101
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
102
|
Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, Feng H, Jiang JH, Peng H, Liu W. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med 2017; 13:2316-2324. [PMID: 28565844 PMCID: PMC5443310 DOI: 10.3892/etm.2017.4276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The current study aimed to lay a theoretical foundation for further development of choline as an anti-hypoxia damage drug. Wild-type, 3- to 5-month-old male Sprague-Dawley rats, weighing 180-220 g, were used in this study. The rats were randomly divided into a normoxic control group (n=16) and a chronic intermittent hypoxia (CIH) group (n=16). The effects of CIH on acetylcholine (ACh)-mediated endothelium-dependent vasodilatation in the rat cerebral basilar arterioles and mesenteric arterioles, as well as the protective effects of choline on the arterioles damaged by hypoxia were observed. Moreover, the effects of choline on endothelial cell proliferation during hypoxia were observed, and choline's functional mechanism further explored. The ACh-mediated vasodilatation of rat cerebral basilar and mesenteric arterioles significantly reduced during hypoxia (P<0.01). Choline significantly increased dilation in the rat cerebral basilar (P<0.01) and mesenteric arterioles (P<0.05) damaged by CIH compared with those in the control group. In addition, under hypoxic conditions, choline significantly promoted the proliferation of rat aortic endothelial cells (P<0.05) and significantly reduced lactate dehydrogenase activity in the cell culture supernatant in vitro (P<0.05). Furthermore, the effect of choline could be related to its ability to significantly increase the secretion of vascular endothelial growth factor (P<0.01) and activation of α7 non-neuronal nicotinic acetylcholine receptors under hypoxia (P<0.01). This study demonstrated that choline could have protective effects against hypoxic injuries.
Collapse
Affiliation(s)
- Lian-Cheng Zhang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Xin Jin
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Zhao Huang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Zhen-Nan Yan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Pei-Bing Li
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Rui-Feng Duan
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hong Feng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Jian-Hua Jiang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Wei Liu
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| |
Collapse
|
103
|
Wang Z, Hou L, Huang L, Guo J, Zhou X. Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice. Biochem Biophys Res Commun 2017; 486:116-123. [PMID: 28274877 DOI: 10.1016/j.bbrc.2017.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/04/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress is associated with obesity and may be accompanied by liver insulin resistance and mitochondrial dysfunction. Decreased mitochondrial respiratory chain enzymatic activities and decreased insulin metabolic signaling may promote these maladaptive changes. In this context, exenatide has been reported to reduce hepatic lipid deposition, improve insulin sensitivity and improve mitochondrial dysfunction. We hypothesized that exenatide would attenuate mitochondrial dysfunction by reducing hepatic lipid deposition, blunting oxidant stress and promoting insulin metabolic signaling in a high fat diet-induced model of obesity and insulin resistance. Sixteen-week-old male C57BL/6 diet-induced obese (DIO) mices and age-matched standard diet (STD) mices were treated with exenatide (10 μg/kg twice a day) for 28 days. Compared with untreated STD mice, untreated DIO mice exhibited deposited excessive lipid in liver and produced the oxidative stress in conjunction with insulin resistance, abnormal hepatic cells and mitochondrial histoarchitecture, mitochondrial dysfunction and reduced organism metabolism. Exenatide reduced hepatic steatosis, decreased oxidative stress, and improved insulin resistance in DIO mice, in concert with improvements in the insulin metabolic signaling, mitochondrial respiratory chain enzymatic activation, adenine nucleotide production, organism metabolism and weight gain. Results support the hypothesis that exenatide reduces hepatic cells and mitochondrial structural anomaly and improves insulin resistance in concert with improvements in insulin sensitivity and mitochondrial function activation, concomitantly with reductions in oxidative stress.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Lin Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Lanhui Huang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Jun Guo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China
| | - Xinli Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China.
| |
Collapse
|
104
|
Tanaka M, Kita T, Yamasaki S, Kawahara T, Ueno Y, Yamada M, Mukai Y, Sato S, Kurasaki M, Saito T. Maternal resveratrol intake during lactation attenuates hepatic triglyceride and fatty acid synthesis in adult male rat offspring. Biochem Biophys Rep 2017; 9:173-179. [PMID: 28956002 PMCID: PMC5614589 DOI: 10.1016/j.bbrep.2016.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Resveratrol (3,5,4-trihydroxystilbene) is a natural polyphenolic compound found in grapes and red wine and has been shown to exert protective effects on the liver preventing lipid accumulation induced by a high-fat diet. However, no studies have shown that the nutritional resveratrol intake by the parental generation has modified lipogenesis in an adult offspring. The aim of this study was to investigate whether maternal resveratrol intake during lactation affects lipogenesis in adult male rat offspring, and if it does, what is the molecular mechanistic basis. Six male pups born from mothers given a control diets during lactation (CC group) and six male pups born from mothers given a control diet as well as resveratrol during lactation (CR group) were fed a standard diet until sacrifice at 36 weeks. Adult male offspring from mothers given resveratrol during lactation (CR group) had lower body weight from the fourth week of lactation until adulthood, but no significant change was observed in the relative food intake. Low levels of plasma triacylglycerol were found in the CR group compared to the CC group. Histopathological analysis of the livers of adult male rat offspring revealed lipid accumulation in hepatocytes in the CC group, whereas lipid droplets were rare in the CR group. Hepatic protein levels of AMPK-phosphorylated at ser403, Sirt1, and Nampt in the CR group were upregulated significantly compared to the CC group. These results indicated the maternal resveratrol intake during lactation-induced activation of AMPK through Sirt1 upregulation. In this study, significant upregulation of the levels of precursor of sterol regulatory element binding protein-1c (SREBP-1c) and downregulation of the ratio of active-SREBP-1c/precusor-SREBP-1c were observed in the CR group compared to the CC group. These results suggested that proteolytic processing of SREBP-1c was suppressed by AMPK in the livers of the CR group. It is well known that SREBP-1c regulates the lipogenic pathway by activating genes involved in triglyceride and fatty acid synthesis. The present study showed significant downregulation of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) levels in the CR group. These results indicated that maternal resveratrol intake during lactation suppressed SREBP-1c cleavage and nuclear translocation and repressed SREBP-1c target gene expression such as FAS and ACC in the livers of adult male offspring. These changes attenuate hepatic triacylglycerol and fatty acid synthesis in adult male offspring.
Collapse
Affiliation(s)
- Masato Tanaka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tomomi Kita
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tae Kawahara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mai Yamada
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.,Laboratory of Environmental Health Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
105
|
Makhdoumi P, Roohbakhsh A, Karimi G. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed Pharmacother 2016; 84:1635-1644. [DOI: 10.1016/j.biopha.2016.10.073] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
|
106
|
Perillo E, Porto S, Falanga A, Zappavigna S, Stiuso P, Tirino V, Desiderio V, Papaccio G, Galdiero M, Giordano A, Galdiero S, Caraglia M. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget 2016; 7:4077-92. [PMID: 26554306 PMCID: PMC4826191 DOI: 10.18632/oncotarget.6013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Emiliana Perillo
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
107
|
Carresi C, Gliozzi M, Giancotta C, Scarcella A, Scarano F, Bosco F, Mollace R, Tavernese A, Vitale C, Musolino V. Studies on the protective role of Bergamot polyphenols in doxorubicin-induced cardiotoxicity. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
108
|
Huang PC, Kuo WW, Shen CY, Chen YF, Lin YM, Ho TJ, Padma VV, Lo JF, Huang CY, Huang CY. Anthocyanin Attenuates Doxorubicin-Induced Cardiomyotoxicity via Estrogen Receptor-α/β and Stabilizes HSF1 to Inhibit the IGF-IIR Apoptotic Pathway. Int J Mol Sci 2016; 17:E1588. [PMID: 27657062 PMCID: PMC5037853 DOI: 10.3390/ijms17091588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (Dox) is extensively used for chemotherapy in different types of cancer, but its use is limited to because of its cardiotoxicity. Our previous studies found that doxorubicin-induced insulin-like growth factor II receptor (IGF-IIR) accumulation causes cardiomyocytes apoptosis via down-regulation of HSF1 pathway. In these studies, we demonstrated a new mechanism through which anthocyanin protects cardiomyoblast cells against doxorubicin-induced injury. We found that anthocyanin decreased IGF-IIR expression via estrogen receptors and stabilized heat shock factor 1 (HSF1) to inhibit caspase 3 activation and apoptosis of cardiomyocytes. Therefore, the phytoestrogen from plants has been considered as another potential treatment for heart failure. It has been reported that the natural compound anthocyanin (ACN) has the ability to reduce the risk of cardiovascular disease (CVD). Here, we demonstrated that anthocyanin acts as a cardioprotective drug against doxorubicin-induced heart failure by attenuating cardiac apoptosis via estrogen receptors to stabilize HSF1 expression and down-regulated IGF-IIR-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 91202, Taiwan.
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin 51045, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung 40402, Taiwan.
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
109
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
110
|
Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes. Toxicol In Vitro 2016; 34:128-137. [DOI: 10.1016/j.tiv.2016.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023]
|
111
|
Du JK, Cong BH, Yu Q, Wang H, Wang L, Wang CN, Tang XL, Lu JQ, Zhu XY, Ni X. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic Biol Med 2016; 96:406-17. [PMID: 27174562 DOI: 10.1016/j.freeradbiomed.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/27/2022]
Abstract
Mitochondrial oxidative damage is critically involved in cardiac ischemia reperfusion (I/R) injury. MicroRNA-22 (miR-22) has been predicted to potentially target sirtuin-1 (Sirt1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), both of which are known to provide protection against mitochondrial oxidative injury. The present study aims to investigate whether miR-22 is involved in the regulation of cardiac I/R injury by regulation of mitochondrial function. We found that miR-22 level was significantly increased in rat hearts subjected to I/R injury, as compared with the sham group. Intra-myocardial injection of 20 ug miR-22 inhibitor reduced I/R injury as evidenced by significant decreases in cardiac infarct size, serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels and the number of apoptotic cardiomyocytes. H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) insult exhibited an increase in miR-22 expression, which was blocked by reactive oxygen species (ROS) scavenger and p53 inhibitor. In addition, miR-22 inhibitor attenuated, whereas miR-22 mimic aggravated H/R-induced injury in H9c2 cardiomyocytes. MiR-22 inhibitor per se had no significant effect on cardiac mitochondrial function. Mitochondria from rat receiving miR-22 inhibitor 48h before ischemia were found to have a significantly less mitochondrial superoxide production and greater mitochondrial membrane potential and ATP production as compared with rat receiving miR control. In H9c2 cardiomyocyte, it was found that miR-22 mimic aggravated, whilst miR-22 inhibitor significantly attenuated H/R-induced mitochondrial damage. By using real time PCR, western blot and dual-luciferase reporter gene analyses, we identified Sirt1 and PGC1α as miR-22 targets in cardiomyocytes. It was found that silencing of Sirt1 abolished the protective effect of miR-22 inhibitor against H/R-induced mitochondrial dysfunction and cell injury in cardiomyocytes. Taken together, our findings reveal a novel molecular mechanism for cardiac mitochondrial dysfunction during myocardial I/R injury at the miRNA level and demonstrate the therapeutic potential of miR-22 inhibition for acute myocardial I/R injury by maintaining cardiac mitochondrial function.
Collapse
Affiliation(s)
- Jian-Kui Du
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Bin-Hai Cong
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Qing Yu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - He Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Long Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Jian-Qiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
112
|
Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, Shirani K, Karimi G. The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review. Nutr Cancer 2016; 68:892-917. [PMID: 27341037 DOI: 10.1080/01635581.2016.1187280] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although doxorubicin (DOX) is among the most widely used anticancer agents, its clinical application is hampered owing to its cardiotoxicity. Adjuvant therapy with an antioxidant has been suggested as a promising strategy to reduce DOX-induced adverse effects. In this context, many phenolic compounds have been reported to protect against DOX-induced cardiotoxicity. The cardioprotective effects of phenolic compounds are exerted via multiple mechanisms including inhibition of reactive oxygen species generation, apoptosis, NF-κB, p53, mitochondrial dysfunction, and DNA damage. In this review, we present a summary of the in vitro, in vivo, and clinical findings on the protective mechanisms of phenolic compounds against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kamal Razavi-Azarkhiavi
- a Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Milad Iranshahy
- b Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Sahebkar
- c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Kobra Shirani
- d Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Gholamreza Karimi
- e Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,f Pharmaceutical Research Center and Pharmacy School, Mashhad University of Medical Sciences
| |
Collapse
|
113
|
Liu MH, Shan J, Li J, Zhang Y, Lin XL. Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Exp Ther Med 2016; 12:1113-1118. [PMID: 27446329 DOI: 10.3892/etm.2016.3437] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/25/2016] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is an efficient drug used in cancer therapy; however, it can induce severe cytotoxicity, which limits its clinical application. In the present study, the effects of resveratrol (RES) on sirtuin 1 (SIRT1) activation in mediating DOX-induced cytotoxicity in H9c2 cardiac cells was investigated. H9c2 cells were exposed to 5 µM DOX for 24 h to establish a model of DOX cardiotoxicity. Apoptosis of H9c2 cardiomyocytes was assessed using the MTT assay and Hoechst nuclear staining. The results demonstrated that pretreating H9c2 cells with RES prior to the exposure of DOX resulted in increased cell viability and a decreased quantity of apoptotic cells. Western blot analysis demonstrated that DOX decreased the expression level of SIRT1. These effects were significantly alleviated by co-treatment with RES. In addition, the results demonstrated that DOX administration amplified forkhead box O1 (FoxO1) and P53 expression levels in H9c2 cells. RES was also found to protect against DOX-induced increases of FoxO1 and P53 expression levels in H9c2 cells. Furthermore, the protective effects of RES were arrested by the SIRT1 inhibitor nicotinamide. In conclusion, the results demonstrated that RES protected H9c2 cells against DOX-induced injuries via SIRT1 activation.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Shan
- Department of Pathology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong 528437, P.R. China
| | - Jian Li
- Department of Ultrasonic Diagnosis, Bo'Ai Hospital of Zhongshan, Zhongshan, Guangdong 528403, P.R. China
| | - Yuan Zhang
- Department of Pathology, Mawangdui Hospital, Changsha, Hunan 410016, P.R. China
| | - Xiao-Long Lin
- Department of Pathology, The Third People's Hospital of Huizhou, Affiliated Huizhou Hospital of Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| |
Collapse
|
114
|
Cheng T, Liu J, Ren J, Huang F, Ou H, Ding Y, Zhang Y, Ma R, An Y, Liu J, Shi L. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics 2016; 6:1277-92. [PMID: 27375779 PMCID: PMC4924499 DOI: 10.7150/thno.15133] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance.
Collapse
Affiliation(s)
- Tangjian Cheng
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Jinjian Liu
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Jie Ren
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Fan Huang
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Hanlin Ou
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yuxun Ding
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yumin Zhang
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Rujiang Ma
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yingli An
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Jianfeng Liu
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Linqi Shi
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
- 3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
115
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
116
|
Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5724973. [PMID: 27313831 PMCID: PMC4893565 DOI: 10.1155/2016/5724973] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity.
Collapse
|
117
|
EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget 2016; 6:9701-17. [PMID: 25991666 PMCID: PMC4496391 DOI: 10.18632/oncotarget.3832] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 01/04/2023] Open
Abstract
Prion diseases caused by aggregated misfolded prion protein (PrP) are transmissible neurodegenerative disorders that occur in both humans and animals. Epigallocatechin-3-gallate (EGCG) has preventive effects on prion disease; however, the mechanisms related to preventing prion diseases are unclear. We investigated whether EGCG, the main polyphenol in green tea, prevents neuron cell damage induced by the human prion protein. We also studied the neuroprotective mechanisms and proper signals mediated by EGCG. The results showed that EGCG protects the neuronal cells against human prion protein-induced damage through inhibiting Bax and cytochrome c translocation and autophagic pathways by increasing LC3-II and reducing and blocking p62 by using ATG5 small interfering (si) RNA and autophagy inhibitors. We further demonstrated that the neuroprotective effects of EGCG were exhibited by a class III histone deacetylase; sirt1 activation and the neuroprotective effects attenuated by sirt1 inactivation using sirt1 siRNA and sirtinol. We demonstrated that EGCG activated the autophagic pathways by inducing sirt1, and had protective effects against human prion protein-induced neuronal cell toxicity. These results suggest that EGCG may be a therapeutic agent for treatment of neurodegenerative disorders including prion diseases.
Collapse
|
118
|
Liao W, Zhang R, Dong C, Yu Z, Ren J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomedicine 2016; 11:1305-1321. [PMID: 27143875 PMCID: PMC4841427 DOI: 10.2147/ijn.s92257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer.
Collapse
Affiliation(s)
- Wenzhen Liao
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Rong Zhang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Chenbo Dong
- Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Zhiqiang Yu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaoyan Ren
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
119
|
Dolinsky VW, Cole LK, Sparagna GC, Hatch GM. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1544-54. [PMID: 26972373 DOI: 10.1016/j.bbalip.2016.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/19/2023]
Abstract
Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial β-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada
| | - Laura K Cole
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba (CHRIM), Canada; Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
120
|
Restoration of sirt1 function by pterostilbene attenuates hypoxia-reoxygenation injury in cardiomyocytes. Eur J Pharmacol 2016; 776:26-33. [PMID: 26921129 DOI: 10.1016/j.ejphar.2016.02.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Restoration of blood supply to ischemic myocardium causes cardiomyocyte damage, a process known as ischemia-reperfusion injury. Excess reactive oxygen species and intracellular calcium contribute to cell damage but the involvement of sirt1, a versatile protein deacetylase in reperfusion-induced cell damage remains unknown. Here, we found that hypoxia-reoxygenation, an in vitro model of ischemia-reperfusion injury, induced H9c2 cardiomyocyte apoptosis as revealed by caspase-3 assay, Hoechst 33258 staining, flow cytometric analysis and JC-1 staining. Molecular docking analysis showed that, pterostilbene, a natural dimethyl ether derivative of resveratrol, binds to the enzymatic active pocket of sirt1. Importantly, application of pterostilbene at low concentrations of 0.1-3.0 μM rescued H9c2 cells from apoptosis, an effect comparable with resveratrol at 20 μM. Mechanistically, pterostilbene exerted its cardioprotective effects via 1) stimulation of sirt1 activity, since pretreatment of H9c2 cells with splitomicin, an antagonist of sirt1, removed the effects of pterostilbene, and 2) enhancement of sirt1 expression. Therefore, the present study demonstrates that activation of sitr1 during ischemia-reperfusion is cardioprotective and that the natural compound-pterostilbene-could be used therapeutically to alleviate ischemia-reperfusion injury.
Collapse
|
121
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
122
|
Vong LB, Nagasaki Y. Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles. Mol Pharm 2016; 13:449-55. [PMID: 26605906 DOI: 10.1021/acs.molpharmaceut.5b00676] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional chemotherapeutic drugs such as doxorubicin (DOX) are associated with severe adverse effects such as cardiac, hepatic, and gastrointestinal (GI) toxicities. Excessive production of reactive oxygen species (ROS) was reported to be one of the main mechanisms underlying these severe adverse effects. Recently, we have developed 2 types of novel redox nanoparticles (RNPs) including pH-sensitive redox nanoparticle (RNP(N)) and pH-insensitive redox nanoparticle (RNP(O)), which effectively scavenge overproduced ROS in inflamed and cancerous tissues. In this study, we investigated the effects of these RNPs on DOX-induced adverse effects during cancer chemotherapy. The DOX-induced body weight loss was significantly attenuated in the mice treated with RNPs, particularly pH-insensitive RNP(O). We also found that cardiac ROS levels in the DOX-treated mice were dramatically decreased by treatment with RNPs, resulting in the reversal of cardiac damage, as confirmed by both plasma cardiac biomarkers and histological analysis. It was interesting to notice that, during cotreatment with DOX and RNPs, the DOX uptake was significantly enhanced in the cancer cells, but not in healthy aortic endothelial cells in vitro. Treatment with RNPs also improved anticancer efficacy of DOX in the colitis-associated colon cancer model mice in vivo. On the basis of these results, a combination of the novel antioxidative nanotherapeutics (RNPs) with conventional anticancer drugs seems to be a robust strategy for well-tolerated anticancer therapy.
Collapse
Affiliation(s)
- Long Binh Vong
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.,Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
123
|
Potential Modulation of Sirtuins by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9831825. [PMID: 26788256 PMCID: PMC4691645 DOI: 10.1155/2016/9831825] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022]
Abstract
Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.
Collapse
|
124
|
Leon LJ, Gustafsson ÅB. Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol 2015; 95:78-85. [PMID: 26549356 DOI: 10.1016/j.yjmcc.2015.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart.
Collapse
Affiliation(s)
- Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
125
|
Chacko SM, Nevin KG, Dhanyakrishnan R, Kumar B. Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicol Rep 2015; 2:1213-1221. [PMID: 28962464 PMCID: PMC5598262 DOI: 10.1016/j.toxrep.2015.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (Dox) has been used for more than four decades to treat cancer, particularly solid tumours and haematological malignancies. However, the administration of this drug is a matter of concern in the clinical community, since Dox therapy is commonly associated with dose-dependent cardiotoxicity. Attempts at alleviating drug generated cardiac damage using naturally occurring compounds with radical scavenging property are a promising area of research. p-Coumaric acid (pCA) is one such compound which has significant antiradical scavenging effect. This study aims to investigate the effect of pre and co-administration of pCA on mitigating or preventing Dox induced cardiotoxicity in vitro using H9c2 cardiomyoblast cell lines. Addition of pCA and Dox were performed for both treatment and control sets on H9c2 cells. Sulphorhodamine B assay was used to study the cytotoxic effect of pCA and Dox. The effect of the drug on cell morphology, cell viability and nuclear damage was studied using AO/EB and DAPI staining. ROS production was studied using DCFH-DA staining. Mitochondrial membrane potential and intracellular calcium levels were assessed by rhodamine 123 and Fura 2AM staining. pCA showed strong ABTS cation radical scavenging activity and FRAP activity in a dose dependent manner. The results showed that Dox has significant cytotoxic effect in a dose dependent manner while pCA, even at higher concentrations did not display any significant cytotoxicity on H9c2 cells. Both pre treatment and co- administration of pCA reduced the drug induced toxic effects on cell morphology and enhanced the number of viable cells in comparison to the Dox treated cells as evident from the AO/EB and DAPI staining images. The Dox induced ROS production was found to be significantly reduced in pCA pre-treated and co-administered cells. Dox induced changes in mitochondrial membrane potential and intracellular calcium levels were remarkably improved following pre and co-treatment of H9c2 cells with pCA. These results clearly suggest that pre-treatment and co-administration of pCA is a promising therapeutic intervention in managing Dox mediated cardiotoxicity.
Collapse
Key Words
- ABTS, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)
- Cytotoxicity
- DAPI, trypan blue, 4′,6-diamidino-2-phenylindole
- DCFH-DA, dichlorofluorescin diacetate
- DMEM, Dulbecco’s modified Eagle’s medium
- Dox, doxorubicin
- Doxorubicin
- FBS, foetal bovine serum
- H9c2 cells
- RNS, reactive nitrogen species
- ROS
- ROS, reactive oxygen species
- SRB, sulphorhodamine-B
- p-Coumaric acid
- pCA, p-coumaric acid
Collapse
|
126
|
Favero G, Franceschetti L, Rodella LF, Rezzani R. Sirtuins, aging, and cardiovascular risks. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9804. [PMID: 26099749 PMCID: PMC4476976 DOI: 10.1007/s11357-015-9804-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/12/2015] [Indexed: 05/17/2023]
Abstract
The sirtuins comprise a highly conserved family proteins present in virtually all species from bacteria to mammals. Sirtuins are members of the highly conserved class III histone deacetylases, and seven sirtuin genes (sirtuins 1-7) have been identified and characterized in mammals. Sirtuin activity is linked to metabolic control, apoptosis, cell survival, development, inflammation, and healthy aging. In this review, we summarize and discuss the potential mutual relations between each sirtuin and cardiovascular health and the impact of sirtuins on oxidative stress and so age-related cardiovascular disorders, underlining the possibility that sirtuins will be novel targets to contrast cardiovascular risks induced by aging.
Collapse
Affiliation(s)
- Gaia Favero
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| | - Rita Rezzani
- />Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- />Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, Brescia, Italy
| |
Collapse
|
127
|
Poulose SM, Thangthaeng N, Miller MG, Shukitt-Hale B. Effects of pterostilbene and resveratrol on brain and behavior. Neurochem Int 2015. [PMID: 26212523 DOI: 10.1016/j.neuint.2015.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Age is the greatest universal risk factor for neurodegenerative diseases. During aging, these conditions progress from minor loss of function to major disruptions in daily life, loss of independence and ultimately death. Because approximately 25% of the world population is expected to be older than age 65 by 2050, and no treatments exist to halt or reverse ongoing neurodegeneration, the need for effective prevention strategies is more pressing that ever before. A growing body of research supports the role of diet in healthy aging, particularly diets rich in bioactive phytochemical compounds. Recently, stilbenes such as resveratrol (3, 5, 4'-trans-trihydroxystilbene) and its analogue, pterostilbene, have gained a significant amount of attention for their potent antioxidant, anti-inflammatory, and anticarcinogenic properties. However, evidence for the beneficial effects of stilbenes on cerebral function is just beginning to emerge. In this review, we summarize the current knowledge on the role of resveratrol and pterostilbene in improving brain health during aging, with specific focus on antioxidant and anti-inflammatory signaling and behavioral outcomes.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Nopporn Thangthaeng
- USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Marshall G Miller
- USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Barbara Shukitt-Hale
- USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
128
|
Abstract
Despite existing therapies, patients with heart failure have a very poor quality of life and a high 1-year mortality rate. Given the impact of this syndrome on health outcomes, research is being directed toward identifying novel strategies to treat heart failure symptoms as well as to prolong survival. One molecule that has been tested in animal models for this purpose is resveratrol. Resveratrol is a naturally occurring polyphenol found in several plants, and administration of resveratrol has been shown to prevent and/or slow the progression of heart failure in animal models of heart failure induced by myocardial infarction, pressure overload, myocarditis, and chemotherapy-induced cardiotoxicity. In addition, some animal studies have shown that resveratrol improves cardiac function and survival when administered as a treatment for established heart failure. Furthermore, as heart failure induces alterations in skeletal muscle and vasculature that also contribute to certain heart failure symptoms, such as fatigue and exercise intolerance, it has also been shown that resveratrol acts on these peripheral tissues to improve skeletal muscle and endothelial/vascular function. Therefore, if these animal studies translate to humans, resveratrol may prove to be a novel therapy for the treatment of heart failure.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
129
|
Lou Y, Wang Z, Xu Y, Zhou P, Cao J, Li Y, Chen Y, Sun J, Fu L. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med 2015. [PMID: 26202177 DOI: 10.3892/ijmm.2015.2291] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment with doxorubicin (DOX) is one of the major causes of chemotherapy-induced cardiotoxicity and is therefore, the principal limiting factor in the effectiveness of chemotherapy for cancer patients. DOX‑induced heart failure is thought to result from endoplasmic reticulum (ER) stress and cardiomyocyte apoptosis. Resveratrol (RV), a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. The aim of the present study was to examine the effects of RV on DOX‑induced cardiotoxicity in H9c2 cells. We hypothesized that RV would protect H9c2 cells against DOX‑induced ER stress and subsequent cell death through the activation of the Sirt1 pathway. Our results demonstrated that the decrease observed in the viability of the H9c2 cells following exposure to DOX was accompanied by a significant increase in the expression of the ER stress‑related proteins, glucose‑regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). However, we found that RV downregulated the expression of ER stress marker protein in the presence of DOX and restored the viability of the H9c2 cells. Exposure to RV or DOX alone only slightly increased the protein expression of Sirt1, whereas a significant increase in Sirt1 protein levels was observed in the cells treated with both RV and DOX. The Sirt1 inhibitor, nicotinamide (NIC), partially neutralized the effects of RV on the expression of Sirt1 in the DOX‑treated cells and completely abolished the effects of RV on the expression of GRP78 and CHOP. The findings of our study suggest that RV protects H9c2 cells against DOX‑induced ER stress through ER stabilization, and more specifically through the activation of the Sirt1 pathway, thereby leading to cardiac cell survival.
Collapse
Affiliation(s)
- Yu Lou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhen Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yi Xu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junxian Cao
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanshi Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yeping Chen
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junfeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
130
|
Gu J, Hu W, Zhang DD. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med 2015; 19:2324-8. [PMID: 26177159 PMCID: PMC4594674 DOI: 10.1111/jcmm.12633] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Doxorubicin is the mainstay of treatment for various haematological malignancies and solid tumours. However, its clinical application may be hampered by dose-dependent cardiotoxicity. The mechanism of doxorubicin-induced cardiotoxicity may involve various signalling pathways including free radical generation, peroxynitrite formation, calcium overloading, mitochondrial dysfunction and alteration in apoptosis and autophagy. Interestingly, the use of resveratrol in combination with doxorubicin has been reported to prevent cardiac toxicity as well as to exert a synergistic effect against tumour cells both in vivo and in vitro. Thus, the aim of this review is to summarize current knowledge and to elucidate the protective effect of resveratrol in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Wei Hu
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Da-dong Zhang
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
131
|
Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, Hsieh CC, Chen MC, Chiu HW, Ho CL, Chiu YC, Liu ML, Hua KF. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol 2015; 230:1567-79. [PMID: 25535911 DOI: 10.1002/jcp.24903] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is a caspase-1-containing multi-protein complex that controls the release of IL-1β and plays important roles in the development of inflammatory disease. Here, we report that resveratrol, a polyphenolic compound naturally produced by plants, inhibits NLRP3 inflammasome-derived IL-1β secretion and pyroptosis in macrophages. Resveratrol inhibits the activation step of the NLRP3 inflammasome by suppressing mitochondrial damage. Resveratrol also induces autophagy by activating p38, and macrophages treated with an autophagy inhibitor are resistant to the suppressive effects of resveratrol. In addition, resveratrol administration mitigates glomerular proliferation, glomerular sclerosis, and glomerular inflammation in a mouse model of progressive IgA nephropathy. These findings were associated with decreased renal mononuclear leukocyte infiltration, reduced renal superoxide anion levels, and inhibited renal NLRP3 inflammasome activation. Our data indicate that resveratrol suppresses NLRP3 inflammasome activation by preserving mitochondrial integrity and by augmenting autophagy.
Collapse
Affiliation(s)
- Ya-Ping Chang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1155-77. [DOI: 10.1016/j.bbadis.2014.10.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
|
133
|
Deus CM, Zehowski C, Nordgren K, Wallace KB, Skildum A, Oliveira PJ. Stimulating basal mitochondrial respiration decreases doxorubicin apoptotic signaling in H9c2 cardiomyoblasts. Toxicology 2015; 334:1-11. [PMID: 25997894 DOI: 10.1016/j.tox.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX) is currently used in cancer chemotherapy, however, its use often results in adverse effects highlighted by the development of cardiomyopathy and ultimately heart failure. Interestingly, DOX cardiotoxicity is decreased by resveratrol or by physical activity, suggesting that increased mitochondrial activity may be protective. Conversely, recent studies showed that troglitazone, a PPARγ agonist, increases the cytotoxicity of DOX against breast cancer cells by up-regulating mitochondrial biogenesis. The hypothesis for the current investigation was that DOX cytotoxicity in H9c2 cardiomyoblasts is decreased when mitochondrial capacity is increased. We focused on several end-points for DOX cytotoxicity, including loss of cell mass, apoptotic signaling and alterations of autophagic-related proteins. Our results show that a galactose-based, modified cell culture medium increased H9c2 basal mitochondrial respiration, protein content, and mtDNA copy number without increasing maximal or spare respiratory capacity. H9c2 cardiomyoblasts cultured in the galactose-modified media showed lower DOX-induced activation of the apoptotic pathway, measured by decreased caspase-3 and -9 activation, and lower p53 expression, although ultimately loss of cells was not prevented. Treatment with the PPARγ agonist troglitazone had no effect on DOX toxicity in this cardiac cell line, which agrees with the fact that troglitazone did not increase mitochondrial DNA content or capacity at the concentrations and duration of exposure used in this investigation. Our results show that mitochondrial remodeling caused by stimulating basal rates of oxidative phosphorylation decreased DOX-induced apoptotic signaling and increased DOX-induced autophagy in H9c2 cardiomyoblasts. The differential effect on cytotoxicity in cardiac versus breast cancer cell lines suggests a possible overall improvement in the clinical efficacy for doxorubicin in treating cancer.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cheryl Zehowski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Kendra Nordgren
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, USA
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal.
| |
Collapse
|
134
|
Wang Z, Wang J, Xie R, Liu R, Lu Y. Mitochondria-derived reactive oxygen species play an important role in Doxorubicin-induced platelet apoptosis. Int J Mol Sci 2015; 16:11087-100. [PMID: 25988386 PMCID: PMC4463691 DOI: 10.3390/ijms160511087] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent; however; its use is limited by some side effects; such as cardiotoxicity and thrombocytopenia. DOX-induced cardiotoxicity has been intensively investigated; however; DOX-induced thrombocytopenia has not been clearly elucidated. Here we show that DOX-induced mitochondria-mediated intrinsic apoptosis and glycoprotein (GP)Ibα shedding in platelets. DOX did not induce platelet activation; whereas; DOX obviously reduced adenosine diphosphate (ADP)- and thrombin-induced platelet aggregation; and impaired platelet adhesion on the von Willebrand factor (vWF) surface. In addition; we also show that DOX induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a dose-dependent manner. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. Furthermore; Mito-TEMPO reduced DOX-induced platelet apoptosis and GPIbα shedding. These data indicate that DOX induces platelet apoptosis; and impairs platelet function. Mitochondrial ROS play a pivotal role in DOX-induced platelet apoptosis and GPIbα shedding. Therefore; DOX-induced platelet apoptosis might contribute to DOX-triggered thrombocytopenia; and mitochondria-targeted ROS scavenger would have potential clinical utility in platelet-associated disorders involving mitochondrial oxidative damage.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Jie Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai 200051, China.
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
135
|
De Angelis A, Piegari E, Cappetta D, Russo R, Esposito G, Ciuffreda LP, Ferraiolo FAV, Frati C, Fagnoni F, Berrino L, Quaini F, Rossi F, Urbanek K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. Int J Cardiol 2015; 189:30-44. [PMID: 25889431 DOI: 10.1016/j.ijcard.2015.03.438] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The search for compounds able to counteract chemotherapy-induced heart failure is extremely important at the age of global cancer epidemic. The role of SIRT1 in the maintenance of progenitor cell homeostasis may contribute to its cardioprotective effects. SIRT1 activators, by preserving progenitor cells, could have a clinical relevance for the prevention of doxorubicin (DOXO)-cardiotoxicity. METHODS To determine whether SIRT1 activator, resveratrol (RES), interferes with adverse effects of DOXO on cardiac progenitor cells (CPCs): 1) human CPCs (hCPCs) were exposed in vitro to DOXO or DOXO+RES and their regenerative potential was tested in vivo in an animal model of DOXO-induced heart failure; 2) the in vivo effects of DOXO+RES co-treatment on CPCs were studied in a rat model. RESULTS In contrast to healthy cells, DOXO-exposed hCPCs were ineffective in a model of anthracycline cardiomyopathy. The in vitro activation of SIRT1 decreased p53 acetylation, overcame suppression of the IGF-1/Akt pro-survival and anti-apoptotic signaling, enhanced oxidative stress defense and prevented senescence and growth arrest of hCPCs. Priming with RES counterbalanced the onset of dysfunctional phenotype in DOXO-exposed hCPCs, partly restoring their ability to repair the damage with improvement in cardiac function and animal survival. The in vivo co-treatment DOXO+RES prevented the anthracycline-induced alterations in CPCs, partly preserving cardiac function. CONCLUSION SIRT1 activation protects DOXO-exposed CPCs and re-establishes their proper function. Pharmacological intervention at the level of tissue-specific progenitor cells may provide cardiac benefits for the growing population of long-term cancer survivors that are at risk of chemotherapy-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy.
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | | | - Caterina Frati
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma, Italy
| | - Francesco Fagnoni
- Immunohematology and Transfusional Medicine Unit, University-Hospital of Parma, Via Gramsci 14, Parma, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
136
|
Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW. Sirtuin-3 (SIRT3) Protein Attenuates Doxorubicin-induced Oxidative Stress and Improves Mitochondrial Respiration in H9c2 Cardiomyocytes. J Biol Chem 2015; 290:10981-93. [PMID: 25759382 DOI: 10.1074/jbc.m114.607960] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electron transfer resulting in the production of reactive oxygen species (ROS). Sirtuin-3 (SIRT3) is a class III lysine deacetylase that is localized to the mitochondria and regulates mitochondrial respiration and oxidative stress resistance enzymes such as superoxide dismutase-2 (SOD2). The purpose of this study was to determine whether SIRT3 prevents DOX-induced mitochondrial ROS production. Administration of DOX to mice suppressed cardiac SIRT3 expression, and DOX induced a dose-dependent decrease in SIRT3 and SOD2 expression in H9c2 cardiomyocytes. SIRT3-null mouse embryonic fibroblasts produced significantly more ROS in the presence of DOX compared with wild-type cells. Overexpression of wild-type SIRT3 increased cardiolipin levels and rescued mitochondrial respiration and SOD2 expression in DOX-treated H9c2 cardiomyocytes and attenuated the amount of ROS produced following DOX treatment. These effects were absent when a deacetylase-deficient SIRT3 was expressed in H9c2 cells. Our results suggest that overexpression of SIRT3 attenuates DOX-induced ROS production, and this may involve increased SOD2 expression and improved mitochondrial bioenergetics. SIRT3 activation could be a potential therapy for DOX-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Kyle G Cheung
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| | - Laura K Cole
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| | - Bo Xiang
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| | - Keyun Chen
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Xiuli Ma
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| | - Yvonne Myal
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada and
| | - Grant M Hatch
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Vernon W Dolinsky
- From the Department of Pharmacology and Therapeutics, Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, and
| |
Collapse
|
137
|
Sin TK, Tam BT, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, Rudd JA, Siu PM. Resveratrol protects against doxorubicin-induced cardiotoxicity in aged hearts through the SIRT1-USP7 axis. J Physiol 2015; 593:1887-99. [PMID: 25665036 DOI: 10.1113/jphysiol.2014.270101] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Doxorubicin induced functional deteriorations and elevations of USP7-related apoptotic/catabolic signalling in the senescent heart Resveratrol protects against doxorubicin-induced alterations through the restoration of SIRT1 deacetylase activity ABSTRACT A compromised cardiac function is often seen in elderly cancer patients receiving doxorubicin therapy. The present study tested the hypothesis that acute intervention with resveratrol, a natural anti-oxidant found in grapes and red wine, reduces the cardiotoxicity of doxorubicin through restoration of sirtuin 1 (SIRT1) deacetylase activity, and attenuation of the catabolic/apoptotic pathways orchestrated by USP7, a p53 deubiquitinating protein, using young (aged 2 months) and old (aged 10 months) senescence-accelerated mice prone 8 (SAMP8). Animals were randomised to receive saline, doxorubicin, and doxorubicin in combination with resveratrol, in the presence or absence of SIRT1 inhibitors, sirtinol or EX527. Resveratrol alone, but not in combination with either of the SIRT1 inhibitors, suppressed the doxorubicin-induced impairment of cardiac systolic function in aged animals. Doxorubicin reduced SIRT1 deacetylase activity, and elevated proteasomal activity and USP7; it also increased the protein level of p300 and ubiquitinated proteins in hearts from aged SAMP8. These doxorubicin-induced alterations were prevented by resveratrol, whereas the protective action of resveratrol was antagonised by sirtinol and EX527. In young SAMP8 hearts, resveratrol attenuated the doxorubicin-induced increases in acetylation of Foxo1 and transactivation of MuRF-1, whereas these mitigations were not found after treatment with SIRT1 inhibitors. However, the protein contents of acetylated Foxo1 and MuRF-1 were not affected by any of the drugs studied in aged SAMP8 hearts. Resveratrol also ameliorated the augmentation of pro-apoptotic markers including p53, Bax, caspase 3 activity and apoptotic DNA fragmentation induced by doxorubicin in hearts from aged animals, whereas these reductions were diminished by combined treatment with SIRT1 inhibitors. These data demonstrate that resveratrol ameliorates doxorubicin-induced cardiotoxicity in aged hearts through the restoration of SIRT1 activity to attenuate USP7-related catabolic/pro-apoptotic signalling.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Zhou X, Chen M, Zeng X, Yang J, Deng H, Yi L, Mi MT. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis 2014; 5:e1576. [PMID: 25522270 PMCID: PMC4454164 DOI: 10.1038/cddis.2014.530] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022]
Abstract
Mitochondrial reactive oxygen species (mtROS) homeostasis plays an essential role in preventing oxidative injury in endothelial cells, an initial step in atherogenesis. Resveratrol (RSV) possesses a variety of cardioprotective activities, however, little is known regarding the effects of RSV on mtROS homeostasis in endothelial cells. Sirt3 is a mitochondrial deacetylase, which plays a key role in mitochondrial bioenergetics and is closely associated with oxidative stress. The goal of the study is to investigate whether RSV could attenuate oxidative injury in endothelial cells via mtROS homeostasis regulation through Sirt3 signaling pathway. We found that pretreatment with RSV suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in human umbilical vein endothelial cells (HUVECs) by increasing cell viability, inhibiting cell apoptosis, repressing collapse of mitochondrial membrane potential and decreasing mtROS generation. Moreover, the enzymatic activities of isocitrate dehydrogenase 2 (IDH2), glutathione peroxidase (GSH-Px) and manganese superoxide dismutase (SOD2) as well as deacetylation of SOD2 were increased by RSV pretreatment, suggesting RSV notably enhanced mtROS scavenging in t-BHP-induced endothelial cells. Meanwhile, RSV remarkably reduced mtROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of forkhead box O3A (FoxO3A)-mediated mitochondria-encoded gene expression of ATP6, CO1, Cytb, ND2 and ND5, thereby leading to increased complex I activity and ATP synthesis. Furthermore, RSV activated the expressions of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and Sirt3, as well as estrogen-related receptor-α (ERRα)-dependent Sirt3 mRNA transcription, which were abolished in the presence of AMPK inhibitor and AMPK, PGC-1α or Sirt3 siRNA transfection, indicating the effects of RSV on mtROS homeostasis regulation were dependent on AMPK-PGC-1α-ERRα-Sirt3 signaling pathway. Our findings indicated a novel mechanism that RSV-attenuated oxidative injury in endothelial cells through the regulation of mtROS homeostasis, which, in part, was mediated through the activation of the Sirt3 signaling pathway.
Collapse
Affiliation(s)
- X Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - M Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - X Zeng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - J Yang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - H Deng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - L Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| | - M T Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Medical Nutrition Research Center, Chongqing 400038, PR China
| |
Collapse
|
139
|
Schroeter A, Marko D. Resveratrol modulates the topoisomerase inhibitory potential of doxorubicin in human colon carcinoma cells. Molecules 2014; 19:20054-72. [PMID: 25470274 PMCID: PMC6271354 DOI: 10.3390/molecules191220054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RSV) is currently being widely discussed as potentially useful for anticancer therapy in combination with classical chemotherapeutics, e.g., the topoisomerase II (TOP II) poison doxorubicin (DOX). However, there is still a lack of knowledge of possible interference at the target enzyme, especially since RSV itself has recently been described to act as a TOP poison. We therefore sought to address the question whether RSV affects DOX-induced genotoxic and cytotoxic effects with special emphasis on TOP II in HT-29 colon carcinoma cells. RSV was found to counteract DOX-induced formation of DNA-TOP-intermediates at ≥100 µM for TOP IIα and at 250 µM for TOP IIβ. As a consequence, RSV modulated the DNA-strand breaking potential of DOX by mediating protective effects with an apparent maximum at 100 µM. At higher concentration ranges (≥200 µM) RSV diminished the intracellular concentrations of DOX. Nevertheless, the presence of RSV slightly enhanced the cytotoxic effects of DOX after 1.5 h and 24 h of incubation. Taken together, at least in cell culture RSV was found to affect the TOP-poisoning potential of DOX and to modulate its cytotoxic effectiveness. Thus, further studies are needed to clarify the impact of RSV on the therapeutic effectiveness of DOX under in vivo conditions.
Collapse
Affiliation(s)
- Anika Schroeter
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090 Wien, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090 Wien, Austria.
| |
Collapse
|
140
|
Moreira AC, Branco AF, Sampaio SF, Cunha-Oliveira T, Martins TR, Holy J, Oliveira PJ, Sardão VA. Mitochondrial apoptosis-inducing factor is involved in doxorubicin-induced toxicity on H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2468-78. [DOI: 10.1016/j.bbadis.2014.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/22/2023]
|
141
|
Resveratrol ameliorates cardiac dysfunction induced by pressure overload in rats via structural protection and modulation of Ca(2+) cycling proteins. J Transl Med 2014; 12:323. [PMID: 25425099 PMCID: PMC4278670 DOI: 10.1186/s12967-014-0323-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Cardiac hypertrophy is a compensatory stage of the heart in response to stress such as pressure overload (PO), which can develop into heart failure (HF) if left untreated. Resveratrol has been reported to prevent the development of hypertrophy and contractile dysfunction induced by PO. However, other studies found that resveratrol treatment for a longer period of time failed to regress cardiac hypertrophy. The aim of this study is to determine the timing of resveratrol treatment to achieve antihypertrophic effect and investigate whether resveratrol prevents the development of HF through preservation of myocardium structure and modulation of Ca2+ handling proteins. Methods To generate rats with cardiac hypertrophy, male Sprague–Dawley rats were subjected to PO (aortic banding procedure) for 4 weeks. Sham-operated animals served as controls. Rats with cardiac hypertrophy were given resveratrol (4 mg/kg/day) for 4, 6, and 8 weeks, respectively. Histological and echocardiographic analysis and transmission electron microscopy were performed to assess cardiac structure and function. The levels of Ca2+ handling proteins were measured by western blot analysis. Results Histological analysis showed that resveratrol treatment regressed developed cardiac hypertrophy at 8 and 10 weeks postsurgery, but not at 12 weeks. However, resveratrol strongly and continuously prevented the development of cardiac dysfunction and dilation of cardiac chamber as evaluated by echocardiography and H&E staining of heart cross-sections. In addition, PO-induced cardiac fibrosis was completely inhibited by resveratrol treatment. Resveratrol markedly prevented the disrupted myocardium but partially rescued mitochondrial abnormality in banded rats. Moreover, resveratrol prevented the alteration of Ca2+ handling proteins induced by aortic banding, including downregulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and ryanodine receptor 2 (RyR2), hypophosphorylated phospholamban (PLB), upregulation of Na+/Ca2+-exchangers (NCX1) and increased expression and phosphorylation of Ca2+/calmodulin -dependent protein kinase II (CaMKII). Moreover, resveratrol alleviated the decreased SERCA activity induced by aortic banding. Conclusions Resveratrol effectively prevented the transition from compensatory to decompensatory stage of cardiac hypertrophy induced by PO, but this effect is dependent on the timing of treatment. We suggest that resveratrol may exert beneficial effects on cardiac hypertrophy through protection of cardiac structure and modulation of Ca2+ handling proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0323-x) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Li J, Xie C, Zhuang J, Li H, Yao Y, Shao C, Wang H. Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway. Mol Med Rep 2014; 11:1120-6. [PMID: 25405531 DOI: 10.3892/mmr.2014.2955] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/24/2014] [Indexed: 11/05/2022] Open
Abstract
It has been previously reported that Toll‑like receptor 4 (TLR4)/NF‑κB signaling mediates early inflammation during myocardial ischemia and reperfusion. It has additionally been suggested that resveratrol produces cardioprotective and anti‑inflammatory effects. The aim of the present study was to investigate whether resveratrol could modulate TLR4/NF‑κB signaling, reduce neutrophil accumulation and TNF‑α induction in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to a sham operation, myocardial ischemia and reperfusion (MI/R), MI/R + resveratrol or MI/R + resveratrol + L‑NAME. The data showed that following MI/R, the expression of myocardial TLR4 and NF‑κB increased significantly in the area of induced ischemia. As compared with MI/R, resveratrol significantly attenuated the expression of TLR4 and NF‑κB and reduced the levels of myeloperoxidase, serum and myocardial TNF‑α production, myocardial infarct size and myocardial apoptosis induced by MI/R. All the effects of resveratrol were abolished upon application of L‑NAME, a nitric oxide (NO) synthase inhibitor. These data provide evidence that resveratrol inhibits TLR4/NF‑κB signaling in the rat heart subjected to MI/R, and the anti‑inflammatory effect of resveratrol is associated with NO production.
Collapse
Affiliation(s)
- Jingbo Li
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunyang Xie
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Junli Zhuang
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hali Li
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ye Yao
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Changgang Shao
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Wang
- Division of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
143
|
Dolinsky VW, Dyck JRB. Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules 2014; 19:14919-47. [PMID: 25237749 PMCID: PMC6271699 DOI: 10.3390/molecules190914919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023] Open
Abstract
Regular exercise contributes to healthy aging and the prevention of chronic disease. Recent research has focused on the development of molecules, such as resveratrol, that activate similar metabolic and stress response pathways as exercise training. In this review, we describe the effects of exercise training and resveratrol on some of the organs and tissues that act in concert to transport oxygen throughout the body. In particular, we focus on animal studies that investigate the molecular signaling pathways induced by these interventions. We also compare and contrast the effects of exercise and resveratrol in diseased states.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Manitoba Institute of Child Health, University of Manitoba, 601 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.
| | - Jason R B Dyck
- Department of Pediatrics and the Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
144
|
Dirks-Naylor AJ, Kouzi SA, Yang S, Tran NTK, Bero JD, Mabolo R, Phan DT, Whitt SD, Taylor HN. Can short-term fasting protect against doxorubicin-induced cardiotoxicity? World J Biol Chem 2014; 5:269-274. [PMID: 25225594 PMCID: PMC4160520 DOI: 10.4331/wjbc.v5.i3.269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/26/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin (Dox) is one of the most effective chemotherapeutic agents used in the treatment of several types of cancer. However the use is limited by cardiotoxicity. Despite extensive investigation into the mechanisms of toxicity and preventative strategies, Dox-induced cardiotoxicity still remains a major cause of morbidity and mortality in cancer survivors. Thus, continued research into preventative strategies is vital. Short-term fasting has proven to be cardioprotective against a variety of insults. Despite the potential, only a few studies have been conducted investigating its ability to prevent Dox-induced cardiotoxicity. However, all show proof-of-principle that short-term fasting is cardioprotective against Dox. Fasting affects a plethora of cellular processes making it difficult to discern the mechanism(s) translating fasting to cardioprotection, but may involve suppression of insulin and insulin-like growth factor-1 signaling with stimulated autophagy. It is likely that additional mechanisms also contribute. Importantly, the literature suggests that fasting may enhance the antitumor activity of Dox. Thus, fasting is a regimen that warrants further investigation as a potential strategy to prevent Dox-induced cardiotoxicity. Future research should aim to determine the optimal regimen of fasting, confirmation that this regimen does not interfere with the antitumor properties of Dox, as well as the underlying mechanisms exerting the cardioprotective effects.
Collapse
|
145
|
Al-Harthi SE, Alarabi OM, Ramadan WS, Alaama MN, Al-Kreathy HM, Damanhouri ZA, Khan LM, Osman AMM. Amelioration of doxorubicin‑induced cardiotoxicity by resveratrol. Mol Med Rep 2014; 10:1455-60. [PMID: 25059399 DOI: 10.3892/mmr.2014.2384] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/01/2014] [Indexed: 11/05/2022] Open
Abstract
Doxorubicin (DOX), is a highly active anticancer agent, but its clinical use is limited by its severe cardiotoxic side‑effects associated with increased oxidative stress and apoptosis. Resveratrol (RSVL) is a naturally occurring polyphenolic compound (trans-3,5,4'-trihydroxystilbene) found primarily in root extracts of the oriental plant Polygonum cuspidatum and of numerous additional plant species. It has recently been shown that RSVL has a number of beneficial effects in different biological systems, which include anti-oxidant, antineoplastic, anticarcinogenic, cardioprotective and antiviral effects. In this study, we examined whether RSVL has protective effects against DOX‑induced free radical production and cardiotoxicity in male rats. The tested dose of DOX (20 mg/kg) caused a significant increase in the serum activities of the cardiac enzymes lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) and the level of malondialdehyde (MDA) in the heart tissue. However, there was a significant decrease in the glutathione level in the heart tissue. Simultaneous treatment of rats with RSVL [10 mg/kg, intraperitoneal (i.p.) injection] reduced the activity of LDH and CPK and significantly reduced MDA production in the heart. The total antioxidant capacity was increased following RSVL administration. Electron microscopy examination of the heart tissue showed that DOX treatment results in massive fragmentation and lysis of the myofibrils, and that mitochondria show either vacuolization or complete loss of the cristae. Simultaneous treatment with RSVL ameliorated the effect of DOX administration on cardiac tissue, with cardiomyocytes appearing normal compared to the control samples, and mitochondria retaining their normal structure.
Collapse
Affiliation(s)
- Sameer E Al-Harthi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ohoud M Alarabi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wafaa S Ramadan
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed N Alaama
- Cardiology Unit, Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda M Al-Kreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lateef M Khan
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim M Osman
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
146
|
Arafa MH, Mohammad NS, Atteia HH, Abd-Elaziz HR. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J Physiol Biochem 2014; 70:701-11. [PMID: 24939721 DOI: 10.1007/s13105-014-0339-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
Abstract
The possible effectiveness of resveratrol, a polyphenol present in different plants comprising berries, grapes and peanuts, on the prevention of doxorubicin-induced cardiac toxicity and fibrosis was investigated. Forty adult male Wistar albino rats were divided into four groups. Group I received normal saline, group II gavaged with resveratrol (20 mg/kg, daily for 4 weeks), group III received doxorubicin (2.5 mg/kg i.p. in six injections for 2 weeks; accumulative dose of 15 mg/kg), and group IV received doxorubicin + resveratrol (starting resveratrol intake 2 weeks before doxorubicin administration). Resveratrol significantly alleviated the increase in left ventricular lipid peroxidation, hydroxyproline, and tumor necrosis factor alpha levels as well as serum creatine kinase-myocardial band (CK-MB) activity and prevented the decrease in body and heart weights in doxorubicin-treated group. However, a marked protection against reduced glutathione content depletion and superoxide dismutase activity reduction was observed in the left ventricles of rats pretreated with resveratrol in combination with doxorubicin. Resveratrol also ameliorated the up-regulation of left ventricular caspase-3 and transforming growth factor-beta1 gene expression as well as left ventricular histopathological changes including necrosis and fibrosis induced by doxorubicin. Collectively, our results suggest that resveratrol provides a significant protection against doxorubicin-induced cardiotoxicity and fibrosis in rats. Therefore, it may be used as a promising cardioprotective agent in patients treated with doxorubicin due to malignant diseases. So, further clinical trials are required to confirm these findings.
Collapse
Affiliation(s)
- Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov, Egypt,
| | | | | | | |
Collapse
|
147
|
Guo J, Guo Q, Fang H, Lei L, Zhang T, Zhao J, Peng S. Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. Eur J Pharmacol 2014; 737:117-24. [PMID: 24858368 DOI: 10.1016/j.ejphar.2014.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/23/2022]
Abstract
Metallothionein (MT) has been shown to inhibit cardiac oxidative stress and protect against the cardiotoxicity induced by doxorubicin (DOX), a potent and widely used chemotherapeutic agent. However, the mechanism of MT׳s protective action against DOX still remains obscure. Mitochondrial biogenesis impairment has been implicated to play an important role in the etiology and progression of DOX-induced cardiotoxicity. Increasing evidence indicates an intimate link between MT-mediated cardioprotection and mitochondrial biogenesis. This study was aimed to explore the possible contribution of mitochondrial biogenesis in MT׳s cardioprotective action against DOX. Adult male MT-I/II-null (MT(-/-)) and wild-type (MT(+/+)) mice were given a single dose of DOX intraperitoneally. Our results revealed that MT deficiency significantly sensitized mice to DOX-induced cardiac dysfunction, ultrastructural alterations, and mortality. DOX disrupted cardiac mitochondrial biogenesis indicated by mitochondrial DNA copy number and decreased mitochondrial number, and these effects were greater in MT(-/-) mice. Basal MT effectively protected against DOX-induced inhibition on the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, and its downstream factors including mitochondrial transcription factor A. Moreover, MT was found to preserve the protein expression of manganese superoxide dismutase, a transcriptional target of PGC-1α. in vitro study showed that MT absence augmented DOX-induced increase of mitochondrial superoxide production in primary cultured cardiomyocytes. These findings suggest that MT׳s cardioprotection against DOX is mediated, at least in part, by preservation of mitochondrial biogenesis involving PGC-1α pathway.
Collapse
Affiliation(s)
- Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Qian Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Haiqing Fang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Lei Lei
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Tingfen Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, the Academy of Military Medical Sciences, Beijing, PR China.
| |
Collapse
|
148
|
CONG XIAOQIANG, LI YING, LU NA, DAI YAJIAN, ZHANG HUIJIE, ZHAO XIN, LIU YA. Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart. Mol Med Rep 2014; 9:2528-32. [DOI: 10.3892/mmr.2014.2090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
|
149
|
Csiszár A, Csiszar A, Pinto JT, Gautam T, Kleusch C, Hoffmann B, Tucsek Z, Toth P, Sonntag WE, Ungvari Z. Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 2014; 70:303-13. [PMID: 24642904 DOI: 10.1093/gerona/glu029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system. To study their cellular uptake and cellular effects, we treated primary cerebromicrovascular endothelial cells isolated from aged F344xBN rats with resveratrol encapsulated in fusogenic liposomes (FL-RSV). To demonstrate effective cellular uptake of FL-RSV, accumulation of the lipophilic tracer dye, DiR, and resveratrol in cerebromicrovascular endothelial cells was confirmed using flow cytometry and confocal microscopy and high-performance liquid chromatography electrochemical detection. Treatment of aged cerebromicrovascular endothelial cells with FL-RSV activated Nrf2 (assessed with a reporter gene assay), significantly decreased cellular production of reactive oxygen species (assessed by a flow cytometry-based H2DCFDA fluorescence method), and inhibited apoptosis. Taken together, encapsulation of resveratrol into novel fusogenic liposomes significantly enhances the delivery of resveratrol into aged cells, which subsequently results in rapid activation of cellular Nrf2-driven antioxidant defense mechanisms. Our studies provide proof-of-concept for the development of a novel, translationally relevant interventional strategy for prevention and/or control of oxidative stress-related pathophysiological conditions in aging.
Collapse
Affiliation(s)
- Agnes Csiszár
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | | | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Christian Kleusch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Germany
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine
| | | | | |
Collapse
|
150
|
Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol 2014; 34:1788-99. [PMID: 24615014 DOI: 10.1128/mcb.00774-13] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that mediate posttranscriptional gene silencing. Mitochondrial fission participates in the induction of apoptosis. It remains largely unknown whether miRNAs can regulate mitochondrial fission. Reactive oxygen species and doxorubicin could induce mitochondrial fission and apoptosis in cardiomyocytes. Concomitantly, mitofusin 1 (Mfn1) was downregulated, whereas miRNA 140 (miR-140) was upregulated upon apoptotic stimulation. We investigated whether Mfn1 and miR-140 play a functional role in mitochondrial fission and apoptosis. Ectopic expression of Mfn1 attenuated mitochondrial fission and apoptosis. Knockdown of miR-140 inhibited mitochondrial fission. Our results further revealed that knockdown of miR-140 was able to reduce myocardial infarct sizes in an animal model. We observed that miR-140 could suppress the expression of Mfn1, and it exerted its effect on mitochondrial fission and apoptosis through targeting Mfn1. Our data revealed that mitochondrial fission occurs in cardiomyocytes and can be counteracted by Mfn1. However, the function of Mfn1 is negatively regulated by miR-140. Our present work suggests that Mfn1 and miR-140 are integrated into the program of cardiomyocyte apoptosis.
Collapse
|