G Germino
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - W E Moerner
- Department of Chemistry, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Tim Stearns
- Department of Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305 Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|