101
|
Saint-Pol J, Billard M, Dornier E, Eschenbrenner E, Danglot L, Boucheix C, Charrin S, Rubinstein E. New insights into the tetraspanin Tspan5 using novel monoclonal antibodies. J Biol Chem 2017; 292:9551-9566. [PMID: 28428248 DOI: 10.1074/jbc.m116.765669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/29/2017] [Indexed: 01/02/2023] Open
Abstract
Tspan5 is a member of a subgroup of tetraspanins referred to as TspanC8. These tetraspanins directly interact with the metalloprotease ADAM10, regulate its exit from the endoplasmic reticulum and subsequent trafficking, and differentially regulate its ability to cleave various substrates and activate Notch signaling. The study of Tspan5 has been limited by the lack of good antibodies. This study provides new insights into Tspan5 using new monoclonal antibodies (mAbs), including two mAbs recognizing both Tspan5 and the highly similar tetraspanin Tspan17. Using these mAbs, we show that endogenous Tspan5 associates with ADAM10 in human cell lines and in mouse tissues where it is the most abundant, such as the brain, the lung, the kidney, or the intestine. We also uncover two TspanC8-specific motifs in the large extracellular domain of Tspan5 that are important for ADAM10 interaction and exit from the endoplasmic reticulum. One of the anti-Tspan5 mAbs does not recognize Tspan5 associated with ADAM10, providing a convenient way to measure the fraction of Tspan5 not associated with ADAM10. This fraction is minor in the cell lines tested, and it increases upon transfection of cells with TspanC8 tetraspanins such as Tspan15 or Tspan33 that inhibit Notch signaling. Finally, two antibodies inhibit ligand-induced Notch signaling, and this effect is stronger in cells depleted of the TspanC8 tetraspanin Tspan14, further indicating that Tspan5 and Tspan14 can compensate for each other in Notch signaling.
Collapse
Affiliation(s)
- Julien Saint-Pol
- From Inserm, U935, F-94807 Villejuif.,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| | - Martine Billard
- From Inserm, U935, F-94807 Villejuif.,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| | - Emmanuel Dornier
- the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif.,Inserm, U1004, F-94807 Villejuif
| | - Etienne Eschenbrenner
- From Inserm, U935, F-94807 Villejuif.,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| | - Lydia Danglot
- the CNRS, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, F-75205 Paris, and.,Inserm, ERL U950, 75205 Paris, France
| | - Claude Boucheix
- From Inserm, U935, F-94807 Villejuif.,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| | - Stéphanie Charrin
- From Inserm, U935, F-94807 Villejuif.,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| | - Eric Rubinstein
- From Inserm, U935, F-94807 Villejuif, .,the Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif
| |
Collapse
|
102
|
Meisel JE, Chang M. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2001-2014. [PMID: 28435009 DOI: 10.1016/j.bbamcr.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
103
|
Lorey MB, Rossi K, Eklund KK, Nyman TA, Matikainen S. Global Characterization of Protein Secretion from Human Macrophages Following Non-canonical Caspase-4/5 Inflammasome Activation. Mol Cell Proteomics 2017; 16:S187-S199. [PMID: 28196878 DOI: 10.1074/mcp.m116.064840] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Gram-negative bacteria are associated with a wide spectrum of infectious diseases in humans. Inflammasomes are cytosolic protein complexes that are assembled when the cell encounters pathogens or other harmful agents. The non-canonical caspase-4/5 inflammasome is activated by Gram-negative bacteria-derived lipopolysaccharide (LPS) and by endogenous oxidized phospholipids. Protein secretion is a critical component of the innate immune response. Here, we have used label-free quantitative proteomics to characterize global protein secretion in response to non-canonical inflammasome activation upon intracellular LPS recognition in human primary macrophages. Before proteomics, the total secretome was separated into two fractions, enriched extracellular vesicle (EV) fraction and rest-secretome (RS) fraction using size-exclusion centrifugation. We identified 1048 proteins from the EV fraction and 1223 proteins from the RS fraction. From these, 640 were identified from both fractions suggesting that the non-canonical inflammasome activates multiple, partly overlapping protein secretion pathways. We identified several secreted proteins that have a critical role in host response against severe Gram-negative bacterial infection. The soluble secretome (RS fraction) was highly enriched with inflammation-associated proteins upon intracellular LPS recognition. Several ribosomal proteins were highly abundant in the EV fraction upon infection, and our data strongly suggest that secretion of translational machinery and concomitant inhibition of translation are important parts of host response against Gram-negative bacteria sensing caspase-4/5 inflammasome. Intracellular recognition of LPS resulted in the secretion of two metalloproteinases, adisintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and MMP14, in the enriched EV fraction. ADAM10 release was associated with the secretion of TNF, a key inflammatory cytokine, and M-CSF, an important growth factor for myeloid cells probably through ADAM10-dependent membrane shedding of these cytokines. Caspase-4/5 inflammasome activation also resulted in secretion of danger-associated molecules S100A8 and prothymosin-α in the enriched EV fraction. Both S100A8 and prothymosin-α are ligands for toll-like receptor 4 recognizing extracellular LPS, and they may contribute to endotoxic shock during non-canonical inflammasome activation.
Collapse
Affiliation(s)
- Martina B Lorey
- From the ‡Rheumatology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Katriina Rossi
- From the ‡Rheumatology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kari K Eklund
- From the ‡Rheumatology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Tuula A Nyman
- §Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo 0424, Norway
| | - Sampsa Matikainen
- From the ‡Rheumatology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
104
|
Kim D, Ko HS, Park GB, Hur DY, Kim YS, Yang JW. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med 2017; 13:1415-1425. [PMID: 28413487 PMCID: PMC5377331 DOI: 10.3892/etm.2017.4110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular signals induced by vascular endothelial growth factor (VEGF) are implicated in choroidal neovascularization (CNV) and thus, are associated with vision-limiting complications in the human retina. Vandetanib is an oral anticancer drug that selectively inhibits the activities of VEGF receptor and epidermal growth factor receptor tyrosine kinase; however, the effects of vandetanib on VEGF in retinal pigment epithelial (RPE) cells have not yet been studied. In the present study, a combined treatment of vandetanib and a disintegrin and metalloproteinase (ADAM) protein inhibitors were used to assess the regulation of Epstein-Barr virus (EBV)-infected ARPE19 cells (ARPE19/EBV) migration as a model of CNV. Vandetanib suppressed the expression of the mesenchymal markers ADAM10 and ADAM17 in ARPE19/EBV cells, and also upregulated epithelial cell markers of the RPE cells, E-cadherin and N-cadherin. The migratory activity of ARPE19/EBV induced by VEGF was efficiently blocked by vandetanib. Furthermore, co-treatment with vandetanib and an ADAM10 inhibitor (GI254023X) or ADAM17 inhibitor (Marimastat) synergistically prevented migration and the expression of vimentin, Snail and α-smooth muscle actin by regulating extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. These results suggest that a combination treatment of vandetanib and ADAM inhibitors may be developed as a novel therapeutic regimen to control retina neovascular disease.
Collapse
Affiliation(s)
- Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Hyun-Suk Ko
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Ga Bin Park
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Jae Wook Yang
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| |
Collapse
|
105
|
Wang L, Liu Z, Shi H, Liu J. Two Paralogous Tetraspanins TSP-12 and TSP-14 Function with the ADAM10 Metalloprotease SUP-17 to Promote BMP Signaling in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006568. [PMID: 28068334 PMCID: PMC5261805 DOI: 10.1371/journal.pgen.1006568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
The highly conserved bone morphogenetic protein (BMP) signaling pathway regulates many developmental and homeostatic processes. While the core components of the BMP pathway have been well studied, much research is needed for understanding the mechanisms involved in the precise spatiotemporal control of BMP signaling in vivo. Here, we provide evidence that two paralogous and evolutionarily conserved tetraspanins, TSP-12 and TSP-14, function redundantly to promote BMP signaling in C. elegans. We further show that the ADAM10 (adisintegrin and metalloprotease 10) ortholog SUP-17 also functions to promote BMP signaling, and that TSP-12 can bind to and promote the cell surface localization of SUP-17. SUP-17/ADAM10 is known to be involved in the ligand-induced proteolytic processing of the Notch receptor. We have evidence that the function of SUP-17, and of TSP-12/TSP-14 in BMP signaling is independent of their roles in Notch signaling. Furthermore, presenilins, core components of the γ-secretase complex involved in processing Notch, do not appear to play a role in BMP signaling. These studies established a new role of the TSP-12/TSP-14/SUP-17 axis in regulating BMP signaling, in addition to their known function in the Notch signaling pathway. We also provide genetic evidence showing that a known BMP signaling modulator, UNC-40/neogenin/DCC, is one of the substrates of SUP-17/ADAM10 in the BMP signaling pathway. Bone morphogenetic protein (BMP) signaling regulates multiple developmental and homeostatic processes. Misregulation of this pathway can cause various diseases, including cancers. Thus, it is essential to understand how BMP signaling is tightly regulated spatiotemporally in vivo. We have identified a highly conserved ADAM (a disintegrin and metalloprotease) protein, SUP-17/ADAM10, as an important factor in modulating BMP signaling in C. elegans. We showed that the proper localization and function of this ADAM protease require two conserved tetraspanin proteins, TSP-12 and TSP-14. We provided genetic evidence showing that one of the substrates of SUP-17/ADAM10 in the BMP signaling pathway is a known BMP signaling modulator, UNC-40/neogenin/DCC. Our studies established a new role of the TSP-12-TSP-14-SUP-17 axis in regulating BMP signaling, in addition to and independent of their known function in the Notch signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Zhiyu Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
106
|
Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol 2017; 57-58:12-28. [PMID: 27553508 DOI: 10.1016/j.matbio.2016.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Basement membranes are formed from condensed networks of extracellular matrix (ECM) proteins. These structures underlie all epithelial, mesothelial and endothelial sheets and provide an essential structural scaffold. Candidate-based investigations have established that predominant components of basement membranes are laminins, collagen type IV, nidogens and heparan sulphate proteoglycans. More recently, global proteomic approaches have been applied to investigate ECM and these analyses confirm tissue-specific ECM proteomes with a high degree of complexity. The proteomes consist of structural as well as regulatory ECM proteins such as proteases and growth factors. This review is focused on the proteomic analysis of basement membranes and illustrates how this approach can be used to build our understanding of ECM regulation in health and disease.
Collapse
Affiliation(s)
- Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK.
| |
Collapse
|
107
|
Sethi MK, Zaia J. Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 2017; 409:379-394. [PMID: 27601046 PMCID: PMC5203946 DOI: 10.1007/s00216-016-9900-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
Brain extracellular matrix (ECM) is a highly organized system that consists of collagens, noncollagenous proteins, glycoproteins, hyaluronan, and proteoglycans. Recognized physiological roles of ECM include developmental regulation, tissue homeostasis, cell migration, cell proliferation, cell differentiation, neuronal plasticity, and neurite outgrowth. Aberrant ECM structure is associated with brain neurodegenerative conditions. This review focuses on two neurodegenerative conditions, schizophrenia and Alzheimer's disease, and summarizes recent findings of altered ECM components, including proteoglycans, glycosaminoglycans, proteins, and glycoproteins, and proteins and genes related to other brain components. The scope includes immunohistochemical, genomics, transcriptomics, proteomics, and glycomics studies, and a critical assessment of current state of proteomic studies for neurodegenerative disorders. The intent is to summarize the ECM molecular alterations associated with neurodegenerative pathophysiology. Graphical Abstract Brain extracellular matrix showing HSPGs, CSPGs, HA, collagens, and other glycoproteins.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
108
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
109
|
Seipold L, Saftig P. The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein. Front Mol Neurosci 2016; 9:149. [PMID: 28066176 PMCID: PMC5174118 DOI: 10.3389/fnmol.2016.00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins are a family of ubiquitously expressed and conserved proteins, which are characterized by four transmembrane domains and the formation of a short and a large extracellular loop (LEL). Through interaction with other tetraspanins and transmembrane proteins such as growth factors, receptors and integrins, tetraspanins build a wide ranging and membrane spanning protein network. Such tetraspanin-enriched microdomains (TEMs) contribute to the formation and stability of functional signaling complexes involved in cell activation, adhesion, motility, differentiation, and malignancy. There is increasing evidence showing that the tetraspanins also regulate the proteolysis of the amyloid precursor protein (APP) by physically interacting with the APP secretases. CD9, CD63, CD81, Tspan12, Tspan15 are among the tetraspanins involved in the intracellular transport and in the stabilization of the gamma secretase complex or ADAM10 as the major APP alpha secretase. They also directly regulate, most likely in concert with other tetraspanins, the proteolytic function of these membrane embedded enzymes. Despite the knowledge about the interaction of tetraspanins with the secretases not much is known about their physiological role, their importance in Alzheimer's Disease and their exact mode of action. This review aims to summarize the current knowledge and open questions regarding the biology of tetraspanins and the understanding how these proteins interact with APP processing pathways. Ultimately, it will be of interest if tetraspanins are suitable targets for future therapeutical approaches.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| |
Collapse
|
110
|
Harnessing the natural inhibitory domain to control TNFα Converting Enzyme (TACE) activity in vivo. Sci Rep 2016; 6:35598. [PMID: 27982031 PMCID: PMC5159831 DOI: 10.1038/srep35598] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/26/2016] [Indexed: 01/21/2023] Open
Abstract
Dysregulated activity of A Disintegrin And Metalloproteinase 17 (ADAM17)/TNFα Converting Enzyme (TACE) is associated with inflammatory disorders and cancer progression by releasing regulatory membrane-tethered proteins like TNFα, IL6R and EGFR ligands. Although specific inhibition of TACE is thought to be a viable strategy for inflammatory disorders and for malignancies treatment, the generation of effective inhibitors in vivo has been proven to be challenging. Here we report on the development of a protein inhibitor that leverages the endogenous modulator of TACE. We have generated a stable form of the auto-inhibitory TACE prodomain (TPD), which specifically inhibits in vitro and cell-surface TACE, but not the related ADAM10, and effectively modulated TNFα secretion in cells. TPD significantly attenuated TACE-mediated disease models of sepsis, rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), and reduced TNFα in synovial fluids from RA patients. Our results demonstrate that intervening with endogenous ADAM sheddase modulatory mechanisms holds potential as a general strategy for the design of ADAM inhibitors.
Collapse
|
111
|
Shen H, Li L, Zhou S, Yu D, Yang S, Chen X, Wang D, Zhong S, Zhao J, Tang J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol 2016; 37:15359–15370. [PMID: 27658778 DOI: 10.1007/s13277-016-5418-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongyu Shen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, 210006, China
| | - Siying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Nanjing University of Traditional Chinese Medicine, Xianlin Road 138, Nanjing, Jiangsu, 210023, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Sujin Yang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| | - Jinhai Tang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
112
|
Del Turco D, Paul MH, Schlaudraff J, Hick M, Endres K, Müller UC, Deller T. Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Front Mol Neurosci 2016; 9:134. [PMID: 27965537 PMCID: PMC5126089 DOI: 10.3389/fnmol.2016.00134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
The physiological role of amyloid precursor protein (APP) has been extensively investigated in the rodent hippocampus. Evidence suggests that APP plays a role in synaptic plasticity, dendritic and spine morphogenesis, neuroprotection and—at the behavioral level—hippocampus-dependent forms of learning and memory. Intriguingly, however, studies focusing on the role of APP in synaptic plasticity have reported diverging results and considerable differences in effect size between the dentate gyrus (DG) and area CA1 of the mouse hippocampus. We speculated that regional differences in APP expression could underlie these discrepancies and studied the expression of APP in both regions using immunostaining, in situ hybridization (ISH), and laser microdissection (LMD) in combination with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. In sum, our results show that APP is approximately 1.7-fold higher expressed in pyramidal cells of Ammon’s horn than in granule cells of the DG. This regional difference in APP expression may explain why loss-of-function approaches using APP-deficient mice revealed a role for APP in Hebbian plasticity in area CA1, whereas this could not be shown in the DG of the same APP mutants.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Jessica Schlaudraff
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-UniversityFrankfurt, Germany; Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg UniversityHeidelberg, Germany
| | - Kristina Endres
- Clinic for Psychiatry and Psychotherapy, University Medical Center Mainz Mainz, Germany
| | - Ulrike C Müller
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Germany
| |
Collapse
|
113
|
Miller MA, Sullivan RJ, Lauffenburger DA. Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res 2016; 23:623-629. [PMID: 27895032 DOI: 10.1158/1078-0432.ccr-16-0869] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Proteases known as sheddases cleave the extracellular domains of their substrates from the cell surface. The A Disintegrin and Metalloproteinases ADAM10 and ADAM17 are among the most prominent sheddases, being widely expressed in many tissues, frequently overexpressed in cancer, and promiscuously cleaving diverse substrates. It is increasingly clear that the proteolytic shedding of transmembrane receptors impacts pathophysiology and drug response. Receptor substrates of sheddases include the cytokine receptors TNFR1 and IL6R; the Notch receptors; type-I and -III TGFβ receptors; receptor tyrosine kinases (RTK) such as HER2, HER4, and VEGFR2; and, in particular, MET and TAM-family RTKs AXL and Mer (MerTK). Activation of receptor shedding by mechanical cues, hypoxia, radiation, and phosphosignaling offers insight into mechanisms of drug resistance. This particularly holds for kinase inhibitors targeting BRAF (such as vemurafenib and dabrafenib) and MEK (such as trametinib and cobimetinib), along with direct sheddase inhibitors. Receptor proteolysis can be detected in patient fluids and is especially relevant in melanoma, glioblastoma, lung cancer, and triple-negative breast cancer where RTK substrates, MAPK signaling, and ADAMs are frequently dysregulated. Translatable strategies to exploit receptor shedding include combination kinase inhibitor regimens, recombinant decoy receptors based on endogenous counterparts, and, potentially, immunotherapy. Clin Cancer Res; 23(3); 623-9. ©2016 AACR.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
114
|
Sun J, Jiang J, Lu K, Chen Q, Tao D, Chen Z. Therapeutic potential of ADAM17 modulation in gastric cancer through regulation of the EGFR and TNF-α signalling pathways. Mol Cell Biochem 2016; 426:17-26. [DOI: 10.1007/s11010-016-2877-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
|
115
|
Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel) 2016; 4:41. [PMID: 27834810 PMCID: PMC5192361 DOI: 10.3390/vaccines4040041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells' growth and expansion can influence neighboring cells' behavior, leading to a modulation of mesenchymal stromal cell (MSC) activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT), a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Massimo Giuliani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg.
| |
Collapse
|
116
|
Schuck F, Wolf D, Fellgiebel A, Endres K. Increase of α-Secretase ADAM10 in Platelets Along Cognitively Healthy Aging. J Alzheimers Dis 2016; 50:817-26. [PMID: 26757187 DOI: 10.3233/jad-150737] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ADAM10 is one of the key players in ectodomain-shedding of the amyloid-β protein precursor (AβPP). Previous research with postmortem tissue has shown reduced expression and activity of ADAM10 within the central nervous system (CNS) of Alzheimer's disease (AD) patients. Determination of cerebral ADAM10 in living humans is hampered by its transmembrane property; only the physiological AβPP cleavage product generated by ADAM10, sAβPPα, can be assessed in cerebrospinal fluid. Establishment of surrogate markers in easily accessible material therefore is crucial. It has been demonstrated that ADAM10 is expressed in platelets and that platelet amount is decreased in AD patients. Just recently it has been shown that platelet ADAM10 and cognitive performance of AD patients positively correlate. In contrast to AD patients, to our knowledge almost no information has been published regarding ADAM10 expression during normal aging. We investigated ADAM10 amount and activity in platelets of cognitively healthy individuals from three different age groups ranging from 22-85 years. Interestingly, we observed an age-dependent increase in ADAM10 levels and activity in platelets.
Collapse
|
117
|
Xu J, Mukerjee S, Silva-Alves CRA, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, Lazartigues E, França-Silva MS. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems. Front Physiol 2016; 7:469. [PMID: 27803674 PMCID: PMC5067531 DOI: 10.3389/fphys.2016.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | - Josiane C Cruz
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Camille M Balarini
- Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Valdir A Braga
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
118
|
Rooprai HK, Martin AJ, King A, Appadu UD, Jones H, Selway RP, Gullan RW, Pilkington GJ. Comparative gene expression profiling of ADAMs, MMPs, TIMPs, EMMPRIN, EGF-R and VEGFA in low grade meningioma. Int J Oncol 2016; 49:2309-2318. [DOI: 10.3892/ijo.2016.3739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022] Open
|
119
|
Morgan RL, Behbahani-Nejad N, Endres J, Amin MA, Lepore NJ, Du Y, Urquhart A, Chung KC, Fox DA. Localization, Shedding, Regulation and Function of Aminopeptidase N/CD13 on Fibroblast like Synoviocytes. PLoS One 2016; 11:e0162008. [PMID: 27658265 PMCID: PMC5033571 DOI: 10.1371/journal.pone.0162008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Aminopeptidase N/CD13 is highly expressed by fibroblast like synoviocytes (FLS) and may play a role in rheumatoid arthritis (RA). CD13 was previously detected in human synovial fluid where it was significantly increased in RA compared to osteoarthritis. In this study we found that CD13 in biological fluids (plasma, synovial fluid, FLS culture supernatant) is present as both a soluble molecule and on extracellular vesicles, including exosomes, as assessed by differential ultracentrifugation and density gradient separation. Having determined CD13 could be released as a soluble molecule from FLS, we examined potential mechanisms by which CD13 might be shed from the FLS membrane. The use of protease inhibitors revealed that CD13 is cleaved from the FLS surface by metalloproteinases. siRNA treatment of FLS revealed one of those proteases to be MMP14. We determined that pro-inflammatory cytokines (TNFα, IFNγ, IL-17) upregulated CD13 mRNA in FLS, which may contribute to the increased CD13 in RA synovium and synovial fluid. Inhibition of CD13 function by either inhibitors of enzymatic activity or anti-CD13 antibodies resulted in decreased growth and diminished migration of FLS. This suggests that CD13 may be involved in the pathogenic hyperplasia of RA FLS. This data expands potential roles for CD13 in the pathogenesis of RA.
Collapse
Affiliation(s)
- Rachel L. Morgan
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nilofar Behbahani-Nejad
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Judith Endres
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nick J. Lepore
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuxuan Du
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew Urquhart
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin C. Chung
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
120
|
Zepeda-Nuño JS, Guerrero-Velázquez C, Del Toro-Arreola S, Vega-Magaña N, Ángeles-Sánchez J, Haramati J, Pereira-Suárez AL, Bueno-Topete MR. Expression of ADAM10, Fas, FasL and Soluble FasL in Patients with Oral Squamous Cell Carcinoma (OSCC) and their Association with Clinical-Pathological Parameters. Pathol Oncol Res 2016; 23:345-353. [DOI: 10.1007/s12253-016-0102-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
121
|
Ieguchi K, Maru Y. Savior or not: ADAM17 inhibitors overcome radiotherapy-resistance in non-small cell lung cancer. J Thorac Dis 2016; 8:E813-5. [PMID: 27618869 DOI: 10.21037/jtd.2016.07.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
122
|
Oh ST, Stark A, Reichrath J. The disintegrin-metalloproteinases ADAM10 and ADAM17 are upregulated in cutaneous squamous cell carcinomas. DERMATO-ENDOCRINOLOGY 2016; 8:e1228499. [PMID: 27774114 PMCID: PMC5068181 DOI: 10.1080/19381980.2016.1228499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/18/2016] [Indexed: 12/04/2022]
Affiliation(s)
- S-T Oh
- Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany; Department of Dermatology, Daejeon St. Mary's Hospital, The Medical College of the Catholic University of Korea, Daejeon, South Korea
| | - A Stark
- Department of Dermatology, The Saarland University Hospital , Homburg/Saar, Germany
| | - J Reichrath
- Department of Dermatology, The Saarland University Hospital , Homburg/Saar, Germany
| |
Collapse
|
123
|
Kanzaki H, Shinohara F, Suzuki M, Wada S, Miyamoto Y, Yamaguchi Y, Katsumata Y, Makihira S, Kawai T, Taubman MA, Nakamura Y. A-Disintegrin and Metalloproteinase (ADAM) 17 Enzymatically Degrades Interferon-gamma. Sci Rep 2016; 6:32259. [PMID: 27573075 PMCID: PMC5004192 DOI: 10.1038/srep32259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts anti-tumor and anti-osteoclastogenic effects. Although transcriptional and post-transcriptional regulation of IFN-γ is well understood, subsequent modifications of secreted IFN-γ are not fully elucidated. Previous research indicates that some cancer cells escape immune surveillance and metastasize into bone tissue by inducing osteoclastic bone resorption. Peptidases of the a-disintegrin and metalloproteinase (ADAM) family are implicated in cancer cell proliferation and tumor progression. We hypothesized that the ADAM enzymes expressed by cancer cells degrades IFN-γ and attenuates IFN-γ-mediated anti-tumorigenic and anti-osteoclastogenic effects. Recombinant ADAM17 degraded IFN-γ into small fragments. The addition of ADAM17 to the culture supernatant of stimulated mouse splenocytes decreased IFN-γ concentration. However, ADAM17 inhibition in the stimulated mouse T-cells prevented IFN-γ degradation. ADAM17-expressing human breast cancer cell lines MCF-7 and MDA-MB-453 also degraded recombinant IFN-γ, but this was attenuated by ADAM17 inhibition. Degraded IFN-γ lost the functionality including the inhibititory effect on osteoclastogenesis. This is the first study to demonstrate the extracellular proteolytic degradation of IFN-γ by ADAM17. These results suggest that ADAM17-mediated degradation of IFN-γ may block the anti-tumorigenic and anti-osteoclastogenic effects of IFN-γ. ADAM17 inhibition may be useful for the treatment of attenuated cancer immune surveillance and/or bone metastases.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan.,Tohoku University Hospital, Maxillo-Oral Disorders, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi pref. 980-8575, Japan
| | - Fumiaki Shinohara
- Tohoku University Graduate School of Dentistry, Oral Microbiology, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi pref. 980-8575, Japan
| | - Maiko Suzuki
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Department Mineralized Tissue Biology, 245 First Street, Cambridge, MA 02142, USA
| | - Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yutaka Miyamoto
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Seicho Makihira
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshi Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Harvard School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, Boston, MA 02115, USA
| | - Martin A Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| |
Collapse
|
124
|
Kawahara R, Granato DC, Yokoo S, Domingues RR, Trindade DM, Paes Leme AF. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate. J Proteomics 2016; 151:53-65. [PMID: 27576135 DOI: 10.1016/j.jprot.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
ADAM17 (a disintegrin and metalloproteinase 17) is a plasma membrane metalloprotease involved in proteolytic release of the extracellular domain of many cell surface molecules, a process known as ectodomain shedding. Through this process, ADAM17 is implicated in several aspects of tumor growth and metastasis in a broad range of tumors, including head and neck squamous cell carcinomas (HNSCC). In this study, mass spectrometry-based proteomics approaches revealed glypican-1 (GPC1) as a new substrate for ADAM17, and its shedding was confirmed to be metalloprotease-dependent, induced by a pleiotropic agent (PMA) and physiologic ligand (EGF), and inhibited by marimastat. In addition, immunoblotting analysis of GPC1 in the extracellular media from control and ADAM17shRNA pointed to a direct involvement of ADAM17 in the cleavage of GPC1. Moreover, mass spectrometry-based interactome analysis of GPC1 revealed biological functions and pathways related mainly to cellular movement, adhesion and proliferation, which were events also modulated by up regulation of full length and cleavage GPC1. Altogether, we showed that GPC1 is a novel ADAM17 substrate, thus the function of GPC1 may be modulated by proteolysis signaling. BIOLOGICAL SIGNIFICANCE Inhibition of metalloproteases as a therapeutic approach has failed because there is limited knowledge of the degradome of individual proteases as well as the cellular function of cleaved substrates. Using different proteomic techniques, this study uncovered novel substrates that can be modulated by ADAM17 in oral squamous cell carcinoma cell line. Glypican-1 was validated as a novel substrate for ADAM17, with important function in adhesion, proliferation and migration of carcinoma cells. Therefore, this study opens new avenues regarding the proteolysis-mediated function of GPC1 by ADAM17.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | | | | |
Collapse
|
125
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
126
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
127
|
Moss ML, Minond D, Yoneyama T, Hansen HP, Vujanovic N, Rasmussen FH. An improved fluorescent substrate for assaying soluble and membrane-associated ADAM family member activities. Anal Biochem 2016; 507:13-7. [PMID: 27177841 DOI: 10.1016/j.ab.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/21/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, -10, and -9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 10(4) M(-1) s(-1) and 2.4 (±0.3) × 10(3) M(-1) s(-1) for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, -2, -3, -8, -9, -12, and -14. This substrate provides a unique tool in which to assess ADAM17, -10, and -9 activities.
Collapse
Affiliation(s)
| | - Dmitriy Minond
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Toshie Yoneyama
- Department of Pathology, University of Pittsburgh Cancer Institute, VA Healthcare System, Pittsburgh, PA 15232, USA
| | - Hinrich P Hansen
- Department of Internal Medicine I, University Clinic Cologne, Cologne 50937, Germany
| | - Nikola Vujanovic
- Department of Pathology, University of Pittsburgh Cancer Institute, VA Healthcare System, Pittsburgh, PA 15232, USA
| | | |
Collapse
|
128
|
Atapattu L, Saha N, Chheang C, Eissman MF, Xu K, Vail ME, Hii L, Llerena C, Liu Z, Horvay K, Abud HE, Kusebauch U, Moritz RL, Ding BS, Cao Z, Rafii S, Ernst M, Scott AM, Nikolov DB, Lackmann M, Janes PW. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med 2016; 213:1741-57. [PMID: 27503072 PMCID: PMC4995075 DOI: 10.1084/jem.20151095] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance.
Collapse
Affiliation(s)
- Lakmali Atapattu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Chanly Chheang
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Moritz F Eissman
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mary E Vail
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carmen Llerena
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Zhanqi Liu
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Bi-Sen Ding
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Zhongwei Cao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Martin Lackmann
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Peter W Janes
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
129
|
Andrew RJ, Kellett KAB, Thinakaran G, Hooper NM. A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. J Biol Chem 2016; 291:19235-44. [PMID: 27474742 DOI: 10.1074/jbc.r116.746032] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolysis of the amyloid precursor protein (APP) liberates various fragments including the proposed initiator of Alzheimer disease-associated dysfunctions, amyloid-β. However, recent evidence suggests that the accepted view of APP proteolysis by the canonical α-, β-, and γ-secretases is simplistic, with the discovery of a number of novel APP secretases (including δ- and η-secretases, alternative β-secretases) and additional metabolites, some of which may also cause synaptic dysfunction. Furthermore, various proteins have been identified that interact with APP and modulate its cleavage by the secretases. Here, we give an overview of the increasingly complex picture of APP proteolysis.
Collapse
Affiliation(s)
- Robert J Andrew
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Katherine A B Kellett
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Gopal Thinakaran
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Nigel M Hooper
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
130
|
Dreymueller D, Ludwig A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 2016; 28:354-361. [PMID: 27460023 DOI: 10.1080/09537104.2016.1203396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteases of the disintegrin and metalloproteinase (ADAM) family mediate the proteolytic shedding of various surface molecules including cytokine precursors, adhesion molecules, growth factors, and receptors. Within the vasculature ADAM10 and ADAM17 regulate endothelial permeability, transendothelial leukocyte migration, and the adhesion of leukocytes and platelets. In vivo studies show that both proteases are implicated in several inflammatory pathologies, for example, edema formation, leukocyte infiltration, and thrombosis. However, both proteases also contribute to developmental and regenerative processes. Thus, although ADAMs can be regarded as valuable drug targets in many aspects, the danger of severe side effects is clearly visible. To circumvent these side effects, traditional inhibition approaches have to be improved to target ADAMs at the right time in the right place. Moreover, the inhibitors need to be more selective for the target protease and if possible also for the substrate. Antibodies recognizing the active conformation of ADAMs or small molecules blocking exosites of ADAM proteases may represent inhibitors with the desired selectivities.
Collapse
Affiliation(s)
- Daniela Dreymueller
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| | - Andreas Ludwig
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
131
|
Generation of Soluble Interleukin-11 and Interleukin-6 Receptors: A Crucial Function for Proteases during Inflammation. Mediators Inflamm 2016; 2016:1785021. [PMID: 27493449 PMCID: PMC4963573 DOI: 10.1155/2016/1785021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
The cytokines interleukin-11 (IL-11) and IL-6 are important proteins with well-defined pro- and anti-inflammatory functions. They activate intracellular signaling cascades through a homodimer of the ubiquitously expressed signal-transducing β-receptor glycoprotein 130 (gp130). Specificity is gained through the cell- and tissue-specific expression of the nonsignaling IL-11 and IL-6 α-receptors (IL-11R and IL-6R), which determine the responsiveness of the cell to these two cytokines. IL-6 is a rare example, where its soluble receptor (sIL-6R) has agonistic properties, so that the IL-6/sIL-6R complex is able to activate cells that are usually not responsive to IL-6 alone (trans-signaling). Recent evidence suggests that IL-11 can signal via a similar trans-signaling mechanism. In this review, we highlight similarities and differences in the functions of IL-11 and IL-6. We summarize current knowledge about the generation of the sIL-6R and sIL-11R by different proteases and discuss possible roles during inflammatory processes. Finally, we focus on the selective and/or combined inhibition of IL-6 and IL-11 signaling and how this might translate into the clinics.
Collapse
|
132
|
Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets 2016; 28:333-341. [PMID: 27256961 PMCID: PMC5490636 DOI: 10.1080/09537104.2016.1184751] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are ubiquitous transmembrane “molecular scissors” which proteolytically cleave, or shed, the extracellular regions of other transmembrane proteins. ADAM10 is essential for development because it cleaves Notch proteins to induce Notch signaling and regulate cell fate decisions. ADAM17 is regarded as a first line of defense against injury and infection, by releasing tumor necrosis factor α (TNFα) to promote inflammation and epidermal growth factor (EGF) receptor ligands to maintain epidermal barrier function. However, the regulation of ADAM10 and ADAM17 trafficking and activation are not fully understood. This review will describe how the TspanC8 subgroup of tetraspanins (Tspan5, 10, 14, 15, 17, and 33) and the iRhom subgroup of protease-inactive rhomboids (iRhom1 and 2) have emerged as important regulators of ADAM10 and ADAM17, respectively. In particular, they are required for the enzymatic maturation and trafficking to the cell surface of the ADAMs, and there is evidence that different TspanC8s and iRhoms target the ADAMs to distinct substrates. The TspanC8s and iRhoms have not been studied functionally on platelets. On these cells, ADAM10 is the principal sheddase for the platelet collagen receptor GPVI, and the regulatory TspanC8s are Tspan14, 15, and 33, as determined from proteomic data. Platelet ADAM17 is the sheddase for the von Willebrand factor (vWF) receptor GPIb, and iRhom2 is the only iRhom that is expressed. Induced shedding of either GPVI or GPIb has therapeutic potential, since inhibition of either receptor is regarded as a promising anti-thrombotic therapy. Targeting of Tspan14, 15, or 33 to activate platelet ADAM10, or iRhom2 to activate ADAM17, may enable such an approach to be realized, without the toxic side effects of activating the ADAMs on every cell in the body.
Collapse
Affiliation(s)
- Alexandra L Matthews
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Peter J Noy
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Jasmeet S Reyat
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Michael G Tomlinson
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
133
|
Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, Düsterhöft S, Michalek M, Lorenzen I, Somasundaram P, Tholey A, Sönnichsen FD, Kunzelmann K, Heinbockel L, Nehls C, Gutsmann T, Grötzinger J, Bhakdi S, Reiss K. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun 2016; 7:11523. [PMID: 27161080 PMCID: PMC4866515 DOI: 10.1038/ncomms11523] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023] Open
Abstract
ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Felix Kordowski
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Joscha Büch
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Astrid Evers
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Jörg Andrä
- Hamburg University of Applied Science, Ulmenliet 20, Hamburg 21033, Germany
| | - Stefan Düsterhöft
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Matthias Michalek
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Prasath Somasundaram
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Kiel 24118, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Christian Nehls
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| |
Collapse
|
134
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 PMCID: PMC11482503 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
135
|
Zocchi MR, Camodeca C, Nuti E, Rossello A, Venè R, Tosetti F, Dapino I, Costa D, Musso A, Poggi A. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. Oncoimmunology 2016; 5:e1123367. [PMID: 27467923 PMCID: PMC4910733 DOI: 10.1080/2162402x.2015.1123367] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/22/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023] Open
Abstract
Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the "A Disintegrin And Metalloproteases" (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Nuti
- ProInLab, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Armando Rossello
- ProInLab, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Roberta Venè
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Tosetti
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Irene Dapino
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Delfina Costa
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alessandra Musso
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alessandro Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
136
|
A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins (Basel) 2016; 8:122. [PMID: 27120619 PMCID: PMC4848645 DOI: 10.3390/toxins8040122] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years.
Collapse
|
137
|
Feng L, Wang Y, Cai H, Sun G, Niu W, Xin Q, Tang X, Zhang J, Wang C, Zhang H, Xia G. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J Cell Sci 2016; 129:2202-12. [PMID: 27084580 DOI: 10.1242/jcs.184267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
Ovarian follicles are the basic functional units of female reproduction in the mammalian ovary. We show here that the protein a disintegrin and metalloproteinase domain 10 (ADAM10), a cell surface sheddase, plays an indispensable role in controlling primordial follicle formation by regulating the recruitment of follicle supporting cells in mice. We demonstrate that suppressing ADAM10 in vitro or deletion of Adam10 in vivo disrupts germline cyst breakdown and primordial follicle formation. Using a cell lineage tracing approach, we show that ADAM10 governs the recruitment of ovarian follicle cells by regulating the differentiation and proliferation of LGR5-positive follicle supporting progenitor cells. By detecting the development of FOXL2-positive pregranulosa cells, we found that inhibiting ADAM10 reduced the number of FOXL2-positive cells in perinatal ovaries. Furthermore, inhibiting ADAM10 suppressed the activation of Notch signaling, and blocking Notch signaling also disrupted the recruitment of follicle progenitor cells. Taken together, these results show that ADAM10-Notch signaling in ovarian somatic cells governs the primordial follicle formation by controlling the development of ovarian pregranulosa cells. The proper recruitment of ovarian follicle supporting cells is essential for establishment of the ovarian reserve in mice.
Collapse
Affiliation(s)
- Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Han Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Wanbao Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xiaofang Tang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
138
|
Sharma A, Bender S, Zimmermann M, Riesterer O, Broggini-Tenzer A, Pruschy MN. Secretome Signature Identifies ADAM17 as Novel Target for Radiosensitization of Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 22:4428-39. [PMID: 27076628 DOI: 10.1158/1078-0432.ccr-15-2449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Ionizing radiation (IR) induces intracellular signaling processes as part of a treatment-induced stress response. Here we investigate IR-induced ADAM17 activation and the role of ADAM17-shed factors for radiation resistance in non-small cell lung cancer. EXPERIMENTAL DESIGN Large-scale secretome profiling was performed using antibody arrays. Secretion kinetics of ADAM17 substrates was determined using ELISA across multiple in vitro and in vivo models of non-small cell lung cancer. Clonogenic survival and tumor xenograft assays were performed to determine radiosensitization by ADAM17 inhibition. RESULTS On the basis of a large-scale secretome screening, we investigated secretion of auto- or paracrine factors in non-small cell lung cancer in response to irradiation and discovered the ADAM17 network as a crucial mediator of resistance to IR. Irradiation induced a dose-dependent increase of furin-mediated cleavage of the ADAM17 proform to active ADAM17, which resulted in enhanced ADAM17 activity in vitro and in vivo Genetic or pharmacologic targeting of ADAM17 suppressed IR-induced shedding of secreted factors, downregulated ErbB signaling in otherwise cetuximab-resistant target cells, and enhanced IR-induced cytotoxicity. The combined treatment modality of IR with the ADAM17 inhibitor TMI-005 resulted in a supra-additive antitumor response in vivo demonstrating the potential of ADAM17 targeting in combination with radiotherapy. CONCLUSIONS Radiotherapy activates ADAM17 in non-small cell lung cancer, which results in shedding of multiple survival factors, growth factor pathway activation, and IR-induced treatment resistance. We provide a sound rationale for repositioning ADAM17 inhibitors as short-term adjuvants to improve the radiotherapy outcome of non-small cell lung cancer. Clin Cancer Res; 22(17); 4428-39. ©2016 AACR.
Collapse
Affiliation(s)
- Ashish Sharma
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Martina Zimmermann
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Oliver Riesterer
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Angela Broggini-Tenzer
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland
| | - Martin N Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich Zurich, Switzerland.
| |
Collapse
|
139
|
Camodeca C, Nuti E, Tepshi L, Boero S, Tuccinardi T, Stura EA, Poggi A, Zocchi MR, Rossello A. Discovery of a new selective inhibitor of A Disintegrin And Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models. Eur J Med Chem 2016; 111:193-201. [PMID: 26871660 DOI: 10.1016/j.ejmech.2016.01.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
Hodgkin's lymphoma (HL) is the most common malignant lymphoma in young adults in the western world. This disease is characterized by an overexpression of ADAM-10 with increased release of NKG2D ligands, involved in an impaired immune response against tumor cells. We designed and synthesized two new ADAM-10 selective inhibitors, 2 and 3 based on previously published ADAM-17 selective inhibitor 1. The most promising compound was the thiazolidine derivative 3, with nanomolar activity for ADAM-10, high selectivity over ADAM-17 and MMPs and good efficacy in reducing the shedding of NKG2D ligands (MIC-B and ULBP3) in three different HL cell lines at non-toxic doses. Molecular modeling studies were used to drive the design and X-ray crystallography studies were carried out to explain the selectivity of 3 for ADAM-10 over MMPs.
Collapse
Affiliation(s)
- Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Livia Tepshi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; CEA, iBiTec-S, Service d'Ingenierie Moleculaire des Proteines, CE-Saclay, 91191 Gif sur Yvette Cedex, France
| | - Silvia Boero
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Enrico A Stura
- CEA, iBiTec-S, Service d'Ingenierie Moleculaire des Proteines, CE-Saclay, 91191 Gif sur Yvette Cedex, France
| | - Alessandro Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
140
|
Looking Inside the Matrix: Perineuronal Nets in Plasticity, Maladaptive Plasticity and Neurological Disorders. Neurochem Res 2016; 41:1507-15. [DOI: 10.1007/s11064-016-1876-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
|
141
|
Tejeda GS, Ayuso-Dolado S, Arbeteta R, Esteban-Ortega GM, Vidaurre OG, Díaz-Guerra M. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases. J Pathol 2016; 238:627-40. [PMID: 26712630 DOI: 10.1002/path.4684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
Abstract
Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sara Ayuso-Dolado
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Arbeteta
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Gema M Esteban-Ortega
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Oscar G Vidaurre
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
142
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
143
|
Dąbrowska AM, Tarach JS. Soluble Klotho protein as a novel serum biomarker in patients with acromegaly. Arch Med Sci 2016; 12:222-6. [PMID: 26925141 PMCID: PMC4754356 DOI: 10.5114/aoms.2014.45050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/28/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Anna M Dąbrowska
- Chair and Department of Endocrinology, Medical University of Lublin, Poland
| | - Jerzy S Tarach
- Chair and Department of Endocrinology, Medical University of Lublin, Poland
| |
Collapse
|
144
|
Jouannet S, Saint-Pol J, Fernandez L, Nguyen V, Charrin S, Boucheix C, Brou C, Milhiet PE, Rubinstein E. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 2015; 73:1895-915. [PMID: 26686862 PMCID: PMC4819958 DOI: 10.1007/s00018-015-2111-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
Abstract
The metalloprotease ADAM10 mediates the shedding of the ectodomain of various cell membrane proteins, including APP, the precursor of the amyloid peptide Aβ, and Notch receptors following ligand binding. ADAM10 associates with the members of an evolutionary conserved subgroup of tetraspanins, referred to as TspanC8, which regulate its exit from the endoplasmic reticulum. Here we show that 4 of these TspanC8 (Tspan5, Tspan14, Tspan15 and Tspan33) which positively regulate ADAM10 surface expression levels differentially impact ADAM10-dependent Notch activation and the cleavage of several ADAM10 substrates, including APP, N-cadherin and CD44. Sucrose gradient fractionation, single molecule tracking and quantitative mass-spectrometry analysis of the repertoire of molecules co-immunoprecipitated with Tspan5, Tspan15 and ADAM10 show that these two tetraspanins differentially regulate ADAM10 membrane compartmentalization. These data represent a unique example where several tetraspanins differentially regulate the function of a common partner protein through a distinct membrane compartmentalization.
Collapse
Affiliation(s)
- Stéphanie Jouannet
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Julien Saint-Pol
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Laurent Fernandez
- Inserm, U1054, 34090, Montpellier, France.,Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Viet Nguyen
- Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Stéphanie Charrin
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Claude Boucheix
- Inserm, U935, 94807, Villejuif, France.,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France
| | - Christel Brou
- Institut Pasteur, Laboratoire "Signalisation et Pathogenèse", 75015, Paris, France
| | - Pierre-Emmanuel Milhiet
- Inserm, U1054, 34090, Montpellier, France.,Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Eric Rubinstein
- Inserm, U935, 94807, Villejuif, France. .,Université Paris-Sud, Institut André Lwoff, 94807, Villejuif, France.
| |
Collapse
|
145
|
Noy PJ, Yang J, Reyat JS, Matthews AL, Charlton AE, Furmston J, Rogers DA, Rainger GE, Tomlinson MG. TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) Interact via Their Extracellular Regions: EVIDENCE FOR DISTINCT BINDING MECHANISMS FOR DIFFERENT TspanC8 PROTEINS. J Biol Chem 2015; 291:3145-57. [PMID: 26668317 PMCID: PMC4751363 DOI: 10.1074/jbc.m115.703058] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane metalloprotease that cleaves the extracellular regions from its transmembrane substrates. ADAM10 is essential for embryonic development and is implicated in cancer, Alzheimer, and inflammatory diseases. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals, of which the TspanC8 subgroup (Tspan5, 10, 14, 15, 17, and 33) promote ADAM10 intracellular trafficking and enzymatic maturation. However, the interaction between TspanC8s and ADAM10 has only been demonstrated in overexpression systems and the interaction mechanism remains undefined. To address these issues, an antibody was developed to Tspan14, which was used to show co-immunoprecipitation of Tspan14 with ADAM10 in primary human cells. Chimeric Tspan14 constructs demonstrated that the large extracellular loop of Tspan14 mediated its co-immunoprecipitation with ADAM10, and promoted ADAM10 maturation and trafficking to the cell surface. Chimeric ADAM10 constructs showed that membrane-proximal stalk, cysteine-rich, and disintegrin domains of ADAM10 mediated its co-immunoprecipitation with Tspan14 and other TspanC8s. This TspanC8-interacting region was required for ADAM10 exit from the endoplasmic reticulum. Truncated ADAM10 constructs revealed differential TspanC8 binding requirements for the stalk, cysteine-rich, and disintegrin domains. Moreover, Tspan15was the only TspanC8 to promote cleavage of the ADAM10 substrate N-cadherin, whereas Tspan14 was unique in reducing cleavage of the platelet collagen receptor GPVI. These findings suggest that ADAM10 may adopt distinct conformations in complex with different TspanC8s, which could impact on substrate selectivity. Furthermore, this study identifies regions of TspanC8s and ADAM10 for potential interaction-disrupting therapeutic targeting.
Collapse
Affiliation(s)
- Peter J Noy
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Jing Yang
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Jasmeet S Reyat
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Alexandra L Matthews
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Alice E Charlton
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Joanna Furmston
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - David A Rogers
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - G Ed Rainger
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael G Tomlinson
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| |
Collapse
|
146
|
Wang Z, Wang L, Fan R, Zhou J, Zhong J. Molecular design and structural optimization of potent peptide hydroxamate inhibitors to selectively target human ADAM metallopeptidase domain 17. Comput Biol Chem 2015; 61:15-22. [PMID: 26709988 DOI: 10.1016/j.compbiolchem.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/07/2015] [Accepted: 12/06/2015] [Indexed: 11/29/2022]
Abstract
Human ADAMs (a disintegrin and metalloproteinases) have been established as an attractive therapeutic target of inflammatory disorders such as inflammatory bowel disease (IBD). The ADAM metallopeptidase domain 17 (ADAM17 or TACE) and its close relative ADAM10 are two of the most important ADAM members that share high conservation in sequence, structure and function, but exhibit subtle difference in regulation of downstream cell signaling events. Here, we described a systematic protocol that combined computational modeling and experimental assay to discover novel peptide hydroxamate derivatives as potent and selective inhibitors for ADAM17 over ADAM10. In the procedure, a virtual combinatorial library of peptide hydroxamate compounds was generated by exploiting intermolecular interactions involved in crystal and modeled structures. The library was examined in detail to identify few promising candidates with both high affinity to ADAM17 and low affinity to ADAM10, which were then tested in vitro with enzyme inhibition assay. Consequently, two peptide hydroxamates Hxm-Phe-Ser-Asn and Hxm-Phe-Arg-Gln were found to exhibit potent inhibition against ADAM17 (Ki=92 and 47nM, respectively) and strong selectivity for ADAM17 over ADAM10 (∼7-fold and ∼5-fold, S=0.86 and 0.71, respectively). The structural basis and energetic property of ADAM17 and ADAM10 interactions with the designed inhibitors were also investigated systematically. It is found that the exquisite network of nonbonded interactions involving the side chains of peptide hydroxamates is primarily responsible for inhibitor selectivity, while the coordination interactions and hydrogen bonds formed by the hydroxamate moiety and backbone of peptide hydroxamates confer high affinity to inhibitor binding.
Collapse
Affiliation(s)
- Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jie Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
147
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
148
|
MacLeod R, Hillert EK, Cameron RT, Baillie GS. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Sci OA 2015; 1:FSO11. [PMID: 28031886 PMCID: PMC5137966 DOI: 10.4155/fso.15.9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and its prevalence is set to increase rapidly in coming decades. However, there are as yet no available drugs that can halt or even stabilize disease progression. One of the main pathological features of AD is the presence in the brain of senile plaques mainly composed of aggregated β amyloid (Aβ), a derivative of the longer amyloid precursor protein (APP). The amyloid hypothesis proposes that the accumulation of Aβ within neural tissue is the initial event that triggers the disease. Here we review research efforts that have attempted to inhibit the generation of the Aβ peptide through modulation of the activity of the proteolytic secretases that act on APP and discuss whether this is a viable therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Ruth MacLeod
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellin-Kristina Hillert
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ryan T Cameron
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
149
|
The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A 2015; 112:14337-42. [PMID: 26489655 DOI: 10.1073/pnas.1510265112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.
Collapse
|
150
|
Schuck F, Schmitt U, Reinhardt S, Freese C, Lee IS, Thines E, Efferth T, Endres K. Extract of Caragana sinica as a potential therapeutic option for increasing alpha-secretase gene expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1027-1036. [PMID: 26407945 DOI: 10.1016/j.phymed.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Alzheimer's disease represents one of the main neurological disorders in the aging population. Treatment options so far are only of symptomatic nature and efforts in developing disease modifying drugs by targeting amyloid beta peptide-generating enzymes remain fruitless in the majority of human studies. During the last years, an alternative approach emerged to target the physiological alpha-secretase ADAM10, which is not only able to prevent formation of toxic amyloid beta peptides but also provides a neuroprotective fragment of the amyloid precursor protein - sAPPalpha. PURPOSE To identify novel alpha-secretase enhancers from a library of 313 extracts of medicinal plants indigenous to Korea, a screening approach was used and hits were further evaluated for their therapeutic value. METHODS The extract library was screened for selective enhancers of ADAM10 gene expression using a luciferase-based promoter reporter gene assay in the human neuroblastoma cell line SH-SY5Y. Candidate extracts were then tested in wild type mice for acute behavioral effects using an open field paradigm. Brain and liver tissue from treated mice was biochemically analyzed for ADAM10 gene expression in vivo. An in vitro blood-brain barrier model and an in vitro ATPase assay were used to unravel transport properties of bioactive compounds from extract candidates. Finally, fractionation of the most promising extract was performed to identify biologically active components. RESULTS The extract of Caragana sinica (Buc'hoz) Rehder was identified as the best candidate from our screening approach. We were able to demonstrate that the extract is acutely applicable in mice without obvious side effects and induces ADAM10 gene expression in peripheral tissue. A hindered passage across the blood-brain barrier was detected explaining lack of cerebral induction of ADAM10 gene expression in treated mice. By fractionating C. sinica extract we identified alpha-viniferin as one of the biologically active components. CONCLUSION The extract of C. sinica and alpha-viniferin as one of its bioactive constituents might serve as novel therapeutic options for treating Alzheimer's disease by increasing ADAM10 gene expression. The identification of alpha-viniferin represents a promising starting point to achieve blood-brain barrier penetrance in the future.
Collapse
Affiliation(s)
- Florian Schuck
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany.
| |
Collapse
|