101
|
Ulrike K, Markus H, Thomas H, Ellen H, Barbara S, Rainer F, Distel LV. NNRTI-based antiretroviral therapy may increase risk of radiation induced side effects in HIV-1-infected patients. Radiother Oncol 2015; 116:323-30. [PMID: 26183311 DOI: 10.1016/j.radonc.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE As the incidence of cancer is rising in HIV-1-infected patients, radiotherapy is used more frequently in this patient group. Strong radiation induced side effects have been reported in single patients on antiretroviral therapy. Thus we investigated whether HIV-1 itself or antiretroviral drugs could enhance radiosensitivity in patients. METHODS AND MATERIALS Radiosensitivity after in vitro irradiation of blood lymphocytes was tested in 196 individuals (80 HIV-1-infected patients and 116 healthy controls and cancer patients) using a three color fluorescence in situ hybridization approach to analyze chromosomal aberrations (B/M). Additionally, the NNRTI efavirenz and the NRTIs tenofovir and emtricitabine were tested for radiosensitizing effects in vitro. RESULTS Lymphocytes from HIV-1-infected patients in the NNRTI + NRTI group were significantly more sensitive to ionizing radiation than in the other groups (patients without treatment or with NRTI + PI or HIV-negative controls). In vitro the triple medication efavirenz, tenofovir and emtricitabine leads to a reduced survival fraction and an increased activation of the DNA repair proteins H2AX, Nbs, Atm and 53BP1 in combination with ionizing radiation. CONCLUSIONS HIV-1 treatment with NNRTI containing therapy regimes possibly sensitizes a subgroup of patients to ionizing radiation. Individual radiosensitivity of HIV-1-infected patients on HAART including NNRTI should be tested before starting radiotherapy.
Collapse
Affiliation(s)
- Keller Ulrike
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Hecht Markus
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Harrer Thomas
- Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Harrer Ellen
- Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Schuster Barbara
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Fietkau Rainer
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany.
| |
Collapse
|
102
|
TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat Commun 2015; 6:7299. [PMID: 26095369 DOI: 10.1038/ncomms8299] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
Although DNA double-strand break (DSB) repair is mediated by numerous proteins accumulated at DSB sites, how DNA repair proteins are assembled into damaged chromatin has not been fully elucidated. Here we show that a member of the tripartite motif protein family, TRIM29, is a histone-binding protein responsible for DNA damage response (DDR). We found that TRIM29 interacts with BRCA1-associated surveillance complex, cohesion, DNA-PKcs and components of TIP60 complex. The dynamics of the TRIM29-containing complex on H2AX nucleosomes is coordinated by a cross-talk between histone modifications. TRIM29 binds to modified histone H3 and H4 tails in the context of nucleosomes. Furthermore, chromatin binding of TRIM29 is required for the phosphorylation of H2AX and cell viability in response to ionizing radiation. Our results suggest that TRIM29 functions as a scaffold protein to assemble DNA repair proteins into chromatin followed by efficient activation of DDR.
Collapse
|
103
|
Ollier M, Radosevic-Robin N, Kwiatkowski F, Ponelle F, Viala S, Privat M, Uhrhammer N, Bernard-Gallon D, Penault-Llorca F, Bignon YJ, Bidet Y. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition. Am J Cancer Res 2015; 5:2113-2126. [PMID: 26328243 PMCID: PMC4548324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023] Open
Abstract
Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.
Collapse
Affiliation(s)
- Marie Ollier
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
- Université d’AuvergneEA 4677, ERTICa, BP 10448, Clermont-Ferrand 63000, France
| | - Nina Radosevic-Robin
- Department of Anatomopathology, Centre Jean PerrinClermont-Ferrand 63000, France
- Université d’AuvergneEA 4677, ERTICa, BP 10448, Clermont-Ferrand 63000, France
| | - Fabrice Kwiatkowski
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
| | - Flora Ponelle
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
| | - Sandrine Viala
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
| | - Maud Privat
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
| | - Nancy Uhrhammer
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
| | | | - Frédérique Penault-Llorca
- Department of Anatomopathology, Centre Jean PerrinClermont-Ferrand 63000, France
- Université d’AuvergneEA 4677, ERTICa, BP 10448, Clermont-Ferrand 63000, France
| | - Yves-Jean Bignon
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
- Université d’AuvergneEA 4677, ERTICa, BP 10448, Clermont-Ferrand 63000, France
| | - Yannick Bidet
- Department of Molecular Oncology, Centre Jean PerrinClermont-Ferrand 63000, France
- Université d’AuvergneEA 4677, ERTICa, BP 10448, Clermont-Ferrand 63000, France
| |
Collapse
|
104
|
MR (Mre11-Rad50) complex in Giardia duodenalis: In vitro characterization and its response upon DNA damage. Biochimie 2015; 111:45-57. [DOI: 10.1016/j.biochi.2015.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/17/2015] [Indexed: 11/24/2022]
|
105
|
Butin-Israeli V, Adam SA, Jain N, Otte GL, Neems D, Wiesmüller L, Berger SL, Goldman RD. Role of lamin b1 in chromatin instability. Mol Cell Biol 2015; 35:884-98. [PMID: 25535332 PMCID: PMC4323489 DOI: 10.1128/mcb.01145-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/01/2014] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
Nuclear lamins play important roles in the organization and structure of the nucleus; however, the specific mechanisms linking lamin structure to nuclear functions are poorly defined. We demonstrate that reducing nuclear lamin B1 expression by short hairpin RNA-mediated silencing in cancer cell lines to approximately 50% of normal levels causes a delay in the cell cycle and accumulation of cells in early S phase. The S phase delay appears to be due to the stalling and collapse of replication forks. The double-strand DNA breaks resulting from replication fork collapse were inefficiently repaired, causing persistent DNA damage signaling and the assembly of extensive repair foci on chromatin. The expression of multiple factors involved in DNA replication and repair by both nonhomologous end joining and homologous repair is misregulated when lamin B1 levels are reduced. We further demonstrate that lamin B1 interacts directly with the promoters of some genes associated with DNA damage response and repair, including BRCA1 and RAD51. Taken together, the results suggest that the maintenance of lamin B1 levels is required for DNA replication and repair through regulation of the expression of key factors involved in these essential nuclear functions.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikhil Jain
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabriel L Otte
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Neems
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shelly L Berger
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
106
|
Lafrance-Vanasse J, Williams GJ, Tainer JA. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:182-193. [PMID: 25576492 PMCID: PMC4417436 DOI: 10.1016/j.pbiomolbio.2014.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/23/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a dynamic macromolecular machine that acts in the first steps of DNA double strand break repair, and each of its components has intrinsic dynamics and flexibility properties that are directly linked with their functions. As a result, deciphering the functional structural biology of the MRN complex is driving novel and integrated technologies to define the dynamic structural biology of protein machinery interacting with DNA. Rad50 promotes dramatic long-range allostery through its coiled-coil and zinc-hook domains. Its ATPase activity drives dynamic transitions between monomeric and dimeric forms that can be modulated with mutants modifying the ATPase rate to control end joining versus resection activities. The biological functions of Mre11's dual endo- and exonuclease activities in repair pathway choice were enigmatic until recently, when they were unveiled by the development of specific nuclease inhibitors. Mre11 dimer flexibility, which may be regulated in cells to control MRN function, suggests new inhibitor design strategies for cancer intervention. Nbs1 has FHA and BRCT domains to bind multiple interaction partners that further regulate MRN. One of them, CtIP, modulates the Mre11 excision activity for homologous recombination repair. Overall, these combined properties suggest novel therapeutic strategies. Furthermore, they collectively help to explain how MRN regulates DNA repair pathway choice with implications for improving the design and analysis of cancer clinical trials that employ DNA damaging agents or target the DNA damage response.
Collapse
Affiliation(s)
| | | | - John A Tainer
- Life Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
107
|
Kondratova A, Watanabe T, Marotta M, Cannon M, Segall AM, Serre D, Tanaka H. Replication fork integrity and intra-S phase checkpoint suppress gene amplification. Nucleic Acids Res 2015; 43:2678-90. [PMID: 25672394 PMCID: PMC4357702 DOI: 10.1093/nar/gkv084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.
Collapse
Affiliation(s)
- Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Takaaki Watanabe
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Matthew Cannon
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| |
Collapse
|
108
|
Gomez V, Gundogdu R, Gomez M, Hoa L, Panchal N, O'Driscoll M, Hergovich A. Regulation of DNA damage responses and cell cycle progression by hMOB2. Cell Signal 2015; 27:326-39. [PMID: 25460043 PMCID: PMC4276419 DOI: 10.1016/j.cellsig.2014.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
Abstract
Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression.
Collapse
Affiliation(s)
- Valenti Gomez
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Ramazan Gundogdu
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Marta Gomez
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Lily Hoa
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Neelam Panchal
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
109
|
Belov OV, Krasavin EA, Lyashko MS, Batmunkh M, Sweilam NH. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J Theor Biol 2015; 366:115-30. [DOI: 10.1016/j.jtbi.2014.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
|
110
|
Xie M, Park D, You S, Li R, Owonikoko TK, Wang Y, Doetsch PW, Deng X. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res 2015; 43:960-72. [PMID: 25567982 PMCID: PMC4333404 DOI: 10.1093/nar/gku1358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. 56iron and 28silicon) by inhibiting Mre11 complex activity. Exposure of cells to 56iron or 28silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development.
Collapse
Affiliation(s)
- Maohua Xie
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Dongkyoo Park
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Shuo You
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Rui Li
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Taofeek K Owonikoko
- Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Ya Wang
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Paul W Doetsch
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| | - Xingming Deng
- Departments of Radiation Oncology, Division of Cancer Biology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
111
|
The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:194-205. [PMID: 25550082 DOI: 10.1016/j.pbiomolbio.2014.12.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.
Collapse
|
112
|
Gao Y, Nelson SW. Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain. J Biol Chem 2014; 289:26505-26513. [PMID: 25077970 DOI: 10.1074/jbc.m114.583625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
113
|
Szalkai B, Scheer I, Nagy K, Vértessy BG, Grolmusz V. The metagenomic telescope. PLoS One 2014; 9:e101605. [PMID: 25054802 PMCID: PMC4108317 DOI: 10.1371/journal.pone.0101605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.
Collapse
Affiliation(s)
- Balázs Szalkai
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Ildikó Scheer
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kinga Nagy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G. Vértessy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail: (BGV); (VG)
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
- * E-mail: (BGV); (VG)
| |
Collapse
|
114
|
Skvortsov S, Debbage P, Lukas P, Skvortsova I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 2014; 31:36-42. [PMID: 24954010 DOI: 10.1016/j.semcancer.2014.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023]
Abstract
DNA damaging agents (ionizing radiation and chemotherapeutics) are considered as most effective in cancer treatment. However, there is a subpopulation of carcinoma cells within the tumour demonstrating resistance to DNA damaging treatment approaches. It is suggested that limited tumour response to this kind of therapy can be associated with specific molecular properties of carcinoma stem cells (CSCs) representing the most refractory cell subpopulation. This review article presents novel data about molecular features of CSCs underlying DNA damage response and related intracellular signalling.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
115
|
Damiola F, Pertesi M, Oliver J, Le Calvez-Kelm F, Voegele C, Young EL, Robinot N, Forey N, Durand G, Vallée MP, Tao K, Roane TC, Williams GJ, Hopper JL, Southey MC, Andrulis IL, John EM, Goldgar DE, Lesueur F, Tavtigian SV. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res 2014; 16:R58. [PMID: 24894818 PMCID: PMC4229874 DOI: 10.1186/bcr3669] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/08/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. Inherited mutations in the three components predispose to genetic instability disorders and the MRN genes have been implicated in breast cancer susceptibility, but the underlying data are not entirely convincing. Here, we address two related questions: (1) are some rare MRN variants intermediate-risk breast cancer susceptibility alleles, and if so (2) do the MRN genes follow a BRCA1/BRCA2 pattern wherein most susceptibility alleles are protein-truncating variants, or do they follow an ATM/CHEK2 pattern wherein half or more of the susceptibility alleles are missense substitutions? METHODS Using high-resolution melt curve analysis followed by Sanger sequencing, we mutation screened the coding exons and proximal splice junction regions of the MRN genes in 1,313 early-onset breast cancer cases and 1,123 population controls. Rare variants in the three genes were pooled using bioinformatics methods similar to those previously applied to ATM, BRCA1, BRCA2, and CHEK2, and then assessed by logistic regression. RESULTS Re-analysis of our ATM, BRCA1, and BRCA2 mutation screening data revealed that these genes do not harbor pathogenic alleles (other than modest-risk SNPs) with minor allele frequencies>0.1% in Caucasian Americans, African Americans, or East Asians. Limiting our MRN analyses to variants with allele frequencies of <0.1% and combining protein-truncating variants, likely spliceogenic variants, and key functional domain rare missense substitutions, we found significant evidence that the MRN genes are indeed intermediate-risk breast cancer susceptibility genes (odds ratio (OR)=2.88, P=0.0090). Key domain missense substitutions were more frequent than the truncating variants (24 versus 12 observations) and conferred a slightly higher OR (3.07 versus 2.61) with a lower P value (0.029 versus 0.14). CONCLUSIONS These data establish that MRE11A, RAD50, and NBN are intermediate-risk breast cancer susceptibility genes. Like ATM and CHEK2, their spectrum of pathogenic variants includes a relatively high proportion of missense substitutions. However, the data neither establish whether variants in each of the three genes are best evaluated under the same analysis model nor achieve clinically actionable classification of individual variants observed in this study.
Collapse
Affiliation(s)
- Francesca Damiola
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
- Genetic of Breast Cancer group, Cancer Research Center of Lyon, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France
| | - Maroulio Pertesi
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Javier Oliver
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Florence Le Calvez-Kelm
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Catherine Voegele
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Erin L Young
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Nivonirina Robinot
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Nathalie Forey
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Geoffroy Durand
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Maxime P Vallée
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
| | - Kayoko Tao
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | - Gareth J Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC 3010, Australia
- Department of Epidemiology (Genome Epidemiology Lab), Seoul National University School of Public Health, 599 Gwanak-ro Granak-gu, Seoul 151-742, Korea
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC 3010, Australia
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Esther M John
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Fremont, CA 94538, USA
- Stanford University School of Medicine and Stanford Cancer Institute, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Fabienne Lesueur
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon 69372, France
- Genetic Epidemiology of Cancer team, Inserm, U900, Institut Curie, Mines ParisTech, 26 rue d’Ulm, Paris 75248, France
| | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
116
|
Flores-Pérez A, Rafaelli LE, Ramírez-Torres N, Aréchaga-Ocampo E, Frías S, Sánchez S, Marchat LA, Hidalgo-Miranda A, Quintanar-Jurado V, Rodríguez-Cuevas S, Bautista-Piña V, Carlos-Reyes Á, López-Camarillo C. RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer Biol Ther 2014; 15:777-788. [PMID: 24642965 PMCID: PMC4049793 DOI: 10.4161/cbt.28551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 02/06/2023] Open
Abstract
In tumor cells the effectiveness of anti-neoplastic agents that cause cell death by induction of DNA damage is influenced by DNA repair activity. RAD50 protein plays key roles in DNA double strand breaks repair (DSBs), which is crucial to safeguard genome integrity and sustain tumor suppression. However, its role as a potential therapeutic target has not been addressed in breast cancer. Our aim in the present study was to analyze the expression of RAD50 protein in breast tumors, and evaluate the effects of RAD50-targeted inhibition on the cytotoxicity exerted by cisplatin and anthracycline and taxane-based therapies in breast cancer cells. Immunohistochemistry assays on tissue microarrays indicate that the strong staining intensity of RAD50 was reduced in 14% of breast carcinomas in comparison with normal tissues. Remarkably, RAD50 silencing by RNA interference significantly enhanced the cytotoxicity of cisplatin. Combinations of cisplatin with doxorubicin and paclitaxel drugs induced synergistic effects in early cell death of RAD50-deficient MCF-7, SKBR3, and T47D breast cancer cells. Furthermore, we found an increase in the number of DSBs, and delayed phosphorylation of histone H2AX after cisplatin treatment in RAD50-silenced cells. These cellular events were associated to a dramatical increase in the frequency of chromosomal aberrations and a decrease of cell number in metaphase. In conclusion, our data showed that RAD50 abrogation impairs DNA damage response and sensitizes breast cancer cells to cisplatin-combined therapies. We propose that the development and use of inhibitors to manipulate RAD50 levels might represent a promising strategy to sensitize breast cancer cells to DNA damaging agents.
Collapse
Affiliation(s)
- Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Lourdes E Rafaelli
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | - Nayeli Ramírez-Torres
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| | | | - Sara Frías
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Silvia Sánchez
- National Institute of Pediatrics; Biomedical Research Institute; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network; National School of Medicine and Homeopathy; National Polytechnic Institute; Mexico DF, Mexico
| | | | | | | | | | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory; National Institute of Respiratory Diseases; Mexico DF, Mexico
| | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory; Genomics Sciences Program; Autonomous University of Mexico City; Mexico DF, Mexico
| |
Collapse
|
117
|
Williams GJ, Hammel M, Radhakrishnan SK, Ramsden D, Lees-Miller SP, Tainer JA. Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair (Amst) 2014; 17:110-20. [PMID: 24656613 PMCID: PMC4102006 DOI: 10.1016/j.dnarep.2014.02.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for repair of DNA double-strand breaks (DSBs) in human cells. NHEJ is also needed for V(D)J recombination and the development of T and B cells in vertebrate immune systems, and acts in both the generation and prevention of non-homologous chromosomal translocations, a hallmark of genomic instability and many human cancers. X-ray crystal structures, cryo-electron microscopy envelopes, and small angle X-ray scattering (SAXS) solution conformations and assemblies are defining most of the core protein components for NHEJ: Ku70/Ku80 heterodimer; the DNA dependent protein kinase catalytic subunit (DNA-PKcs); the structure-specific endonuclease Artemis along with polynucleotide kinase/phosphatase (PNKP), aprataxin and PNKP related protein (APLF); the scaffolding proteins XRCC4 and XLF (XRCC4-like factor); DNA polymerases, and DNA ligase IV (Lig IV). The dynamic assembly of multi-protein NHEJ complexes at DSBs is regulated in part by protein phosphorylation. The basic steps of NHEJ have been biochemically defined to require: (1) DSB detection by the Ku heterodimer with subsequent DNA-PKcs tethering to form the DNA-PKcs-Ku-DNA complex (termed DNA-PK), (2) lesion processing, and (3) DNA end ligation by Lig IV, which functions in complex with XRCC4 and XLF. The current integration of structures by combined methods is resolving puzzles regarding the mechanisms, coordination and regulation of these three basic steps. Overall, structural results suggest the NHEJ system forms a flexing scaffold with the DNA-PKcs HEAT repeats acting as compressible macromolecular springs suitable to store and release conformational energy to apply forces to regulate NHEJ complexes and the DNA substrate for DNA end protection, processing, and ligation.
Collapse
Affiliation(s)
- Gareth J Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Sarvan Kumar Radhakrishnan
- Department of Biochemistry & Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada
| | - Dale Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 2759, United States
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada; Department of Oncology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada.
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
118
|
Wang Q, Goldstein M, Alexander P, Wakeman TP, Sun T, Feng J, Lou Z, Kastan MB, Wang XF. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J 2014; 33:862-77. [PMID: 24534091 PMCID: PMC4194111 DOI: 10.1002/embj.201386064] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 11/09/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex is essential for the detection of DNA double-strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17-dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1-dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.
Collapse
Affiliation(s)
- Qinhong Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| | - Michael Goldstein
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
- Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| | - Peter Alexander
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| | - Timothy P Wakeman
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| | - Tao Sun
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| | - Junjie Feng
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| | - Zhenkun Lou
- Division of Oncology Research and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo ClinicRochester, MN, USA
| | - Michael B Kastan
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
- Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
119
|
Turner RL, Wilkinson JC, Ornelles DA. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor. Virology 2014; 456-457:205-19. [PMID: 24889240 DOI: 10.1016/j.virol.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 01/03/2023]
Abstract
Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4orf3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4orf3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins.
Collapse
Affiliation(s)
- Roberta L Turner
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - John C Wilkinson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
120
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
121
|
The Mre11 Cellular Protein Is Modified by Conjugation of Both SUMO-1 and SUMO-2/3 during Adenovirus Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/989160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adenovirus type 5 (Ad5) E1B 55 kDa and E4 Orf6 proteins assemble a Cullin 5-E3 ubiquitin (Ub) ligase that targets, among other cellular proteins, p53 and the Mre11-Rad50-Nbs1 (MRN) complex for degradation. The latter is also inhibited by the E4 Orf3 protein, which promotes the recruitment of Mre11 into specific nuclear sites to promote viral DNA replication. The activities associated with the E1B 55 kDa and E4 Orf6 viral proteins depend mostly on the assembly of this E3-Ub ligase. However, E1B 55 kDa can also function as an E3-SUMO ligase, suggesting not only that regulation of cellular proteins by these viral early proteins may depend on polyubiquitination and proteasomal degradation but also that SUMOylation of target proteins may play a key role in their activities. Since Mre11 is a target of both the E1B/E4 Orf6 complex and E4 Orf3, we decided to determine whether Mre11 displayed similar properties to those of other cellular targets, in Ad5-infected cells. We have found that during Ad5-infection, Mre11 is modified by SUMO-1 and SUMO-2/3 conjugation. Unexpectedly, SUMOylation of Mre11 is not exclusively dependent on E1B 55 kDa, E4 Orf6, or E4 Orf3, rather it seems to be influenced by a molecular interplay that involves each of these viral early proteins.
Collapse
|
122
|
Abbas M, Shanmugam I, Bsaili M, Hromas R, Shaheen M. The role of the human psoralen 4 (hPso4) protein complex in replication stress and homologous recombination. J Biol Chem 2014; 289:14009-19. [PMID: 24675077 DOI: 10.1074/jbc.m113.520056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Psoralen 4 (Pso4) is an evolutionarily conserved protein that has been implicated in a variety of cellular processes including RNA splicing and resistance to agents that cause DNA interstrand cross-links. Here we show that the hPso4 complex is required for timely progression through S phase and transition through the G2/M checkpoint, and it functions in the repair of DNA lesions that arise during replication. Notably, hPso4 depletion results in delayed resumption of DNA replication after hydroxyurea-induced stalling of replication forks, reduced repair of spontaneous and hydroxyurea-induced DNA double strand breaks (DSBs), and increased sensitivity to a poly(ADP-ribose) polymerase inhibitor. Furthermore, we show that hPso4 is involved in the repair of DSBs by homologous recombination, probably by regulating the BRCA1 protein levels and the generation of single strand DNA at DSBs. Together, our results demonstrate that hPso4 participates in cell proliferation and the maintenance of genome stability by regulating homologous recombination. The involvement of hPso4 in the recombinational repair of DSBs provides an explanation for the sensitivity of Pso4-deficient cells to DNA interstrand cross-links.
Collapse
Affiliation(s)
- Mohammad Abbas
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Ilanchezhian Shanmugam
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Manal Bsaili
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Robert Hromas
- the Department of Medicine, University of Florida, Gainesville, Florida 32611
| | - Monte Shaheen
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
123
|
Zaki BI, Suriawinata AA, Eastman AR, Garner KM, Bakhoum SF. Chromosomal instability portends superior response of rectal adenocarcinoma to chemoradiation therapy. Cancer 2014; 120:1733-42. [PMID: 24604319 DOI: 10.1002/cncr.28656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Persistent chromosome segregation errors represent a conspicuous feature of human neoplasms. It is widely accepted that this chromosomal instability is associated with poor prognosis; however, its effect on therapeutic response is a matter of conjecture. METHODS Here, the role of chromosome segregation errors in the response of patients with rectal adenocarcinoma to chemoradiation therapy (CRT) was examined. Pretreatment samples from 62 patients were surveyed for evidence of chromosome mis-segregation and mis-segregation frequency was correlated to the pathological response to CRT as determined by the tumor regression grade after surgical resection of irradiated tumors. RESULTS Surprisingly, it was found that errors in chromosome segregation predicted enhanced pathological response of rectal adenocarcinoma to CRT (odds ratio, 3.9; P = .02). Furthermore, tumor response inversely correlated with the frequency of cells that exhibited segregation errors during anaphase (correlation coefficient, 0.94; P < .05). Strikingly, elevated chromosome mis-segregation combined with decreased levels of the DNA damage repair protein Mre11 portended a markedly enhanced response (odds ratio, 54.0; P = .008). CONCLUSIONS The results of the current study demonstrate that chromosomal instability is a favorable predictor of response to CRT in patients with locally invasive rectal adenocarcinoma. Therefore, the authors propose that downstream structural damage to chromosomes resulting from segregation errors potentiates the effect of DNA-damaging therapies and synergizes with deficiencies in the DNA repair machinery. This work identifies a novel mechanistic marker that foretells treatment response to CRT and suggests that concomitant targeting of whole-chromosome segregation and DNA repair may constitute an effective therapeutic strategy.
Collapse
Affiliation(s)
- Bassem I Zaki
- Section of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, New Hampshire
| | | | | | | | | |
Collapse
|
124
|
Martin RM, Kerr M, Teo MTW, Jevons SJ, Koritzinsky M, Wouters BG, Bhattarai S, Kiltie AE. Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours. Oncotarget 2014; 5:993-1003. [PMID: 24625413 PMCID: PMC4011600 DOI: 10.18632/oncotarget.1627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Predictive assays are needed to help optimise treatment in muscle-invasive bladder cancer, where patients can be treated by either cystectomy or radical radiotherapy. Our finding that low tumour MRE11 expression is predictive of poor response to radiotherapy but not cystectomy was recently independently validated. Here we investigated further the mechanism underlying low MRE11 expression seen in poorly-responding patients. MRE11 RNA and protein levels were measured in 88 bladder tumour patient samples, by real-time PCR and immunohistochemistry respectively, and a panel of eight bladder cancer cell lines was screened for MRE11, RAD50 and NBS1 mRNA and protein expression. There was no correlation between bladder tumour MRE11 protein and RNA scores (Spearman's rho 0.064, p=0.65), suggesting MRE11 is controlled post-transcriptionally, a pattern confirmed in eight bladder cancer cell lines. In contrast, NBS1 and RAD50 mRNA and protein levels were correlated (p=0.01 and p=0.03, respectively), suggesting primary regulation at the level of transcription. MRE11 protein levels were correlated with NBS1 and RAD50 mRNA and protein levels, implicating MRN complex formation as an important determinant of MRE11 expression, driven by RAD50 and NBS1 expression. Our findings of the post-transcriptional nature of the control of MRE11 imply that any predictive assays used in patients need to be performed at the protein level rather than the mRNA level.
Collapse
Affiliation(s)
- Rebecca M Martin
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
125
|
The role of microhomology in genomic structural variation. Trends Genet 2014; 30:85-94. [PMID: 24503142 DOI: 10.1016/j.tig.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 02/06/2023]
Abstract
Genomic structural variation, which can be defined as differences in the copy number, orientation, or location of relatively large DNA segments, is not only crucial in evolution, but also gives rise to genomic disorders. Whereas the major mechanisms that generate structural variation have been well characterised, insights into additional mechanisms are emerging from the identification of short regions of DNA sequence homology, also known as microhomology, at chromosomal breakpoints. In addition, functional studies are elucidating the characteristics of microhomology-mediated pathways, which are mutagenic. Here, we describe the features and mechanistic models of microhomology-mediated events, discuss their physiological and pathological significance, and highlight recent advances in this rapidly evolving field of research.
Collapse
|
126
|
Lamkowski A, Forcheron F, Agay D, Ahmed EA, Drouet M, Meineke V, Scherthan H. DNA damage focus analysis in blood samples of minipigs reveals acute partial body irradiation. PLoS One 2014; 9:e87458. [PMID: 24498326 PMCID: PMC3911974 DOI: 10.1371/journal.pone.0087458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022] Open
Abstract
Radiation accidents frequently involve acute high dose partial body irradiation leading to victims with radiation sickness and cutaneous radiation syndrome that implements radiation-induced cell death. Cells that are not lethally hit seek to repair ionizing radiation (IR) induced damage, albeit at the expense of an increased risk of mutation and tumor formation due to misrepair of IR-induced DNA double strand breaks (DSBs). The response to DNA damage includes phosphorylation of histone H2AX in the vicinity of DSBs, creating foci in the nucleus whose enumeration can serve as a radiation biodosimeter. Here, we investigated γH2AX and DNA repair foci in peripheral blood lymphocytes of Göttingen minipigs that experienced acute partial body irradiation (PBI) with 49 Gy (±6%) Co-60 γ-rays of the upper lumbar region. Blood samples taken 4, 24 and 168 hours post PBI were subjected to γ-H2AX, 53BP1 and MRE11 focus enumeration. Peripheral blood lymphocytes (PBL) of 49 Gy partial body irradiated minipigs were found to display 1–8 DNA damage foci/cell. These PBL values significantly deceed the high foci numbers observed in keratinocyte nuclei of the directly γ-irradiated minipig skin regions, indicating a limited resident time of PBL in the exposed tissue volume. Nonetheless, PBL samples obtained 4 h post IR in average contained 2.2% of cells displaying a pan-γH2AX signal, suggesting that these received a higher IR dose. Moreover, dispersion analysis indicated partial body irradiation for all 13 minipigs at 4 h post IR. While dose reconstruction using γH2AX DNA repair foci in lymphocytes after in vivo PBI represents a challenge, the DNA damage focus assay may serve as a rapid, first line indicator of radiation exposure. The occurrence of PBLs with pan-γH2AX staining and of cells with relatively high foci numbers that skew a Poisson distribution may be taken as indicator of acute high dose partial body irradiation, particularly when samples are available early after IR exposure.
Collapse
Affiliation(s)
- Andreas Lamkowski
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, München, Germany
| | - Fabien Forcheron
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny sur Orge, France
| | - Diane Agay
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny sur Orge, France
| | - Emad A. Ahmed
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, München, Germany
| | - Michel Drouet
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny sur Orge, France
| | - Viktor Meineke
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, München, Germany
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, München, Germany
- * E-mail:
| |
Collapse
|
127
|
Abstract
DNA replication during S phase generates two identical copies of each chromosome. Each chromosome is destined for a daughter cell, but each daughter must receive one and only one copy of each chromosome. To ensure accurate chromosome segregation, eukaryotic cells are equipped with a mechanism to pair the chromosomes during chromosome duplication and hold the pairs until a bi-oriented mitotic spindle is formed and the pairs are pulled apart. This mechanism is known as sister chromatid cohesion, and its actions span the entire cell cycle. During G1, before DNA is copied during S phase, proteins termed cohesins are loaded onto DNA. Paired chromosomes are held together through G2 phase, and finally the cohesins are dismantled during mitosis. The processes governing sister chromatid cohesion ensure that newly replicated sisters are held together from the moment they are generated to the metaphase-anaphase transition, when sisters separate.
Collapse
Affiliation(s)
- Adam R Leman
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
128
|
Schröder-Heurich B, Wieland B, Lavin MF, Schindler D, Dörk T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J 2013; 28:1331-41. [PMID: 24344331 DOI: 10.1096/fj.13-236984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.
Collapse
Affiliation(s)
- Bianca Schröder-Heurich
- 1Hannover Medical School, Gynaecology Research Unit (OE 6411), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
129
|
A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation. G3-GENES GENOMES GENETICS 2013; 3:1927-43. [PMID: 24062528 PMCID: PMC3815056 DOI: 10.1534/g3.113.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nbs1, a core component of the Mre11-Rad50-Nbs1 complex, plays an essential role in the cellular response to DNA double-strand breaks (DSBs) and poorly understood roles in meiosis. We used the basidiomycete Coprinus cinereus to examine the meiotic roles of Nbs1. We identified the C. cinereus nbs1 gene and demonstrated that it corresponds to a complementation group previously known as rad3. One allele, nbs1-2, harbors a point mutation in the Nbs1 FHA domain and has a mild spore viability defect, increased frequency of meiosis I nondisjunction, and an altered crossover distribution. The nbs1-2 strain enters meiosis with increased levels of phosphorylated H2AX, which we hypothesize represent unrepaired DSBs formed during premeiotic replication. In nbs1-2, there is no apparent induction of Spo11-dependent DSBs during prophase. We propose that replication-dependent DSBs, resulting from defective replication fork protection and processing by the Mre11-Rad50-Nbs1 complex, are competent to form meiotic crossovers in C. cinereus, and that these crossovers lead to high levels of faithful chromosome segregation. In addition, although crossover distribution is altered in nbs1-2, the majority of crossovers were found in subtelomeric regions, as in wild-type. Therefore, the location of crossovers in C. cinereus is maintained when DSBs are induced via a Spo11-independent mechanism.
Collapse
|
130
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
131
|
Guglielmi C, Cerri I, Evangelista M, Collavoli A, Tancredi M, Aretini P, Caligo MA. Identification of two novel BRCA1-partner genes in the DNA double-strand break repair pathway. Breast Cancer Res Treat 2013; 141:515-22. [PMID: 24104880 DOI: 10.1007/s10549-013-2705-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023]
Abstract
M1775R and A1789T are two missense variants located within the BRCT domains of BRCA1 gene. The M1775R is a known deleterious variant, while the A1789T is an unclassified variant that has been analyzed and classified as probably deleterious for the first time by our group. In a previous study, we described the expression profile of HeLa G1 cells transfected with the two variants and we found that they altered molecular mechanisms critical for cell proliferation and genome integrity. Considering that the mutations in the BRCA1 C terminus (BRCT) domains are associated to a phenotype with an altered ability in the DNA double-strand break repair, we chose three of the genes previously identified, EEF1E1, MRE11A, and OBFC2B, to be tested for an homologous recombination (HR) in vitro assay. For our purpose, we performed a gene expression knockdown by siRNA transfection in HeLa cells, containing an integrated recombination substrate (hprtDRGFP), for each of the target genes included BRCA1. The knockdown of BRCA1, OBFC2B, MRE11A, and EEF1E1 reduces the HR rate, respectively, of 97.6, 28.6, 41.8, and 42.3 % compared to cells transfected with a scrambled negative control duplex and all these differences are statistically significant (P < 0.05; Kruskal-Wallis test). Finally, we analyzed the effect of target gene depletion both on HR that on cell survival after DNA-damage induction by ionizing radiation. The clonogenic assay showed that the down-regulation of the target genes reduced the cell survival, but the effect on the HR, is not evident. Only the BRCA1-siRNA confirmed the inhibition effect on HR. Overall these results confirmed the involvement of MRE11A in the HR pathway and identified two new genes, OBFC2B and EEF1E1, which according to these data and the knowledge obtained from literature, might be involved in BRCA1-pathway.
Collapse
Affiliation(s)
- Chiara Guglielmi
- Section of Genetic Oncology, University Hospital and University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
132
|
Ziółkowska-Suchanek I, Mosor M, Wierzbicka M, Rydzanicz M, Baranowska M, Nowak J. The MRN protein complex genes: MRE11 and RAD50 and susceptibility to head and neck cancers. Mol Cancer 2013; 12:113. [PMID: 24079363 PMCID: PMC3856607 DOI: 10.1186/1476-4598-12-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The members of MRE11/RAD50/NBN (MRN) protein complex participates in DNA double-strand break repair and DNA-damage checkpoint activation. We have previously shown that the p.I171V NBN gene mutation may contribute to the development of laryngeal cancer. This study tested the hypothesis that variants of the MRE11 and RAD50 genes, previously described as cancer risk factors, predispose to increased susceptibility to head and neck cancer. FINDINGS In this study we analyzed the RAD50 and MRE11 genes in 358 patients: 175 with a single laryngeal cancer (LC), 115 with multiple primary tumors but one malignancy (primary or second) localized in the larynx (MPT-LC), 68 patients with multiple primary tumors localized in the head or neck (MPT) and 506 controls. No carriers of previously reported mutation in the MRE11 or RAD50 gene (particularly the pathogenic c.687delT) were detected in the present study. We identified the p.V127I variant (2/175 LC, 2/506 controls; OR=2.91; 95% CI 0.41-20.85) and p.V315L variant (2/115 MPT-LC, 1/506 controls; OR=8.96; 95% CI 0.81-99.68) of the RAD50 gene. CONCLUSIONS Our data indicated that previously described common genetic variations in the MRE11 and RAD50 genes do not contribute to an increased risk of laryngeal cancer and second primary tumors localized in the head and neck. Prospective studies with larger groups of patients may reveal the possible impact of these genes in tumor occurrence.
Collapse
Affiliation(s)
- Iwona Ziółkowska-Suchanek
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Maria Mosor
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Małgorzata Wierzbicka
- Department of Otolaryngology and Laryngeal Oncology, K. Marcinkowski University of Medical Sciences, Przybyszewskiego 49 St, 60-355, Poznań, Poland
| | - Małgorzata Rydzanicz
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Marta Baranowska
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Jerzy Nowak
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| |
Collapse
|
133
|
Klaiman D, Steinfels-Kohn E, Kaufmann G. A DNA break inducer activates the anticodon nuclease RloC and the adaptive immunity in Acinetobacter baylyi ADP1. Nucleic Acids Res 2013; 42:328-39. [PMID: 24062157 PMCID: PMC3874168 DOI: 10.1093/nar/gkt851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC's ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC's controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC's ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNA(Glu) and tRNA(Gln). Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.
Collapse
Affiliation(s)
- Daniel Klaiman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
134
|
Bogdanova N, Helbig S, Dörk T. Hereditary breast cancer: ever more pieces to the polygenic puzzle. Hered Cancer Clin Pract 2013; 11:12. [PMID: 24025454 PMCID: PMC3851033 DOI: 10.1186/1897-4287-11-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Sonja Helbig
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
135
|
Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair (Amst) 2013; 12:791-9. [PMID: 23953933 DOI: 10.1016/j.dnarep.2013.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.
Collapse
|
136
|
Rodrigues PMG, Grigaravicius P, Remus M, Cavalheiro GR, Gomes AL, Martins MR, Frappart L, Reuss D, McKinnon PJ, von Deimling A, Martins RAP, Frappart PO. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS One 2013; 8:e69209. [PMID: 23935957 PMCID: PMC3728324 DOI: 10.1371/journal.pone.0069209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Paulo M. G. Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel R. Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle L. Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R. Martins
- Programa de Pós Graduação em Biofísica, IBCCF, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lucien Frappart
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J. McKinnon
- Department of Genetics, St.Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (POF); (RAPM)
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (POF); (RAPM)
| |
Collapse
|
137
|
Comprehensive macromolecular conformations mapped by quantitative SAXS analyses. Nat Methods 2013; 10:453-4. [PMID: 23624664 DOI: 10.1038/nmeth.2453] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
138
|
Abstract
Ataxia-telangiectasia (A-T) has for a long time stood apart from most other human neurodegenerative syndromes by the characteristic failure of cells derived from these patients to properly repair DNA damage-induced by ionizing radiation. The discovery of mutations in the ATM gene as being the underlying cause for A-T and the demonstration that the ATM protein functions as a DNA damage-responsive kinase has defined current research focusing on decoding how the cell responds to genotoxic stress. Yet, despite significant advances in delineating the cellular DNA damage response pathways coordinated by ATM, very little headway has been made toward understanding how loss of ATM leads to progressive cerebellar ataxia and whether this can be attributed to an underlying defect in DNA double strand break repair (DSBR). Since its identification, A-T has been used as the archetypal model for how a deficiency in DNA repair affects both the development and maintenance of the nervous and immune systems in humans as well as contributing to the process of tumourigenesis. However, following the growing availability and cost effectiveness of next generation sequencing technologies, the increasing recognition of novel human disorders associated with abnormal DNA repair has demonstrated that the neuropathology typified by A-T is an 'exception' rather than the 'rule'. As a consequence, this throws into doubt the longstanding hypothesis that the neurodegeneration seen in A-T is due to the progressive loss of damaged neurons that have acquired toxic levels of unrepaired DNA lesions over time. Therefore, this review aims to address the question: Is defective DNA double strand break repair an underlying cause of neurodegeneration?
Collapse
|
139
|
Lee JH, Mand MR, Deshpande RA, Kinoshita E, Yang SH, Wyman C, Paull TT. Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex. J Biol Chem 2013; 288:12840-51. [PMID: 23525106 PMCID: PMC3642328 DOI: 10.1074/jbc.m113.460378] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Indexed: 11/23/2022] Open
Abstract
The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the "closed" form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- From the Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 and
| | - Michael R. Mand
- From the Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 and
| | - Rajashree A. Deshpande
- From the Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 and
| | | | - Soo-Hyun Yang
- From the Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 and
| | - Claire Wyman
- Radiation Oncology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Tanya T. Paull
- From the Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 and
| |
Collapse
|
140
|
Nogueira A, Assis J, Catarino R, Medeiros R. DNA repair and cytotoxic drugs: the potential role of RAD51 in clinical outcome of non-small-cell lung cancer patients. Pharmacogenomics 2013; 14:689-700. [DOI: 10.2217/pgs.13.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many of the cytotoxic drugs used in the treatment of non-small-cell lung carcinoma patients can interfere with DNA activity and the definition of an individual DNA repair profile could be a key strategy to achieve better response to chemotherapeutic treatment. Although DNA repair mechanisms are important factors in the prevention of carcinogenesis, these molecular pathways are also involved in therapy response. RAD51 is a crucial element in DNA repair by homologous recombination and has been shown to interfere with the prognosis of patients treated with chemoradiotherapy. There is increasing evidence that genetic polymorphisms in repair enzymes can influence DNA repair capacity and, consequently, affect chemotherapy efficacy. We conducted this review to show the possible influence of the RAD51 genetic variants in damage repair capacity and treatment response in non-small-cell lung carcinoma patients.
Collapse
Affiliation(s)
- Augusto Nogueira
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
- LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Joana Assis
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
- LPCC, Research Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Raquel Catarino
- Portuguese Institute of Oncology, Molecular Oncology Group – CI, Edifícios Laboratórios – Piso 4, Rua Dr. Ant. Bernardino Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
- CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
141
|
Currall BB, Chiang C, Talkowski ME, Morton CC. Mechanisms for Structural Variation in the Human Genome. CURRENT GENETIC MEDICINE REPORTS 2013; 1:81-90. [PMID: 23730541 DOI: 10.1007/s40142-013-0012-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been known for several decades that genetic variation involving changes to chromosomal structure (i.e., structural variants) can contribute to disease; however this relationship has been brought into acute focus in recent years largely based on innovative new genomics approaches and technology. Structural variants (SVs) arise from improperly repaired DNA double-strand breaks (DSB). DSBs are a frequent occurrence in all cells and two major pathways are involved in their repair: homologous recombination and non-homologous end joining. Errors during these repair mechanisms can result in SVs that involve losses, gains and rearrangements ranging from a few nucleotides to entire chromosomal arms. Factors such as rearrangements, hotspots and induced DSBs are implicated in the formation of SVs. While de novo SVs are often associated with disease, some SVs are conserved within human subpopulations and may have had a meaningful influence on primate evolution. As the ability to sequence the whole human genome rapidly evolves, the diversity of SVs is illuminated, including very complex rearrangements involving multiple DSBs in a process recently designated as "chromothripsis". Elucidating mechanisms involved in the etiology of SVs informs disease pathogenesis as well as the dynamic function associated with the biology and evolution of human genomes.
Collapse
Affiliation(s)
- Benjamin B Currall
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, New Research Building, Room 160D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
142
|
Lee J, Dunphy WG. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 2013; 24:1343-53. [PMID: 23468519 PMCID: PMC3639046 DOI: 10.1091/mbc.e13-01-0025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of Chk1 in response to stalled replication forks involves a pathway containing ATR, TopBP1, Rad17, and Claspin. We show that the Mre11-Rad50-Nbs1 (MRN) complex also has an important role in this pathway that is distinct from its role in response to double-stranded DNA breaks. These studies reveal a novel insight into the functions of the MRN complex. The activation of Chk1 in response to stalled replication forks in Xenopus egg extracts involves a complex pathway containing ATM and Rad3-related (ATR), topoisomerase IIβ-binding protein 1 (TopBP1), Rad17, the Rad9-Hus1-Rad1 (9-1-1) complex, and Claspin. We have observed that egg extracts lacking the Mre11-Rad50-Nbs1 (MRN) complex show greatly, although not completely, reduced activation of Chk1 in response to replication blockages. Depletion of both Rad17 and MRN leads to a further, essentially complete, reduction in the activation of Chk1. Thus, Rad17 and MRN act in at least a partially additive manner in promoting activation of Chk1. There was not an obvious change in the binding of RPA, ATR, Rad17, or the 9-1-1 complex to chromatin in aphidicolin (APH)-treated, MRN-depleted extracts. However, there was a substantial reduction in the binding of TopBP1. In structure–function studies of the MRN complex, we found that the Mre11 subunit is necessary for the APH-induced activation of Chk1. Moreover, a nuclease-deficient mutant of Mre11 cannot substitute for wild-type Mre11 in this process. These results indicate that the MRN complex, in particular the nuclease activity of Mre11, plays an important role in the activation of Chk1 in response to stalled replication forks. These studies reveal a previously unknown property of the MRN complex in genomic stability.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
143
|
Tobias F, Löb D, Lengert N, Durante M, Drossel B, Taucher-Scholz G, Jakob B. Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions. PLoS One 2013; 8:e57953. [PMID: 23469115 PMCID: PMC3582506 DOI: 10.1371/journal.pone.0057953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps.
Collapse
Affiliation(s)
- Frank Tobias
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Daniel Löb
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Nicor Lengert
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | | | - Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
144
|
Abstract
In 1988, the gene responsible for the autosomal recessive disease ataxia- telangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells, ataxia telangiectasia mutated (ATM) is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high-molecular-weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell-signaling pathways involved in cell-cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense-mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients-children and adults alike-which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. An exciting recent development is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.
Collapse
|
145
|
Non-homologous end-joining pathway associated with occurrence of myocardial infarction: gene set analysis of genome-wide association study data. PLoS One 2013; 8:e56262. [PMID: 23457540 PMCID: PMC3574159 DOI: 10.1371/journal.pone.0056262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
PURPOSE DNA repair deficiencies have been postulated to play a role in the development and progression of cardiovascular disease (CVD). The hypothesis is that DNA damage accumulating with age may induce cell death, which promotes formation of unstable plaques. Defects in DNA repair mechanisms may therefore increase the risk of CVD events. We examined whether the joints effect of common genetic variants in 5 DNA repair pathways may influence the risk of CVD events. METHODS The PLINK set-based test was used to examine the association to myocardial infarction (MI) of the DNA repair pathway in GWAS data of 866 subjects of the GENetic DEterminants of Restenosis (GENDER) study and 5,244 subjects of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study. We included the main DNA repair pathways (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining (NHEJ)) in the analysis. RESULTS The NHEJ pathway was associated with the occurrence of MI in both GENDER (P = 0.0083) and PROSPER (P = 0.014). This association was mainly driven by genetic variation in the MRE11A gene (PGENDER = 0.0001 and PPROSPER = 0.002). The homologous recombination pathway was associated with MI in GENDER only (P = 0.011), for the other pathways no associations were observed. CONCLUSION This is the first study analyzing the joint effect of common genetic variation in DNA repair pathways and the risk of CVD events, demonstrating an association between the NHEJ pathway and MI in 2 different cohorts.
Collapse
|
146
|
Mahaney BL, Hammel M, Meek K, Tainer JA, Lees-Miller SP. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair. Biochem Cell Biol 2013; 91:31-41. [PMID: 23442139 DOI: 10.1139/bcb-2012-0058] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions.
Collapse
Affiliation(s)
- Brandi L Mahaney
- Department of Biochemistry, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
147
|
Classen S, Hura GL, Holton JM, Rambo RP, Rodic I, McGuire PJ, Dyer K, Hammel M, Meigs G, Frankel KA, Tainer JA. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 2013; 46:1-13. [PMID: 23396808 PMCID: PMC3547225 DOI: 10.1107/s0021889812048698] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.
Collapse
Affiliation(s)
- Scott Classen
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Greg L. Hura
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
| | - Robert P. Rambo
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ivan Rodic
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick J. McGuire
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin Dyer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George Meigs
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth A. Frankel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
148
|
Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer 2013; 108:748-54. [PMID: 23361058 PMCID: PMC3590661 DOI: 10.1038/bjc.2013.21] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many cancers display increased expression of histone deacetylases (HDACs) and therefore transcriptionally inactive chromatin, resulting in the downregulation of genes including tumour suppressor and DNA repair genes. Histone deacetylase inhibitors (HDACi) are a heterogeneous group of epigenetic therapeutics, showing promising anticancer effects in both pre-clinical and clinical settings, in particular the effect of radiosensitisation when administered in combination with radiotherapy. Radiotherapy remains one of the most common forms of cancer treatment, leading to cell death through the induction of DNA double-strand breaks (DSBs). Cells have developed mechanisms to repair such DSB through two major pathways: non-homologous end-joining and homologous recombination. Here, we explore the current evidence for the use of HDACi in combination with irradiation, focusing on the effects of HDACi on DNA damage signalling and repair in vitro. In addition, we summarise the clinical evidence for using HDACi with radiotherapy, a growing area of interest with great potential clinical utility.
Collapse
|
149
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
150
|
Zhang T, Penicud K, Bruhn C, Loizou JI, Kanu N, Wang ZQ, Behrens A. Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep 2012; 2:1498-504. [PMID: 23219553 DOI: 10.1016/j.celrep.2012.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/14/2012] [Accepted: 11/02/2012] [Indexed: 01/04/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) protein kinase activation by DNA double-strand breaks (DSBs) requires the Mre11-Rad50-NBS1 (MRN) complex, whereas ATM interactor (ATMIN) protein is required for ATM signaling induced by changes in chromatin structure. We show here that NBS1 and ATMIN proteins compete for ATM binding and that this mechanism controls ATM function. DSB-induced ATM substrate phosphorylation was increased in atmin mutant cells. Conversely, NBS1 deficiency resulted in increased ATMIN-dependent ATM signaling. Thus, the absence of one cofactor increased flux through the alternative pathway. Notably, ATMIN deficiency rescued the cellular lethality of NBS1-deficient cells, and NBS1/ATMIN double deficiency resulted in complete abrogation of ATM signaling and profound radiosensitivity. Hence, ATMIN and NBS1 mediate all ATM signaling by DSBs, and increased ATMIN-dependent ATM signaling explains the different phenotypes of nbs1- and atm-mutant cells. Thus, the antagonism and redundancy of ATMIN and NBS1 constitute a crucial regulatory mechanism for ATM signaling and function.
Collapse
Affiliation(s)
- Tianyi Zhang
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | | | |
Collapse
|