101
|
Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin Cancer Biol 2017; 46:146-157. [PMID: 28185862 DOI: 10.1016/j.semcancer.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways.
Collapse
|
102
|
Abstract
MicroRNAs (miRs) hybridize with complementary sequences in mRNA and silence genes by destabilizing mRNA or preventing translation of mRNA. Over 60% of human protein-coding genes are regulated by miRs, and 1881 high-confidence miRs are encoded in the human genome. Evidence suggests that miRs not only are synthesized endogenously, but also might be obtained from dietary sources, and that food compounds alter the expression of endogenous miR genes. The main food matrices for studies of biological activity of dietary miRs include plant foods and cow milk. Encapsulation of miRs in exosomes and exosome-like particles confers protection against RNA degradation and creates a pathway for intestinal and vascular endothelial transport by endocytosis, as well as delivery to peripheral tissues. Evidence suggests that the amount of miRs absorbed from nutritionally relevant quantities of foods is sufficient to elicit biological effects, and that endogenous synthesis of miRs is insufficient to compensate for dietary miR depletion and rescue wild-type phenotypes. In addition, nutrition alters the expression of endogenous miR genes, thereby compounding the effects of nutrition-miR interactions in gene regulation and disease diagnosis in liquid biopsies. For example, food components and dietary preferences may modulate serum miR profiles that may influence biological processes. The complex crosstalk between nutrition, miRs, and gene targets poses a challenge to gene network analysis and studies of human disease. Novel pipelines and databases have been developed recently, including a dietary miR database for archiving reported miRs in 15 dietary resources. miRs derived from diet and endogenous synthesis have been implicated in physiologic and pathologic conditions, including those linked with nutrition and metabolism. In fact, several miRs are actively regulated in response to overnutrition and tissue inflammation, and are involved in facilitating the development of chronic inflammation by modulating tissue-infiltrated immune cell function.
Collapse
Affiliation(s)
- Juan Cui
- Department of Computer Science and Engineering and
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut Health Center, Farmington, CT; and
| | - Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE;
| |
Collapse
|
103
|
Role of fruits, nuts, and vegetables in maintaining cognitive health. Exp Gerontol 2016; 94:24-28. [PMID: 28011241 DOI: 10.1016/j.exger.2016.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
Population aging is leading to an increase in the incidence of age-related cognitive dysfunction and, with it, the health care burden of caring for older adults. Epidemiological studies have shown that consumption of fruits, nuts, and vegetables is positively associated with cognitive ability; however, these foods, which contain a variety of neuroprotective phytochemicals, are widely under-consumed. Surprisingly few studies have investigated the effects of individual plant foods on cognitive health but recent clinical trials have shown that dietary supplementation with individual foods, or switching to a diet rich in several of these foods, can improve cognitive ability. While additional research is needed, increasing fruit, nut, and vegetable intake may be an effective strategy to prevent or delay the onset of cognitive dysfunction during aging.
Collapse
|
104
|
Bigagli E, Cinci L, Paccosi S, Parenti A, D'Ambrosio M, Luceri C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol 2016; 43:147-155. [PMID: 27998828 DOI: 10.1016/j.intimp.2016.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
Abstract
The health benefits of bio-active phenolic compounds have been largely investigated in vitro at concentrations which exceed those reachable in vivo. We investigated and compared the anti-inflammatory effects of resveratrol, hydroxytyrosol and oleuropein at physiologically relevant concentrations by using in vitro models of inflammation. Human granulocytes and monocytes were stimulated with phorbol myristate acetate (PMA) and the ability of resveratrol, hydroxytyrosol and oleuropein to inhibit the oxidative burst and CD11b expression was measured. Nitric oxide (NO), prostaglandin E2 (PGE2) levels, COX-2, iNOS, TNFα, IL-1β and miR-146a expression and activation of the transcription factor Nrf2 were evaluated in macrophages RAW 264.7 stimulated with LPS (1μg/ml) for 18h, exposed to resveratrol, hydroxytyrosol and oleuropein (5 and 10μM). Synergistic effects were explored as well, together with the levels of PGE2, COX-2 and IL-1β expression in macrophages after 6h of LPS stimulation. PGE2 and COX-2 expression were also assessed on human monocytes. All the tested compounds inhibited granulocytes oxidative burst in a concentration dependent manner and CD11b expression was also significantly counteracted by resveratrol and hydroxytyrosol. The measurement of oxidative burst in human monocytes produced similar effects being resveratrol more active. Hydroxytyrosol and resveratrol inhibited the production of NO and PGE2 but did not reduce iNOS, TNFα or IL-1β gene expression in LPS-stimulated RAW 264.7 for 18h. Resveratrol slightly decreased COX-2 expression after 18h but not after 6h, but reduced PGE2 levels after 6h. Resveratrol and hydroxytyrosol 10μM induced NRf2 nuclear translocation and reduced miR-146a expression in LPS treated RAW 264.7. Overall, we reported an anti-inflammatory effect of resveratrol and hydroxytyrosol at low, nutritionally relevant concentrations, involving the inhibition of granulocytes and monocytes activation, the modulation of miR-146a expression and the activation of Nrf2. A regular dietary intake of resveratrol and hydroxytyrosol may be a useful complementary strategy to control inflammatory diseases.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Mario D'Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| |
Collapse
|
105
|
Extraction of Mangiferin and Chemical Characterization and Sensorial Analysis of Teas from Mangifera indica L. Leaves of the Ubá Variety. BEVERAGES 2016. [DOI: 10.3390/beverages2040033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
106
|
Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Front Nutr 2016; 3:48. [PMID: 27843913 PMCID: PMC5086580 DOI: 10.3389/fnut.2016.00048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase – a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a “four-focus area strategy” to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.
Collapse
Affiliation(s)
- Zoey Harris
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | - Micah G Donovan
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | | | - Kirsten H Limesand
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | - Randy Burd
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| |
Collapse
|
107
|
Zhou B, Wang J, Zheng G, Qiu Z. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem Toxicol 2016; 97:375-384. [PMID: 27725205 DOI: 10.1016/j.fct.2016.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/13/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023]
Abstract
Urolithins are bioactive ellagic acid-derived metabolites produced by human colonic microflora. Although previous studies have demonstrated the cytotoxicity of urolithins, the effect of urolithins on miRNAs is still unclear. In this study, the suppressing effects of methylated urolithin A (mUA) on cell viability in human prostate cancer DU145 cells was investigated. mUA induced caspase-dependent cell apoptosis, mitochondrial depolarization and down-regulation of Bcl-2/Bax ratio. The results showed that upon exposure to mUA, miR-21 expression was decreased and the expression of PTEN and Pdcd4 protein was elevated. mUA could further suppress Akt phosphorylation and increase protein expression of FOXO3a, and the effects of mUA on Akt phosphorylation and protein expression of FOXO3a were blocked by PTEN silence. Moreover, mUA suppressed the Wnt/β-catenin-mediated transcriptional activation of MMP-7 and c-Myc, and this function of mUA on MMP-7 and c-Myc was attenuated by over-expression of miR-21. In conclusion, our data suggest that mUA can suppress cell viability in DU145 cells through modulating miR-21 and its downstream series-wound targets, including PTEN, Akt and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription (Ministry of Education), Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, No. 1, West Huangjiahu Road, Wuhan 430065, People's Republic of China.
| |
Collapse
|
108
|
Krga I, Milenkovic D, Morand C, Monfoulet LE. An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food Funct 2016; 7:3656-76. [PMID: 27538117 DOI: 10.1039/c6fo00596a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyphenols are plant food microconstituents that are widely distributed in the human diet, with fruits and fruit-derived products as one of the main dietary sources. Epidemiological studies have shown an inverse relationship between the intake of different classes of polyphenols and the risk of myocardial infarction or cardiovascular disease (CVD) mortality. These compounds have been associated with the promotion of cardiovascular health as evidenced by clinical studies reporting beneficial effects of polyphenol-rich fruit consumption on intermediate markers of cardiovascular diseases. Additionally, animal and in vitro studies have indicated positive roles of polyphenols in preventing dysfunctions associated with the development of cardiovascular diseases. However, the mechanisms of action underlying their beneficial effects appear complex and are not fully understood. This review aims to provide an update on the nutrigenomic effects of different groups of polyphenols from fruits and especially focuses on their cardiovascular protective effects in cell and animal studies.
Collapse
Affiliation(s)
- I Krga
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
109
|
Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 2016; 6:27214-26. [PMID: 26318586 PMCID: PMC4694984 DOI: 10.18632/oncotarget.4877] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well recognized, our understanding of their miRNA-targeting capabilities is still limited. In our previous study, we reported that resveratrol downregulates PTEN-targeting members of the oncogenic miR-17 family, which are overexpressed in prostate cancer. This study investigates the resveratrol and pterostilbene induced miRNA-mediated regulation of PTEN in prostate cancer. Here, we show that both compounds decrease the levels of endogenous as well as exogenously expressed miR-17, miR-20a and miR-106b thereby upregulating their target PTEN. Using functional luciferase reporter assays, we demonstrate that ectopically expressed miR-17, miR-20a and miR-106b directly target PTEN 3′UTR to reduce its expression, an effect rescued upon treatment with resveratrol and pterostilbene. Moreover, while stable lentiviral expression of miR-17/106a significantly decreased PTEN mRNA and protein levels and conferred survival advantage to the cells, resveratrol and more so pterostilbene was able to dramatically suppress these effects. Further, pterostilbene through downregulation of miR-17-5p and miR-106a-5p expression both in tumors and systemic circulation, rescued PTEN mRNA and protein levels leading to reduced tumor growth in vivo. Our findings implicate dietary stilbenes as an attractive miRNA-mediated chemopreventive and therapeutic strategy, and circulating miRNAs as potential chemopreventive and predictive biomarkers for clinical development in prostate cancer.
Collapse
Affiliation(s)
- Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, USA
| | - Xu Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
110
|
Kumazaki M, Shinohara H, Taniguchi K, Ueda H, Nishi M, Ryo A, Akao Y. Understanding of tolerance in TRAIL-induced apoptosis and cancelation of its machinery by α-mangostin, a xanthone derivative. Oncotarget 2016; 6:25828-42. [PMID: 26304927 PMCID: PMC4694869 DOI: 10.18632/oncotarget.4558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis-factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-superfamily that selectively induces apoptosis through death receptors (DRs) 4 and/or 5 in cancer cells. These receptors are expressed on the cancer cell surface, without affecting normal cells. Unfortunately, many clinical studies have shown that cancer cells acquire TRAIL-resistance and finally avoid TRAIL-induced apoptosis. The detailed mechanisms of this resistance are not well understood. In the current study, we established a TRAIL-resistant human colon cancer DLD-1 cell line to clarify the mechanisms of TRAIL-resistance and developed agents to cancel its machinery. Also, we found that cancer stem-like cells from breast epithelial proliferating MCF10A cells were also sensitive to TRAIL-induced apoptosis. The enforced expression of DR5 in both TRAIL-resistant cells partially recovered the sensitivity to the TRAIL ligand, which was judged by the activation of caspase-8. As a result, we newly found that the mechanisms of TRAIL-resistance comprised co-existence of a decrease in the expression level of DR5 along with malfunction of its recruitment to the cell surface, as evidenced by Western blot and immunocytological analysis, respectively. Interestingly, α-mangostin, which is a xanthone derivative, canceled the resistance by increasing the expression level of DR5 through down-regulation of miR-133b and effectively induced the translocation of DR5 to the cancer cell surface membrane in TRAIL-resistant DLD-1 cells. These findings indicate that α-mangostin functioned as a sensitizer of TRAIL-induced apoptosis and may thus serve as a possible adjuvant compound for cytokine therapy to conquer TRAIL-resistance.
Collapse
Affiliation(s)
- Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0027, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0027, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
111
|
Zhang M, Liu D, Li W, Wu X, Gao C, Li X. Identification of featured biomarkers in breast cancer with microRNA microarray. Arch Gynecol Obstet 2016; 294:1047-1053. [DOI: 10.1007/s00404-016-4141-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
112
|
Yu L, Yu H, Li X, Jin C, Zhao Y, Xu S, Sheng X. P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes. Cell Biol Int 2016; 40:934-42. [PMID: 27306406 DOI: 10.1002/cbin.10637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/11/2016] [Indexed: 01/04/2023]
Abstract
The remodeling of cardiac gap junctions contributes to various arrhythmias in a diabetic heart. We previously reported that Epigallocatechin-3-gallate (EGCG) attenuated connexin43 (Cx43) protein downregulation induced by high glucose (HG) in neonatal rat cardiomyocytes, but Cx43 mRNA expression was not affected. It indicated the possible mechanisms of post-transcriptional regulation, which still remains unclear. As microRNAs (miRNAs) regulate gene expression widely at post-transcriptional level, we measured miR-1/206 in cardiomyocytes treated with HG and EGCG by quantitative RT-PCR and investigated their relationship with signal transduction pathways. The results showed that HG induced miR-1/206 elevation by PKC MAPK pathway. Moreover, we tested the negative regulation effect of miR-1/206 on Cx43 protein by miRNAs transfection. EGCG, however, nearly abolished the HG-induced miR-1 augmentation via P38 MAPK pathway. Therefore, our study suggested that PKC-activated miR-1/206 expression might contribute to Cx43 downregulation in HG-treated cardiomyocytes, and EGCG conferred protective effect by inhibiting miR-1 elevation via P38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Yu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Hongmei Yu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Li
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Chongying Jin
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Yanbo Zhao
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shengjie Xu
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Xia Sheng
- Department of Cardiovascular Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
113
|
Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations. Arch Biochem Biophys 2016; 599:51-9. [DOI: 10.1016/j.abb.2016.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
|
114
|
Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio MC, Santoro R, Goeman F, Maidecchi A, Mattoli L, Manetti C, Di Agostino S, Muti P, Blandino G, Strano S. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget 2016; 6:18134-50. [PMID: 26136339 PMCID: PMC4627240 DOI: 10.18632/oncotarget.4017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022] Open
Abstract
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Casadei
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Maria Ferraiuolo
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Raffaela Santoro
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Cesare Manetti
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
115
|
Abstract
MicroRNAs (miRs, miRNAs) are small molecules of 18-22 nucleotides that serve as important regulators of gene expression at the post-transcriptional level. One of the mechanisms through which miRNAs regulate gene expression involves the interaction of their "seed" sequences primarily with 3'-end and more rarely with 5'-end, of mRNA transcribed from target genes. Numerous studies over the past decade have been devoted to quantitative and qualitative assessment of miRNAs expression and have shown remarkable changes in miRNA expression profiles in various diseases. Thus, profiling of miRNA expression can be an important tool for diagnostics and treatment of disease. However, less attention has been paid towards understanding the underlying reasons for changes in miRNA expression, especially in cancer cells. The purpose of this review is to analyze and systematize current data that explains reasons for changes in the expression of miRNAs. The review will cover both transcriptional (changes in gene expression and promoter hypermethylation) and post-transcriptional (changes in miRNA processing) mechanisms of regulation of miRNA expression, as well as effects of endogenous (hormones, cytokines) and exogenous (xenobiotics) compounds on the miRNA expression. The review will summarize the complex multilevel regulation of miRNA expression, in relation to cell type, physiological state of the body and various external factors.
Collapse
Affiliation(s)
- Lyudmila F. Gulyaeva
- />Research Institute of Molecular Biology and Biophysics, Timakov St., 2/12, Novosibirsk, 630117 Russia
- />Novosibirsk State University, Pirogova 2, Novosibirsk, 630090 Russia
| | - Nicolay E. Kushlinskiy
- />The Russian Oncological Scientific Center of N. N. Blochin of Ministry of Health of the Russian Federation, Kashirskoye Highway 24, Moscow, 115478 Russia
| |
Collapse
|
116
|
How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study. Int J Mol Sci 2016; 17:ijms17050752. [PMID: 27213347 PMCID: PMC4881573 DOI: 10.3390/ijms17050752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response (DDR) is a molecular mechanism that cells have evolved to sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as "fatty acids biosynthesis/metabolism", "extracellular matrix-receptor interaction" and "signaling regulating the pluripotency of stem cells", appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds.
Collapse
|
117
|
Wang P, Henning SM, Magyar CE, Elshimali Y, Heber D, Vadgama JV. Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:73. [PMID: 27151407 PMCID: PMC4858851 DOI: 10.1186/s13046-016-0351-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023]
Abstract
Background Chemotherapy with docetaxel (Doc) remains the standard treatment for metastatic and castration-resistance prostate cancer (CRPC). However, the clinical success of Doc is limited by its chemoresistance and side effects. This study investigated whether natural products green tea (GT) and quercetin (Q) enhance the therapeutic efficacy of Doc in CRPC in mouse models. Methods Male severe combined immunodeficiency (SCID) mice (n = 10 per group) were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. When tumors were established the intervention started. Mice were administered with GT + Q, Doc 5 mg/kg (LD), GT + Q + LD Doc, Doc 10 mg/kg (HD) or control. The concentration of GT polyphenols in brewed tea administered as drinking water was 0.07 % and Q was supplemented in diet at 0.4 %. Doc was intravenously injected weekly for 4 weeks, GT and Q given throughout the study. Results GT + Q or LD Doc slightly inhibited tumor growth compared to control. However, the combination of GT and Q with LD Doc significantly enhanced the potency of Doc 2-fold and reduced tumor growth by 62 % compared to LD Doc in 7-weeks intervention. A decrease of Ki67 and increase of cleaved caspase 7 were observed in tumors by the mixture, along with lowered blood concentrations of growth factors like VEGF and EGF. The mixture significantly elevated the levels of tumor suppressor mir15a and mir330 in tumor tissues. An increased risk of liver toxicity was only observed with HD Doc treatment. Conclusions These results provide a promising regimen to enhance the therapeutic effect of Doc in a less toxic manner.
Collapse
Affiliation(s)
- Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA. .,Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Susanne M Henning
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Clara E Magyar
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yahya Elshimali
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA
| | - David Heber
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
118
|
Bansode RR, Khatiwada JR, Losso JN, Williams LL. Targeting MicroRNA in Cancer Using Plant-Based Proanthocyanidins. Diseases 2016; 4:E21. [PMID: 28933401 PMCID: PMC5456277 DOI: 10.3390/diseases4020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Proanthocyanidins are oligomeric flavonoids found in plant sources, most notably in apples, cinnamon, grape skin and cocoa beans. They have been also found in substantial amounts in cranberry, black currant, green tea, black tea and peanut skins. These compounds have been recently investigated for their health benefits. Proanthocyanidins have been demonstrated to have positive effects on various metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. Another upcoming area of research that has gained widespread interest is microRNA (miRNA)-based anticancer therapies. MicroRNAs are short non-coding RNA segments, which plays a crucial role in RNA silencing and post-transcriptional regulation of gene expression. Currently, miRNA based anticancer therapies are being investigated either alone or in combination with current treatment methods. In this review, we summarize the current knowledge and investigate the potential of naturally occurring proanthocyanidins in modulating miRNA expression. We will also assess the strategies and challenges of using this approach as potential cancer therapeutics.
Collapse
Affiliation(s)
- Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Janak R Khatiwada
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| | - Jack N Losso
- School of Nutrition & Food Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Leonard L Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
119
|
Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br J Nutr 2016; 115:1129-44. [PMID: 26879600 PMCID: PMC4825102 DOI: 10.1017/s0007114516000222] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a serious problem growing worldwide that needs to be addressed with urgency in consideration of the resulting severe complications for both mother and fetus. Growing evidence indicates that a healthy diet rich in fruit, vegetables, nuts, extra-virgin olive oil and fish has beneficial effects in both the prevention and management of several human diseases and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis. Several studies, mostly based on in vitro and animal models, indicate that dietary polyphenols, mainly flavonoids, positively modulate the insulin signalling pathway by attenuating hyperglycaemia and insulin resistance, reducing inflammatory adipokines, and modifying microRNA (miRNA) profiles. Very few data about the influence of dietary exposure on GDM outcomes are available, although this approach deserves careful consideration. Further investigation, which includes exploring the ‘omics’ world, is needed to better understand the complex interaction between dietary compounds and GDM.
Collapse
|
120
|
Xiong Y, Wang J, Chu H, Chen D, Guo H. Salvianolic Acid B Restored Impaired Barrier Function via Downregulation of MLCK by microRNA-1 in Rat Colitis Model. Front Pharmacol 2016; 7:134. [PMID: 27303297 PMCID: PMC4880571 DOI: 10.3389/fphar.2016.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022] Open
Abstract
Salvianolic acid B (Sal B) is isolated from the traditional Chinese medical herb Salvia miltiorrhiza and is reported to have a wide range of therapeutic benefits. The aim of this study was to investigate the effects of Sal B on epithelial barrier dysfunction in rat colitis and to uncover related mechanisms. Rat colitis model was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). The intestinal barrier function was evaluated by measuring the serum recovery of fluorescein isothiocyanate-4 kD dextran in vivo and transepithelial electrical resistance in vitro respectively. The protein expression related to intestinal barrier function was studied using western blotting. The effects of Sal B on inflammatory responses, oxidative damage and colitis recurrence were also studied in this study. The intestinal barrier dysfunction in colitis was reversed by Sal B, accompanied with the decrease of tight junction proteins, and the effect could be blocked by microRNA-1(miR-1) inhibition. The inflammatory responses, oxidative damage and colitis recurrence were also decreased by Sal B. The colitis symptoms and recurrences were ameliorated by Sal B, and restoration of impaired barrier function via downregulation of MLCK by miR-1 maybe involved in this effect. This study provides some novel insights into both of the pathological mechanisms and treatment alternatives of inflammatory bowel disease.
Collapse
Affiliation(s)
- Yongjian Xiong
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
| | - Hongwei Chu
- Institute for Brain Disorder, College of Basic Medical Sciences, Dalian Medical UniversityDalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical UniversityDalian, China
- *Correspondence: Dapeng Chen
| | - Huishu Guo
- Central Laboratory, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
- Huishu Guo
| |
Collapse
|
121
|
Gracia A, Miranda J, Fernández-Quintela A, Eseberri I, Garcia-Lacarte M, Milagro FI, Martínez JA, Aguirre L, Portillo MP. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct 2016; 7:1680-8. [DOI: 10.1039/c5fo01090j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proposed miRNA mechanisms of action of resveratrol in triacylglycerol metabolism changes in adipose tissue.
Collapse
Affiliation(s)
- Ana Gracia
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| | - Jonatan Miranda
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| | - Marcos Garcia-Lacarte
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - Fermín I. Milagro
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - J. Alfredo Martínez
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - Leixuri Aguirre
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| | - María P. Portillo
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lacaray Research Institute
- Vitoria
- Spain
| |
Collapse
|
122
|
Chemical composition and “ in vitro ” anti-inflammatory activity of Vitis vinifera L. (var. Sangiovese) tendrils extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
123
|
Martín-Peláez S, Castañer O, Konstantinidou V, Subirana I, Muñoz-Aguayo D, Blanchart G, Gaixas S, de la Torre R, Farré M, Sáez GT, Nyyssönen K, Zunft HJ, Covas MI, Fitó M. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. Eur J Nutr 2015; 56:663-670. [PMID: 26658900 DOI: 10.1007/s00394-015-1110-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 11/22/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate whether the ingestion of olive oil having different phenolic contents influences the expression of blood pressure-related genes, involved in the renin-angiotensin-aldosterone system, in healthy humans. METHODS A randomized, double-blind, crossover human trial with 18 healthy subjects, who ingested 25 mL/day of olive oils (1) high (366 mg/kg, HPC) and (2) low (2.7 mg/kg, LPC) in phenolic compounds for 3 weeks, preceded by 2-week washout periods. Determination of selected blood pressure-related gene expression in peripheral blood mononuclear cells (PBMNC) by qPCR, blood pressure and systemic biomarkers. RESULTS HPC decreased systolic blood pressure compared to pre-intervention values and to LPC, and maintained diastolic blood pressure values compared to LPC. HPC decreased ACE and NR1H2 gene expressions compared with pre-intervention values, and IL8RA gene expression compared with LPC. CONCLUSIONS The introduction to the diet of an extra-virgin olive oil rich in phenolic compounds modulates the expression of some of the genes related to the renin-angiotensin-aldosterone system. These changes could underlie the decrease in systolic blood pressure observed.
Collapse
Affiliation(s)
- Sandra Martín-Peláez
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentini Konstantinidou
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Isaac Subirana
- Cardiovascular and Genetic Epidemiology Research Group, REGICOR Study Group, IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Epidemiology and Public Health (CIBEResp), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Muñoz-Aguayo
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Blanchart
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gaixas
- Cardiovascular and Genetic Epidemiology Research Group, REGICOR Study Group, IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Rafael de la Torre
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Guillermo T Sáez
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology, University of Valencia, Avinguda Blasco Ibañez 15, 46010, Valencia, Spain
| | - Kristina Nyyssönen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, P.O.Box 1627, 70211, Joensuu, Finland
| | - Hans Joachim Zunft
- German Institute of Human Nutrition (DIFE), Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Maria Isabel Covas
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Montse Fitó
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain.
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
124
|
Bayele HK, Balesaria S, Srai SKS. Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption. Free Radic Biol Med 2015; 89:1192-202. [PMID: 26546695 PMCID: PMC4698393 DOI: 10.1016/j.freeradbiomed.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022]
Abstract
Hepcidin is a liver-derived antimicrobial peptide that regulates iron absorption and is also an integral part of the acute phase response. In a previous report, we found evidence that this peptide could also be induced by toxic heavy metals and xenobiotics, thus broadening its teleological role as a defensin. However it remained unclear how its sensing of disparate biotic and abiotic stressors might be integrated at the transcriptional level. We hypothesized that its function in cytoprotection may be regulated by NFE2-related factor 2 (Nrf2), the master transcriptional controller of cellular stress defenses. In this report, we show that hepcidin regulation is inextricably linked to the acute stress response through Nrf2 signaling. Nrf2 regulates hepcidin expression from a prototypical antioxidant response element in its promoter, and by synergizing with other basic leucine-zipper transcription factors. We also show that polyphenolic small molecules or phytoestrogens commonly found in fruits and vegetables including the red wine constituent resveratrol can induce hepcidin expression in vitro and post-prandially, with concomitant reductions in circulating iron levels and transferrin saturation by one such polyphenol quercetin. Furthermore, these molecules derepress hepcidin promoter activity when its transcription by Nrf2 is repressed by Keap1. Taken together, the data show that hepcidin is a prototypical antioxidant response or cytoprotective gene within the Nrf2 transcriptional circuitry. The ability of phytoestrogens to modulate hepcidin expression in vivo suggests a novel mechanism by which diet may impact iron homeostasis.
Collapse
Affiliation(s)
- Henry K Bayele
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT United Kingdom.
| | - Sara Balesaria
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT United Kingdom
| | - Surjit K S Srai
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT United Kingdom.
| |
Collapse
|
125
|
Zhu K, Wang W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol 2015; 37:4373-82. [PMID: 26499783 DOI: 10.1007/s13277-015-4187-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant and active polyphenol in green tea, has been demonstrated to have anticancer effects in a wide variety of human cancer. MicroRNAs (miRNAs) are a class of short noncoding RNAs and play important role in gene regulation and are critically involved in the pathogenesis and progression of human cancer. This study aims to investigate the effects of EGCG on osteosarcoma (OS) cells and elucidate the underlying mechanism. Cellular function assays revealed that EGCG inhibited cell proliferation, induced cell cycle arrest and promoted apoptosis of OS cells in vitro, and also inhibited the growth of transplanted tumors in vivo. By miRNA microarray and RT-qPCR analysis, miR-1 was found to be significantly upregulated in MG-63 and U-2OS treated by EGCG in dose- and time-dependent manners, and miR-1 downregulation by inhibitor mimics attenuated EGCG-induced inhibition on cell growth of OS cells. We also confirmed that miR-1 was also frequently decreased in clinical OS tumor tissues. Moreover, both EGCG and miR-1 mimic inhibited c-MET expression, and combination treatment with EGCG and c-MET inhibitor (crizotinib) had enhanced inhibitory effects on the growth of MG-63 and U-2OS cells. Taken together, these results suggest that EGCG has an anticancer effect on OS cells, at least partially, through regulating miR-1/c-MET interaction.
Collapse
Affiliation(s)
- Kewei Zhu
- Department of Orthopedics, The 2nd Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Wanchun Wang
- Department of Orthopedics, The 2nd Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
126
|
Jang YJ, Jung CH, Ahn J, Gwon SY, Ha TY. Shikonin inhibits adipogenic differentiation via regulation of mir-34a-FKBP1B. Biochem Biophys Res Commun 2015; 467:941-7. [PMID: 26471303 DOI: 10.1016/j.bbrc.2015.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Shikonin is a naturally occurring naphthoquinone pigment and a major constituent present in Lithospermum erythrorhizon. Since microRNAs (miRNAs) are one of the key post-transcriptional regulators of adipogenesis, their manipulation represents a potential new strategy to inhibit adipogenesis. Our aim was to investigate shikonin-dependent inhibition of adipogenesis with an emphasis on miRNA-related processes. Mir-34a increased during induced adipogenesis, and this was suppressed in the presence of shikonin. mRNA expression of FKBP1B, a suggested target of mir-34a according to bioinformatics studies, decreased during adipogenesis, but was recovered by shikonin treatment, which reversely correlated with mir-34a expression. A mir-34a inhibitor suppressed MDI-induced adipogenesis by blocking PPARγ and C/EBPα expression, while suppression of mir-34a recovered MDI-induced down-regulation of FKBP1B expression. A mir-34a mimic decreased FKBP1B mRNA expression in 3T3-L1 preadipocytes. We also observed that mir-34a bound directly to the 3'-untranslated region of FKBP1B. Finally, FKBP1B overexpression attenuated MDI-induced adipogenesis, PPARγ, and C/EBPα expression. These results suggest that mir-34a regulates adipogenesis by targeting FKBP1B expression. Our findings reveal that shikonin prevents adipogenesis by blocking the mir-34a-FKBP1B pathway which represents a promising potential target for preventing obesity.
Collapse
Affiliation(s)
- Young Jin Jang
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Chang Hwa Jung
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jiyun Ahn
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - So Young Gwon
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Tae Youl Ha
- Metabolic Mechanism Research Group, Korea Food Research Institute, Seongnam, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
127
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol Nutr Food Res 2015; 59:75-93. [PMID: 25418549 DOI: 10.1002/mnfr.201400521] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
Abstract
A substantial proportion of obese individuals do not present cardiometabolic complications such as diabetes, hypertension, or dyslipidemia. Some, but not all, prospective studies observe similar risk of cardiovascular events and all-cause mortality among individuals with this so-called "metabolically healthy obese" (MHO) phenotype, compared to the metabolically healthy normal weight or metabolically healthy non-obese phenotypes. Compared to the metabolically unhealthy obese (MUO) phenotype, MHO is often characterized by a more favorable inflammatory profile, less visceral fat, less infiltration of macrophages into adipose tissue, and smaller adipocyte cell size. Tipping the inflammation balance in adipose tissue might be particularly important for metabolic health in the obese. While the potential role of genetic predisposition or lifestyle factors such as diet in the MHO phenotype is yet to be clarified, it is well known that diet affects inflammation profile and contributes to the functionality of adipose tissue. This review will discuss genetic predisposition and the molecular mechanisms underlying the potential effect of food on the development of the metabolic phenotype characteristic of obesity.
Collapse
|
128
|
Liu G, Zheng X, Xu Y, Lu J, Chen J, Huang X. Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin Med J (Engl) 2015; 128:91-7. [PMID: 25563320 PMCID: PMC4837827 DOI: 10.4103/0366-6999.147824] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Green tea has been shown to improve cholesterol metabolism in animal studies, but the molecular mechanisms underlying this function have not been fully understood. Long non-coding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules involved in a broad range of biological processes and complex diseases. Our aim was to identify important lncRNAs that might play an important role in contributing to the benefits of epigallocatechin-3-gallate (EGCG) on cholesterol metabolism. METHODS Microarrays was used to reveal the lncRNA and mRNA profiles in green tea polyphenol(-)-epigallocatechin gallate in cultured human liver (HepG2) hepatocytes treated with EGCG and bioinformatic analyses of the predicted target genes were performed to identify lncRNA-mRNA targeting relationships. RNA interference was used to investigate the role of lncRNAs in cholesterol metabolism. RESULTS The expression levels of 15 genes related to cholesterol metabolism and 285 lncRNAs were changed by EGCG treatment. Bioinformatic analysis found five matched lncRNA-mRNA pairs for five differentially expressed lncRNAs and four differentially expressed mRNA. In particular, the lncRNA AT102202 and its potential targets mRNA-3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) were identified. Using a real-time polymerase chain reaction technique, we confirmed that EGCG down-regulated mRNA expression level of the HMGCR and up-regulated expression of AT102202. After AT102202 knockdown in HepG2, we observed that the level of HMGCR expression was significantly increased relative to the scrambled small interfering RNA control (P < 0.05). CONCLUSIONS Our results indicated that EGCG improved cholesterol metabolism and meanwhile changed the lncRNAs expression profile in HepG2 cells. LncRNAs may play an important role in the cholesterol metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohong Huang
- Department of Special Medical Treatment Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
129
|
Wang X, Yin D, Li P, Yin S, Wang L, Jia Y, Shu X. MicroRNA-Sequence Profiling Reveals Novel Osmoregulatory MicroRNA Expression Patterns in Catadromous Eel Anguilla marmorata. PLoS One 2015; 10:e0136383. [PMID: 26301415 PMCID: PMC4547744 DOI: 10.1371/journal.pone.0136383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. Recently, several miRNAs have been confirmed to execute directly or indirectly osmoregulatory functions in fish via translational control. In order to clarify whether miRNAs play relevant roles in the osmoregulation of Anguilla marmorata, three sRNA libraries of A. marmorata during adjusting to three various salinities were sequenced by Illumina sRNA deep sequencing methods. Totally 11,339,168, 11,958,406 and 12,568,964 clear reads were obtained from 3 different libraries, respectively. Meanwhile, 34 conserved miRNAs and 613 novel miRNAs were identified using the sequence data. MiR-10b-5p, miR-181a, miR-26a-5p, miR-30d and miR-99a-5p were dominantly expressed in eels at three salinities. Totally 29 mature miRNAs were significantly up-regulated, while 72 mature miRNAs were significantly down-regulated in brackish water (10‰ salinity) compared with fresh water (0‰ salinity); 24 mature miRNAs were significantly up-regulated, while 54 mature miRNAs were significantly down-regulated in sea water (25‰ salinity) compared with fresh water. Similarly, 24 mature miRNAs were significantly up-regulated, while 45 mature miRNAs were significantly down-regulated in sea water compared with brackish water. The expression patterns of 12 dominantly expressed miRNAs were analyzed at different time points when the eels transferred from fresh water to brackish water or to sea water. These miRNAs showed differential expression patterns in eels at distinct salinities. Interestingly, miR-122, miR-140-3p and miR-10b-5p demonstrated osmoregulatory effects in certain salinities. In addition, the identification and characterization of differentially expressed miRNAs at different salinities can clarify the osmoregulatory roles of miRNAs, which will shed lights for future studies on osmoregulation in fish.
Collapse
Affiliation(s)
- Xiaolu Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Danqing Yin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Li Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Yihe Jia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lian Yungang, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, United Kingdom
| |
Collapse
|
130
|
Rodríguez-Morató J, Farré M, Pérez-Mañá C, Papaseit E, Martínez-Riera R, de la Torre R, Pizarro N. Pharmacokinetic Comparison of Soy Isoflavone Extracts in Human Plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6946-53. [PMID: 26186408 DOI: 10.1021/acs.jafc.5b02891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The soy isoflavones daidzein and genistein produce several biological activities related to health benefits. A number of isoflavone extracts are commercially available, but there is little information concerning the specific isoflavone content of these products or differences in their bioavailability and pharmacokinetics. This study describes the development and validation of an analytical method to detect and quantify daidzein, genistein, and equol in human plasma using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was applied in a crossover, randomized, bioavailability study. Twelve healthy volunteers were administered the same total isoflavones dose from two isoflavone supplement preparations (Super-Absorbable Soy Isoflavones (Life Extension, USA) and Fitoladius (Merck, Spain)). The pharmacokinetic parameters (AUC0-24/dose and Cmax/dose) of the isoflavones from the two preparations differed significantly. Such differences in bioavailability and kinetics may have relevant effects on the health benefits derived from their intake.
Collapse
Affiliation(s)
- Jose Rodríguez-Morató
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- ‡Pompeu Fabra University (CEXS-UPF), Dr. Aiguader 88, Barcelona 08003, Spain
- §CIBER de Fisiopatologı́a Obesidad y Nutrición, Santiago de Compostela 15706, Spain
| | - Magí Farré
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- #Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, UAB Campus, M Building, Barcelona 08193, Spain
| | - Clara Pérez-Mañá
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- #Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, UAB Campus, M Building, Barcelona 08193, Spain
| | - Esther Papaseit
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- #Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, UAB Campus, M Building, Barcelona 08193, Spain
| | - Roser Martínez-Riera
- #Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, UAB Campus, M Building, Barcelona 08193, Spain
- ⊥Institut de Neuropsiquiatria i Adiccions, Adiction Unit and IMIM, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael de la Torre
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- ‡Pompeu Fabra University (CEXS-UPF), Dr. Aiguader 88, Barcelona 08003, Spain
- §CIBER de Fisiopatologı́a Obesidad y Nutrición, Santiago de Compostela 15706, Spain
| | - Nieves Pizarro
- †Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, Barcelona 08003, Spain
- #Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, UAB Campus, M Building, Barcelona 08193, Spain
| |
Collapse
|
131
|
Banerjee N, Kim H, Krenek K, Talcott ST, Mertens-Talcott SU. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs. Nutr Res 2015; 35:744-51. [DOI: 10.1016/j.nutres.2015.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022]
|
132
|
Shan W, Gao L, Zeng W, Hu Y, Wang G, Li M, Zhou J, Ma X, Tian X, Yao J. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease. Cell Death Dis 2015. [PMID: 26203862 PMCID: PMC4650741 DOI: 10.1038/cddis.2015.196] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated that miR-34a expression is significantly upregulated and associated with apoptosis in nonalcoholic fatty liver disease (NAFLD). Carnosic acid (CA) is a novel antioxidant and a potential inhibitor of apoptosis in organ injury, including liver injury. This study aimed to investigate the signaling mechanisms underlying miR-34a expression and the antiapoptotic effect of CA in NAFLD. CA treatment significantly reduced the high-fat diet (HFD)-induced elevations in aminotransferase activity as well as in serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and malondialdehyde (MDA) levels but increased serum high-density lipoprotein cholesterol (HDL-C) and hepatic superoxide dismutase (SOD) levels. Moreover, CA treatment ameliorated the increase in cleaved caspase-3 caused by HFD exposure and completely reversed the HFD-induced decreases in manganese superoxide dismutase (MnSOD) and B-cell lymphoma-extra large expression. CA also counteracted the HFD- or palmitic acid (PA)-induced increases in caspase-3 and caspase-9 activity. Mechanistically, CA reversed the HFD- or PA-induced upregulation of miR-34a, which is the best-characterized regulator of SIRT1. Importantly, the decrease in miR-34a expression was closely associated with the activation of the SIRT1/p66shc pathway, which attenuates hepatocyte apoptosis in liver ischemia/reperfusion injury. A dual luciferase assay in L02 cells validated the modulation of SIRT1 by CA, which occurs at least partly via miR-34a. In addition, miR-34a overexpression was significantly counteracted by CA, which prevented the miR-34a-dependent repression of the SIRT1/p66shc pathway and apoptosis. Collectively, our results support a link between liver cell apoptosis and the miR-34a/SIRT1/p66shc pathway, which can be modulated by CA in NAFLD.
Collapse
Affiliation(s)
- W Shan
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - L Gao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - W Zeng
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Y Hu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - G Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - M Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - J Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - X Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - X Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - J Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
133
|
Nuñez-Sánchez MA, Dávalos A, González-Sarrías A, Casas-Agustench P, Visioli F, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, García-Conesa MT, Espín JC. MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts. Mol Nutr Food Res 2015; 59:1973-86. [PMID: 26105520 DOI: 10.1002/mnfr.201500357] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
SCOPE MicroRNAs (miRs) are proposed as colorectal cancer (CRC) biomarkers. Pomegranate ellagic acid and their microbiota metabolites urolithins exert anticancer effects in preclinical CRC models, and target normal and malignant colon tissues in CRC patients. Herein, we investigated whether the intake of pomegranate extract (PE) modified miRs expression in surgical colon tissues versus biopsies from CRC patients. METHODS AND RESULTS We conducted a randomized, double-blind, controlled trial. Thirty-five CRC patients consumed 900 mg PE daily before surgery. Control CRC patients (no PE intake, n = 10) were included. Our results revealed: (1) significant differences for specific miRs between malignant and normal tissues modifiable by the surgical protocols; (2) opposed trends between -5p and -3p isomolecules; (3) general induction of miRs attributable to the surgery; (4) moderate modulation of various miRs following the PE intake, and (5) no association between tissue urolithins and the observed miRs changes. CONCLUSION PE consumption appears to affect specific colon tissue miRs but surgery critically alters miRs levels hindering the discrimination of significant changes caused by dietary factors and the establishment of genuine differences between malignant and normal tissues as biomarkers. The components responsible for the PE effects and the clinical relevance of these observations deserve further research.
Collapse
Affiliation(s)
- María A Nuñez-Sánchez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Antonio González-Sarrías
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Patricia Casas-Agustench
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Tamara Monedero-Saiz
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain.,Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - María B Gómez-Sánchez
- Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Carmen Sánchez-Álvarez
- Nutrition Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Ana M García-Albert
- Digestive Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - Miguel Ruiz-Marín
- Surgery Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | | | - Francisco Martínez-Díaz
- Anatomical Pathology Service, Hospital Reina Sofía, Avda. Intendente Jorge Palacios s/n, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María Teresa García-Conesa
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
134
|
Latruffe N, Lançon A, Frazzi R, Aires V, Delmas D, Michaille JJ, Djouadi F, Bastin J, Cherkaoui-Malki M. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann N Y Acad Sci 2015; 1348:97-106. [PMID: 26190093 DOI: 10.1111/nyas.12819] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review presents recent evidence implicating microRNAs (miRNAs) in the beneficial effects of resveratrol (trihydroxystilbene), a nonflavonoid plant polyphenol, with emphasis on its anti-inflammatory effects. Many diseases and pathologies have been linked, directly or indirectly, to inflammation. These include infections, injuries, atherosclerosis, diabetes mellitus, obesity, cancer, osteoarthritis, age-related macular degeneration, demyelination, and neurodegenerative diseases. Resveratrol can both decrease the secretion of proinflammatory cytokines (e.g., IL-6, IL-8, and TNF-α) and increase the production of anti-inflammatory cytokines; it also decreases the expression of adhesion proteins (e.g., ICAM-1) and leukocyte chemoattractants (e.g., MCP-1). Resveratrol's primary targets appear to be the transcription factors AP-1 and NF-κB, as well as the gene COX2. Although no mechanistic link between any particular miRNA and resveratrol has been identified, resveratrol effects depend at least in part upon the modification of the expression of a variety of miRNAs that can be anti-inflammatory (e.g., miR-663), proinflammatory (e.g., miR-155), tumor suppressing (e.g., miR-663), or oncogenic (e.g., miR-21).
Collapse
Affiliation(s)
| | - Allan Lançon
- Laboratoire Bio-PeroxIL, Université de Bourgogne, Dijon, France
| | - Raffaele Frazzi
- Department of Research and Statistics, Translational Research Laboratory, IRCCS Arcispedale S.Maria Nuova, Reggio Emilia, Italy
| | - Virginie Aires
- Laboratoire Bio-PeroxIL, Université de Bourgogne, Dijon, France.,INSERM UMR 866, Dijon, France
| | - Dominique Delmas
- Laboratoire Bio-PeroxIL, Université de Bourgogne, Dijon, France.,INSERM UMR 866, Dijon, France
| | | | | | - Jean Bastin
- INSERM U1124, Université Paris Descartes, Paris, France
| | | |
Collapse
|
135
|
New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers. Proc Nutr Soc 2015; 74:268-81. [DOI: 10.1017/s0029665115002323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olive oil (OO) is the primary source of fat in the Mediterranean diet and has been associated with longevity and a lower incidence of chronic diseases, particularly CHD. Cardioprotective effects of OO consumption have been widely related with improved lipoprotein profile, endothelial function and inflammation, linked to health claims of oleic acid and phenolic content of OO. With CVD being a leading cause of death worldwide, a review of the potential mechanisms underpinning the impact of OO in the prevention of disease is warranted. The current body of evidence relies on mechanistic studies involving animal and cell-based models, epidemiological studies of OO intake and risk factor, small- and large-scale human interventions, and the emerging use of novel biomarker techniques associated with disease risk. Although model systems are important for mechanistic research nutrition, methodologies and experimental designs with strong translational value are still lacking. The present review critically appraises the available evidence to date, with particular focus on emerging novel biomarkers for disease risk assessment. New perspectives on OO research are outlined, especially those with scope to clarify key mechanisms by which OO consumption exerts health benefits. The use of urinary proteomic biomarkers, as highly specific disease biomarkers, is highlighted towards a higher translational approach involving OO in nutritional recommendations.
Collapse
|
136
|
Sun Q, Wedick NM, Tworoger SS, Pan A, Townsend MK, Cassidy A, Franke AA, Rimm EB, Hu FB, van Dam RM. Urinary Excretion of Select Dietary Polyphenol Metabolites Is Associated with a Lower Risk of Type 2 Diabetes in Proximate but Not Remote Follow-Up in a Prospective Investigation in 2 Cohorts of US Women. J Nutr 2015; 145:1280-8. [PMID: 25904735 PMCID: PMC4442116 DOI: 10.3945/jn.114.208736] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/27/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Polyphenols are phytochemicals that possess antioxidant and anti-inflammatory properties and improve glucose metabolism in animal experiments, although data from prospective epidemiologic studies examining polyphenol intakes in relation to type 2 diabetes (T2D) risk are inconsistent. OBJECTIVES We examined urinary excretion of select flavonoid and phenolic acid metabolites, as biomarkers of intake, in relation to T2D risk. METHODS Eight polyphenol metabolites (naringenin, hesperetin, quercetin, isorhamnetin, catechin, epicatechin, caffeic acid, and ferulic acid) were quantified in spot urine samples by liquid chromatography/mass spectrometry among 1111 T2D case-control pairs selected from the Nurses' Health Study (NHS) and NHSII. RESULTS Higher urinary excretion of hesperetin was associated with a lower T2D risk after multivariate adjustment: the OR comparing top vs. bottom quartiles was 0.68 (95% CI: 0.49, 0.96), although a linear trend was lacking (P = 0.30). The other measured polyphenols were not significantly associated with T2D risk after multivariate adjustment. However, during the early follow-up period [≤ 4.6 y (median) since urine sample collection], markers of flavanone intakes (naringenin and hesperetin) and flavonol intakes (quercetin and isorhamnetin) were significantly associated with a lower T2D risk. The ORs (95% CIs) comparing extreme quartiles were 0.61 (0.39, 0.98; P-trend: 0.03) for total flavanones and 0.55 (0.33, 0.92; P-trend: 0.04) for total flavonols (P-interaction with follow-up length: ≤ 0.04). An inverse association was also observed for caffeic acid during early follow-up only: the OR was 0.52 (95% CI: 0.32, 0.84; P-trend: 0.03). None of these markers was associated with T2D risk during later follow-up. Metabolites of flavan-3-ols and ferulic acid were not associated with T2D risk in either period. CONCLUSIONS These results suggest that specific flavonoid subclasses, including flavanones and flavonols, as well as caffeic acid, are associated with a lower T2D risk in relatively short-term follow-up but not during longer follow-up. Substantial within-person variability of the metabolites in single spot urine samples may limit the ability to capture associations with long-term disease risk.
Collapse
Affiliation(s)
- Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Departments of Nutrition and
| | - Nicole M Wedick
- Division of Preventive and Behavioral Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Shelley S Tworoger
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Departments of,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Mary K Townsend
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Departments of
| | - Aedin Cassidy
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; and
| | - Adrian A Franke
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Departments of,Nutrition and,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Departments of,Nutrition and,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Rob M van Dam
- Nutrition and,Saw Swee Hock School of Public Health and Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
137
|
Arango D, Diosa-Toro M, Rojas-Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, Jiang J, Schmittgen TD, Doseff AI. Dietary apigenin reduces LPS-induced expression of miR-155 restoring immune balance during inflammation. Mol Nutr Food Res 2015; 59:763-72. [PMID: 25641956 PMCID: PMC7955240 DOI: 10.1002/mnfr.201400705] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/25/2014] [Accepted: 12/29/2014] [Indexed: 12/25/2022]
Abstract
SCOPE High incidence of inflammatory diseases afflicts the increasing aging-population infringing a great health burden. Dietary flavonoids, including the flavone apigenin, are emerging as important anti-inflammatory nutraceuticals due to their health benefits, lack of adverse effects and reduced costs. MicroRNAs (miRs) play a central role in inflammation by regulating gene expression, yet how dietary ingredients affect miRs is poorly understood. The aim of this study was to identify miRs involved in the anti-inflammatory activity of apigenin and apigenin-rich diets and determine their immune regulatory mechanisms in macrophages and in vivo. METHODS AND RESULTS A high-throughput quantitative reverse transcriptase PCR screen of 312 miRs in macrophages revealed that apigenin reduced LPS-induced miR-155 expression. Analyses of miR-155 precursor and primary transcript indicated that apigenin regulated miR-155 transcriptionally. Apigenin-reduced expression of miR-155 led to the increase of anti-inflammatory regulators forkhead box O3a and smooth-muscle-actin and MAD-related protein 2 in LPS-treated macrophages. In vivo, apigenin or a celery-based apigenin-rich diet reduced LPS-induced expression of miR-155 and decreased tumor necrosis factor α in lungs from LPS-treated mice. CONCLUSION These results demonstrate that apigenin and apigenin-rich diets exert effective anti-inflammatory activity in vivo by reducing LPS-induced expression of miR-155, thereby restoring immune balance.
Collapse
Affiliation(s)
- Daniel Arango
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University. Columbus, OH. USA
| | - Mayra Diosa-Toro
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| | - Laura S. Rojas-Hernandez
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| | | | - Steven J. Schwartz
- Department of Food Science and Technology, The Ohio State University. Columbus, OH. USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University. Columbus, OH. USA
| | - Jinmai Jiang
- College of Pharmacy, The Ohio State University. Columbus, OH. USA
| | | | - Andrea I. Doseff
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| |
Collapse
|
138
|
|
139
|
Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015; 20:4655-80. [PMID: 25781069 PMCID: PMC6272603 DOI: 10.3390/molecules20034655] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
Adherence to the Mediterranean Diet (MD) has been associated with a reduced incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, the main source of lipids in the MD, is rich in minor phenolic components, particularly hydroxytyrosol (HT). HT potent antioxidant and anti-inflammatory actions have attracted researchers' attention and may contribute to neuroprotective effects credited to MD. In this review HT bioavailability and pharmacokinetics are presented prior to discussing health beneficial effects. In vitro and in vivo neuroprotective effects together with its multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids). Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Rodríguez-Morató
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
| | - Laura Xicota
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- Cellular & Systems Neurobiology Research Group, Center of Genomic Regulation, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Montse Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
- Cardiovascular Risk and Nutrition Research Group, Epidemiology Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
| | - Mara Dierssen
- Cellular & Systems Neurobiology Research Group, Center of Genomic Regulation, Dr. Aiguader 88, Barcelona 08003, Spain.
- CIBER de Enfermedades Raras (CIBERER), Barcelona 08003, Spain.
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Dr. Aiguader 88, Barcelona 08003, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, Barcelona 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), Santiago de Compostela 15706, Spain.
| |
Collapse
|
140
|
Jensen GS, Attridge VL, Beaman JL, Guthrie J, Ehmann A, Benson KF. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction. J Med Food 2015; 18:535-41. [PMID: 25764268 PMCID: PMC4410834 DOI: 10.1089/jmf.2014.0083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The goal for this work was to characterize basic biological properties of a novel Arthrospira platensis-based aqueous cyanophyta extract (ACE), enriched in the known anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor phycocyanin (PC), but also containing a high level of non-PC bioactive compounds. Antioxidant properties were tested in parallel in the Folin–Ciocalteu assay (chemical antioxidant capacity) and in the cellular antioxidant protection (CAP-e) bioassay, where both the PC and the non-PC fractions contributed to the antioxidant capacity and CAP of ACE. In contrast to the COX-2 inhibition seen in the presence of PC, the inhibition of enzymatic activity of the inflammatory mediator Lipoxygenase was associated specifically with the non-PC fraction of ACE. Inhibition of formation of reactive oxygen species (ROS) was evaluated using polymorphonuclear cells from healthy human donors. The inhibition of ROS formation was seen for both the PC and non-PC fractions, with ACE showing the most robust effect. The effects of PC, non-PC, and ACE on clotting and clot lysing was tested using a modified Euglobulin fibrinolytic assay in vitro. In the presence of PC, non-PC, and ACE, the time for clot formation and lysis was not affected; however, the clots were significantly more robust. This effect was statistically significant (p<.05) at doses between 125–500 μg/mL, and returned to baseline at lower doses. Both PC and the non-PC fraction contributed to the antioxidant properties and anti-inflammatory effects, without a negative impact on blood clotting in vitro. This suggests a potential benefit for the consumable ACE extract in assisting the reduction of inflammatory conditions.
Collapse
|
141
|
Ajdžanović V, Medigović I, Živanović J, Mojić M, Milošević V. Membrane steroid receptor-mediated action of soy isoflavones: tip of the iceberg. J Membr Biol 2015; 248:1-6. [PMID: 25362531 DOI: 10.1007/s00232-014-9745-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/23/2014] [Indexed: 01/20/2023]
Abstract
Soy isoflavone's (genistein and daidzein in particular) biological significance has been thoroughly studied for decades, so we started from the premise that refreshed investigation approach in this field should consider identification of their new molecular targets. In addition to recently described epigenetic aspects of polyphenole action, the cell membrane constituents-mediated effects of soy isoflavones are worthy of special attention. Accordingly, the expanding concept of membrane steroid receptors and rapid signaling from the cell surface may include the prominent role of these steroid-like compounds. It was observed that daidzein strongly interacts with membrane estrogen receptors in adrenal medullary cells. At low doses, daidzein was found to stimulate catecholamine synthesis through extracellular signal-regulated kinase 1/2 or protein kinase A pathways, but at high doses, it inhibited catecholamine synthesis and secretion induced by acetylcholine. Keeping in mind that catecholamine excess can contribute to the cardiovascular pathologies and that catecholamine lack may lead to depression, daidzein application promises to have a wide range of therapeutic effects. On the other hand, it was shown in vitro that genistein inhibits LNCaP prostate cancer cells invasiveness by decreasing the membrane fluidity along with immobilization of the androgen receptor containing membrane lipid rafts, with down regulation of the androgen receptors and Akt signaling. These data are promising in development of the molecular pharmacotherapy pertinent to balanced soy isoflavone treatment of cardiovascular, psychiatric, and steroid-related malignant diseases.
Collapse
Affiliation(s)
- Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia,
| | | | | | | | | |
Collapse
|
142
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
143
|
Wang P, Phan T, Gordon D, Chung S, Henning SM, Vadgama JV. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol Nutr Food Res 2014; 59:250-61. [PMID: 25380086 DOI: 10.1002/mnfr.201400558] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
SCOPE We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. METHODS AND RESULTS Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. CONCLUSION The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer.
Collapse
Affiliation(s)
- Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA; Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
144
|
Davinelli S, Calabrese V, Zella D, Scapagnini G. Epigenetic nutraceutical diets in Alzheimer's disease. J Nutr Health Aging 2014; 18:800-5. [PMID: 25389957 DOI: 10.1007/s12603-014-0552-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is growing support that environmental influences and individual genetic susceptibility may increase the incidence and accelerate the onset of Alzheimer's disease (AD). Epigenetic mechanisms encompass a complex regulatory network of modifications with considerable impact on health and disease risk. Abnormal epigenetic regulation is a hallmark in many pathological conditions including AD. It is well recognized that numerous bioactive dietary components mediate epigenetic modifications associated with the pathophysiology of several diseases. Although the influences of dietary factors on epigenetic regulation have been extensively investigated, only few studies have explored the effects of specific food components in regulating epigenetic patterns during neurodegeneration and AD. Epigenetic nutritional research has substantial potential for AD and may represent a window of opportunity to complement other interventions. Here, we provide a brief overview of the main mechanisms involved in AD, some of which may be epigenetically modulated by bioactive food.
Collapse
Affiliation(s)
- S Davinelli
- Giovanni Scapagnini, Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy,
| | | | | | | |
Collapse
|
145
|
Martín-Fernández B, de las Heras N, Valero-Muñoz M, Ballesteros S, Yao YZ, Stanton PG, Fuller PJ, Lahera V. Beneficial effects of proanthocyanidins in the cardiac alterations induced by aldosterone in rat heart through mineralocorticoid receptor blockade. PLoS One 2014; 9:e111104. [PMID: 25353961 PMCID: PMC4212985 DOI: 10.1371/journal.pone.0111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023] Open
Abstract
Aldosterone administration in rats results in several cardiac alterations. Previous studies have demonstrated that proanthocyanidins, phenolic bioactive compounds, have cardioprotective effects. We studied the potential beneficial effects of the proanthocyanidin-rich almond skin extract (PASE) on the cardiac alterations induced by aldosterone-salt treatment, their effects in mineralocorticoid receptor activity and we sought to confirm proanthocyanidins as the specific component of the extract involved in the beneficial cardiac effects. Male Wistar rats received aldosterone (1 mg/Kg/day) +1% NaCl for 3 weeks. Half of the animals in each group were simultaneously treated with either PASE (100 mg/Kg/day) or spironolactone (200 mg/Kg/day). The ability of PASE to act as an antagonist of the mineralocorticoid receptor was examined using a transactivation assay. High performance liquid chromatography was used to identify and to isolate proanthocyanidins. Hypertension and diastolic dysfunction induced by aldosterone were abolished by treatment with PASE. Expression of the aldosterone mediator SGK-1, together with fibrotic, inflammatory and oxidative mediators were increased by aldosterone-salt treatment; these were reduced by PASE. Aldosterone-salt induced transcriptional activity of the mineralocorticoid receptor was reduced by PASE. HPLC confirmed proanthocyanidins as the compound responsible for the beneficial effects of PASE. The effects of PASE were comparable to those seen with the mineralocorticoid antagonist, spironolactone. The observed responses in the aldosterone-salt treated rats together with the antagonism of transactivation at the mineralocorticoid receptor by PASE provides evidence that the beneficial effect of this proanthocyanidin-rich almond skin extract is via as a mineralocorticoid receptor antagonist with proanthocyanidins identified as the compounds responsible for the beneficial effects of PASE.
Collapse
Affiliation(s)
- Beatriz Martín-Fernández
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
- Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Natalia de las Heras
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - María Valero-Muñoz
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Sandra Ballesteros
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Yi-Zhou Yao
- Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter G. Stanton
- Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter J. Fuller
- Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Vicente Lahera
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
146
|
Zamudio-Cuevas Y, Díaz-Sobac R, Vázquez-Luna A, Landa-Solís C, Cruz-Ramos M, Santamaría-Olmedo M, Martínez-Flores K, Fuentes-Gómez AJ, López-Reyes A. The antioxidant activity of soursop decreases the expression of a member of the NADPH oxidase family. Food Funct 2014; 5:303-9. [PMID: 24337133 DOI: 10.1039/c3fo60135h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular oxidative stress produced by an increase in free radicals is one of the factors that promote the development of chronic degenerative diseases; therefore, consuming natural antioxidants helps minimize their negative effects. This study evaluated the cytotoxicity of the soursop extract (Annona muricata), its cytoprotective capacity against oxidative stress induced by hydrogen peroxide, the inhibitory potential of reactive oxygen species (ROS), the molecular mechanism of its antioxidant action, and its capacity to repair cellular damage in the fibroblast cell line. The soursop extract proved not to be cytotoxic in fibroblast cultures and showed cytoprotective capacity against hydrogen peroxide-induced stress; in cell culture it reduced the generation of ROS significantly by inhibiting a sub-unit of the NADPH oxidase enzyme (p47phox). The soursop extract can prevent damage caused by cellular oxidants.
Collapse
Affiliation(s)
- Y Zamudio-Cuevas
- Laboratorio de Sinovioanálisis Molecular, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P 14389, D.F., México.
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Identification of microRNAs involved in the modulation of pro-angiogenic factors in atherosclerosis by a polyphenol-rich extract from propolis. Arch Biochem Biophys 2014; 557:28-35. [DOI: 10.1016/j.abb.2014.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 11/21/2022]
|
148
|
McGregor RA, Poppitt SD, Cameron-Smith D. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans. Ageing Res Rev 2014; 17:25-33. [PMID: 24833328 DOI: 10.1016/j.arr.2014.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 12/31/2022]
Abstract
Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age.
Collapse
Affiliation(s)
- Robin A McGregor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Human Nutrition Unit, University of Auckland, Auckland, New Zealand; Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Sally D Poppitt
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Human Nutrition Unit, University of Auckland, Auckland, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | | |
Collapse
|
149
|
Milenkovic D, Vanden Berghe W, Boby C, Leroux C, Declerck K, Szarc vel Szic K, Heyninck K, Laukens K, Bizet M, Defrance M, Dedeurwaerder S, Calonne E, Fuks F, Haegeman G, Haenen GRMM, Bast A, Weseler AR. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One 2014; 9:e95527. [PMID: 24763279 PMCID: PMC3998980 DOI: 10.1371/journal.pone.0095527] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/27/2014] [Indexed: 02/03/2023] Open
Abstract
Background In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. Methodology/Principal Findings Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. Conclusion Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans.
Collapse
Affiliation(s)
- Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Céline Boby
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Christine Leroux
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Ken Declerck
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | | | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Francois Fuks
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | | | - Aalt Bast
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
| | - Antje R. Weseler
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
- * E-mail:
| |
Collapse
|
150
|
Afman L, Milenkovic D, Roche HM. Nutritional aspects of metabolic inflammation in relation to health--insights from transcriptomic biomarkers in PBMC of fatty acids and polyphenols. Mol Nutr Food Res 2014; 58:1708-20. [PMID: 24449395 DOI: 10.1002/mnfr.201300559] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
Recent research has highlighted potential important interaction between metabolism and inflammation, within the context of metabolic health and nutrition, with a view to preventing diet-related disease. In addition to this, there is a paucity of evidence in relation to accurate biomarkers that are capable of reflecting this important biological interplay or relationship between metabolism and inflammation, particularly in relation to diet and health. Therefore the objective of this review is to highlight the potential role of transcriptomic approaches as a tool to capture the mechanistic basis of metabolic inflammation. Within this context, this review has focused on the potential of peripheral blood mononuclear cells transcriptomic biomarkers, because they are an accessible tissue that may reflect metabolism and subacute chronic inflammation. Also these pathways are often dysregulated in the common diet-related diseases obesity, type 2 diabetes, and cardiovascular disease, thus may be used as markers of systemic health. The review focuses on fatty acids and polyphenols, two classes of nutrients/nonnutrient food components that modulate metabolism/inflammation, which we have used as an example of a proof-of-concept with a view to understanding the extent to which transcriptomic biomarkers are related to nutritional status and/or sensitive to dietary interventions. We show that both nutritional components modulate inflammatory markers at the transcriptomic level with the capability of profiling pro- and anti-inflammatory mechanisms in a bidirectional fashion; to this end transcriptomic biomarkers may have potential within the context of metabolic inflammation. This transcriptomic biomarker approach may be a sensitive indicator of nutritional status and metabolic health.
Collapse
Affiliation(s)
- Lydia Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, The Netherlands
| | | | | |
Collapse
|