101
|
Abstract
Linezolid is a bacteriostatic antibiotic of the Oxazolidinone class; it works by inhibiting the initiation of protein synthesis on bacterial ribosomes. Due to its excellent bioavailability after oral dosing, it has become an important tool in combating multi-drug-resistant bacteria including glycopeptide-resistant enterococci and methicillin-resistant Staphylococcus aureus Side effects are multiple and potentially serious. We report the case of an 87-year-old man who developed pancytopenia secondary to a 6-week course of linezolid. Withdrawal of the antibiotic was decided as the treatment and resolution of the pancytopenia was evident within 2 weeks. Clinicians should be aware of this side effect of linezolid therapy and that weekly full blood count monitoring is paramount.
Collapse
Affiliation(s)
- Ross Leader
- Aintree University Hospitals NHS Foundation Trust, Liverpool, UK.,University of Liverpool School of Life Sciences, Liverpool, UK
| | - James Hackett
- Aintree University Hospitals NHS Foundation Trust, Liverpool, UK.,University of Liverpool School of Life Sciences, Liverpool, UK
| | - Anne Allan
- Acute Medicine, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Paul Carter
- Trauma and Orthopaedics, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
102
|
Li X, Arias CA, Aitken SL, Galloway Peña J, Panesso D, Chang M, Diaz L, Rios R, Numan Y, Ghaoui S, DebRoy S, Bhatti MM, Simmons DE, Raad I, Hachem R, Folan SA, Sahasarabhojane P, Kalia A, Shelburne SA. Clonal Emergence of Invasive Multidrug-Resistant Staphylococcus epidermidis Deconvoluted via a Combination of Whole-Genome Sequencing and Microbiome Analyses. Clin Infect Dis 2018; 67:398-406. [PMID: 29546356 PMCID: PMC6051468 DOI: 10.1093/cid/ciy089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background Pathobionts, bacteria that are typically human commensals but can cause disease, contribute significantly to antimicrobial resistance. Staphylococcus epidermidis is a prototypical pathobiont as it is a ubiquitous human commensal but also a leading cause of healthcare-associated bacteremia. We sought to determine the etiology of a recent increase in invasive S. epidermidis isolates resistant to linezolid. Methods Whole-genome sequencing (WGS) was performed on 176 S. epidermidis bloodstream isolates collected at the MD Anderson Cancer Center in Houston, Texas, between 2013 and 2016. Molecular relationships were assessed via complementary phylogenomic approaches. Abundance of the linezolid resistance determinant cfr was determined in stool samples via reverse-transcription quantitative polymerase chain reaction. Results Thirty-nine of the 176 strains were linezolid resistant (22%). Thirty-one of the 39 linezolid-resistant S. epidermidis infections were caused by a particular clone resistant to multiple antimicrobials that spread among leukemia patients and carried cfr on a 49-kb plasmid (herein called pMB151a). The 6 kb of pMB151a surrounding the cfr gene was nearly 100% identical to a cfr-containing plasmid isolated from livestock-associated staphylococci in China. Analysis of serial stool samples from leukemia patients revealed progressive staphylococcal domination of the intestinal microflora and an increase in cfr abundance following linezolid use. Conclusions The combination of linezolid use plus transmission of a multidrug-resistant clone drove expansion of invasive, linezolid-resistant S. epidermidis. Our results lend support to the notion that a combination of antibiotic stewardship plus infection control measures may help to control the spread of a multidrug-resistant pathobiont.
Collapse
Affiliation(s)
- Xiqi Li
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Bogota, Colombia
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics, Bogota, Colombia
- Division of Infectious Diseases, University of Texas McGovern Medical School at Houston, Bogota, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Samuel L Aitken
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston
| | - Jessica Galloway Peña
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Diana Panesso
- Center for Antimicrobial Resistance and Microbial Genomics, Bogota, Colombia
| | - Michael Chang
- Center for Antimicrobial Resistance and Microbial Genomics, Bogota, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Yazan Numan
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Sammi Ghaoui
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Sruti DebRoy
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Micah M Bhatti
- Department of Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston
| | - Dawn E Simmons
- Department of Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston
| | - Isaam Raad
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Ray Hachem
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
| | - Stephanie A Folan
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston
| | | | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Bogota, Colombia
| | - Samuel A Shelburne
- Center for Antimicrobial Resistance and Microbial Genomics, Bogota, Colombia
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
103
|
Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0032-2018. [PMID: 30051804 PMCID: PMC11633606 DOI: 10.1128/microbiolspec.arba-0032-2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
Affiliation(s)
- Carmen Torres
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Carla Andrea Alonso
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Laura Ruiz-Ripa
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Ricardo León-Sampedro
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| |
Collapse
|
104
|
Khan A, Miller WR, Arias CA. Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Rev Anti Infect Ther 2018; 16:269-287. [PMID: 29617188 DOI: 10.1080/14787210.2018.1456919] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.
Collapse
Affiliation(s)
- Ayesha Khan
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA
| | - William R Miller
- b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School
| | - Cesar A Arias
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School.,d Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics , Universidad El Bosque , Bogota , Colombia.,e School of Public Health , UTHealth Center for Infectious Diseases , Houston , TX , USA
| |
Collapse
|
105
|
Nosocomial ventriculitis caused by a meticillin- and linezolid-resistant clone of Staphylococcus epidermidis in neurosurgical patients. J Hosp Infect 2018; 100:406-410. [PMID: 29458065 DOI: 10.1016/j.jhin.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Postneurosurgical ventriculitis is mainly caused by coagulase-negative staphylococci. The rate of linezolid-resistant Staphylococcus epidermidis (LRSE) is increasing worldwide. AIMS To report clinical, epidemiological and microbiological data from a series of ventriculitis cases caused by LRSE in a Spanish hospital between 2013 and 2016. METHODS Cases of LRSE ventriculitis were reviewed retrospectively in a Spanish hospital over a four-year period. Clinical/epidemiological data of the infected patients were reviewed, the isolates involved were typed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing, and the molecular bases of linezolid resistance were determined. FINDINGS Five cases of LRSE ventriculitis were detected. The patients suffered from cerebral haemorrhage or head trauma that required the placement of an external ventricular drain; spent a relatively long time in the intensive care unit (ICU) (10-26 days); and three out of the five patients had previously been treated with linezolid. All LRSE had the same PFGE pattern, belonged to ST2, and shared an identical mechanism of linezolid resistance. Specifically, all had the G2576T mutation in the V domain of each of the six copies of the 23S rRNA gene, together with the Q136L and M156T mutations and the 71GGR72 insertion in the L3 and L4 ribosomal proteins, respectively. CONCLUSION The high ratio of linezolid consumption in the ICU (7.72-8.10 defined daily dose/100 patient-days) could have selected this resistant clone, which has probably become endemic in the ICU where it could have colonized admitted patients. Infection control and antimicrobial stewardship interventions are essential to prevent the dissemination of this difficult-to-treat pathogen, and to preserve the therapeutic efficacy of linezolid.
Collapse
|
106
|
Lee SM, Huh HJ, Song DJ, Shim HJ, Park KS, Kang CI, Ki CS, Lee NY. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium. J Med Microbiol 2017; 66:1730-1735. [PMID: 29111969 DOI: 10.1099/jmm.0.000637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. METHODOLOGY Enterococcal isolates exhibiting linezolid MICs ≥4 mg l-1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. CONCLUSION A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.
Collapse
Affiliation(s)
- Sae-Mi Lee
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jae Huh
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Joon Song
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyang Jin Shim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Cheol-In Kang
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Seok Ki
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nam Yong Lee
- Departments of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
107
|
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist 2017; 13:11-19. [PMID: 29101082 DOI: 10.1016/j.jgar.2017.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
Enterococcus is a significant pathogen in numerous infections, particularly in nosocomial infections, and is thus a great challenge to clinicians. Linezolid (LNZ), an oxazolidinone antibiotic, is an important therapeutic option for infections caused by Gram-positive bacterial pathogens, especially vancomycin-resistant enterococci. A systematic review was performed of the available literature on LNZ-resistant enterococci (LRE) to characterise these infections with respect to epidemiological, microbiological and clinical features. The results validated the potency of LNZ against enterococcal infections, with a sustained susceptibility rate of 99.8% in ZAAPS and 99.2% in LEADER surveillance programmes. Patients with LRE had been predominantly exposed to LNZ prior to isolation of LRE, with a mean treatment duration of 29.8±48.8days for Enterococcus faecalis and 23.1±21.4days for Enterococcus faecium. Paradoxically, LRE could also develop in patients without prior LNZ exposure. LNZ resistance was attributed to 23S rRNA (G2576T) mutations (51.2% of E. faecalis and 80.5% of E. faecium) as well as presence of the cfr gene (4.7% and 4.8%, respectively), which could transfer horizontally among the strains. In addition to the cfr gene, 32 cases of optrA-positive LRE were identified. Further study is required to determine the prevalence of novel resistance genes. The emergence of LRE thus hampers the treatment of such infections, which warrants worldwide surveillance.
Collapse
Affiliation(s)
- Ruru Bi
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Qin
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Wenting Fan
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China; Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
108
|
Resistance mechanisms and clinical characteristics of linezolid-resistant Enterococcus faecium isolates: A single-centre study in South Korea. J Glob Antimicrob Resist 2017; 12:44-47. [PMID: 28941790 DOI: 10.1016/j.jgar.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES This study aimed to determine the prevalence of linezolid-resistant (LR) vancomycin-resistant enterococci and to investigate the mechanisms of linezolid resistance with clinical and microbiological characterisation. METHODS All vancomycin-resistant Enterococcus faecium (VREF) isolated from blood and rectal swab cultures during 2012-2015 were tested for linezolid resistance. LR-VREF isolates were tested for antimicrobial susceptibility, glycopeptide resistance genes and virulence genes. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed. Isolates were tested for known mechanisms of linezolid resistance. RESULTS Among 389 VREF isolates, 7 (1.8%) were found to be resistant to linezolid. All LR-VREF isolates carried the vanA gene. Five isolates had both hyl and esp genes. The isolates were susceptible to tigecycline, daptomycin and quinupristin/dalfopristin, except for one isolate with daptomycin resistance. Two LR-VREF isolates recovered from patients with previous linezolid exposure contained the G2576T mutation in 23S rRNA and exhibited high-level resistance to linezolid (MIC>64mg/L). The other five isolates recovered from linezolid-naïve patients revealed no known linezolid resistance mechanism and exhibited low-level resistance to linezolid (MICs=8-16mg/L). Plasmid-mediated genes encoding cfr or optrA were not detected. LR-VREF isolates were represented by six different sequence types, belonging to hospital lineages, and were assigned to seven PFGE types. CONCLUSIONS The prevalence of LR-VREF in this centre was low. Both linezolid exposure and horizontal transmission appear to be responsible for acquisition of LR-VREF in hospitalised patients. Prudent use of linezolid and improved infection control strategies are needed to limit the spread of LR-VREF.
Collapse
|
109
|
Morroni G, Brenciani A, Simoni S, Vignaroli C, Mingoia M, Giovanetti E. Commentary: Nationwide Surveillance of Novel Oxazolidinone Resistance Gene optrA in Enterococcus Isolates in China from 2004 to 2014. Front Microbiol 2017; 8:1631. [PMID: 28883817 PMCID: PMC5573801 DOI: 10.3389/fmicb.2017.01631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Gianluca Morroni
- Departments of Biomedical Sciences and Public Health, Polytechnic University of MarcheAncona, Italy
| | - Andrea Brenciani
- Departments of Biomedical Sciences and Public Health, Polytechnic University of MarcheAncona, Italy
| | - Serena Simoni
- Departments of Biomedical Sciences and Public Health, Polytechnic University of MarcheAncona, Italy
| | - Carla Vignaroli
- Departments of Life and Environmental Sciences, Polytechnic University of MarcheAncona, Italy
| | - Marina Mingoia
- Departments of Biomedical Sciences and Public Health, Polytechnic University of MarcheAncona, Italy
| | - Eleonora Giovanetti
- Departments of Life and Environmental Sciences, Polytechnic University of MarcheAncona, Italy
| |
Collapse
|
110
|
Baccani I, Antonelli A, Galano A, Bartalesi F, Bartoloni A, Rossolini GM. Linezolid-Resistant Enterococcus faecalis Infection Following Prolonged Low-Dosage Linezolid Treatment for Multidrug-Resistant Tuberculosis. Clin Infect Dis 2017; 65:2159-2160. [DOI: 10.1093/cid/cix729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
111
|
Kohinke RM, Pakyz AL. Treatment of Vancomycin-Resistant Enterococci: Focus on Daptomycin. Curr Infect Dis Rep 2017; 19:33. [DOI: 10.1007/s11908-017-0589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
112
|
Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. ZAAPS Program results for 2015: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 32 countries. J Antimicrob Chemother 2017; 72:3093-3099. [DOI: 10.1093/jac/dkx251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
|
113
|
Houri H, Kazemian H, Sedigh Ebrahim-Saraie H, Taji A, Tayebi Z, Heidari H. Linezolid activity against clinical Gram-positive cocci with advanced antimicrobial drug resistance in Iran. J Glob Antimicrob Resist 2017; 10:200-203. [PMID: 28735054 DOI: 10.1016/j.jgar.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES The aim of the study was to investigate the linezolid activity against clinical Gram-positive cocci with advanced antimicrobial drug resistance. METHODS A collection of methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant enterococci (VRE), penicillin non-susceptible Streptococcus pneumoniae (PNSP), and group B streptococci (GBS) were isolated from various clinical samples. Antimicrobial susceptibility tests were done using standard methods Subsequently, we investigated linezolid antibacterial activities, the first approved oxazolidinone against isolates by the standard broth microdilution method. RESULTS According to our results, MRSA and PNSP isolates were multidrug resistant, and almost half of the VRE isolates were high level gentamicin resistant (HLGR). Furthermore, resistance to linezolid was not seen among the isolates. The MIC90 values for MRSA, VRE, PNSP and GBS isolates were 4μg/ml, 2μg/ml, 1μg/ml, and 0.5μg/ml, respectively. Only 6.25% of vancomycin resistant enterococci showed intermediate susceptibility to this antibiotic. CONCLUSIONS These findings indicate that linezolid has an excellent activity against clinical drug resistant Gram-positive isolates in Iran. Constant monitoring and surveillance of linezolid MIC distribution allows the researchers to assess and detect gradual upward MIC drifts.
Collapse
Affiliation(s)
- Hamidreza Houri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Sedigh Ebrahim-Saraie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asieh Taji
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tayebi
- Microbiology Department, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Heidari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
114
|
Abstract
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have not only emerged in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic "attack" is the prime example of bacterial adaptation and the pinnacle of evolution. "Survival of the fittest" is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material, or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and to devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice, providing specific examples in relevant bacterial pathogens.
Collapse
|
115
|
Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. Five-Year Summary of In Vitro Activity and Resistance Mechanisms of Linezolid against Clinically Important Gram-Positive Cocci in the United States from the LEADER Surveillance Program (2011 to 2015). Antimicrob Agents Chemother 2017; 61:e00609-17. [PMID: 28483950 PMCID: PMC5487612 DOI: 10.1128/aac.00609-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
Abstract
This report describes linezolid susceptibility testing results for 6,741 Gram-positive pathogens from 60 U.S. sites collected during 2015 for the LEADER Program. In addition, the report summarizes linezolid in vitro activity, resistance mechanisms, and molecular typing obtained for 2011 to 2015. During 2015, linezolid showed potent activity in testing against Staphylococcus aureus, inhibiting >99.9% of 3,031 isolates at ≤2 µg/ml. Similarly, linezolid showed coverage against 99.2% of coagulase-negative staphylococci, 99.7% of enterococci, and 100.0% of Streptococcus pneumoniae, virdans group, and beta-hemolytic streptococcus isolates tested. The overall linezolid resistance rate remained a modest <1% from 2011 to 2015. Staphylococci, especially Staphylococcus epidermidis, showed a range of linezolid resistance mechanisms. Increased annual trends for the presence of cfr among Staphylococcus aureus isolates were not observed, but 64.3% (9/14) of the isolates with decreased susceptibility (MIC, ≥4 µg/ml) to linezolid carried this transferrable gene (2011 to 2015). The cfr gene was detected in 21.9% (7/32) of linezolid-resistant staphylococci other than S. aureus from 2011 to 2015. The optrA gene was noted in half (2/4) of the population of linezolid-nonsusceptible Enterococcus faecalis isolates from 2011 to 2015, while linezolid-nonsusceptible Enterococcus faecium isolates showed alterations predominantly (16/16) in the 23S rRNA gene (G2576T). This report confirms a long record of linezolid activity against Gram-positive isolates in the United States since regulatory approval in 2000 and reports the oxazolidinones evolving resistance mechanisms.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, North Liberty, Iowa, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
116
|
Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics (Basel) 2017; 6:antibiotics6020012. [PMID: 28587316 PMCID: PMC5485445 DOI: 10.3390/antibiotics6020012] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world.
Collapse
Affiliation(s)
- Maria Angeles Argudín
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Alaeddine Meghraoui
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Magali Dodémont
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Amelie Heinrichs
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Olivier Denis
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
- Ecole de Santé Publique, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium.
| | - Claire Nonhoff
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Sandrine Roisin
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
117
|
Rouard C, Aslangul E, Rivière A, Deback C, Butel MJ, Doucet-Populaire F, Bourgeois-Nicolaos N. Mutation in the L3 Ribosomal Protein Could Be Associated with Risk of Selection of High-Level Linezolid-ResistantStaphylococcus epidermidisStrains. Microb Drug Resist 2017; 23:462-467. [DOI: 10.1089/mdr.2016.0137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Caroline Rouard
- Service de Bactériologie-Hygiène, APHP, Hôpital Antoine Béclère, Clamart Cedex, France
- Unité Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris Sud, Chatenay-Malabry, France
| | - Elisabeth Aslangul
- Service de Médecine Interne, APHP, Hôpital Louis Mourier, Colombes, France
- Université Paris Diderot, Paris, France
| | - Alexandre Rivière
- Service de Bactériologie-Hygiène, APHP, Hôpital Antoine Béclère, Clamart Cedex, France
| | - Claire Deback
- Service de Virologie-Hygiène, APHP, Hôpital Paul Brousse, Villejuif, France
- INSERM UMR-S996, Université Paris Sud, Clamart, France
| | - Marie-José Butel
- EA4065, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Florence Doucet-Populaire
- Service de Bactériologie-Hygiène, APHP, Hôpital Antoine Béclère, Clamart Cedex, France
- Unité Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris Sud, Chatenay-Malabry, France
| | - Nadège Bourgeois-Nicolaos
- Service de Bactériologie-Hygiène, APHP, Hôpital Antoine Béclère, Clamart Cedex, France
- Unité Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris Sud, Chatenay-Malabry, France
| |
Collapse
|
118
|
Charles PE, Dargent A, Andreu P. Nouvelles molécules anti-infectieuses. Quelle place en médecine intensive réanimation pour le tédizolide, la ceftaroline et le ceftobiprole ? MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
120
|
Paridaens H, Coussement J, Argudín MA, Delaere B, Huang TD, Glupczynski Y, Denis O. Clinical case of cfr-positive MRSA CC398 in Belgium. Eur J Clin Microbiol Infect Dis 2017; 36:1527-1529. [DOI: 10.1007/s10096-017-2953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
|
121
|
Tamang MD, Moon DC, Kim SR, Kang HY, Lee K, Nam HM, Jang GC, Lee HS, Jung SC, Lim SK. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Vet Microbiol 2017; 201:252-256. [DOI: 10.1016/j.vetmic.2017.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
122
|
Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis 2017; 36:1279-1286. [PMID: 28197728 PMCID: PMC5495842 DOI: 10.1007/s10096-017-2934-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Abstract
The significant increase of the linezolid-resistant enterococci (LRE) has been observed in Polish hospitals since 2012 and our study aimed at elucidating the possible reasons for this phenomenon. Polish LRE isolates were analysed by multilocus-sequence typing (MLST) and multiple locus variable-number tandem repeat (VNTR) analysis (MLVA), polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) to establish clonal relatedness and mechanism of linezolid resistance, respectively. Fifty analysed LRE (2008–2015) included mostly Enterococcus faecium (82%) and Enterococcus faecalis (16%). Enterococcus faecium belonged to the hospital-adapted lineages 17/18 and 78, while E. faecalis isolates represented ST6, a hospital-associated type, and ST116, found in both humans and food-production animals. The G2576T 23S rRNA mutation was the most frequent (94%) mechanism of linezolid/tedizolid resistance of LRE. None of the isolates carried the plasmid-associated gene of Cfr methyltransferase, whereas optrA, encoding the ABC-type drug transporter, was identified in two E. faecalis isolates. In these isolates, optrA was located on a plasmid, transferable to both E. faecium and E. faecalis, whose partial (36.3 kb) sequence was 100% identical to the pE394 plasmid, identified previously in China in both clinical and farm animal isolates. The optrA–E. faecium transconjugant displayed a significant growth deficiency, in contrast to the optrA–E. faecalis. Our study indicates the role of mutation acquisition by hospital-adapted clones of enterococci as a major driver of increasing resistance to linezolid and tedizolid. Transferability and apparent lack of a biological cost of resistance suggest that E. faecalis may be a natural reservoir of optrA, an emerging mechanism of oxazolidinone resistance.
Collapse
Affiliation(s)
- I Gawryszewska
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - E Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
123
|
|
124
|
Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother 2016; 72:354-364. [PMID: 27999068 DOI: 10.1093/jac/dkw450] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Linezolid, an oxazolidinone antimicrobial agent that acts by inhibiting protein synthesis in a unique fashion, is used in the treatment of community-acquired pneumonia, skin and soft-tissue infections and other infections caused by Gram-positive bacteria including VRE and methicillin-resistant staphylococci. Currently, linezolid resistance among these pathogens remains low, commonly <1.0%, although the prevalence of antibiotic resistance is increasing in many countries. Therefore, the development of resistance by clinical isolates should prompt increased attention of clinical laboratories to routinely perform linezolid susceptibility testing for this important agent and should be taken into account when considering its therapeutic use. Considering the importance of linezolid in the treatment of infections caused by Gram-positive bacteria, this review was undertaken to optimize the clinical use of this antibiotic.
Collapse
Affiliation(s)
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
125
|
Nationwide Surveillance of Novel Oxazolidinone Resistance Gene optrA in Enterococcus Isolates in China from 2004 to 2014. Antimicrob Agents Chemother 2016; 60:7490-7493. [PMID: 27645239 DOI: 10.1128/aac.01256-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/02/2016] [Indexed: 01/10/2023] Open
Abstract
A total of 2,201 nonduplicate enterococcal isolates collected from 29 hospitals in 23 cities in China between 2004 and 2014 were screened for the oxazolidinone resistance gene optrA; 45 isolates (2.0%) were optrA positive with 11 OptrA variants identified. The positive rate of optrA increased from 0.4% to 3.9% during the 10-year surveillance period. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence type (MLST) analysis revealed that 37 optrA-positive Enterococcus faecalis isolates clustered into 25 PFGE patterns and 21 sequence types, while 6 Enterococcus faecium isolates represented 6 PFGE patterns and 6 sequence types. The present study underscores the importance of routine and persistent monitoring of oxazolidinone resistance and optrA gene.
Collapse
|
126
|
Presence of the optrA Gene in Methicillin-Resistant Staphylococcus sciuri of Porcine Origin. Antimicrob Agents Chemother 2016; 60:7200-7205. [PMID: 27671067 DOI: 10.1128/aac.01591-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
A total of 57 methicillin-resistant Staphylococcus aureus (MRSA) isolates and 475 methicillin-resistant coagulase-negative staphylococci (MRCoNS) collected from pigs in the Guangdong province of China in 2014 were investigated for the presence of the novel oxazolidinone-phenicol resistance gene optrA The optrA gene was detected in 6.9% (n = 33) of the MRCoNS, all of which were Staphylococcus sciuri isolates, but in none of the MRSA isolates. Five optrA-carrying methicillin-resistant (MR) S. sciuri isolates also harbored the multiresistance gene cfr Pulsed-field gel electrophoresis (PFGE) and dru typing of the 33 optrA-carrying MR S. sciuri isolates revealed 25 patterns and 5 sequence types, respectively. S1 nuclease PFGE and Southern blotting confirmed that optrA was located in the chromosomal DNAs of 29 isolates, including 1 cfr-positive isolate. The remaining four isolates harbored a ∼35-kb pWo28-3-like plasmid on which optrA and cfr were located together with other resistance genes, as confirmed by sequence analysis. Six different types of genetic environments (types I to VI) of the chromosome-borne optrA genes were identified; these types had the optrA gene and its transcriptional regulator araC in common. Tn558 was found to be associated with araC-optrA in types II to VI. The optrA gene in types II and III was found in close proximity to the ccr gene complex of the respective staphylococcal cassette chromosome mec element (SCCmec). Since oxazolidinones are last-resort antimicrobial agents for the control of serious infections caused by methicillin-resistant staphylococci in humans, the location of the optrA gene close to the ccr complex is an alarming observation.
Collapse
|
127
|
Martínez-Meléndez A, Morfín-Otero R, Villarreal-Treviño L, Camacho-Ortíz A, González-González G, Llaca-Díaz J, Rodríguez-Noriega E, Garza-González E. Molecular epidemiology of coagulase-negative bloodstream isolates: detection of Staphylococcus epidermidis ST2, ST7 and linezolid-resistant ST23. Braz J Infect Dis 2016; 20:419-28. [PMID: 27393769 PMCID: PMC9425499 DOI: 10.1016/j.bjid.2016.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/01/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022] Open
|
128
|
Activities of Tedizolid and Linezolid Determined by the Reference Broth Microdilution Method against 3,032 Gram-Positive Bacterial Isolates Collected in Asia-Pacific, Eastern Europe, and Latin American Countries in 2014. Antimicrob Agents Chemother 2016; 60:5393-9. [PMID: 27353270 DOI: 10.1128/aac.00881-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023] Open
Abstract
Tedizolid and linezolid in vitro activities against 3,032 Gram-positive pathogens collected in Asia-Pacific, Eastern European, and Latin American medical centers during 2014 were assessed. The isolates were tested for susceptibility by the current reference broth microdilution methods. Due to concern over the effect of MIC endpoint criteria on the results of testing the oxazolidinones tedizolid and linezolid, MIC endpoint values were read by two methods: (i) reading the MIC at the first well where the trailing began without regard for pinpoint trailing, according to CLSI M07-A10 and M100-S26 document instructions for reading linezolid (i.e., 80% inhibition of growth; these reads were designated tedizolid 80 and linezolid 80), and (ii) at 100% inhibition of growth (designated tedizolid 100 and linezolid 100). All Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus anginosus group, and Enterococcus faecalis isolates were inhibited at tedizolid 80 and 100 MIC values of 0.25 and 0.5, 0.25 and 0.25, 0.25 and 0.5, 0.12 and 0.25, and 0.5 and 1 μg/ml, respectively. Generally, MIC50 and MIC90 results for tedizolid 80 and linezolid 80 were one doubling dilution lower than those read at 100% inhibition. Tedizolid was 4- to 8-fold more potent than linezolid against all the isolates tested regardless of the MIC endpoint criterion used. Despite the differences in potency, >99.9% of isolates tested in this survey were susceptible to both linezolid and tedizolid using CLSI and EUCAST interpretive criteria. In conclusion, tedizolid demonstrated greater in vitro potency than linezolid against Gram-positive pathogens isolated from patients in medical centers across the Asia-Pacific region, Eastern Europe, and Latin America.
Collapse
|
129
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
130
|
Ma TKW, Leung CB, Chow KM, Kwan BCH, Li PKT, Szeto CC. Newer antibiotics for the treatment of peritoneal dialysis-related peritonitis. Clin Kidney J 2016; 9:616-23. [PMID: 27478608 PMCID: PMC4957733 DOI: 10.1093/ckj/sfw059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/06/2016] [Indexed: 01/16/2023] Open
Abstract
Peritonitis is a debilitating infectious complication of peritoneal dialysis (PD). Drug-resistant bacterial peritonitis typically has a lower response rate to antibiotics. In the past 15 years, newer antibiotics with activities against drug-resistant Gram-positive bacteria have been developed. In most circumstances, peritonitis due to methicillin-resistant staphylococci responds to vancomycin. If vancomycin cannot be used due to allergy and/or non-susceptibility, there is increasing evidence that linezolid and daptomycin are the drugs of choice. It is reasonable to start linezolid orally or intravenously, but subsequent dose reduction may be necessary in case of myelosuppression. Daptomycin can be given intravenously or intraperitoneally and has excellent anti-biofilm activity. Other treatment options for drug-resistant Gram-positive bacterial peritonitis include teicoplanin, tigecycline and quinupristin/dalfopristin. Teicoplanin is not available in some countries (e.g. the USA). Tigecycline can only be given intravenously. Quinupristin/dalfopristin is ineffective against Enterococcus faecalis and there is only low-quality evidence to support its efficacy in the treatment of peritonitis. Effective newer antibiotics against drug-resistant Gram-negative bacteria are lacking. Polymyxins can be considered, but evidence on its efficacy is limited. In this review, we will discuss the potential use of newer antibiotics in the treatment of drug-resistant bacterial peritonitis in PD patients.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Chi Bon Leung
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Kai Ming Chow
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Bonnie Ching-Ha Kwan
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Philip Kam-Tao Li
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Cheuk Chun Szeto
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital , The Chinese University of Hong Kong , Shatin , Hong Kong
| |
Collapse
|
131
|
Munita JM, Bayer AS, Arias CA. Evolving resistance among Gram-positive pathogens. Clin Infect Dis 2016; 61 Suppl 2:S48-57. [PMID: 26316558 DOI: 10.1093/cid/civ523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Jose M Munita
- Division of Infectious Diseases, Department of Internal Medicine International Center for Microbial Genomics Clinica Alemana de Santiago, Universidad del Desarrollo, Chile
| | - Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston International Center for Microbial Genomics Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
132
|
Fang H, Fröding I, Gian B, Hæggman S, Tollström UB, Ullberg M, Nord CE. Methicillin-resistant Staphylococcus aureus in Stockholm, Sweden: Molecular epidemiology and antimicrobial susceptibilities to ceftaroline, linezolid, mupirocin and vancomycin in 2014. J Glob Antimicrob Resist 2016; 5:31-5. [PMID: 27436463 DOI: 10.1016/j.jgar.2016.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a public health problem worldwide. The aim of the present study was to investigate the molecular epidemiology and antimicrobial susceptibilities of MRSA strains in Stockholm, Sweden in 2014. Pulsed-field gel electrophoresis (PFGE) was used to characterise the strains. Antimicrobial susceptibilities to ceftaroline, linezolid and mupirocin were determined by the disc diffusion method. Etest was used to determine vancomycin susceptibility and to confirm resistance to ceftaroline, mupirocin and linezolid in non-susceptible strains. High-level ceftaroline-resistant strains [minimum inhibitory concentration (MIC)≥4mg/L] were confirmed by the broth microdilution method. spa typing was carried out on strains that were non-susceptible to the antibiotics tested. In total, 743 consecutive non-duplicate MRSA strains recovered in Stockholm in 2014 were investigated. PFGE analysis of the isolates revealed a population with 271 different PFGE patterns and three non-typeable strains. No PFGE type accounted for >10% of all strains. The most common PFGE types were MRSA-00-02 (6.9%) and MRSA-05-02 (4.6%). MRSA-05-02 is a USA300-like strain. The antimicrobial susceptibilities of the strains were as follows: ceftaroline, 98.5%; linezolid, 100%; mupirocin, 99.3%; and vancomycin, 100%. Two strains with spa t001 displayed ceftaroline MICs of 4mg/L. Three strains with spa types t002, t064 and t437 showed high-level mupirocin resistance (MIC>1024mg/L). In conclusion, there was a diverse genetic population among the MRSA isolates and no predominant genotype was found. This study identified a few strains with high-level ceftaroline resistance, high-level mupirocin resistance and high-risk genotypes.
Collapse
Affiliation(s)
- Hong Fang
- Department of Clinical Microbiology, Karolinska University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Inga Fröding
- Department of Clinical Microbiology, Karolinska University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Boisan Gian
- Department of Clinical Microbiology, Karolinska University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Sara Hæggman
- Department of Microbiology, Public Health Agency of Sweden, SE-171 82 Solna, Sweden
| | | | - Måns Ullberg
- Department of Clinical Microbiology, Karolinska University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Carl Erik Nord
- Department of Clinical Microbiology, Karolinska University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
133
|
Freitas AR, Novais C, Read A, Alves V, Peixe L. Co-infection with three linezolid-resistant Enterococcus faecium ST117 strain variants: what are we missing in diagnosis? Int J Antimicrob Agents 2016; 47:500-1. [DOI: 10.1016/j.ijantimicag.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/25/2022]
|
134
|
Oritavancin Activity Tested against Molecularly Characterized Staphylococci and Enterococci Displaying Elevated Linezolid MIC Results. Antimicrob Agents Chemother 2016; 60:3817-20. [DOI: 10.1128/aac.00281-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/10/2016] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Oritavancin (MIC
50/90
, 0.03/0.06 to 0.12 μg/ml) had potent activity against linezolid-resistant staphylococci, as well as
Enterococcus faecalis
and
Enterococcus faecium
(oritavancin MIC
50/90
, 0.015/0.12 μg/ml against both species). All linezolid-resistant isolates were inhibited by oritavancin at ≤0.12 μg/ml. These results confirmed the absence of cross-resistance between linezolid and oritavancin in staphylococci and enterococci.
Collapse
|
135
|
Cuny C, Arnold P, Hermes J, Eckmanns T, Mehraj J, Schoenfelder S, Ziebuhr W, Zhao Q, Wang Y, Feßler AT, Krause G, Schwarz S, Witte W. Occurrence of cfr-mediated multiresistance in staphylococci from veal calves and pigs, from humans at the corresponding farms, and from veterinarians and their family members. Vet Microbiol 2016; 200:88-94. [PMID: 27102205 DOI: 10.1016/j.vetmic.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/26/2016] [Accepted: 04/03/2016] [Indexed: 11/27/2022]
Abstract
This study reports on the emergence of linezolid-resistant coagulase-negative staphylococci (CoNS) containing the multiresistance gene cfr in veal calves and pigs, as well as in humans exposed to these animals. CoNS (Staphylococcus auricularis, Staphylococcus cohnii, Staphylococcus lentus, Staphylococcus kloosii, Staphylococcus sciuri, Staphylococcus simulans), but not Staphylococcus aureus, carrying the gene cfr were detected in samples of 12 out of 52 calves at three farms which had a history of florfenicol use. Nasal swabs from 10 humans living on these farms were negative for cfr-carrying staphylococci. Nasal swabs taken from 142 calves at 16 farms in the same area that did not use florfenicol were also negative for cfr-carrying staphylococci. 14 cfr-carrying CoNS (S. kloosii, S. saprophyticus, S. simulans) were detected in three of eight conventional pig farms investigated. One of 12 humans living on these farms harboured a cfr-carrying S. cohnii. Among the nasal swabs taken from 169 veterinarians from all over Germany, four (2.3%) were positive for cfr-carrying CoNS (three S. epidermidis, one S. saprophyticus), and three (1.1%) of 263 contact persons of this group also harboured cfr-carrying CoNS (one S. epidermidis, two S. saprophyticus). In vitro conjugation of cfr by filter mating to S. aureus 8325-4 was possible for 10 of 34CoNS and the cfr gene was associated with plasmids of 38-40kb. Moreover, a total of 363 humans of a German municipal community were investigated for nasal carriage of cfr-carrying staphylococci to get an idea whether such isolates are disseminated as nasal colonizers in non-hospitalized humans in the community, were all negative.
Collapse
Affiliation(s)
| | | | - Julia Hermes
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Germany
| | - Tim Eckmanns
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Germany
| | - Jaishri Mehraj
- Helmholtz Centre for Infection Research, Epidemiology Department, Germany; PhD Program Epidemiology, Hannover Biomedical Research School and Helmholtz Center for Infection Research, Germany
| | - Sonja Schoenfelder
- Institute for Molecular Infection Biology, University of Wuerzburg, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Wuerzburg, Germany
| | - Qin Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Gérard Krause
- Helmholtz Centre for Infection Research, Epidemiology Department, Germany; Hannover Medical School, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | | |
Collapse
|
136
|
Abstract
INTRODUCTION Antimicrobial resistance in Gram-positive bacteria is a major health care issue. This review summarizes patent publications from 2012 to 2015 that divulged novel oxazolidinones as antibacterial agents. AREAS COVERED A total of 25 patents obtained from Espacenet, WIPO Patentscope and FreePatentsOnline, and AcclaimIP search engines were reviewed. The patents were scrutinized based on the novelty of the compounds, their antibacterial activity (MIC, µg/mL), and the process of preparation. The oxazolidinones with promising antibacterial activity were classified according to the following structural diversities, as biaryl heterocyclic, fused heteroaryl rings containing oxazolidinones, and others. The biaryl heterocyclic, fused heteroaryl, benzoxazine, and the 1H-pyrazol-1-yl containing oxazolidinone derivatives demonstrated potent antibacterial activities superior to linezolid against Gram-positive bacteria. Some derivatives were effective against standard strains of Gram-negative bacteria, namely Moraxella catarrhalis ATCC A894, and Escherichia coli ATCC 25922. In addition, a patent disclosed a structural isomer of linezolid with marginal activity against the aerobic Gram-negative bacteria MDR Stenotrophomonas (Xanthomonas) maltophilia, while linezolid and vancomycin did not inhibit growth. Finally, some derivatives showed activity against respiratory infectious diseases' causative agents, such as B. anthracis, B. mallei, Y. pestis, and M. pneumoniae. EXPERT OPINION Overall, there is limited in vivo data to support the potential clinical advancement of the currently reported novel derivatives.
Collapse
Affiliation(s)
- Oludotun A Phillips
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Safat , Kuwait
| | - Leyla H Sharaf
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Safat , Kuwait
| |
Collapse
|
137
|
Cattaneo D, Alffenaar JW, Neely M. Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opin Drug Metab Toxicol 2016; 12:533-44. [DOI: 10.1517/17425255.2016.1166204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angels, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angels, CA, USA
| |
Collapse
|
138
|
Mendes RE, Hogan PA, Jones RN, Sader HS, Flamm RK. Surveillance for linezolid resistance via the Zyvox®Annual Appraisal of Potency and Spectrum (ZAAPS) programme (2014): evolving resistance mechanisms with stable susceptibility rates. J Antimicrob Chemother 2016; 71:1860-5. [DOI: 10.1093/jac/dkw052] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
|
139
|
Investigation of Linezolid Resistance in Staphylococci and Enterococci. J Clin Microbiol 2016; 54:1289-94. [PMID: 26935728 DOI: 10.1128/jcm.01929-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/27/2016] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate an apparent increase in linezolid-nonsusceptible staphylococci and enterococci following a laboratory change in antimicrobial susceptibility testing from disk diffusion to an automated susceptibility testing system. Isolates with nonsusceptible results (n = 27) from Vitek2 were subjected to a battery of confirmatory testing which included disk diffusion, Microscan broth microdilution, Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution, gradient diffusion (Etest), 23S rRNA gene sequencing, and cfr PCR. Our results show that there is poor correlation between methods and that only 70 to 75% of isolates were confirmed as linezolid resistant with alternative phenotypic testing methods (disk diffusion, Microscan broth microdilution, CLSI broth microdilution, and Etest). 23S rRNA gene sequencing identified mutations previously associated with linezolid resistance in 16 (59.3%) isolates, and the cfr gene was detected in 3 (11.1%) isolates. Mutations located at positions 2576 and 2534 of the 23S rRNA gene were most common. In addition, two previously undescribed variants (at positions 2083 and 2345 of the 23S rRNA gene) were also identified and may contribute to linezolid resistance.
Collapse
|
140
|
Silva-Del Toro SL, Greenwood-Quaintance KE, Patel R. In vitro activity of tedizolid against linezolid-resistant staphylococci and enterococci. Diagn Microbiol Infect Dis 2016; 85:102-4. [PMID: 26971179 DOI: 10.1016/j.diagmicrobio.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
The tedizolid MIC of 27 clinical isolates of linezolid-resistant staphylococci and enterococci was determined. Tedizolid MICs were ≥1μg/mL and were 4- to 32-fold lower than those of linezolid. Linezolid resistance mechanisms included G2576T 23S rRNA gene and rplC and rplD mutations.
Collapse
Affiliation(s)
- Stephanie L Silva-Del Toro
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
141
|
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016; 387:176-87. [PMID: 26603922 DOI: 10.1016/s0140-6736(15)00473-0] [Citation(s) in RCA: 1470] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials.
Collapse
Affiliation(s)
- Alison H Holmes
- National Institute of Health Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, and Department of Infectious Diseases, Imperial College London, London, UK.
| | - Luke S P Moore
- National Institute of Health Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, and Department of Infectious Diseases, Imperial College London, London, UK
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Clinical Microbiology and Infection Control, University Hospital of North Norway, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Martin Steinbakk
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadie Regmi
- Institute for Science, Ethics and Innovation (iSEI), University of Manchester, Manchester, UK
| | - Abhilasha Karkey
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Philippe J Guerin
- Worldwide Antimalarial Resistance Network (WWARN), and Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
142
|
Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:21-56. [PMID: 27025380 DOI: 10.1007/82_2016_3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is an important human pathogen, responsible for infections in the community and the healthcare setting. Although much of the attention is focused on the methicillin-resistant "variant" MRSA, the methicillin-susceptible counterpart (MSSA) remains a prime species in infections. The epidemiology of S. aureus, especially of MRSA, showed a rapid evolution in the last years. After representing a typical nosocomial multidrug-resistant pathogen, MRSA has recently emerged in the community and among farmed animals thanks to its ability to evolve and adapt to different settings. Global surveillance has shown that MRSA represents a problem in all continents and countries where studies have been carried out, determining an increase in mortality and the need to use last-resource expensive antibiotics. S. aureus can easily acquire resistance to antibiotics and MRSA is characteristically multidrug resistant. Resistance to vancomycin, the principal anti-MRSA antibiotic is rare, although isolates with decreased susceptibility are recovered in many areas. Resistance to the more recently introduced antibiotics, linezolid and daptomycin, has emerged; however, they remain substantially active against the large majority of MSSA and MRSA. Newer antistaphylococcal drugs have been developed, but since their clinical use has been very limited so far, little is known about the emergence of resistance. Molecular typing techniques have allowed to identify the major successful clones and lineages of MSSA and MRSA, including high-risk clones, and to trace their diffusion. In the face of a continuously evolving scenario, this review depicts the most common clones circulating in different geographical areas and in different settings at present. Since the evolution of S. aureus will continue, it is important to maintain the attention on the epidemiology of S. aureus in the future with a global view.
Collapse
Affiliation(s)
- Monica Monaco
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Fernanda Pimentel de Araujo
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Melania Cruciani
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
143
|
Balandin B, Lobo B, Orden B, Román F, García E, Martínez R, Valdivia M, Ortega A, Fernández I, Galdos P. Emergence of linezolid-resistant coagulase-negative staphylococci in an intensive care unit. Infect Dis (Lond) 2015; 48:343-9. [PMID: 26670684 DOI: 10.3109/23744235.2015.1122225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study was to report the emergence of linezolid-resistant coagulase-negative staphylococci (CoNS) in an intensive care unit. METHODS An observational study was conducted in critically ill patients with colonization or infection by linezolid-resistant CoNS between January 2010 and December 2014. We analyzed the epidemiological and clinical features, and the mechanism of resistance to linezolid. We also evaluated the association between the incidence of linezolid-resistant CoNS strains and the consumption of linezolid in the study period. RESULTS During the study period 49 patients had a linezolid-resistant CoNS strain isolated from clinical samples (blood in 42 cases, urine in 6, peritoneal fluid in 1). Molecular study showed a combination of mechanisms of resistance. Most patients were critically ill (APACHE II score = 21.9 ± 8.3) and nearly all had undergone surgery and invasive procedures, and had prior exposure to antibiotics. Linezolid-resistant CoNS were considered to be contaminants in 42 patients and associated with infection in 7 patients, comprising bacteremia and septic shock in most of them. They were successfully treated with glycopeptides or daptomycin. A modest significant correlation was observed between the decrease in linezolid consumption and the lower incidence of resistant isolates. CONCLUSIONS Linezolid-resistant CoNS had emerged in critically ill patients with severe underlying diseases and prior antibiotic exposure. Most isolates represented colonization; however, linezolid-resistant CoNS can produce serious infections in critically ill patients. Glycopeptides and daptomycin seem to provide useful alternatives for therapy of these infections. A relationship was found between linezolid consumption and the incidence of linezolid-resistant CoNS strains.
Collapse
Affiliation(s)
- Bárbara Balandin
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Beatriz Lobo
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Beatriz Orden
- b Department of Microbiology , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Federico Román
- c Laboratory of Nosocomial Infections , Centro Nacional de Microbiología, Instituto de Salud Carlos III , Madrid
| | - Elena García
- d Department of Hospitalary Pharmacy , Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Rocío Martínez
- b Department of Microbiology , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Miguel Valdivia
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Alfonso Ortega
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Inmaculada Fernández
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| | - Pedro Galdos
- a Intensive Care Unit , Hospital Universitario Puerta de Hierro Majadahonda , Madrid
| |
Collapse
|
144
|
Cafini F, Nguyen LTT, Higashide M, Román F, Prieto J, Morikawa K. Horizontal gene transmission of thecfrgene to MRSA andEnterococcus: role ofStaphylococcus epidermidisas a reservoir and alternative pathway for the spread of linezolid resistance. J Antimicrob Chemother 2015; 71:587-92. [DOI: 10.1093/jac/dkv391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/17/2015] [Indexed: 11/13/2022] Open
|
145
|
Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010–2014. Clin Microbiol Infect 2015; 21:1095.e1-4. [DOI: 10.1016/j.cmi.2015.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
|
146
|
O'Driscoll C, Murphy V, Doyle O, Wrenn C, Flynn A, O'Flaherty N, Fenelon L, Schaffer K, FitzGerald S. First outbreak of linezolid-resistant vancomycin-resistant Enterococcus faecium in an Irish hospital, February to September 2014. J Hosp Infect 2015; 91:367-70. [DOI: 10.1016/j.jhin.2015.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022]
|
147
|
Zhanel GG, Love R, Adam H, Golden A, Zelenitsky S, Schweizer F, Gorityala B, Lagacé-Wiens PRS, Rubinstein E, Walkty A, Gin AS, Gilmour M, Hoban DJ, Lynch JP, Karlowsky JA. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015; 75:253-70. [PMID: 25673021 DOI: 10.1007/s40265-015-0352-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tedizolid phosphate is a novel oxazolidinone prodrug (converted to the active form tedizolid by phosphatases in vivo) that has been developed and recently approved (June 2014) by the United States FDA for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) caused by susceptible Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Tedizolid is an oxazolidinone, but differs from other oxazolidinones by possessing a modified side chain at the C-5 position of the oxazolidinone nucleus which confers activity against certain linezolid-resistant pathogens and has an optimized C- and D-ring system that improves potency through additional binding site interactions. The mechanism of action of tedizolid is similar to other oxazolidinones and occurs through inhibition of bacterial protein synthesis by binding to 23S ribosomal RNA (rRNA) of the 50S subunit of the ribosome. As with other oxazolidinones, the spontaneous frequency of resistance development to tedizolid is low. Tedizolid is four- to eightfold more potent in vivo than linezolid against all species of staphylococci, enterococci, and streptococci, including drug-resistant phenotypes such as MRSA and vancomycin-resistant enterococci (VRE) and linezolid-resistant phenotypes. Importantly, tedizolid demonstrates activity against linezolid-resistant bacterial strains harboring the horizontally transmissible cfr gene, in the absence of certain ribosomal mutations conferring reduced oxazolidinone susceptibility. With its half-life of approximately 12 h, tedizolid is dosed once daily. It demonstrates linear pharmacokinetics, has a high oral bioavailability of approximately 90 %, and is primarily excreted by the liver as an inactive, non-circulating sulphate conjugate. Tedizolid does not require dosage adjustment in patients with any degree of renal dysfunction or hepatic dysfunction. Studies in animals have demonstrated that the pharmacodynamic parameter most closely associated with the efficacy of tedizolid is fAUC(0-24h)/MIC. In non-neutropenic animals, a dose-response enhancement was observed with tedizolid and lower exposures were required compared to neutropenic cohorts. Two Phase III clinical trials have demonstrated non-inferiority of a once-daily tedizolid 200 mg dose for 6-10 days versus twice-daily 600 mg linezolid for the treatment of ABSSSIs. Both trials used the primary endpoint of early clinical response at 48-72 h; however, one trial compared oral formulations while the other initiated therapy with the parenteral formulation and allowed oral sequential therapy following initial clinical response. Throughout its development, tedizolid has demonstrated that it is well tolerated and animal studies have shown a lower propensity for neuropathies with long-term use than its predecessor linezolid. Data from the two completed Phase III clinical trials demonstrated that the studied tedizolid regimen (200 mg once daily for 6 days) had significantly less impact on hematologic parameters as well as significantly less gastrointestinal treatment-emergent adverse effects (TEAEs) than its comparator linezolid. As with linezolid, tedizolid is a weak, reversible MAO inhibitor; however, a murine head twitch model validated to assess serotonergic activity reported no increase in the number of head twitches with tedizolid even at doses that exceeded the C max in humans by up to 25-fold. Tyramine and pseudoephedrine challenge studies in humans have also reported no meaningful MAO-related interactions with tedizolid. With its enhanced in vitro activity against a broad-spectrum of Gram-positive aerobic bacteria, convenient once-daily dosing, a short 6-day course of therapy, availability of both oral and intravenous routes of administration, and an adverse effect profile that appears to be more favorable than linezolid, tedizolid is an attractive agent for use in both the hospital and community settings. Tedizolid is currently undergoing additional Phase III clinical trials for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilated nosocomial pneumonia (VNP).
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Cuny C, Wieler LH, Witte W. Livestock-Associated MRSA: The Impact on Humans. Antibiotics (Basel) 2015; 4:521-43. [PMID: 27025639 PMCID: PMC4790311 DOI: 10.3390/antibiotics4040521] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
During the past 25 years an increase in the prevalence of methicillin-resistant Staphylococcus aureus (HA-MRSA) was recorded worldwide. Additionally, MRSA infections may occur outside and independent of hospitals, caused by community associated MRSA (CA-MRSA). In Germany, we found that at least 10% of these sporadic infections are due to livestock-associated MRSA (LA-MRSA), which is initially associated with livestock. The majority of these MRSA cases are attributed to clonal complex CC398. LA-MRSA CC398 colonizes the animals asymptomatically in about half of conventional pig farms. For about 77%-86% of humans with occupational exposure to pigs, nasal carriage has been reported; it can be lost when exposure is interrupted. Among family members living at the same farms, only 4%-5% are colonized. Spread beyond this group of people is less frequent. The prevalence of LA-MRSA in livestock seems to be influenced by farm size, farming systems, usage of disinfectants, and in-feed zinc. LA-MRSA CC398 is able to cause the same kind of infections in humans as S. aureus and MRSA in general. It can be introduced to hospitals and cause nosocomial infections such as postoperative surgical site infections, ventilator associated pneumonia, septicemia, and infections after joint replacement. For this reason, screening for MRSA colonization at hospital admittance is recommended for farmers and veterinarians with livestock contacts. Intrahospital dissemination, typical for HA-MRSA in the absence of sufficient hygiene, has only rarely been observed for LA-MRSA to date. The proportion of LA-MRSA among all MRSA from nosocomial infections is about 3% across Germany. In geographical areas with a comparatively high density of conventional farms, LA-MRSA accounts for up to 10% of MRSA from septicemia and 15% of MRSA from wound infections. As known from comparative genome analysis, LA-MRSA has evolved from human-adapted methicillin-susceptible S. aureus, and the jump to livestock was obviously associated with several genetic changes. Reversion of the genetic changes and readaptation to humans bears a potential health risk and requires tight surveillance. Although most LA-MRSA (>80%) is resistant to several antibiotics, there are still sufficient treatment options.
Collapse
Affiliation(s)
- Christiane Cuny
- Robert Koch Institute,Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Lothar H Wieler
- Robert Koch Institute, Main Institute, 13353 Berlin, Germany.
| | - Wolfgang Witte
- Robert Koch Institute,Wernigerode Branch, 38855 Wernigerode, Germany.
| |
Collapse
|
149
|
Vuong C, Yeh AJ, Cheung GYC, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs 2015; 25:73-93. [PMID: 26536498 DOI: 10.1517/13543784.2016.1109077] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries, a situation that calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. AREAS COVERED This review provides an overview of current investigational drugs and therapeutic antibodies against S. aureus in early clinical development (up to phase II clinical development). It includes a short description of the mechanism of action and a presentation of microbiological and clinical data. EXPERT OPINION Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and therapies, such as anti-virulence drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise.
Collapse
Affiliation(s)
- Cuong Vuong
- a Principal Scientist/Laboratory Head, Bacteriology , AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475/Geb. 302, 42117 Wuppertal , Germany
| | - Anthony J Yeh
- b Post-baccalaureate IRTA, Laboratory of Bacteriology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Gordon Y C Cheung
- c Staff Scientist, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| | - Michael Otto
- d Senior Investigator, National Institute of Allergy and Infectious Diseases , National Institutes of Health, Laboratory of Bacteriology , Bldg. 33, 1W10, 9000 Rockville Pike, Bethesda , MD 20892 , USA
| |
Collapse
|
150
|
Czekaj T, Ciszewski M, Szewczyk EM. Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age. MICROBIOLOGY-SGM 2015; 161:2061-8. [PMID: 26363644 DOI: 10.1099/mic.0.000178] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus haemolyticus is one of the most frequent aetiological factors of staphylococcal infections. This species seems to lack the important virulence attributes described in other staphylococci. However, studies have shown that the presence of various enzymes, cytolysins and surface substances affects the virulence of S. haemolyticus. Nevertheless, none of them has been identified as crucial and determinative. Despite this, S. haemolyticus is, after Staphylococcus epidermidis, the second most frequently isolated coagulase-negative staphylococcus from clinical cases, notably from blood infections, including sepsis. This raises the question of what is the reason for the increasing clinical significance of S. haemolyticus? The most important factor might be the ability to acquire multiresistance against available antimicrobial agents, even glycopeptides. The unusual genome plasticity of S. haemolyticus strains manifested by a large number of insertion sequences and identified SNPs might contribute to its acquisition of antibiotic resistance. Interspecies transfer of SCCmec cassettes suggests that S. haemolyticus might also be the reservoir of resistance genes for other staphylococci, including Staphylococcus aureus. Taking into consideration the great adaptability and the ability to survive in the hospital environment, especially on medical devices, S. haemolyticus becomes a crucial factor in nosocomial infections caused by multiresistant staphylococci.
Collapse
Affiliation(s)
- Tomasz Czekaj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| | - Marcin Ciszewski
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| |
Collapse
|