101
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
102
|
Liu ML, Wang ML, Lv JJ, Wei J, Wan J. Glibenclamide exacerbates adriamycin-induced cardiotoxicity by activating oxidative stress-induced endoplasmic reticulum stress in rats. Exp Ther Med 2018; 15:3425-3431. [PMID: 29545864 PMCID: PMC5840948 DOI: 10.3892/etm.2018.5862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Adriamycin (ADR) is a chemotherapeutic drug used to treat tumors in a clinical setting. However, its use is limited by a side effect of cardiotoxicity. Glibenclamide (Gli), an inhibitor of mitochondrial ATP-dependent potassium (K-ATP) channels, blocks the cardioprotective effects of mitochondrial K-ATP channel openers and induces apoptosis in rodent pancreatic islet β-cell lines. However, little is known about the role of Gli in ADR-induced cardiotoxicity. The present study was designed to investigate the impact of Gli on ADR-induced cardiotoxicity in rats. A total of 60 male Sprague-Dawley rats were divided into the following 4 groups: i) Control; ii) Gli; iii) ADR; and iv) Gli+ADR (n=15 in each). The rats in the ADR and Gli+ADR groups were treated with ADR (intraperitoneal, 2.5 mg/kg/week) for 6 weeks. The rats in the Gli and Gli+ADR groups received Gli at a dose of 12 mg/kg/day via gastric lavage for 30 days from the eighth week of the study. Following the completion of Gli treatment, cardiac function was assessed by echocardiography, and the rats were sacrificed. The hearts were subsequently harvested for analysis. The rats in the ADR group demonstrated significantly impaired cardiac function and increased levels of oxidative stress, endoplasmic reticulum stress (ERS) and apoptosis in the heart compared with rats in the control and Gli groups (without ADR treatment). These abnormalities were exacerbated by Gli in the Gli+ADR group. Gli treatment decreased cardiac function and significantly increased oxidative stress, ERS and apoptosis levels in myocardial tissues in rats treated with ADR. The findings indicated that Gli triggers oxidative stress-induced ERS, and thus exacerbates ADR-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Meng-Lin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Long Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Jing-Jun Lv
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Wei
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
103
|
Nrf2 protects human lens epithelial cells against H 2O 2-induced oxidative and ER stress: The ATF4 may be involved. Exp Eye Res 2018; 169:28-37. [PMID: 29421327 DOI: 10.1016/j.exer.2018.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
Our previous study has shown heme oxygenase-1 (HO-1) protects human lens epithelial cells (LECs) against H2O2-induced oxidative stress and apoptosis. Nrf2, the major regulator of HO-1, is triggered during the mutual induction of oxidative stress and ER stress. In response to ER stress, unfolded protein response (UPR) serves as a program of transcriptional and translational regulation mechanism with PERK involved. Both Nrf2 and ATF4 are activated as the downstream effect of PERK signaling coordinating the convergence of dual stresses. However, the ways in which Nrf2 interacting with ATF4 regulates deteriorated redox state have not yet been fully explored. Here, the transfected LECs with Nrf2 overexpression illustrated enhanced resistance in morphology and viability upon H2O2 treatment condition. Intracellular ROS accumulation arouses ER stress, initiating PERK dependent UPR and inducing the downstream signal Nrf2 and ATF4 auto-phosphorylation. Further, converging at target promoters, ATF4 facilitates Nrf2 with the expression of ARE-dependent phase II antioxidant and detoxification enzymes. According to either Nrf2 or ATF4 gene modification, our data suggests a novel interaction between Nrf2 and ATF4 under oxidative and ER stress, thus drives specific enzymatic and non-enzymatic reactions of antioxidant mechanisms maintaining redox homeostasis. Therapies that restoring Nrf2 or ATF4 expression might help to postpone LECs aging and age-related cataract formation.
Collapse
|
104
|
Zhang HJ, Chen RC, Sun GB, Yang LP, Zhu YD, Xu XD, Sun XB. Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:88-97. [PMID: 29496179 DOI: 10.1016/j.phymed.2018.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/30/2017] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Clinopodium chinense (Benth.) O. Ktze is a traditional Chinese herbal medicine, which comprises the plant's total flavonoids. TFCC plays an important role in the treatment of cardiovascular disease. PURPOSE The aim of the study was to study the protective effects and possible mechanism of TFCC against isoproterenol (ISO)-mediated myocardial injury in vivo and anoxia/reoxygenation (A/R)-induced H9c2 cell injury in vitro. METHODS Male Sprague-Dawley (SD) rats were intragastrically pretreated with TFCC for 15 days. After 2 h of TFCC administration on days 14 and 15, a myocardial injury model was established with intragastric administration of 120 mg/kg of ISO daily for 2 days. The experiment was stopped 12 h after the last administration of the drugs. ECG recordings were taken after the treatment. Serum samples were assayed to determine the serum cardiac enzymes (e.g., creatine kinase, aspartate aminotransferase, and lactate dehydrogenase). The left ventricle was excised for histopathological examination, and myocardial homogenates were prepared to detection catalase, glutathione peroxidase, and superoxide dismutase. Reactive oxygen species (ROS), heme oxygenase-1(HO-1),and peroxidase were detected by the corresponding ELISA kits. H9c2 cells were pretreated with different concentrations of TFCC for 12 h before A/R exposure. Afterward, cell viability, LDH release, hoechst 33,342, and peromide iodine (PI) double staining, JC-1 staining, and ROS examination were determined. Western blot analyses of B-cell lymphoma-2, Bcl-2associated X protein, cleaved cysteinylaspartate specific protease-3 and-9, nuclear factor 2(Nrf2), HO-1 and serine/threonine protein kinase (AKT), and P-AKT were conducted. RESULTS The pretreatment of TFCC (10, 20, and 40 mg/kg) daily for 15 days prevented ISO-induced myocardial damage, including the decrease in serum cardiac enzymes and cardiomyocyte apoptotic index and improvement in the heart rate and vacuolation. TFCC also improved the free radical scavenging and antioxidant potential, thereby suggesting that one possible mechanism of TFCC-induced cardio protection is mediated by blocking the oxidative stress. To clarify these mechanisms, we performed the in vitro study by A/R-induced cytotoxicity model in H9c2 cells. TFCC pretreatment prevented apoptosis, increased the expression of HO-1, and enhanced the nuclear translocation of Nrf2. TFCC also activated phosphorylation of AKT, whereas the addition of LY294002, which is the pharmacologic inhibitor of PI3K, blocked the TFCC-induced Nrf2/HO-1 activation and cytoprotective effect. CONCLUSIONS TFCC protects against myocardial injury and enhances cellular antioxidant defense capacity by inducing the phosphorylation of AKT, which subsequently activated the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hai-Jing Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Rong-Chang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Long-Po Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yin-di Zhu
- Academy of Chinese Materia Medica, Wenzhou Medical College, Wenzhou 325035, China
| | - Xu-Dong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
105
|
Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry. Pain 2018; 159:894-906. [DOI: 10.1097/j.pain.0000000000001161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
106
|
Oh YS, Jun HS. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci 2017; 19:ijms19010026. [PMID: 29271910 PMCID: PMC5795977 DOI: 10.3390/ijms19010026] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative cellular damage caused by free radicals is known to contribute to the pathogenesis of various diseases such as cancer, diabetes, and neurodegenerative diseases, as well as to aging. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein1 (Keap1) signaling pathways play an important role in preventing stresses including oxidative and inflammatory stresses. Nrf2 is a master regulator of cellular stress responses, induces the expression of antioxidant and detoxification enzymes, and protects against oxidative stress-induced cell damage. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which was originally found to increase insulin synthesis and secretion. It is now widely accepted that GLP-1 has multiple functions beyond glucose control in various tissues and organs including brain, kidney, and heart. GLP-1 and GLP-1 receptor agonists are known to be effective in many chronic diseases, including diabetes, via antioxidative mechanisms. In this review, we summarize the current knowledge regarding the role of GLP-1 in the protection against oxidative damage and the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea.
| |
Collapse
|
107
|
Sun W, Yang J, Zhang Y, Xi Y, Wen X, Yuan D, Wang Y, Wei C, Wang R, Wu L, Li H, Xu C. Exogenous H 2S restores ischemic post-conditioning-induced cardioprotection through inhibiting endoplasmic reticulum stress in the aged cardiomyocytes. Cell Biosci 2017; 7:67. [PMID: 29238517 PMCID: PMC5725883 DOI: 10.1186/s13578-017-0196-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/03/2017] [Indexed: 01/25/2023] Open
Abstract
Background A gasotransmitter hydrogen sulfide (H2S) plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides cardioprotection in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore opening and oxidative stress and increase of autophagy in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via down-regulation of endoplasmic reticulum stress (ERS) in the aged hearts is unclear. Methods The aged H9C2 cells (the cardiomyocytes line) were induced using H2O2 and were exposed to H/R and PC protocols. Cell viability was observed by CCK-8 kit. Apoptosis was detected by Hoechst 33342 staining and flow cytometry. Related protein expressions were detected through Western blot. Results In the present study, we found that 30 μM H2O2 induced H9C2 cells senescence but not apoptosis. Supplementation of NaHS protected against H/R-induced apoptosis, the expression of cleaved caspase-3 and cleaved caspase-9 and the release of cytochrome c. The addition of NaHS also counteracted the reduction of cell viability caused by H/R and decreased the expression of GRP 78, CHOP, cleaved caspase-12, ATF 4, ATF 6 and XBP-1 and the phosphorylation of PERK, eIF 2α and IRE 1α. Additionally, NaHS increased Bcl-2 expression. PC alone did not provide cardioprotection in H/R-treated aged cardiomyocytes, which was significantly restored by the supplementation of NaHS. The beneficial role of NaHS was similar to the supply of 4-PBA (an inhibitor of ERS), GSK2656157 (an inhibitor of PERK), STF083010 (an inhibitor of IRE 1α), respectively, during PC. Conclusion Our results suggest that the recovery of myocardial protection from PC by exogenous H2S is associated with the inhibition of ERS via down-regulating PERK-eIF 2α-ATF 4, IRE 1α-XBP-1 and ATF 6 pathways in the aged cardiomyocytes.
Collapse
Affiliation(s)
- Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Jinxia Yang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,Department of Pathology, Daqing Medical College, Daqing, China
| | - Yuanzhou Zhang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Di Yuan
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Rui Wang
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Baojian Road, Harbin, 150081 China.,The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
108
|
Metformin attenuates ER stress-induced mitochondrial dysfunction. Transl Res 2017; 190:40-50. [PMID: 29040818 PMCID: PMC5705457 DOI: 10.1016/j.trsl.2017.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
Endoplasmic reticulum (ER) stress, a disturbance of the ER function, contributes to cardiac injury. ER and mitochondria are closely connected organelles within cells. ER stress contributes to mitochondrial dysfunction, which is a key factor to increase cardiac injury. Metformin, a traditional anti-diabetic drug, decreases cardiac injury during ischemia-reperfusion. Metformin also inhibits ER stress in cultured cells. We hypothesized that metformin can attenuate the ER stress-induced mitochondrial dysfunction and subsequent cardiac injury. Thapsigargin (THAP, 3 mg/kg) was used to induce ER stress in C57BL/6 mice. Cell injury and mitochondrial function were evaluated in the mouse heart 48 hours after 1-time THAP treatment. Metformin was dissolved in drinking water (0.5 g/250 ml) and fed to mice for 7 days before THAP injection. Metformin feeding continued after THAP treatment. THAP treatment increased apoptosis in mouse myocardium compared to control. THAP also led to decreased oxidative phosphorylation in heart mitochondria-oxidizing complex I substrates. THAP decreased the calcium retention capacity, indicating that ER stress sensitizes mitochondria to mitochondrial permeability transition pore opening. The cytosolic C/EBP homologous protein (CHOP) content was markedly increased in THAP-treated hearts compared to control, particularly in the nucleus. Metformin prevented the THAP-induced mitochondrial dysfunction and reduced CHOP content in cytosol and nucleus. Thus, metformin reduces cardiac injury during ER stress through the protection of cardiac mitochondria and attenuation of CHOP expression.
Collapse
|
109
|
Mozzini C, Xotta G, Garbin U, Pasini AMF, Cominacini L. Non-Exertional Heatstroke: A Case Report and Review of the Literature. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1058-1065. [PMID: 28974669 PMCID: PMC5637572 DOI: 10.12659/ajcr.905701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Heatstroke (HS) is a life-threatening condition characterized by an elevation of the core body temperature above 40°C, central nervous system dysfunction, and possible multi-organ failure. HS can trigger systemic inflammation, disseminated intravascular coagulation (DIC), rhabdomyolysis, cerebral edema and seizures, pulmonary edema, heart dysfunctions, and renal and hepatic failure. CASE REPORT We report the case of a 41-year-old Romanian woman with a history of alcoholism who developed HS after arriving by bus in Verona, Italy in June 2016. The patient developed consecutive multi-organ dysfunction, including liver and renal failure, rhabdomyolysis, DIC, and arrhythmia. The patient was successfully treated with conservative measures. After 17 days, she recovered completely. CONCLUSIONS The exact mechanism of HS-related multiple organ dysfunction is not completely understood and its pathogenesis is complex. It involves inflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Development of a model in which chronic alcohol abuse alters oxidative, inflammatory, and ER stress response could also be a conceivable solution to the positive prognosis of severe HS patients, in which liver failure has a prominent role.
Collapse
|
110
|
Chen Y, Yuan T, Zhang H, Yan Y, Wang D, Fang L, Lu Y, Du G. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol. Int J Biol Sci 2017; 13:1067-1081. [PMID: 28924387 PMCID: PMC5599911 DOI: 10.7150/ijbs.20316] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT.
Collapse
Affiliation(s)
- Yucai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| | - Huifang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Danshu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening
| |
Collapse
|
111
|
Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. PLoS One 2017; 12:e0182773. [PMID: 28817677 PMCID: PMC5560740 DOI: 10.1371/journal.pone.0182773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/24/2017] [Indexed: 11/19/2022] Open
Abstract
Objective To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Methods Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Results Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Conclusions Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis.
Collapse
|
112
|
Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury. Cell Death Dis 2017; 8:e2841. [PMID: 28569786 PMCID: PMC5520895 DOI: 10.1038/cddis.2017.236] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Cytoprotective gene heme oxygenase 1 (HO-1) could be induced by nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. The purpose of this study was to determine the role of Brahma-related gene 1 (Brg1), a catalytic subunit of SWI2/SNF2-like chromatin remodeling complexes, in Nrf2/HO-1 pathway activation during hepatic ischemia–reperfusion (HIR). Our results showed that hepatic Brg1 was inhibited during early HIR while Brg1 overexpression reduced oxidative injury in CMV-Brg1 mice subjected to HIR. Moreover, promoter-driven luciferase assay showed that overexpression of Brg1 by adenovirus transfection in AML12 cells selectively enhanced HO-1 gene expression after hypoxia/reoxygenation (H/R) treatment but did not affect the other Nrf2 target gene NQO1. Furthermore, inhibition of HO-1 by the selective HO-1 inhibitor zinc protoporphyria could partly reverse the hepatic protective effects of Brg1 overexpression while HO-1-Adv attenuated AML12 cells H/R damage. Further, chromatin immunoprecipitation analysis revealed that Brg1 overexpression, which could significantly increase the recruitment of Brg1 protein to HO-1 but not NQO1 promoter, was recruited by Nrf2 to the HO-1 regulatory regions in AML12 hepatocytes subjected to H/R. In conclusion, our results demonstrated that restoration of Brg1 during reperfusion could enhance Nrf2-mediated inducible expression of HO-1 during HIR to effectively increase antioxidant ability to combat against hepatocytes damage.
Collapse
|
113
|
Lin L, Yin Y, Hou G, Han D, Kang J, Wang Q. Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways. Pulm Pharmacol Ther 2017; 44:111-121. [PMID: 28347799 DOI: 10.1016/j.pupt.2017.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Ursolic acid (UA) is widely distributed in natural plants to against oxidation, virus, inflammation, tumor, and has been widely used in the pharmaceutical and cosmetics. However, its effect on emphysema of chronic obstructive pulmonary disease (COPD) is unknown. Unfolded protein response is involved in pathogenesis of COPD through PERK pathway. Nuclear erythroid-related factor 2 (Nrf2) regulates antioxidant defensive mechanism in COPD. This study was to explore effect and mechanism of UA on cigarette smoke (CS)-induced rat emphysema. MATERIALS AND METHODS 50 Wistar rats were divided into 5 groups (n = 10 each): rats were exposed to CS for 12 weeks in absence (CS group) or presence of UA at different doses. Control group was treated with UA vehicle only. Histopathology, apoptosis, key protein expression of PERK and Nrf2 pathway were determined in lung tissues. Oxidative stress levels in lung were represented by 8-OHdG, MDA and GSH levels. RESULTS Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in UA groups than in CS group. Compared with CS group, UA treatment down-regulated PERK pathway protein expression, up-regulated expression of Bcl-2 and down-regulated expression of Bax, Cleaved-Caspase3 and Cleaved-Caspase12. Moreover, UA decreased number of apoptotic cells in rat lungs. UA also up-regulated protein expression of Nrf2/ARE pathway and GSH level, decreased expression of oxidant stress factor 8-OHdG and MDA. These improvements were in accordance with attenuation of severity of emphysema. CONCLUSIONS UA attenuates CS-induced rat emphysema by down-regulating PERK pathway to alleviate CS-induced apoptosis in lung, and up-regulating Nrf2 pathway to improve cigarette smoke-induced oxidant stress in rat lungs.
Collapse
Affiliation(s)
- Li Lin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Yin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Gang Hou
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Han
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiuyue Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
114
|
Hassan MQ, Akhtar M, Ahmed S, Ahmad A, Najmi AK. Nigella sativa protects against isoproterenol-induced myocardial infarction by alleviating oxidative stress, biochemical alterations and histological damage. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
115
|
Therapeutic Targeting of Cellular Stress to Prevent Cardiovascular Disease: A Review of the Evidence. Am J Cardiovasc Drugs 2017; 17:83-95. [PMID: 27778192 DOI: 10.1007/s40256-016-0199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of effective drugs targeting the major risk factors of cardiovascular disease (CVD) has reduced morbidity and mortality. Cumulative relative risk of CVD events can be reduced by 75 % with a combination of aspirin, a β-adrenoceptor antagonist (β-blocker), an HMG-CoA reductase inhibitor (statin), and an angiotensin-converting enzyme inhibitor. The principal pharmacodynamics of these drugs cannot explain the entirety of their cardioprotective action, as other drugs with similar pharmacologic targets have not been associated with favorable clinical effects. This raises the possibility that the cardioprotective drugs have a unique pleiotropic activity that contributes to their clinical efficacy. Recent data suggest that reducing cellular stress such as oxidative, inflammatory, and endoplasmic reticulum stress, might be a common denominator of the drugs with proven efficacy in reducing CVD risk. In this communication, the evidence in favor of this hypothesis is discussed, and ongoing trials with therapeutic agents targeting cellular stresses are reviewed.
Collapse
|
116
|
Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis. Sci Rep 2017; 7:44769. [PMID: 28333129 PMCID: PMC5363061 DOI: 10.1038/srep44769] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/14/2017] [Indexed: 12/29/2022] Open
Abstract
In response to oxidative stress, nuclear factor (erythroid-derived 2)-like2 (Nrf2) induces expression of cytoprotective genes. The Nrf2 pathway is controlled by microRNAs and Kelch-like ECH-associated protein1 (Keap1). Nrf2 is stabilized when Keap1 is degraded through the autophagy pathway in a p62-dependent manner. The inhibition of autophagy causes protein accumulation, and Keap1 is inactivated by binding to p62. We investigated the role of the Nrf2/Keap1 axis in the amelioration of oxidative stress in primary biliary cholangitis (PBC). Liver specimens from patients with PBC, with (n = 24) or without cirrhosis (n = 14), and from controls (n = 16) were used for molecular analyses. We found that Nrf2 protein levels were elevated in PBC compared to controls, but Nrf2 gene expression was significantly reduced in cirrhotic PBC. Nrf2 target gene products, HO-1 and GCLC proteins, were reduced compared to controls and reduction of Nrf2 gene expression was associated with elevated levels of microRNA-132 and microRNA-34a. Both Keap1 and p62 protein levels were substantially increased in PBC compared to controls. PBC was associated with reduced Nrf2 expression and autophagy deterioration and these impairments were more advanced in patients with cirrhosis. Aberrant Nrf2/Keap1 system integrity may affect self-defence mechanisms against oxidative stress in PBC.
Collapse
|
117
|
A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1026268. [PMID: 28386305 PMCID: PMC5366772 DOI: 10.1155/2017/1026268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS) orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs), bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG), on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER) stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.
Collapse
|
118
|
Qiu T, Wang ZS, Liu XH, Chen H, Zhou JQ, Chen ZY, Wang M, Jiang GJ, Wang L, Yu G, Zhang L, Shen Y, Zhang L, He L, Wang HX, Zhang WJ. Effect of ozone oxidative preconditioning on oxidative stress injury in a rat model of kidney transplantation. Exp Ther Med 2017; 13:1948-1955. [PMID: 28565792 DOI: 10.3892/etm.2017.4193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of ozone oxidative preconditioning (OOP) on renal oxidative stress injury in a rat model of kidney transplantation. Thirty-six male Sprague Dawley (SD) rats were randomly divided into three groups: A sham (S) group, a kidney transplantation (KT) group and an OOP and kidney transplantation (OOP+KT) group. In the S group, the rats' abdomens were opened and closed without transplantation. In the KT group, the rats received a left kidney from donor SD rats. In the OOP+KT group, donor SD rats received 15 OOP treatments by transrectal insufflations (1 mg/kg), once a day, at an ozone concentration of 50 µg/ml, before the kidney transplantation. Twenty-four hours after transplantation, the parameters of renal function of the recipients were measured. The morphology and pathological effects of renal allograft were examined using hematoxylin and eosin staining, periodic acid-Schiff staining, a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry. Markers of oxidative stress were also detected using the thiobarbituric acid method, and expression levels of Nrf-2 and HO-1 were determined by western blot analysis. Blood urea nitrogen and creatinine levels were significantly decreased in the OOP+KT group compared with the KT group, and the morphology and pathological changes of renal allograft were also less severe. Meanwhile, the renal allograft cell apoptosis index was significantly higher in the KT group compared to the OOP+KT group (P<0.05). Levels of superoxide dismutase, glutathione and catalase in the renal allografts were significantly higher in the OOP+KT group compared to those in the KT group (P<0.05), while malondialdehyde levels were significantly lower in the OOP+KT group compared to those in the KT group (P<0.05). Western blot analysis indicated that the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) were significantly higher in the OOP+KT compared to the KT group (P<0.05). In conclusion, the mechanism by which OOP alleviates oxidative stress injury in renal transplantation may be related to the activation of the signaling pathways of Nrf-2/HO-1 and inhibition of renal tubular epithelial cell apoptosis.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Shun Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiang-Qiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guan-Jun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ye Shen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hua-Xin Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wen-Jing Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
119
|
Gillet FX, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. ANNALS OF BOTANY 2017; 119:775-789. [PMID: 28087659 PMCID: PMC5378187 DOI: 10.1093/aob/mcw260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.
Collapse
Affiliation(s)
- François-Xavier Gillet
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | - Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
- Catholic University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
120
|
Wang S, Zhu X, Xiong L, Ren J. Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicol Lett 2017; 269:1-14. [DOI: 10.1016/j.toxlet.2017.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/30/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022]
|
121
|
Maekawa H, Inagi R. Stress Signal Network between Hypoxia and ER Stress in Chronic Kidney Disease. Front Physiol 2017; 8:74. [PMID: 28228736 PMCID: PMC5296310 DOI: 10.3389/fphys.2017.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by an irreversible decrease in kidney function and induction of various metabolic dysfunctions. Accumulated findings reveal that chronic hypoxic stress and endoplasmic reticulum (ER) stress are involved in a range of pathogenic conditions, including the progression of CKD. Because of the presence of an arteriovenous oxygen shunt, the kidney is thought to be susceptible to hypoxia. Chronic kidney hypoxia is induced by a number of pathogenic conditions, including renal ischemia, reduced peritubular capillary, and tubulointerstitial fibrosis. The ER is an organelle which helps maintain the quality of proteins through the unfolded protein response (UPR) pathway, and ER dysfunction associated with maladaptive UPR activation is named ER stress. ER stress is reported to be related to some of the effects of pathogenesis in kidney, particularly in the podocyte slit diaphragm and tubulointerstitium. Furthermore, chronic hypoxia mediates ER stress in blood vessel endothelial cells and tubulointerstitium via several mechanisms, including oxidative stress, epigenetic alteration, lipid metabolism, and the AKT pathway. In summary, a growing consensus considers that these stresses interact via complicated stress signal networks, which leads to the exacerbation of CKD (Figure 1). This stress signal network might be a target for interventions aimed at ameliorating CKD.
Collapse
Affiliation(s)
- Hiroshi Maekawa
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, University of Tokyo Graduate School of Medicine Tokyo, Japan
| |
Collapse
|
122
|
Lei Y, Li X, Yuan F, Liu L, Zhang J, Yang Y, Zhao J, Han Y, Ren J, Fu X. Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2017; 32:656-668. [PMID: 27442881 DOI: 10.1002/tox.22267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 06/06/2023]
Abstract
Paraquat is a nitrogen herbicide imposing severe organ toxicity in human leading to acute lung injury and heart failure. The present study was designed to examine the impact of ablation of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile dysfunction and the underlying mechanisms involved with a focus on endoplasmic reticulum (ER) stress and apoptosis. Adult male wild-type (WT) and TLR4 knockout (TLR4-/- ) mice were challenged with paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of myocardial and cardiomyocyte sarcomere function, ER stress, apoptosis and inflammation. Acute paraquat challenge exerted myocardial functional and geometric alterations including enlarged left ventricular end systolic diameter (LVESD), reduced fractional shortening, decreased sarcomere shortening, maximal velocities of sarcomere shortening and relengthening associated with unchanged LV posterior wall thickness, septal thickness, LV end diastolic diameter (LVEDD), heart rate, sarcomere length, time-to-peak shortening and time-to-90% relengthening. Although TLR4 ablation did not affect mechanical properties in the heart, it significantly attenuated or ablated paraquat-induced cardiac contractile anomalies. Moreover, paraquat imposed overt ER stress, apoptosis and inflammation as evidenced by upregulation of Bip, CHOP, Caspase-3, -9, Bax, Bad, and IL-1β, phosphorylation of PERK, eIF2α and IΚB, as well as activation of the stress molecules ERK and p38, with unchanged Caspase-8, Bcl2, TNF-α, p53, HMGB1, MyD88 and phosphorylation of Akt, GSK3β and JNK, the effects of which were attenuated or negated by TLR4 knockout. Taken together, our results suggested that TLR4 ablation alleviated paraquat-induced myocardial contractile dysfunction possibly through attenuation of ER stress, apoptosis and inflammation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 656-668, 2017.
Collapse
Affiliation(s)
- Yonghong Lei
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| | - Xue Li
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Fang Yuan
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Juan Zhang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yanping Yang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Jieqiong Zhao
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yan Han
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Jun Ren
- Department of Cardiology, Fudan University, Zhongshan Hospital, Shanghai, 210032, China
| | - Xiaobing Fu
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| |
Collapse
|
123
|
Safiedeen Z, Rodríguez-Gómez I, Vergori L, Soleti R, Vaithilingam D, Douma I, Agouni A, Leiber D, Dubois S, Simard G, Zibara K, Andriantsitohaina R, Martínez MC. Temporal Cross Talk Between Endoplasmic Reticulum and Mitochondria Regulates Oxidative Stress and Mediates Microparticle-Induced Endothelial Dysfunction. Antioxid Redox Signal 2017; 26:15-27. [PMID: 27392575 DOI: 10.1089/ars.2016.6771] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Circulating microparticles (MPs) from metabolic syndrome patients and those generated from apoptotic T cells induce endothelial dysfunction; however, the molecular and cellular mechanism(s) underlying in the effects of MPs remain to be elucidated. RESULTS Here, we show that both types of MPs increased expression of endoplasmic reticulum (ER) stress markers, X-box binding protein 1, p-eukaryotic translation initiation factor 2 α, and CHOP, and nuclear translocation of activating transcription factor 6 on human aortic endothelial cells (HAoECs). MPs decreased in vitro nitric oxide release by HAoECs, whereas in vivo MP injection into mice impaired the endothelium-dependent relaxation induced by acetylcholine. These effects were prevented when ER stress was inhibited, suggesting that ER stress is implicated in the endothelial effects induced by MPs. MPs affected mitochondrial function and evoked sequential increase of cytosolic and mitochondrial reactive oxygen species (ROS). Pharmacological inhibition of ER stress and silencing of neutral sphingomyelinase (SMase) with siRNA abrogated all MP-mediated effects. Neutralization of Fas ligand carried by MPs abolished effects induced by both MP types, whereas neutralization of low-density lipoprotein receptor on endothelial cells prevented T-lymphocyte MP-mediated effects. Innovation and Conclusion: Collectively, endothelial dysfunction triggered by MPs involves temporal cross talk between ER and mitochondria with respect to spatial regulation of ROS via the neutral SMase and interaction of MPs with Fas and/or low-density lipoprotein receptor. These results provide a novel molecular insight into the manner MPs mediate vascular dysfunction and allow identification of potential therapeutic targets to treat vascular complications associated with metabolic syndrome. Antioxid. Redox Signal. 26, 15-27.
Collapse
Affiliation(s)
- Zainab Safiedeen
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,2 ER045, Laboratory of Stem Cells, PRASE, DSST, Lebanese University , Beirut, Lebanon
| | - Isabel Rodríguez-Gómez
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Luisa Vergori
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Raffaella Soleti
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Dayannath Vaithilingam
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Imene Douma
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Abdelali Agouni
- 3 Faculty of Health and Medical Sciences, University of Surrey , Guildford, United Kingdom
| | - Denis Leiber
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France
| | - Séverine Dubois
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - Gilles Simard
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - Kazem Zibara
- 2 ER045, Laboratory of Stem Cells, PRASE, DSST, Lebanese University , Beirut, Lebanon .,5 Faculty of Sciences-I, Biology Department, Lebanese University , Beirut, Lebanon
| | - Ramaroson Andriantsitohaina
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| | - M Carmen Martínez
- 1 INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, Université d'Angers , Angers, France .,4 Centre Hospitalo-Universitaire d'Angers , Angers, France
| |
Collapse
|
124
|
Antiretroviral Treatment with Efavirenz Disrupts the Blood-Brain Barrier Integrity and Increases Stroke Severity. Sci Rep 2016; 6:39738. [PMID: 28008980 PMCID: PMC5180178 DOI: 10.1038/srep39738] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
The introduction of antiretroviral drugs (ARVd) changed the prognosis of HIV infection from a deadly disease to a chronic disease. However, even with undetectable viral loads, patients still develop a wide range of pathologies, including cerebrovascular complications and stroke. It is hypothesized that toxic side effects of ARVd may contribute to these effects. To address this notion, we evaluated the impact of several non-nucleoside reverse transcriptase inhibitors (NNRTI; Efavirenz, Etravirine, Rilpivirine and Nevirapine) on the integrity of the blood-brain barrier, and their impact on severity of stroke. Among studied drugs, Efavirenz, but not other NNRTIs, altered claudin-5 expression, increased endothelial permeability, and disrupted the blood-brain barrier integrity. Importantly, Efavirenz exposure increased the severity of stroke in a model of middle cerebral artery occlusion in mice. Taken together, these results indicate that selected ARVd can exacerbate HIV-associated cerebrovascular pathology. Therefore, careful consideration should be taken when choosing an anti-retroviral therapy regimen.
Collapse
|
125
|
Piceatannol attenuates homocysteine-induced endoplasmic reticulum stress and endothelial cell damage via heme oxygenase-1 expression. Amino Acids 2016; 49:735-745. [DOI: 10.1007/s00726-016-2375-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/09/2016] [Indexed: 01/22/2023]
|
126
|
SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ 2016; 24:343-356. [PMID: 27911441 DOI: 10.1038/cdd.2016.138] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 01/10/2023] Open
Abstract
Over the past decade, endoplasmic reticulum (ER) stress has emerged as an important mechanism involved in the pathogenesis of cardiovascular diseases including heart failure. Cardiac therapy based on ER stress modulation is viewed as a promising avenue toward effective therapies for the diseased heart. Here, we tested whether sirtuin-1 (SIRT1), a NAD+-dependent deacetylase, participates in modulating ER stress response in the heart. Using cardiomyocytes and adult-inducible SIRT1 knockout mice, we demonstrate that SIRT1 inhibition or deficiency increases ER stress-induced cardiac injury, whereas activation of SIRT1 by the SIRT1-activating compound STAC-3 is protective. Analysis of the expression of markers of the three main branches of the unfolded protein response (i.e., PERK/eIF2α, ATF6 and IRE1) showed that SIRT1 protects cardiomyocytes from ER stress-induced apoptosis by attenuating PERK/eIF2α pathway activation. We also present evidence that SIRT1 physically interacts with and deacetylates eIF2α. Mass spectrometry analysis identified lysines K141 and K143 as the acetylation sites on eIF2α targeted by SIRT1. Furthermore, mutation of K143 to arginine to mimic eIF2α deacetylation confers protection against ER stress-induced apoptosis. Collectively, our findings indicate that eIF2α deacetylation on lysine K143 by SIRT1 is a novel regulatory mechanism for protecting cardiac cells from ER stress and suggest that activation of SIRT1 has potential as a therapeutic approach to protect the heart against ER stress-induced injury.
Collapse
|
127
|
Zhang T, Hu Q, Shi L, Qin L, Zhang Q, Mi M. Equol Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice by Inhibiting Endoplasmic Reticulum Stress via Activation of Nrf2 in Endothelial Cells. PLoS One 2016; 11:e0167020. [PMID: 27907038 PMCID: PMC5132403 DOI: 10.1371/journal.pone.0167020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
The development of atherosclerosis is closely related to excessive endoplasmic reticulum stress (ERs). Equol reportedly protects against cardiovascular disease; however, the underlying mechanism for this protection remains unknown. Herein, the mechanisms contributing to the atheroprotective effect of equol were addressed using apolipoprotein E knockout (apoE-/-) mice fed a high-fat diet (HFD) with or without equol. Equol intervention reduced atherosclerotic lesions in the aorta in HFD-fed apoE-/- mice. Plasma lipid analysis showed that equol intervention reduced triglycerides, total cholesterol and LDL-cholesterol and increased HDL-cholesterol. Additionally, equol administration decreased lipid accumulation in the liver. Simultaneously, equol treatment inhibited cell apoptosis induced by t-BHP and thapsigargin in human umbilical vein endothelial cells (HUVECs). Furthermore, equol treatment attenuated palmitate, t-BHP or thapsigargin-induced upregulation of ER stress markers, including p-PERK, p-eIF2α, GRP78, ATF6 and CHOP proteins expression. The same tendency was also observed in aortic lysates in apoE-/- mice fed with equol plus HFD compared with HFD alone. Moreover, equol treatment dose dependently activated the Nrf2 signaling pathway under oxidative stress. Additionally, elevation of Nrf2 induction was found in aortic lysates in apoE-/- mice fed with a HFD diet containing equol compared with a HFD diet without equol. Importantly, Nrf2 siRNA interference induced CHOP and attenuated the effect of equol to inhibit t-BHP mediated CHOP induction, furthermore, abrogated cell apoptosis induced by t-BHP, suggesting a role for Nrf2 in the protective effect of equol in HUVECs. Collectively, these findings implicate that the improvement of atherosclerosis by equol through attenuation of ER stress is mediated, at least in part, by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
| | - Qin Hu
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
| | - Linying Shi
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
| | - Li Qin
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
| | - Qianyong Zhang
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
- * E-mail: (MM); (QZ)
| | - Mantian Mi
- Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing, P. R.China
- * E-mail: (MM); (QZ)
| |
Collapse
|
128
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
129
|
Liu W, Xu Z, Li H, Guo M, Yang T, Feng S, Xu B, Deng Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum Exp Toxicol 2016; 36:949-966. [PMID: 27837179 DOI: 10.1177/0960327116677355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mercury (Hg) represents a ubiquitous environmental heavy metal that could lead to severe toxic effects in a variety of organs usually at a low level. The present study focused on the liver oxidative stress, one of the most important roles playing in Hg hepatotoxicity, by evaluation of different concentrations of mercuric chloride (HgCl2) administration. Moreover, the protective potential of curcumin against Hg hepatotoxic effects was also investigated. Eighty-four rats were randomly divided into six groups for a three-days experiment: control, dimethyl sulfoxide control, HgCl2 treatment (0.6, 1.2, and 2.4 mg kg-1 day-1), and curcumin pretreatment (100 mg kg-1 day-1) groups. Exposure of HgCl2 resulted in acute dose-dependent hepatotoxic effects. Administration of 2.4 mg kg-1 HgCl2 significantly elevated total Hg, nonprotein sulfhydryl, reactive oxygen species formation, malondialdehyde, apoptosis levels, serum lactate dehydrogenase, and alanine transaminase activities, with an impairment of superoxide dismutase and glutathione peroxidase in the liver. Moreover, HgCl2 treatment activated nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in further investigation, with a significant upregulation of Nrf2, heme oxygenase-1, and γ-glutamylcysteine synthetase heavy subunit expression, relative to control. Pretreatment with curcumin obviously prevented HgCl2-induced liver oxidative stress, which may be due to its free radical scavenging or Nrf2-ARE pathway-inducing properties. Taking together these data suggest that curcumin counteracts HgCl2 hepatotoxicity through antagonizing liver oxidative stress.
Collapse
Affiliation(s)
- W Liu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Z Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - H Li
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - M Guo
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - T Yang
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - S Feng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - B Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yu Deng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
130
|
Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases 2016; 4:diseases4040034. [PMID: 28933413 PMCID: PMC5456329 DOI: 10.3390/diseases4040034] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine) and epigallocatechin gallate or EGCG (in green tea) can activate the nuclear erythroid-2 like factor-2 (Nrf2) transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs) that are commonly found in the promoter region of antioxidant (and other) genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent) cardiovascular diseases and multi-drug resistance cancer.
Collapse
Affiliation(s)
- Robert E Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Kevin Tran
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Cynthia C Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Miranda McDonald
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Pushkar Shejwalkar
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Kenji Hara
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
131
|
Targeting the angio-proteostasis network: Combining the forces against cancer. Pharmacol Ther 2016; 167:1-12. [DOI: 10.1016/j.pharmthera.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
|
132
|
Maltese G, Psefteli PM, Rizzo B, Srivastava S, Gnudi L, Mann GE, Siow RCM. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med 2016; 21:621-627. [PMID: 27696667 PMCID: PMC5323877 DOI: 10.1111/jcmm.12996] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2‐related factor 2 (Nrf2). The anti‐ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO‐1) and peroxiredoxin‐1 (Prx‐1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO‐1 and Prx‐1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII‐mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2‐mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.
Collapse
Affiliation(s)
- Giuseppe Maltese
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Paraskevi-Maria Psefteli
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Benedetta Rizzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Salil Srivastava
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Luigi Gnudi
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
133
|
Glory A, Averill-Bates DA. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis. Free Radic Biol Med 2016; 99:485-497. [PMID: 27591796 DOI: 10.1016/j.freeradbiomed.2016.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/07/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
The exposure of cells to low doses of stress induces adaptive survival responses that protect cells against subsequent exposure to toxic stress. The ability of cells to resist subsequent toxic stress following exposure to low dose heat stress at 40°C is known as mild thermotolerance. Mild thermotolerance involves increased expression of heat shock proteins and antioxidants, but the initiating factors in this response are not understood. This study aims to understand the role of the Nrf2 antioxidant pathway in acquisition of mild thermotolerance at 40°C, and secondly, whether the Nrf2 pathway could be involved in the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis. During cell preconditioning at 40°C, protein expression of the Nrf2 transcription factor increased after 15-60min. In addition, levels of the Nrf2 targets MnSOD, catalase, heme oxygenase-1, glutamate cysteine ligase and Hsp70 increased at 40°C. Levels of these Nrf2 targets were enhanced by Nrf2 activator oltipraz and decreased by shRNA targeting Nrf2. Levels of pro-oxidants increased after 30-60min at 40°C. Pro-oxidant levels were decreased by oltipraz and increased by knockdown of Nrf2. Increased Nrf2 expression and catalase activity at 40°C were inhibited by the antioxidant PEG-catalase and by p53 inhibitor pifithrin-α. These results suggest that mild thermotolerance (40°C) increases cellular pro-oxidant levels, which in turn activate Nrf2 and its target genes. Moreover, Nrf2 contributes to the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis, because Nrf2 activation by oltipraz enhanced thermotolerance, whereas Nrf2 knockdown partly reversed thermotolerance. Improved knowledge about the different protective mechanisms that mild thermotolerance can activate is crucial for the potential use of this adaptive survival response to treat stress-related diseases.
Collapse
Affiliation(s)
- Audrey Glory
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8
| | - Diana A Averill-Bates
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8.
| |
Collapse
|
134
|
Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3919627. [PMID: 27656261 PMCID: PMC5021880 DOI: 10.1155/2016/3919627] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/28/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.
Collapse
|
135
|
Reid BG, Stratton MS, Bowers S, Cavasin MA, Demos-Davies KM, Susano I, McKinsey TA. Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol 2016; 97:106-13. [PMID: 27130278 PMCID: PMC5002372 DOI: 10.1016/j.yjmcc.2016.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
Chronic cardiac hypertrophy is maladaptive and contributes to the pathogenesis of heart failure. The objective of this study was to identify small molecule inhibitors of pathological cardiomyocyte hypertrophy. High content screening was performed with primary neonatal rat ventricular myocytes (NRVMs) cultured on 96-well plates and treated with a library of 3241 distinct small molecules. Non-toxic hit compounds that blocked hypertrophy in response to phenylephrine (PE) and phorbol myristate acetate (PMA) were identified based on their ability to reduce cell size and inhibit expression of atrial natriuretic factor (ANF), which is a biomarker of pathological cardiac hypertrophy. Many of the hit compounds are existing drugs that have not previously been evaluated for benefit in the setting of cardiovascular disease. One such compound, the anti-malarial drug artesunate, blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). These findings demonstrate that phenotypic screening with primary cardiomyocytes can be used to discover anti-hypertrophic lead compounds for heart failure drug discovery. Using annotated libraries of compounds with known selectivity profiles, this screening methodology also facilitates chemical biological dissection of signaling networks that control pathological growth of the heart.
Collapse
Affiliation(s)
- Brian G Reid
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO, United States
| | - Matthew S Stratton
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, United States; Department of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, United States
| | - Samantha Bowers
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO, United States
| | - Maria A Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, United States; Department of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, United States
| | - Kimberley M Demos-Davies
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, United States
| | - Isidro Susano
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, United States; Department of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, United States.
| |
Collapse
|
136
|
Feng J, Li S, Chen H. Tanshinone IIA ameliorates apoptosis of cardiomyocytes induced by endoplasmic reticulum stress. Exp Biol Med (Maywood) 2016; 241:2042-2048. [PMID: 27465140 DOI: 10.1177/1535370216660634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fat-soluble diterpenoids tanshinone IIA (TSA) is the major active element of Danshen, which has widespread cardioprotective effect. However, the mechanism of its beneficial effect on cardiomyocytes has not been fully investigated. Here, we aim to demonstrate that TSA ameliorates apoptosis of cardiomyocytes activated by endoplasmic reticulum stress (ERS). Primary cultures of neonatal rat cardiomyocytes are used, in which ERS-mediated apoptosis is induced by tunicamycin (Tm). Apoptosis of cardiomyocytes are detected by Hoechst staining and caspase 3 activity analysis. Protein expression of ERS markers are detected by Western blot, and level of miroRNA-133 (miR-133) is detected by real-time polymerase chain reaction. Tm treatment significantly triggers the apoptosis and ERS of cardiomyocytes. TSA dramatically ameliorates apoptosis and ERS of cardiomyocytes induced by Tm. Interestingly, level of miR-133 is reduced by Tm treatment, which is reversed by TSA. The cardioprotective effect of TSA on apoptosis and ERS of cardiomyocytes is blocked by anti-miR-133. These results suggest that TSA protects cardiomyocytes through ameliorated ERS-mediated apoptosis, which may be resulted from upregulation of miR-133.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huawen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
137
|
Yu B, Wenjun Z, Changsheng Y, Yuntao F, Jing M, Ben L, Hai Q, Guangwei X, Suhua W, Fang L, Aschner M, Rongzhu L. Preconditioning of endoplasmic reticulum stress protects against acrylonitrile-induced cytotoxicity in primary rat astrocytes: The role of autophagy. Neurotoxicology 2016; 55:112-121. [DOI: 10.1016/j.neuro.2016.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/06/2023]
|
138
|
Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia–reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis 2016; 21:809-24. [DOI: 10.1007/s10495-016-1246-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
139
|
Kakoti BB, Hernandez-Ontiveros DG, Kataki MS, Shah K, Pathak Y, Panguluri SK. Resveratrol and Omega-3 Fatty Acid: Its Implications in Cardiovascular Diseases. Front Cardiovasc Med 2015; 2:38. [PMID: 26697434 PMCID: PMC4675849 DOI: 10.3389/fcvm.2015.00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023] Open
Abstract
The present review aims at summarizing the major therapeutic roles of resveratrol and omega-3 fatty acids (O3FAs) along with their related pathways. This article reviews some of the key studies involving the health benefits of resveratrol and O3FAs. Oxidative stress has been considered as one of the most important pathophysiological factors associated with various cardiovascular disease conditions. Resveratrol, with the potent antioxidant and free radical scavenging properties, has been proven to be a significantly protective compound in restoring the normal cardiac health. A plethora of research also demonstrated the reduction of the risk of coronary heart disease, hypertension, and stroke, and their complications by O3FAs derived from fish and fish oils. This review describes the potential cardioprotective role of resveratrol and O3FAs in ameliorating the endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | | | - Kajri Shah
- College of Pharmacy, University of South Florida , Tampa, FL , USA
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida , Tampa, FL , USA
| | | |
Collapse
|
140
|
Erkens R, Kramer CM, Lückstädt W, Panknin C, Krause L, Weidenbach M, Dirzka J, Krenz T, Mergia E, Suvorava T, Kelm M, Cortese-Krott MM. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med 2015; 89:906-17. [PMID: 26475037 DOI: 10.1016/j.freeradbiomed.2015.10.409] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
Abstract
Increased production of reactive oxygen species and failure of the antioxidant defense system are considered to play a central role in the pathogenesis of cardiovascular disease. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch controlling the expression of antioxidant and protective enzymes, and was proposed to participate in protection of vascular and cardiac function. This study was undertaken to analyze cardiac and vascular phenotype of mice lacking Nrf2. We found that Nrf2 knock out (Nrf2 KO) mice have a left ventricular (LV) diastolic dysfunction, characterized by prolonged E wave deceleration time, relaxation time and total diastolic time, increased E/A ratio and myocardial performance index, as assessed by echocardiography. LV dysfunction in Nrf2 KO mice was associated with cardiac hypertrophy, and a downregulation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in the myocardium. Accordingly, cardiac relaxation was impaired, as demonstrated by decreased responses to β-adrenergic stimulation by isoproterenol ex vivo, and to the cardiac glycoside ouabain in vivo. Surprisingly, we found that vascular endothelial function and endothelial nitric oxide synthase (eNOS)-mediated vascular responses were fully preserved, blood pressure was decreased, and eNOS was upregulated in the aorta and the heart of Nrf2 KO mice. Taken together, these results show that LV dysfunction in Nrf2 KO mice is mainly associated with cardiac hypertrophy and downregulation of SERCA2a, and is independent from changes in coronary vascular function or systemic hemodynamics, which are preserved by a compensatory upregulation of eNOS. These data provide new insights into how Nrf2 expression/function impacts the cardiovascular system.
Collapse
Affiliation(s)
- Ralf Erkens
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christian M Kramer
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Wiebke Lückstädt
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Panknin
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Lisann Krause
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Weidenbach
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jennifer Dirzka
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Thomas Krenz
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Evanthia Mergia
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Tatsiana Suvorava
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
141
|
Mann GE, Forman HJ. Introduction to Special Issue on 'Nrf2 Regulated Redox Signaling and Metabolism in Physiology and Medicine. Free Radic Biol Med 2015; 88:91-92. [PMID: 26303332 DOI: 10.1016/j.freeradbiomed.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Giovanni E Mann
- Cardiovascular Division, BHF Centre of Research Excellence, Faculty of Life & Health Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Henry J Forman
- Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|