101
|
Harbottle JA, Petrie L, Ruhe M, Houssen WE, Jaspars M, Kolb AF. A cell-based assay system for activators of the environmental cell stress response. Anal Biochem 2020; 592:113583. [PMID: 31945311 DOI: 10.1016/j.ab.2020.113583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Accepted: 01/11/2020] [Indexed: 12/23/2022]
Abstract
Improved health span and lifespan extension in a wide phylogenetic range of species is associated with the induction of the environmental cell stress response through a signalling pathway regulated by the transcription factor Nrf2. Phytochemicals which stimulate this response may form part of therapeutic interventions which stimulate endogenous cytoprotective mechanisms, thereby delaying the onset of age-related diseases and promoting healthy ageing in humans. In order to identify compounds that activate the Nrf2 pathway, a cell-based reporter system was established in HepG2 cells using a luciferase reporter gene under the control of the Nqo1 promoter. Sulforaphane, an isothiocyanate derived from cruciferous vegetables and a known activator of the Nrf2 pathway, was used to validate the reporter system. The transfected cell line HepG2 C1 was subsequently used to screen natural product libraries. Five compounds were identified as activating the bioluminescent reporter by greater than 5-fold. The two most potent compounds, MBC20 and MBC37, were further characterised and shown to stimulate endogenous cytoprotective gene and protein expression. The bioluminescent reporter system will allow rapid, in vitro identification of novel compounds that have the potential to improve health span through activation of the environmental stress response.
Collapse
Affiliation(s)
| | - Linda Petrie
- Metabolic Health Group, Obesity & Metabolic Health Theme, Rowett Institute, UK
| | - Madeleine Ruhe
- Metabolic Health Group, Obesity & Metabolic Health Theme, Rowett Institute, UK
| | - Wael E Houssen
- Marine Biodiscovery Centre, Chemistry Department, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Chemistry Department, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Andreas F Kolb
- Metabolic Health Group, Obesity & Metabolic Health Theme, Rowett Institute, UK.
| |
Collapse
|
102
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
103
|
Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chem 2019; 307:125562. [PMID: 31648174 DOI: 10.1016/j.foodchem.2019.125562] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
Abstract
The effect of postharvest melatonin treatment on sulforaphane production of fresh-cut broccoli at 4℃ during storage was investigated in this study. Florets treated with 100 μM melatonin exhibited higher contents of total glucosinolates and sulforaphane. Glucoraphanin content was significantly increased after melatonin treatment, and which was explained by gene analysis. Expressions of glucoraphanin biosynthesis genes including Elong, CYP83A1, MYB28, UGT74B1 and FMOGS-OX1 were up-regulated while AOP2 was obviously decreased by melatonin treatment, leading to a higher glucoraphanin accumulation. In addition, application of melatonin enhanced the myrosinase activity and the expression level of MYO, benefiting the formation of sulforaphane. This study demonstrates that melatonin treatment positively affected the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli.
Collapse
|
104
|
Zhao J, Liu L, Li X, Zhang L, Lv J, Guo X, Chen H, Zhao T. Neuroprotective effects of an Nrf2 agonist on high glucose-induced damage in HT22 cells. Biol Res 2019; 52:53. [PMID: 31542051 PMCID: PMC6754858 DOI: 10.1186/s40659-019-0258-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Oxidative stress is the hallmark of diabetic encephalopathy, which may be caused by hyperglycaemic toxicity. We aimed to discover pharmacologic targets to restore redox homeostasis. We identified the transcription factor Nrf2 as such a target. Methods HT22 cells were cultured in 25 or 50 mM d-glucose with various concentrations of sulforaphane (SFN) (from 1.25 to 5.0 μM). Cell viability was tested with the Cell Counting Kit-8 assay. Reactive oxygen species (ROS) production was detected with an inverted fluorescence microscope using the dichlorodihydrofluorescein-diacetate fluorescent probe. The expression of NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1) and nuclear factor-κB (NF-κB) at the mRNA and protein levels was detected by reverse transcription quantitative polymerase chain reaction and western blotting. Result We found that a high glucose concentration (50 mM) increased the generation of ROS, downregulated the expression of Nrf2/HO-1 and upregulated the expression of NF-κB. Moreover, HT22 cell viability significantly decreased after culture in high-glucose medium for 24, 48 and 72 h, whereas the activation of the Nrf2/HO-1 pathway using a pharmacological Nrf2 activator abrogated this high-glucose-induced toxicity. Conclusion This study suggests that the activation of the Nrf2–ARE signalling pathway might be a therapeutic target for the treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Jiangpei Zhao
- Department of Neurology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Lerong Liu
- Department of Endocrinology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xia Li
- Department of Endocrinology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Lingxiao Zhang
- Department of Endocrinology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Jing Lv
- Department of Geriatric Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zheng-zhou University, Zhengzhou, Henan, People's Republic of China
| | - Hui Chen
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Tongfeng Zhao
- Department of Endocrinology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
| |
Collapse
|
105
|
Melrose J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019; 7:biomedicines7030062. [PMID: 31430999 PMCID: PMC6784281 DOI: 10.3390/biomedicines7030062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.
Collapse
Affiliation(s)
- James Melrose
- Honorary Senior Research Associate, Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia.
- Adjunct Professor, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
106
|
Eruca sativa Meal against Diabetic Neuropathic Pain: An H 2S-Mediated Effect of Glucoerucin. Molecules 2019; 24:molecules24163006. [PMID: 31430978 PMCID: PMC6721019 DOI: 10.3390/molecules24163006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
The management of pain in patients affected by diabetic neuropathy still represents an unmet therapeutic need. Recent data highlighted the pain-relieving efficacy of glucosinolates deriving from Brassicaceae. The purpose of this study was to evaluate the anti-hyperalgesic efficacy of Eruca sativa defatted seed meal, along with its main glucosinolate, glucoerucin (GER), on diabetic neuropathic pain induced in mice by streptozotocin (STZ). The mechanism of action was also investigated. Hypersensitivity was assessed by paw pressure and cold plate tests after the acute administration of the compounds. Once bio-activated by myrosinase, both E. sativa defatted meal (1 g kg−1 p.o.) and GER (100 µmol kg−1 p.o., equimolar to meal content) showed a dose-dependent pain-relieving effect in STZ-diabetic mice, but the meal was more effective than the glucosinolate. The co-administration with H2S scavengers abolished the pain relief mediated by both E. sativa meal and GER. Their effect was also prevented by selectively blocking Kv7 potassium channels. Repeated treatments with E. sativa meal did not induce tolerance to the anti-hypersensitive effect. In conclusion, E. sativa meal can be suggested as a new nutraceutical tool for pain relief in patients with diabetic neuropathy.
Collapse
|
107
|
Rakariyatham K, Yang X, Gao Z, Song M, Han Y, Chen X, Xiao H. Synergistic chemopreventive effect of allyl isothiocyanate and sulforaphane on non-small cell lung carcinoma cells. Food Funct 2019; 10:893-902. [PMID: 30694275 DOI: 10.1039/c8fo01914b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Isothiocyanates from cruciferous vegetables are known for their potential anti-carcinogenic activities. These isothiocyanates are frequently consumed together as part of a regular diet, but their combined effects on carcinogenesis have not been well studied. Herein, we tested the hypothesis that combination of two isothiocyanates, i.e. allyl isothiocyanate and sulforaphane, produced a synergy in inhibiting the growth of A549 lung cancer cells. Our results showed that the combination treatment led to a stronger growth inhibition than the singular treatment. Isobologram analysis proved that the enhanced inhibitory effect of the combination treatment was synergistic. Flow cytometry demonstrated that the combination treatment caused more extensive cell cycle arrest and apoptosis than the singular treatment with modified expression of key proteins regulating these cellular processes. The combined treatment resulted in the production of intracellular reactive oxygen species, which might contribute to the inhibitory effects on cancer cells. Moreover, a synergy between allyl isothiocyanate and sulforaphane was also observed in anti-cell migration. Collectively, our results have demonstrated the potential of different isothiocyanates used in combination to produce enhanced protective effects against carcinogenesis.
Collapse
Affiliation(s)
- Kanyasiri Rakariyatham
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem Toxicol 2019; 129:108-114. [DOI: 10.1016/j.fct.2019.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
|
109
|
Wu W, Peng G, Yang F, Zhang Y, Mu Z, Han X. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2/HO‑1 axis. Mol Med Rep 2019; 20:1761-1771. [PMID: 31257541 PMCID: PMC6625393 DOI: 10.3892/mmr.2019.10405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by intense itching and recurrent eczematous lesions. Sulforaphane is known to attenuate oxidative stress, and tissue or cell damage in cerebral ischemia, brain inflammation and intracerebral hemorrhage. In the present study, a 2,4‑dinitrochlorobenzene (DNCB)‑induced AD mouse model was developed, and ear thickness, dermatitis score, eosinophil count, mast cell infiltration, and serum IgE levels were measured in DNCB‑induced AD and sulforaphane‑treated groups to demonstrate the therapeutic effects of sulforaphane. AD symptoms of DNCB‑induced mice were attenuated by sulforaphane treatment compared with those of negative control mice; furthermore, eosinophil count, mast cell infiltration and serum IgE levels were also reduced by sulforaphane treatment in DNCB‑induced AD mice. Western blot assays revealed that the expression levels of nuclear factor‑E2‑related factor 2 (Nrf2) and heme oxygenase-1 (HO‑1), which exhibit oxidation resistance, were increased by sulforaphane treatment in DNCB‑induced AD mice. The present study suggested that sulforaphane exerted a therapeutic effect in the AD mouse model through the activation of the Nrf2/HO‑1 axis as well as the suppression of Janus kinase 1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wenqing Wu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ge Peng
- Atopy (Allergy) Research Center, Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 1138642, Japan
| | - Fan Yang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Zhang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhenzhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
110
|
Nadeem A, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Ibrahim KE, Alqahtani F, Alqinyah M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav Brain Res 2019; 364:213-224. [DOI: 10.1016/j.bbr.2019.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
|
111
|
Effects of sulforaphane on D-galactose-induced liver aging in rats: Role of keap-1/nrf-2 pathway. Eur J Pharmacol 2019; 855:40-49. [PMID: 31039346 DOI: 10.1016/j.ejphar.2019.04.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Aging; a biological phenomenon characterized by progressive decline in cellular functions, is considered as a major risk factor of various liver diseases that plays as an adverse prognostic role, thus increasing mortality rate. However, diet is the main environmental factor that has a major impact on the aging process whereas; sulforaphane (SFN), an isothiocyanate organosulfur compound in cruciferous vegetables, has been reported with myriad biological effects. In the present study, SFN antiaging properties were evaluated on D-galactose (D-Gal)-induced liver aging in rats. For this purpose, forty adult male Wistar rats were divided into five groups. All animals, except the normal control, were intraperitoneally injected with D-Gal (300 mg/kg/day for 5 days a week) for six consecutive weeks. In the hepatoprotective groups, animals received oral SFN (0.5, 1.0 and 2.0 mg/kg) for 6 weeks concurrently with D-GAL. SFN administration improved liver biomarkers through decreasing serum levels of AST, ALT, total and direct bilirubin when compared to D-Gal-aging group. SFN significantly increased hepatic GSH level as well as catalase and glutathione-S-transferase activities while counteracted the elevation in hepatic oxidative stress markers; MDA, NO and protein carbonyl in aged rats. SFN abrogated the dysregulation in hepatic Keap-1, Nrf-2 and HO-1and limited the elevation of TNF-α and TGF-β concentrations in aging liver. Histopathologically, SFN decreased the intensity of hepatic fibrous proliferation in D-Gal-induced aging. In conclusion, SFN has shown hepatic anti-aging potential through promoting the antioxidant machinery via regulating Keap-1, Nrf-2 and HO-1 and antioxidant enzyme activities as well as ameliorating oxidative stress, hampering the inflammatory cytokines; TNF-ɑ and TGF-β, and limiting hepatic fibrosis in a dose dependent manner.
Collapse
|
112
|
Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41:655-670. [PMID: 30941620 DOI: 10.1007/s11357-019-00061-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the last several years, numerous molecules derived from plants and vegetables have been tested for their antioxidant, anti-inflammatory, and anti-aging properties. One of them is sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables. SFN activates the antioxidant and anti-inflammatory responses by inducing Nrf2 pathway and inhibiting NF-κB. It also has an epigenetic effect by inhibiting HDAC and DNA methyltransferases and modifies mitochondrial dynamics. Moreover, SFN preserves proteome homeostasis (proteostasis) by activating the proteasome, which has been shown to lead to increased cellular lifespan and prevent neurodegeneration. In this review, we describe some of the molecular and physical characteristics of SFN, its mechanisms of action, and the effects that SFN treatment induces in order to discuss its relevance as a "miraculous" drug to prevent aging and neurodegeneration.
Collapse
|
113
|
Thangapandiyan S, Ramesh M, Miltonprabu S, Hema T, Jothi GB, Nandhini V. Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12247-12263. [PMID: 30835071 PMCID: PMC6476857 DOI: 10.1007/s11356-019-04502-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/05/2019] [Indexed: 05/31/2023]
Abstract
Oxidative stress plays a significant role in the pathophysiology of numerous kidney diseases, generally mediated by reactive oxygen species (ROS). Arsenic (Ar) is known to exert its toxicity through the generation of ROS and inflammation. The current study investigates the protective effects of sulforaphane (SFN) against arsenic-induced renal damage via PI3K/Akt-mediated Nrf2 pathway signaling. Thirty-two male albino Wistar rats were randomly divided into four groups of eight animals each, designated as control, arsenic (Ar), sulforaphane plus Ar (SFN+Ar), and sulforaphane alone (SFN), with oral administration of Ar (5 mg/kg BW) and SFN (80 mg/kg BW) daily for 28 days. Ar administration significantly (P < 0.05) increased the levels of ROS, OHdG, Ar accumulation, and lipid peroxidation, and decreased levels of enzymatic and nonenzymatic antioxidants. Notably, a significant (P < 0.05) increase was observed in markers of apoptosis, DNA damage, TUNEL-positive cells, and dark staining of ICAM-1 in renal tissue with decreased PI3K/Akt/Nrf2 gene expression. The biochemical findings were supported by histopathological and electron microscopy evaluation, which showed severe renal damage in rats treated with Ar. Pretreatment with SFN significantly (P < 0.05) attenuated renal ROS, OHdG, lipid peroxidation, and DNA damage, and increased phase II antioxidants via PI3K/Akt-mediated Nrf2 activation in renal tissue. These results show that dietary supplementation with SFN protects against Ar-induced nephrotoxicity via the PI3K/Akt-mediated Nrf2 signaling pathway in the rat kidney.
Collapse
Affiliation(s)
- Shanmugam Thangapandiyan
- N-PDF, Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, 641064, India.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, 641 046, India
| | | | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, 641 046, India
| | | | - Venkatesan Nandhini
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu, 641 046, India
| |
Collapse
|
114
|
Wu Y, Gao M, Wu J, Hu P, Xu X, Zhang Y, Wang D, Chen Z, Huang C. Sulforaphane triggers a functional elongation of microglial process via the Akt signal. J Nutr Biochem 2019; 67:51-62. [PMID: 30856464 DOI: 10.1016/j.jnutbio.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Microglia are a kind of innate immune cells in the nervous system. The amoeboid morphology in microglia indicates a pro-inflammatory status, while their ramified morphologies are associated with anti-neuroinflammation. Recently, we and others have reported that drugs that trigger microglial process elongation may be beneficial for neuroinflammation inhibition. In this study, we found that sulforaphane (SFN), a compound extracted from broccoli sprouts, promotes primary cultured microglial process elongation in both normal and pro-inflammatory conditions in a reversible manner. This pro-elongation effect of SFN was also observed in the prefrontal cortex in vivo and accompanied with an attenuation of pro-inflammatory response as well as an enhancement of anti-inflammatory response in primary cultured microglia. Mechanistic studies revealed that the SFN treatment increased Akt phosphorylation levels in primary cultured microglia and Akt inhibition blocked the effect of SFN on microglial process elongation, suggesting that the regulation of microglial process by SFN is mediated by Akt activation. Functional studies showed that Akt inhibition reversed the effect of SFN on both pro- and anti-inflammatory responses in lipopolysaccharide (LPS)-stimulated microglia. In an inflammation model in vivo, SFN pretreatment not only prevented LPS-induced retractions of microglial process in the prefrontal cortex, but improved LPS-induced behavioral abnormalities in mice, including the increase in immobility time in the tail suspension test and forced swim test as well as the decrease in sucrose preference. These results indicate that the SFN inhibits microglial activation and neuroinflammation-triggered behavioral abnormalities likely through triggering Akt-mediated microglial process elongation.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Minhui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Peili Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu Province, China 226001.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, China 226001.
| |
Collapse
|
115
|
Vanduchova A, Anzenbacher P, Anzenbacherova E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J Med Food 2019; 22:121-126. [DOI: 10.1089/jmf.2018.0024] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Alena Vanduchova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
116
|
Ferreira-Chamorro P, Redondo A, Riego G, Leánez S, Pol O. Sulforaphane Inhibited the Nociceptive Responses, Anxiety- and Depressive-Like Behaviors Associated With Neuropathic Pain and Improved the Anti-allodynic Effects of Morphine in Mice. Front Pharmacol 2018; 9:1332. [PMID: 30542282 PMCID: PMC6277937 DOI: 10.3389/fphar.2018.01332] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic neuropathic pain is associated with anxiety- and depressive-like disorders. Its treatment remains a serious clinical problem due to the lack of efficacy of the available therapeutic modalities. We investigated if the activation of the transcription factor Nrf2 could modulate the nociceptive and emotional disorders associated with persistent neuropathic pain and potentiated the analgesic activity of morphine. The possible mechanisms implicated in these effects have been also evaluated. Therefore, in C57BL/6 mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI), we assessed the antinociceptive, anxiolytic, and anti-depressant effects of the repeated intraperitoneal administration of a Nrf2 inducer, sulforaphane (SFN), and the effects of this treatment on the local antinociceptive actions of morphine. The protein levels of Nrf2, heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase-1 (NQO1), CD11b/c (a microglial activator marker), mitogen-activated protein kinases (MAPK) and μ opioid receptors (MOR) in the spinal cord, prefrontal cortex and hippocampus from mice, at 28 days after CCI, were also evaluated. Our results showed that the repeated administration of SFN besides inhibiting nociceptive responses induced by sciatic nerve injury also diminished the anxiety- and depressive-like behaviors associated with persistent neuropathic pain. Moreover, SFN treatment normalized oxidative stress by inducing Nrf2/HO-1 signaling, reduced microglial activation and JNK, ERK1/2, p-38 phosphorylation induced by sciatic nerve injury in the spinal cord and/or hippocampus and prefrontal cortex. Interestingly, treatment with SFN also potentiated the antiallodynic effects of morphine in sciatic nerve-injured mice by regularizing the down regulation of MOR in the spinal cord and/or hippocampus. This study suggested that treatment with SFN might be an interesting approach for the management of persistent neuropathic pain and comorbidities associated as well as to improve the analgesic actions of morphine.
Collapse
Affiliation(s)
- Pablo Ferreira-Chamorro
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
117
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
118
|
Abdel-Hamid NM, Abass SA, Mohamed AA, Muneam Hamid D. Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107:1246-1258. [PMID: 30257339 PMCID: PMC7127621 DOI: 10.1016/j.biopha.2018.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the most frequent tumor that associated with high mortality rate. Several risk factors contribute to the pathogenesis of HCC, such as chronic persistent infection with hepatitis C virus or hepatitis B virus, chronic untreated inflammation of liver with different etiology, oxidative stress and fatty liver disease. Several treatment protocols are used in the treatment of HCC but they also associated with diverse side effects. Many natural products are helpful in the co-treatment and prevention of HCC. Several mechanisms are involved in the action of these herbal products and their bioactive compounds in the prevention and co-treatment of HCC. They can inhibit the liver cancer development and progression in several ways as protecting against liver carcinogens, enhancing effects of chemotherapeutic drugs, inhibiting tumor cell growth and metastasis, and suppression of oxidative stress and chronic inflammation. In this review, we will discuss the utility of diverse natural products in the prevention and co-treatment of HCC, through its capturing of the common risk factors known to lead to HCC and shed the light on their possible mechanisms of action. Our theory assumes that shutting down the risk factor to cancer development pathways is a critical strategy in cancer prevention and management. We recommend the use of these plants side by side to recent chemical medications and after stopping these chemicals, as a maintenance therapy to avoid HCC progression and decrease its global incidence.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahmed A Mohamed
- Biochemistry Department, Faculty of Pharmacy, Mansura University, Mansura, Egypt
| | - Daniah Muneam Hamid
- Biotechnology Department, Technical Medical Institute Al-Mansour, Middle Technological University, Baghdad, Iraq
| |
Collapse
|
119
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
120
|
Zhou S, Wang J, Yin X, Xin Y, Zhang Z, Cui T, Cai J, Zheng Y, Liu Q, Cai L. Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. Redox Biol 2018; 19:11-21. [PMID: 30096613 PMCID: PMC6086220 DOI: 10.1016/j.redox.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
We reported previously that nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT) play critical roles in preventing intermittent hypoxia (IH)-induced cardiomyopathy. In addition, positive feedback regulation between Nrf2 and MT is required for the efficient compensative responses of the heart to IH. As an activator of Nrf2, sulforaphane (SFN) has attracted attention as a potential protective agent against cardiovascular disease. Here, we investigated whether SFN can up-regulate cardiac Nrf2 expression and function, as well as MT expression, to prevent IH-induced cardiomyopathy, and if so, whether Nrf2 and MT are indispensable for this preventive effect. Nrf2-knock-out (Nrf2-KO) or MT-KO mice and their wild-type (WT) equivalents were exposed to IH for 4 weeks with or without SFN treatment. SFN almost completely prevented IH-induced cardiomyopathy in WT mice, and this preventive effect was abolished in Nrf2-KO mice but retained in MT-KO mice. In IH-exposed WT mice, SFN induced significant increases in the expression levels of Nrf2 and its downstream antioxidant target genes, as well as those of MT, but these effects were not seen in IH-exposed Nrf2-KO mice. By contrast, KO of MT did not affect the ability of SFN to up-regulate the expression of Nrf2 and its downstream antioxidant targets. These results suggest that SFN-induced MT expression is Nrf2-dependent, and SFN prevents IH-induced cardiomyopathy in a Nrf2-dependent manner, for which MT is dispensable. This study provides important information that is relevant to the potential use of SFN to prevent IH-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shanshan Zhou
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Jiqun Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Xia Yin
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Quan Liu
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Departments of Radiation Oncology, Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
121
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
122
|
Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacol Res 2018; 139:228-242. [PMID: 30227261 DOI: 10.1016/j.phrs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The majority of brain injuries that lead to cerebral palsy, developmental disability, and mental health disorders have their onset in utero. These lifelong conditions come with great economic and emotional burden as they impact function in nearly all domains of affected individuals' lives. Unfortunately, current therapeutic options are limited. There remains a focus on rescue, rehabilitation, and regeneration after the injury has occurred, rather than aiming to prevent the initial injury. Prevention would imply treating the mother during pregnancy to alter the fetal environment and in turn, treat the fetus. Fear of harming the developing fetus remains as a result of errors of the past such as the release of thalidomide. In this review, we outline evidence from animal studies and clinical trials that have explored maternal dietary supplementation with natural health products (including nutraceuticals and functional foods) for perinatal brain injury prevention. Namely, we discuss magnesium sulphate, creatine, choline, melatonin, resveratrol and broccoli sprouts/sulforaphane. Although clinical trials have only been completed in this realm for magnesium sulphate, results in animal models have been promising, suggesting that this is a productive avenue for further research. Natural health products may provide safe, effective, affordable, and easily accessible prevention of fetal brain injury and resulting lifelong disabilities.
Collapse
|
123
|
Lucarini E, Micheli L, Trallori E, Citi V, Martelli A, Testai L, De Nicola GR, Iori R, Calderone V, Ghelardini C, Di Cesare Mannelli L. Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels modulation by H 2 S release in vivo. Phytother Res 2018; 32:2226-2234. [PMID: 30069944 DOI: 10.1002/ptr.6159] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg-1 ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14th day. Single subcutaneous and oral administrations of GRA (4.43-119.79 μmol kg-1 ) or SFN (1.33-13.31 μmol kg-1 ) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 μmol kg-1 ) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H2 S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2 S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Trallori
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Gina Rosalinda De Nicola
- Agricoltura e Ambiente (CREA-AA), Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Bologna, Italy
| | - Renato Iori
- Agricoltura e Ambiente (CREA-AA), Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Bologna, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | |
Collapse
|
124
|
Sulforaphane protects granulosa cells against oxidative stress via activation of NRF2-ARE pathway. Cell Tissue Res 2018; 374:629-641. [PMID: 30032437 DOI: 10.1007/s00441-018-2877-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/20/2018] [Indexed: 01/06/2023]
Abstract
Sulforaphane (SFN) has been considered as an indirect antioxidant and potential inducer of the Nrf2-ARE pathway. This study was conducted to investigate the protective role of SFN against oxidative stress in bovine granulosa cells (GCs). GCs were collected from antral follicles (4-8 mm) and cultured according to the experimental design where group 1 = control, group 2 = treated with SFN, group 3 = treated with hydrogen peroxide (H2O2), group 4 = pretreated with SFN and then with H2O2 (protective) and group 5 = treated with H2O2 followed by SFN treatment (rescuing). Results showed that SFN pretreatment significantly increases cell viability and reduces cytotoxicity in GCs under oxidative stress. Following H2O2 exposure, expression of NRF2 was found to be significantly increased (p < 0.05) in SFN-pretreated cells, while no significant differences were observed between group 3 and group 5, although the expression was significantly increased compared to the control group. Moreover, the relative abundance of the NRF2 downstream target antioxidant genes (CAT, PRDX1, SOD1 and TXN1) were higher (fold change ranged from 7 to 14, p < 0.05) in sulforaphane pretreated GCs. Low level of ROS and lipid accumulation and higher mitochondrial activity were observed in GCs pretreated with SFN, whereas no such changes were observed in GCs treated with SFN after exposure to oxidative stress (group 5). Thus, we suggest that SFN pretreatment effectively protects GCs against oxidative damage through the activation of the NRF2-ARE pathway, whereas addition of SFN during oxidative insult failed to rescue GCs.
Collapse
|
125
|
Zhang Z, Bergan R, Shannon J, Slatore CG, Bobe G, Takata Y. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Mol Nutr Food Res 2018; 62:e1700936. [PMID: 29663679 DOI: 10.1002/mnfr.201700936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Lung cancer remains a leading cause of cancer-related deaths in the United States. Although smoking and air pollution exposure are primary risk factors of lung cancer, diet has also been reported to contribute to lung cancer risk. Cruciferous vegetables contain many bioactive compounds that alter the detoxification process of air-borne carcinogenic compounds and, thereby, may decrease lung cancer risk. In the meta-analysis of 31 observational studies, cruciferous vegetable intake is inversely associated with lung cancer risk (summary odds ratio/relative risk = 0.81 and 95% confidence interval = 0.74-0.89 for comparing the highest with lowest intake categories). More observational studies need to measure urinary isothiocyanate (ITC) concentrations and investigate their association with lung cancer risk in populations with relatively high intake of cruciferous vegetables. Current evidence is limited to two phase 2 clinical trials with incomplete reporting. Hence, more short-term clinical phase 2 trials need to examine effects of various amounts and types of cruciferous vegetables on biomarkers of risk and efficacy before a large phase 3 trial can be conducted to assess effects upon lung cancer risk. This would help further elucidate whether the inverse association observed with self-reported cruciferous vegetable intake is indeed due to ITC content or other bioactive compounds.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jackilen Shannon
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher G Slatore
- Health Services Research & Development and Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, OR, 97239, USA.,Department of Medicine and Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gerd Bobe
- Linus Pauling Institute, Department of Animal Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Yumie Takata
- College of Public Health and Human Sciences, School of Biological and Population Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
126
|
Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2837-2844. [PMID: 29363750 DOI: 10.1002/jsfa.8898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Obesity is linked to the onset of many diseases such as diabetes mellitus, cardiovascular diseases and cancer, among others. The prevalence of obesity nearly doubled worldwide between 1980 and 2014. Simultaneously, in the last decade, the effects of sulforaphane as a potential treatment for obesity have been investigated, with promising results. Fruits and vegetables and their processed agri-food co-products are good sources of natural health-promoting compounds. Brassica crops are among the most produced crops in the world and are a good source of glucoraphanin, which, following hydrolysis, releases sulforaphane. The Brassicaceae family generates large amounts of co-products with no intended use, causing negative economic and environmental impact. Valorization of these co-products could be achieved through their exploitation for the extraction of bioactive compounds such as sulforaphane. However, the extraction process still needs further improvement for its economic feasibility. This article reviews the potential effects of sulforaphane in the treatment of obesity, linked to the relevance of giving Brassica co-products added value, which is of key importance for the competitiveness of farmers and the agri-food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory Animal Science Group, Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
127
|
Antioxidative effects of aqueous extract of broccoli sprouts against Triazophos induced hepatic and renal toxicity in female Wistar rats. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
128
|
Extracellular Matrix Remodeling and Modulation of Inflammation and Oxidative Stress by Sulforaphane in Experimental Diabetic Peripheral Neuropathy. Inflammation 2018; 41:1460-1476. [PMID: 29704151 DOI: 10.1007/s10753-018-0792-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
129
|
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms 2018; 6:microorganisms6020035. [PMID: 29693607 PMCID: PMC6027349 DOI: 10.3390/microorganisms6020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
Collapse
|
130
|
Silva Rodrigues JF, Silva E Silva C, França Muniz T, de Aquino AF, Neuza da Silva Nina L, Fialho Sousa NC, Nascimento da Silva LC, de Souza BGGF, da Penha TA, Abreu-Silva AL, de Sá JC, Soares Fernandes E, Grisotto MAG. Sulforaphane Modulates Joint Inflammation in a Murine Model of Complete Freund's Adjuvant-Induced Mono-Arthritis. Molecules 2018; 23:molecules23050988. [PMID: 29695052 PMCID: PMC6100047 DOI: 10.3390/molecules23050988] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation of one or more joints, and affects ~1% of the adult population worldwide. Sulforaphane (SFN) is a natural compound that has been suggested as an antioxidant. Here, SFN’s effects were evaluated in a murine mono-arthritis model. Mono-arthritis was induced in mice by a single intra-articular injection of Complete Freund’s Adjuvant (CFA-10 µg/joint, in 10 µL) into the ipsilateral joint. The contralateral joint received an equal volume of PBS. On the 4th day post-joint inflammation induction, animals received either SFN (10 mg/kg) or vehicle (3% DMSO in saline), intraperitoneally (i.p.), twice a day for 3 days. Joint swelling and secondary mechanical allodynia and hyperalgesia were evaluated over 7 days post-CFA. After this period, animals were culled and their blood and synovial fluid samples were collected for analysis of cell populations, cytokine release and thioredoxin reductase (TrxR) activity. Knee joint samples were also collected for histology. SFN reduced joint swelling and damage whilst increasing the recruitment of Ly6C+ and Ly6G+ cells to CFA-injected joints. SFN-treated animals presented down-regulation of CD11b and CD62L on synovial fluid Ly6G+ cells. Synovial fluid samples obtained from CFA-injected joints and plasma samples of SFN-treated mice presented higher levels of IL-6 and increased activity of TrxR, in comparison with controls. These results indicate that SFN reduces knee joint damage by modulating cell activation/migration to the joints, cytokine production and increasing the activity of TrxR, and therefore, may represent an alternative treatment to joint inflammation.
Collapse
Affiliation(s)
| | | | | | - Alana Fernanda de Aquino
- Post-Graduation Program, Uniceuma University, são Luis 65075, MA, Brazil.
- Florence Institute, Imunology Departament São Luis 65075, Brazil.
| | | | | | | | | | | | | | - Joicy Cortez de Sá
- Post-Graduation Program, Uniceuma University, são Luis 65075, MA, Brazil.
| | | | - Marcos Augusto Grigolin Grisotto
- Post-Graduation Program, Uniceuma University, são Luis 65075, MA, Brazil.
- Florence Institute, Imunology Departament São Luis 65075, Brazil.
| |
Collapse
|
131
|
Ma L, Liu G, Sampson L, Willett WC, Hu FB, Sun Q. Dietary glucosinolates and risk of type 2 diabetes in 3 prospective cohort studies. Am J Clin Nutr 2018; 107:617-625. [PMID: 29635498 PMCID: PMC6669329 DOI: 10.1093/ajcn/nqy003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Glucosinolates are a group of phytochemicals that are abundant in cruciferous vegetables and precursors of the potentially chemopreventive isothiocyanates. Isothiocyanates may reduce oxidative stress and inflammation, but little is known regarding the association between glucosinolate intake and risk of type 2 diabetes (T2D). Objective To evaluate the association between the intake of glucosinolates and the incidence of T2D in US men and women. Design This prospective cohort study investigated 200,907 women and men [71,256 women from the Nurses' Health Study (NHS; 1984-2012), 88,293 women from the NHS II (1991-2013), and 41,358 men from the Health Professionals Follow-Up Study (1986-2012)] who were free of diabetes, cardiovascular disease, and cancer at baseline. Diet was assessed using validated semiquantitative food frequency questionnaires. Self-reported T2D incidence was confirmed by a supplementary questionnaire. Results During follow-up in the 3 cohorts, we accumulated 4,303,750 person-years and 16,567 incident cases of T2D. After adjustment for major lifestyle and dietary risk factors for T2D, participants in the highest quintile of total glucosinolate intake had a 19% higher risk (95% CI: 13%, 25%; Ptrend < 0.001) of T2D than did those in the lowest quintile. The intake of 3 major glucosinolate subtypes was consistently and significantly associated with T2D risk, with pooled HRs ranging from 1.13 to 1.18 (all Ptrend < 0.001). A significant association was also observed between total cruciferous vegetable consumption and T2D (HR: 1.16; 95% CI :1.07, 1.25; Ptrend < 0.001). These associations persisted in subgroups defined by demographic, lifestyle, and other dietary factors. Conclusions Dietary glucosinolate intake was associated with a moderately higher risk of T2D in US adults. These results need to be replicated in further investigations, including biomarker-based studies. Mechanistic research is also needed to understand the relation between exposures to glucosinolates, isothiocyanates, and other metabolites with T2D risk. This trial was registered at clinicaltrials.gov as NCT03366532.
Collapse
Affiliation(s)
- Le Ma
- Departments of Nutrition,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | | | | | - Walter C Willett
- Departments of Nutrition,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Frank B Hu
- Departments of Nutrition,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Departments of Nutrition,The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,Address correspondence to QS (e-mail: )
| |
Collapse
|
132
|
Savion N, Levine A, Kotev-Emeth S, Bening Abu-Shach U, Broday L. S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans. PLoS One 2018; 13:e0194780. [PMID: 29579097 PMCID: PMC5868827 DOI: 10.1371/journal.pone.0194780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
S-allylmercapto-N-acetylcysteine (ASSNAC) was shown in our previous study to activate Nrf2-mediated processes and increase glutathione level and resistance to oxidative stress in cultured endothelial cells. In this study, we explored the antioxidant protective effect of ASSNAC in Caenorhabditis elegans (C. elegans). Treatment of gst-4 reporter strain (CL2166) with increasing concentrations of ASSNAC (0.2 to 20 mM) for 24 hours and with ASSNAC (10 mM) for various time periods demonstrated a significant concentration- and time-dependent increase in Glutathione S-transferase (GST) gene expression (up to 60-fold at 20 mM after 24 hours). In addition, ASSNAC (2 mM; 24 hours) treatment of C. elegans strains N2 (wild type strain), gst-4 reporter (CL2166) and temperature sensitive sterile strain (CF512) significantly increased GST enzyme activity by 1.9-, 1.5- and 1.8-fold, respectively. ASSNAC (2.0 mM; 24 hours) increased the reduced glutathione content in N2 and CF512 strains by 5.9- and 4.9-fold, respectively. Exposure of C. elegans (N2 strain) to a lethal concentration of H2O2 (3.5 mM; 120 min) resulted in death of 88% of the nematodes while pretreatment with ASSNAC (24 hours) reduced nematodes death in a concentration-dependent manner down to 8% at 2.0 mM. C. elegans nematodes (strain CF512) cultured on agar plates containing ASSNAC (0.5 to 5.0 mM) demonstrated a significant increase in lifespan compared to control (mean lifespan 26.45 ± 0.64 versus 22.90 ± 0.59 days; log-rank p ≤ 0.001 at 2.0 mM) with a maximal lifespan of 40 versus 36 days. In conclusion, ASSNAC up-regulates the GST gene expression and enzyme activity as well as the glutathione content in C. elegans nematodes and thereby increases their resistance to oxidative stress and extends their lifespan.
Collapse
Affiliation(s)
- Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Amir Levine
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
133
|
Sulforaphane prevents maleic acid-induced nephropathy by modulating renal hemodynamics, mitochondrial bioenergetics and oxidative stress. Food Chem Toxicol 2018; 115:185-197. [PMID: 29548851 DOI: 10.1016/j.fct.2018.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Maleic acid (MA)-induced nephropathy that is characterized by proteinuria, glycosuria, phosphaturia and a deficient urinary acidification and concentration. Sulforaphane (SF) is an indirect antioxidant that shows nephroprotective effects. The aim of the present work was to test the pre-treatment with SF against the MA-induced nephropathy. Wistar rats (230-260 g) were separated in the following groups: control, MA (which received 400 mg/kg of MA), SF + MA (which received MA and 1 mg/kg of SF each day for four days) and SF (which only received SF). MA induced proteinuria, an increase in urinary excretion of N-acetyl-β-d-glucosaminidase, and a decrease in plasma glutathione peroxidase activity, renal blood flow, and oxygenation and perfusion of renal cortex. All these impairments correlated with higher levels of oxidative damage markers and exacerbated superoxide anion production on renal cortex. Moreover, MA impaired mitochondrial bioenergetics associated to complex I, mitochondrial membrane potential and respiratory control index and increased the mitochondrial production of hydrogen peroxide. Further it disrupted mitochondrial morphology. SF prevented all the above-described alterations. In conclusion, the protective effect of SF against MA-induced nephropathy is associated with preservation of mitochondrial bioenergetics, amelioration of oxidative stress and improvement of renal hemodynamics and renal cortex oxygenation.
Collapse
|
134
|
Arcidiacono P, Webb CM, Brooke MA, Zhou H, Delaney PJ, Ng KE, Blaydon DC, Tinker A, Kelsell DP, Chikh A. p63 is a key regulator of iRHOM2 signalling in the keratinocyte stress response. Nat Commun 2018; 9:1021. [PMID: 29523849 PMCID: PMC5844915 DOI: 10.1038/s41467-018-03470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Matthew A Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Paul J Delaney
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Keat-Eng Ng
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Diana C Blaydon
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David P Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Anissa Chikh
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
135
|
Eren E, Tufekci KU, Isci KB, Tastan B, Genc K, Genc S. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells. Front Immunol 2018; 9:36. [PMID: 29410668 PMCID: PMC5787131 DOI: 10.3389/fimmu.2018.00036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Collapse
Affiliation(s)
- Erden Eren
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Kamer Burak Isci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bora Tastan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Sermin Genc
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.,Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
136
|
Rakariyatham K, Wu X, Tang Z, Han Y, Wang Q, Xiao H. Synergism between luteolin and sulforaphane in anti-inflammation. Food Funct 2018; 9:5115-5123. [DOI: 10.1039/c8fo01352g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Luteolin and sulforaphane are well-known food bioactives with anti-inflammatory properties. In this study, we demonstrated the synergistic interactions between luteolin and sulforaphane against lipopolysaccharide-induced inflammation in macrophages.
Collapse
Affiliation(s)
| | - Xian Wu
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Zhonghai Tang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Yanhui Han
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Qi Wang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Hang Xiao
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Department of Food Science
| |
Collapse
|
137
|
Yanaka A. Daily intake of broccoli sprouts normalizes bowel habits in human healthy subjects. J Clin Biochem Nutr 2017; 62:75-82. [PMID: 29371757 PMCID: PMC5773831 DOI: 10.3164/jcbn.17-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic oxidative stress impairs regular defecation. Sulforaphane (SFN) enhances anti-oxidant systems, ameliorating oxidative injury. SFN inhibits overgrowth of anaerobic microflora and protects small intestine from oxidative injury. We assessed whether daily intake of SFN-rich broccoli sprouts (BS) improves defecation in humans. Forty-eight subjects, with a constipation scoring system (CSS) >2 points, were assigned to either the BS group (n = 24) or the alfalfa sprouts (AS) group (n = 24), and were requested to eat 20 g daily of raw BS or AS, respectively, for 4 weeks. BS contains 4.4 mg/g sulforaphane glucosinolates (SGS), while AS contains no SGS. CSS-based questionnaires were performed to evaluate bowel habit. Stool samples were collected to evaluate intestinal microflora using a terminal restriction fragment length polymorphism flora analysis. Intervention with BS, but not AS, caused a significant decrease in the duration of attempted defecation and the total CSS score. Intervention with BS decreased the percentage of Bifidobacterium in the stool. These results suggest that daily intake of BS improves bowel habit in human subjects. Since BS treatment enhance antioxidant enzyme activities, these effects of BS appear to relate with the SFN-mediated modulation of the intestinal motility during exposure to oxidative stress. (UMIN Clinical Trial Registration Number: UMIN-000021207).
Collapse
Affiliation(s)
- Akinori Yanaka
- Hitachi Medical Education and Research Center, University of Tsukuba Hospital, Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
138
|
Pereira A, Fernandes R, Crisóstomo J, Seiça RM, Sena CM. The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Sci Rep 2017; 7:14357. [PMID: 29085055 PMCID: PMC5662716 DOI: 10.1038/s41598-017-14733-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
In this study we investigate pyridoxamine (PM) and/or sulforaphane (SFN) as therapeutic interventions to determine whether activators of NFE2-related factor 2 (Nrf2) can be used in addition with inhibitors of advanced glycation end products (AGE) formation to attenuate oxidative stress and improve endothelial dysfunction in type 2 diabetes. Goto-kakizaki (GK) rats, an animal model of non-obese type 2 diabetes, were treated with or without PM and/or SFN during 8 weeks and compared with age-matched Wistar rats. At the end of the treatment, nitric oxide (NO)-dependent and independent vasorelaxation in isolated aorta and mesenteric arteries were evaluated. Metabolic profile, NO bioavailability and vascular oxidative stress, AGE and Nrf2 levels were also assessed. Diabetic GK rats presented significantly lower levels of Nrf2 and concomitantly exhibited higher levels of oxidative stress and endothelial dysfunction. PM and SFN as monotherapy were capable of significantly improving endothelial dysfunction in aorta and mesenteric arteries decreasing vascular oxidative damage, AGE and HbA1c levels. Furthermore, SFN + PM proved more effective reducing systemic free fatty acids levels, normalizing endothelial function, NO bioavailability and glycation in GK rats. Activators of Nrf2 can be used therapeutically in association with inhibitors of AGE and cross-linking formation to normalize endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Ana Pereira
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel M Seiça
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina M Sena
- Physiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
139
|
Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles. Sci Rep 2017; 7:12902. [PMID: 29018242 PMCID: PMC5635018 DOI: 10.1038/s41598-017-12926-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022] Open
Abstract
Sulforaphane (SFN) plays an important role in preventing oxidative stress by activating the nuclear factor (erythroid derived 2)-like 2 (Nrf2) signalling pathway. SFN may improve exercise endurance capacity by counteracting oxidative stress-induced damage during exercise. We assessed running ability based on an exhaustive treadmill test (progressive-continuous all-out) and examined the expression of markers for oxidative stress and muscle damage. Twelve- to 13-week-old Male wild-type mice (Nrf2 +/+) and Nrf2-null mice (Nrf2 -/-) on C57BL/6J background were intraperitoneally injected with SFN or vehicle prior to the test. The running distance of SFN-injected Nrf2 +/+ mice was significantly greater compared with that of uninjected mice. Enhanced running capacity was accompanied by upregulation of Nrf2 signalling and downstream genes. Marker of oxidative stress in SFN-injected Nrf2 +/+ mice were lower than those in uninjected mice following the test. SFN produced greater protection against muscle damage during exhaustive exercise conditions in Nrf2 +/+ mice than in Nrf2 -/- mice. SFN-induced Nrf2 upregulation, and its antioxidative effects, might play critical roles in attenuating muscle fatigue via reduction of oxidative stress caused by exhaustive exercise. This in turn leads to enhanced exercise endurance capacity. These results provide new insights into SFN-induced upregulation of Nrf2 and its role in improving exercise performance.
Collapse
|
140
|
Gamma radiation treatment activates glucomoringin synthesis in Moringa oleifera. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
141
|
Li YJ, Ou JJ, Li YM, Xiang DX. Dietary Supplement for Core Symptoms of Autism Spectrum Disorder: Where Are We Now and Where Should We Go? Front Psychiatry 2017; 8:155. [PMID: 28878697 PMCID: PMC5572332 DOI: 10.3389/fpsyt.2017.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a class of severe and chronic conditions and core symptoms are deficits in social interaction, language communication impairments, and repetitive/stereotyped behavior. Given the limitations of available treatments and substantially increased prevalence of the disease, additional interventions are needed. Since the use of dietary supplements for ASD is of high prevalence, up-to-date information about those supplements are required for both parents and clinicians. Relevant articles were identified through a systematic search of PubMed, EMBASE, Cochrane library, and PsychINFO databases (through May 2017). Current best evidences of 22 randomized controlled trials on 8 different dietary supplements for core symptoms of ASD were reviewed. For each supplement, this report focuses on the definition and potential therapeutic mechanisms, the latest advances, and discussion of study limitations and future directions. Most studies were small and short term, and there is little evidence to support effectiveness of dietary supplements for children with ASD.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Jun Ou
- Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
142
|
Dacosta C, Bao Y. The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables. Nutrients 2017; 9:nu9080902. [PMID: 28825609 PMCID: PMC5579695 DOI: 10.3390/nu9080902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.
Collapse
Affiliation(s)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK. .
| |
Collapse
|
143
|
Jiao Z, Chang J, Li J, Nie D, Cui H, Guo D. Sulforaphane increases Nrf2 expression and protects alveolar epithelial cells against injury caused by cigarette smoke extract. Mol Med Rep 2017; 16:1241-1247. [PMID: 28586068 PMCID: PMC5562053 DOI: 10.3892/mmr.2017.6700] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoking is a primary risk factor for chronic obstructive pulmonary disease (COPD), as it damages epithelial cells through a variety of mechanisms. Sulforaphane (SFN) is an antioxidant agent, which exerts protective effects against cell damage by activating the nuclear factor erythroid 2 like 2 (NFE2L2; Nrf2). The present study was undertaken to investigate the effects and underlying mechanisms of SFN in preventing cigarette smoke extract (CSE)‑induced oxidative damage to RLE‑6TN rat lung epithelial cells. MTT assay was used to determine the cytotoxicity of SFN and CSE. The effect of SFN and CSE on cell cycle progression, apoptosis and intracellular reactive oxygen species (ROS) levels were analyzed using flow cytometry. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to quantify mRNA and protein expression levels of Nrf2 respectively. SFN protected RLE‑6TN cells from oxidative damage, potentially via increasing Nrf2 expression and reducing ROS levels. In addition, SFN attenuated G1 phase cell cycle arrest and abrogated apoptosis. Therefore, SFN protected alveolar epithelial cells against CSE‑induced oxidative injury by upregulating Nrf2 expression. The results of the present study may provide theoretical support for the clinical use of SFN in patients with COPD.
Collapse
Affiliation(s)
- Zongxian Jiao
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jiachen Chang
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Pathology, Fangshan Maternal & Child Health Hospital of Beijing, Beijing 102488, P.R. China
| | - Jing Li
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dengmei Nie
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Huijuan Cui
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dongfang Guo
- Research Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
144
|
Jiang XP, Tang JY, Xu Z, Han P, Qin ZQ, Yang CD, Wang SQ, Tang M, Wang W, Qin C, Xu Y, Shen BX, Zhou WM, Zhang W. Sulforaphane attenuates di-N-butylphthalate-induced reproductive damage in pubertal mice: Involvement of the Nrf2-antioxidant system. ENVIRONMENTAL TOXICOLOGY 2017; 32:1908-1917. [PMID: 28295950 DOI: 10.1002/tox.22413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
di-N-butylphthalate (DBP) is a ubiquitous environmental pollutant used for plastic coating and in the cosmetics industry. It has toxic effects on body health, especially the male reproductive system. Here, we investigated the effects of DBP on the male reproductive system of pubertal mice and explored the protective role of sulforaphane (SFN). The results showed that DBP significantly reduced the anogenital distance, testicular weight, sperm count and motility, and plasma and testicular testosterone levels and significantly increased the oxidative stress, sperm abnormalities, and testicular cell apoptosis. SFN supplementation ameliorated these effects. After DBP stimulation, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1 and NQO1. Upregulation of Nrf2 by SFN reduced the DBP-mediated intracellular oxidative toxicity and also increased testosterone secretion and spermatogenesis, which were decreased by DBP. These findings indicate that SFN can attenuate DBP-induced reproductive damage in pubertal mice via Nrf2-associated pathways.
Collapse
Affiliation(s)
- Xu-Ping Jiang
- Department of Urology, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing-Yuan Tang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Urology, Wuxi Second People's Hospital, Nanjing Medical University, Wuxi, 214002, China
| | - Zhen Xu
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Han
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhi-Qiang Qin
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cheng-di Yang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shang-Qian Wang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Tang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Wang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Qin
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Xu
- Department of Urology and Andrology, Drum Tower Hospital, Nanjing, 210008, China
| | - Bai-Xin Shen
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wei-Min Zhou
- Department of Urology, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, China
| | - Wei Zhang
- Department of Urology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
145
|
Sohel MMH, Konca Y, Akyuz B, Arslan K, Sariozkan S, Cinar MU. Concentration dependent antioxidative and apoptotic effects of sulforaphane on bovine granulosa cells in vitro. Theriogenology 2017; 97:17-26. [DOI: 10.1016/j.theriogenology.2017.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
|
146
|
Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems. Neurotox Res 2017; 32:340-350. [DOI: 10.1007/s12640-017-9738-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
|
147
|
Cardenia V, Rodriguez-Estrada MT, Lorenzini A, Bandini E, Angeloni C, Hrelia S, Malaguti M. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise. J Steroid Biochem Mol Biol 2017; 169:137-144. [PMID: 27084531 DOI: 10.1016/j.jsbmb.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.
Collapse
Affiliation(s)
- Vladimiro Cardenia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Erika Bandini
- Scientific Institute of Romagna for the Study and Treatment of Cancer (IRST), Unit of Gene Therapy Meldola-Forlı', Meldola (FC), Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| |
Collapse
|
148
|
Nazmy EA, El-Khouly OA, Atef H, Said E. Sulforaphane protects against sodium valproate–induced acute liver injury. Can J Physiol Pharmacol 2017; 95:420-426. [DOI: 10.1139/cjpp-2016-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-induced hepatotoxicity is one of the most commonly encountered obstacles in the field of medical practice. Sodium valproate (VPA) is among many drugs with reported hepatotoxic effects. Sulforaphane (SFN) is a thiol compound found in wide abundance in cruciferous plants that has numerous reported therapeutic efficacies. The current investigation sheds light on the potential hepatoprotective effect of SFN against VPA-induced liver injury in rats. Twice daily VPA (700 mg/kg, i.p.) for 7 days induced significant biochemical alterations and hepatic histopathological damage. SFN (0.5 mg/kg, orally) for 7 days significantly boosted liver function biomarkers; it reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase, and restored serum albumin concentration in a significant manner. Meanwhile, SFN significantly mitigated VPA-induced histopathological alterations. To highlight the mechanisms implicated in the observed hepatoprotective action, hepatic malondialdehyde and tumour necrosis factor α content significantly declined with concomitant increase in hepatic heme oxygenase-1 content and glutathione concentration with SFN treatment. In conclusion, SFN can significantly ameliorate VPA-induced hepatotoxicity and liver injury primarily by direct association between antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Hoda Atef
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
149
|
Involvement of Nrf2 in Ocular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1703810. [PMID: 28473877 PMCID: PMC5394909 DOI: 10.1155/2017/1703810] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.
Collapse
|
150
|
Paul S, Bhargava K, Ahmad Y. The meta-analytical paradigm in an in silico hybrid: Pathways and networks perturbed during exposure to varying degrees of hypobaric hypoxia. Proteomics Clin Appl 2017; 11. [PMID: 28155252 DOI: 10.1002/prca.201600160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE Computational biology has opened a gateway to omics data analysis and shifted the focus from molecules to systemic molecular networks in the domain of hypobaric hypoxia (HH). Yet there are no meta-analytical investigations circumventing constraints such as organism (rat/human), HH exposure conditions (acute/chronic), and the tissues that can be investigated simultaneously in the realm of wet lab experiments. EXPERIMENTAL DESIGN We analyzed 154 differentially expressed proteins upon HH exposure using Ingenuity Pathway Analysis (IPA) tool, without the constraint of using a single organism or tissue type, to determine the most significant pathways and networks that are perturbed across a range of HH conditions. RESULTS We found acute phase response signaling, farsenoid X receptor/retinoid X receptor activation, liver X receptor/retinoid X receptor activation, clathrin-mediated endocytosis signaling, mitochondrial dysfunction, production of nitric oxide and ROS in macrophages, and integrin signaling to be the most significant universally perturbed pathways. Unique protein-function relationships have also been highlighted. CONCLUSION AND CLINICAL RELEVANCE This meta-analysis provides a list of specific pathways and networks across two model organisms that are perturbed due to HH exposure irrespective of its duration/intensity. Thus, it will be a map of important pathways and proteins to look at when exploring effects of HH exposure irrespective of tissue/organism chosen, particularly in the context of prophylactic/therapeutic targets.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| | - Kalpana Bhargava
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute Of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Ministry of Defence, Timarpur, New Delhi, India
| |
Collapse
|