101
|
Red Raspberry Extract Protects the Skin against UVB-Induced Damage with Antioxidative and Anti-inflammatory Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9529676. [PMID: 30723535 PMCID: PMC6339709 DOI: 10.1155/2019/9529676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/29/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
Extensive exposure to UVB (280–320 nm) is the major risk responsible for various skin injuries. Numerous reports have shown that natural products could demonstrate photochemopreventive efficacy against UVB damage. We investigated the preventive effects and associated molecular mechanisms of red raspberry extract upon UVB-caused damage in human epidermal keratinocytes and a nude mouse model. The protein profiles and immunohistological study on a nude mouse skin indicated that red raspberry extract could prevent UVB-caused cell death and protect the skin against UVB-exposed injury manifested by wrinkling, scaling, tanning, and water loss as well as epidermal thickening. In addition, red raspberry extract application effectively abolished oxidative damage in DNA and attenuated the carbonylation level of proteins, which attributed to the activation of SOD, Nrf2 and its target genes, and HO-1. Red raspberry extract also altered the cells' apoptotic signaling pathways including caspase-3 as well as the inflammatory cascade such as c-jun and attenuated UVB-induced activation of NF-κB and COX-2. Red raspberry extract could alleviate direct photodamage to the skin caused by UVB exposure through the ROS scavenger and protection against inflammatory responses, which may allow the development of novel strategies in protecting the skin subjected to UVB radiation.
Collapse
|
102
|
Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9:1310. [PMID: 30564116 PMCID: PMC6288909 DOI: 10.3389/fphar.2018.01310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The term "metabolic syndrome" (MetS) refers to a combination of diabetes, high blood pressure, and obesity. The origin of MetS includes a combination of multiple factors, such as sedentary lifestyle, unhealthy diet choice, and genetic factors. MetS is highly prevalent and adversely affects the general population by elevating risk of cardiovascular complications, organ failure, and much other pathology associated with late-stage diabetes. Anthocyanins (ANTs) are health-promoting bioactive compounds belonging to the flavonoids subclass of polyphenols. Numerous studies have reported the potential therapeutic benefits on MetS syndrome and diabetes from fruits rich in ANTs. This review summarizes the role of several dietary ANTs on preventing and managing MetS as well as the pharmacological mechanisms and biopharmaceutical features of their action. We also discuss potential nanoformulation and encapsulation approaches that may enhance the bioefficacy of ANTs in MetS. Experiments have demonstrated that ANTs may attenuate the symptoms of MetS via improving insulin resistance, impaired glucose tolerance, dyslipidaemia, cholesterol levels, hypertension, blood glucose, protecting β cells, and preventing free radical production. In brief, the intake of ANT-rich supplements should be considered due to their plausible ability for prevention and management of MetS. Additionally, randomized double-blind clinical trials are obligatory for evaluating the bioefficacy and pharmacological mechanisms of ANTs and their pharmaceutical formulations in patients with MetS.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
- Phyto Pharmacology Interest Group, Universal Scientific Education and Research Network, Los Angeles, CA, United States
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, United Kingdom
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
Bustamante L, Pastene E, Duran-Sandoval D, Vergara C, Von Baer D, Mardones C. Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chem 2018; 268:347-354. [DOI: 10.1016/j.foodchem.2018.06.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/01/2018] [Accepted: 06/10/2018] [Indexed: 02/04/2023]
|
104
|
Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct 2018; 9:2112-2120. [PMID: 29632909 DOI: 10.1039/c7fo02061a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evidence indicates that raspberries have beneficial effects on chronic diseases. The objective of this study was to examine the beneficial effects of raspberry anthocyanin (RA) on high fat diet-induced obesity and investigate the underlying molecular mechanism. C57BL/6 mice were administered a low-fat diet, high-fat diet, and high-fat diet supplemented with RA at a dose of 200 mg kg-1 of food for 12 weeks. It was found that RA reduced the body weight gain by 63.7%. Furthermore, RA significantly elevated serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities and fecal butyric acid level, remarkably reduced the serum and hepatic lipid profiles, and markedly down-regulated the expression of the tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and nuclear factor κB (NF-κB) genes. Metabolomics analysis conducted using gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) indicated that RA administration promoted the recovery of metabolites involved in glycerophospholipid metabolism, insulin signaling pathway, and glutathione metabolism in the livers of obese mice. These findings suggest that RA may ameliorate diet-induced obesity by alleviating oxidative stress and modulating lipid metabolism.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Tianjin 300457, China.
| | | | | | | | | | | |
Collapse
|
105
|
Efficacy of an Anthocyanin and Prebiotic Blend on Intestinal Environment in Obese Male and Female Subjects. J Nutr Metab 2018; 2018:7497260. [PMID: 30302287 PMCID: PMC6158948 DOI: 10.1155/2018/7497260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background Anthocyanins and prebiotics impact overall health and wellness, likely through modulation of the microbiota and the intestinal ecosystem. Objectives An 8-week open-label study in male and female volunteers with uncomplicated obesity was designed to study the efficacy of an anthocyanin and prebiotic blend in modulating intestinal microbiota and intestinal inflammation. Results After 8 weeks of daily supplementation, participants had a significant decrease in Firmicutes (p < 0.001) and Actinobacteria (p < 0.001) and a significant increase in Bacteroidetes (p < 0.001). Bowel habits were improved as evidenced by reductions in the severity of bloating (p < 0.05), gas (p=0.035), and abdominal pain (p=0.015) as well as significant improvements in stool consistency (p < 0.05). Finally, a nonsignificant decrease in the inflammatory marker fecal calprotectin was seen (p=0.107). The supplement was safe and well tolerated. Conclusions The results suggest that regular consumption of the anthocyanin-prebiotic blend positively modulated the intestinal ecosystem and provided insights into the mechanisms of action and its impact on health benefits.
Collapse
|
106
|
Van de Velde F, Pirovani ME, Drago SR. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
107
|
Zhang X, Sandhu A, Edirisinghe I, Burton-Freeman B. An exploratory study of red raspberry (Rubus idaeus L.) (poly)phenols/metabolites in human biological samples. Food Funct 2018; 9:806-818. [PMID: 29344587 DOI: 10.1039/c7fo00893g] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red raspberry (Rubus idaeus L.) contains a variety of polyphenols including anthocyanins and ellagitannins. Red raspberry polyphenols absorbed in different forms (parent compounds, degradants or microbial metabolites) are subject to xenobiotic metabolism in the intestine, liver, and/or kidney, forming methylate, glucuronide, and sulfate conjugated metabolites. Upon acute exposure, (poly)phenol/metabolite presence in the blood depends mainly on intestinal absorption, enterohepatic circulation, and metabolism by resident microbiota. However, chronic exposure to red raspberry polyphenols may alter metabolite patterns depending on adaptions in the xenobiotic machinery and/or microbiota composition. Understanding the metabolic fate of these compounds and their composition in different biological specimens relative to the exposure time/dose will aid in designing future health benefit studies, including the mechanism of action studies. The present exploratory study applied ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) and triple quadrupole (QQQ) mass spectrometries to characterize red raspberry polyphenols in fruit and then their appearance, including metabolites in human biological samples (plasma, urine and breast milk) after the chronic intake of red raspberries. The results suggested that the most abundant polyphenols in red raspberries included cyanidin 3-O-sophoroside, cyanidin 3-O-glucoside, sanguiin H6 and lambertianin C. Sixty-two (poly)phenolic compounds were tentatively identified in the plasma, urine and breast milk samples after the intake of red raspberries. In general, urine contained the highest content of phenolic metabolites; phase II metabolites, particularly sulfated conjugates, were mainly present in urine and breast milk, and breast milk contained fewer parent anthocyanins compared to urine and plasma.
Collapse
Affiliation(s)
- Xuhuiqun Zhang
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, IL, USA.
| | | | | | | |
Collapse
|
108
|
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018; 13:1497-1511. [PMID: 30214170 PMCID: PMC6120508 DOI: 10.2147/cia.s139163] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive frailty, defined as the coexistence of mild cognitive impairment symptoms and physical frailty phenotype in older persons, is increasingly considered the main geriatric condition predisposing to dementia. Recent studies have demonstrated that gut microbiota may be involved in frailty physiopathology by promoting chronic inflammation and anabolic resistance. The contribution of gut microbiota to the development of cognitive impairment and dementia is less defined, even though the concept of "gut-brain axis" has been well demonstrated for other neuropsychiatric disorders. The aim of this systematic review was to summarize the current state-of-the-art literature on the gut microbiota alterations associated with cognitive frailty, mild cognitive impairment and dementia and elucidate the effects of pre- or probiotic administration on cognitive symptom modulation in animal models of aging and human beings. We identified 47 papers with original data (31 from animal studies and 16 from human studies) suitable for inclusion according to our aims. We concluded that several observational and intervention studies performed in animal models of dementia (mainly Alzheimer's disease) support the concept of a gut-brain regulation of cognitive symptoms. Modulation of vagal activity and bacterial synthesis of substances active on host neural metabolism, inflammation and amyloid deposition are the main mechanisms involved in this physiopathologic link. Conversely, there is a substantial lack of human data, both from observational and intervention studies, preventing to formulate any clinical recommendation on this topic. Gut microbiota modulation of cognitive function represents, however, a promising area of research for identifying novel preventive and treatment strategies against dementia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Claudio Tana
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Fulvio Lauretani
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| |
Collapse
|
109
|
Feng X, Li Y, Brobbey Oppong M, Qiu F. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metab Rev 2018; 50:343-356. [DOI: 10.1080/03602532.2018.1485691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinchi Feng
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mahmood Brobbey Oppong
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
110
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
111
|
Sandhu AK, Miller MG, Thangthaeng N, Scott TM, Shukitt-Hale B, Edirisinghe I, Burton-Freeman B. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food Funct 2018; 9:96-106. [PMID: 29318244 DOI: 10.1039/c7fo01843f] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Strawberries contain a wide array of nutrients and phytochemicals including polyphenols such as anthocyanins, proanthocyanidins and ellagitannins. These polyphenols are absorbed and metabolized to various phenolic metabolites/conjugates in the body, which may play a role in disease risk reduction. In the present study, we investigated the metabolic fate of strawberry polyphenols after chronic (90 days) supplementation of freeze-dried strawberry (24 g d-1, equivalent to 2 cups of fresh strawberries) vs. control powder in 19 healthy older adults. Blood samples were collected at two time-points i.e., fasting (t = 0 h) and 2 h after the breakfast meal. On days 45 and 90 breakfast also included a control or strawberry drink consistent with their treatment randomization. A total of 21 polyphenolic metabolites were quantified in plasma consisting of 3 anthocyanins/metabolites, 3 urolithin metabolites and 15 phenolic acid metabolites. Among anthocyanins/metabolite, pelargonidin glucuronide (85.7 ± 9.0 nmol L-1, t = 2 h, day 90) was present in the highest concentration. Persistent concentrations of anthocyanins/metabolites, urolithins and some phenolic acids were observed in fasting (t = 0 h) plasma samples on day 45 and 90 after strawberry drink consumption suggesting a role of enteric, enterohepatic recycling or upregulation of gut microbial and/or human metabolism of these compounds. Our results suggest that strawberry polyphenols are absorbed and extensively metabolized, and can persist in the circulation.
Collapse
Affiliation(s)
- Amandeep K Sandhu
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
112
|
Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Food Chem 2018; 252:49-60. [DOI: 10.1016/j.foodchem.2018.01.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
113
|
Istas G, Feliciano RP, Weber T, Garcia-Villalba R, Tomas-Barberan F, Heiss C, Rodriguez-Mateos A. Plasma urolithin metabolites correlate with improvements in endothelial function after red raspberry consumption: A double-blind randomized controlled trial. Arch Biochem Biophys 2018; 651:43-51. [PMID: 29802820 DOI: 10.1016/j.abb.2018.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
Abstract
Raspberries are a rich source of ellagitannins and anthocyanins. The aim of this work was to investigate whether raspberry consumption can improve vascular function and to understand which phenolic metabolites may be responsible for the effects. A 3 arm double-blind randomized controlled crossover human intervention trial was conducted in 10 healthy males. Flow-mediated dilation (FMD) was measured at baseline, 2 h, and 24 h post-consumption of 200 g and 400 g of red raspberries containing 201 or 403 mg of total (poly)phenols, or a matched control drink. Raspberry (poly)phenol metabolites were analyzed in plasma and urine by UPLC-QTOF mass spectrometry using authentic standards. Significant improvements in FMD were observed at 2 h (1.6% (95%CI 1.2, 1.9) and 1.2% (95% CI 0.8, 1.5)) and 24 h (1.0% (95% CI 0.6, 1.2) and 0.7% (95%CI 0.2, 0.9)) post-consumption of the 200 and 400 g raspberry drinks as compared to control, respectively. Plasma ellagic acid, urolithin A-3-glucuronide and urolithin A-sulfate correlated with the improvements in FMD at 2 and 24 h post consumption, respectively. Consumption of dietary achievable amounts of red raspberries acutely improves endothelial function up to 24 h and ellagitannins may be responsible for the observed effect.
Collapse
Affiliation(s)
- Geoffrey Istas
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Rodrigo P Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Timon Weber
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Rocio Garcia-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Francisco Tomas-Barberan
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Murcia, Spain
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany; University of Surrey, Faculty of Health and Medical Sciences, Guildford, UK; Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
114
|
Shukitt-Hale B, Thangthaeng N, Kelly ME, Smith DE, Miller MG. Raspberry differentially improves age-related declines in psychomotor function dependent on baseline motor ability. Food Funct 2018; 8:4752-4759. [PMID: 29168860 DOI: 10.1039/c7fo00894e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination that often lead to falls, even when initiated later in life. The purpose of this study was to explore the interaction between baseline motor performance and the daily intake of raspberry required to improve/preserve motor function. Aged male F344 (17 mo) rats were tested for baseline (pre-test) balance, muscle strength, and coordination, and divided into good, average, and poor performers based on their motor composite score. Rats in each category were fed with either a control, 1%, or 2% raspberry-supplemented diet for 8 weeks and then retested (post-test). Poor performers fed with 1% or 2% raspberry had higher post-test composite scores (p < 0.05), while 2% raspberry lowered post-test composite scores in the good performers (p < 0.05), compared to control-fed rats. 1% and 2% raspberry appeared to preserve the performance of good performers and improve the performance of poor performers on plank walking (p < 0.05), while 2% raspberry improved post-test grip strength of the poor performers (p < 0.05). Additionally, rats with lower post-diet composite scores had higher levels of serum IL-1β levels (r = -0.347, p < 0.05). These findings identified poor performers as being the most likely to benefit from daily consumption of ½-2 cups of raspberry to improve/preserve motor function. Therefore, increased raspberry consumption may reduce fall risk, extend independence, and improve quality of life in the aging population.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
115
|
Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, Brighenti F, Giacco R, Del Rio D, Mena P. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch Biochem Biophys 2018; 646:1-9. [DOI: 10.1016/j.abb.2018.03.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
116
|
García-Conesa MT, Chambers K, Combet E, Pinto P, Garcia-Aloy M, Andrés-Lacueva C, de Pascual-Teresa S, Mena P, Konic Ristic A, Hollands WJ, Kroon PA, Rodríguez-Mateos A, Istas G, Kontogiorgis CA, Rai DK, Gibney ER, Morand C, Espín JC, González-Sarrías A. Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses. Int J Mol Sci 2018; 19:ijms19030694. [PMID: 29495642 PMCID: PMC5877555 DOI: 10.3390/ijms19030694] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.
Collapse
Affiliation(s)
- María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| | - Karen Chambers
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Emilie Combet
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK.
| | - Paula Pinto
- Biotechnology and Nutrition, Department of Food Technology, ESA, Polytechnic Institute of Santarem, 2001-904 Santarém, Portugal.
- Molecular Nutrition Health Laboratory, iBET/ITQB, 2780-157 Oeiras, Portugal.
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciencies, University of Barcelona, 08028 Barcelona, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciencies, University of Barcelona, 08028 Barcelona, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain.
| | - Pedro Mena
- Human Nutrition Unit, Department of Food Drug, University of Parma, 43125 Parma, Italy.
| | - Alekxandra Konic Ristic
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Wendy J Hollands
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Ana Rodríguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, UK.
| | - Geoffrey Istas
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, UK.
| | - Christos A Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Dilip K Rai
- Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Dublin 4, Ireland.
| | - Christine Morand
- INRA, Human Nutrition Unit, UCA, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| | - Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
117
|
Zhou L, Yao GD, Song XY, Wang J, Lin B, Wang XB, Huang XX, Song SJ. Neuroprotective Effects of 1,2-Diarylpropane Type Phenylpropanoid Enantiomers from Red Raspberry against H 2O 2-Induced Oxidative Stress in Human Neuroblastoma SH-SY5Y Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:331-338. [PMID: 29215880 DOI: 10.1021/acs.jafc.7b04430] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Red raspberry (Rubus idaeus L.) is an edible fruit-producing species belonging to the Rosaceae family. In our search for the health-promoting constituents from this fruit, four pairs of enantiomeric phenylpropanoids (1a/1b-4a/4b), including three new compounds (1a and 2a/2b), were isolated from red raspberry. Their structures were elucidated by a combination of the extensive NMR spectroscopic data analyses, high-resolution electrospray ionization mass spectrometry and comparison between the experimental measurements of electronic circular dichroism (ECD) and calculated ECD spectra by time-dependent density functional theory (TDDFT). In addition, their neuroprotective effects against H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells were investigated, and the results showed enantioselectivity, in which that 3a exhibited noticeable neuroprotective activity, while its enatiomer 3b exhibited no obvious protective effect. Further study demonstrated that 3a could selectively inhibit the apoptosis induction and reactive oxygen species (ROS) accumulation by enhancing the activity of catalase (CAT) in H2O2-treated human neuroblastoma SH-SY5Y cells. These findings shed much light on a better understanding of the neuroprotective effects of these enantiomers and provide new insights into developing better treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Le Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Xiao-Yu Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Xiao-Bo Wang
- Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
- Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| |
Collapse
|
118
|
Spigoni V, Mena P, Fantuzzi F, Tassotti M, Brighenti F, Bonadonna RC, Del Rio D, Dei Cas A. Bioavailability of Bergamot (Citrus bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells. Nutrients 2017; 9:nu9121328. [PMID: 29211032 PMCID: PMC5748778 DOI: 10.3390/nu9121328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot (Citrus bergamia), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment. The flavanone profile of bergamot juice was characterized and 16 compounds were identified, with a new 3-hydroxy-3-methylglutaryl (HMG) flavanone, isosakuranetin-7-O-neohesperidoside-6″-O-HMG, described for the first time. Then, a pilot bioavailability study was conducted in healthy volunteers to assess the circulating flavanone metabolites in plasma and urine after consumption of bergamot juice. Up to 12 flavanone phase II conjugates (sulfates and glucuronides of hesperetin, naringenin and eriodyctiol) were detected and quantified. Finally, the effect of some of the metabolites identified in vivo, namely hesperetin-7-O-glucuronide, hesperetin-3′-O-glucuronide, naringenin-7-O-glucuronide and naringenin-4′-O-glucuronide, was tested, at physiological concentrations, on gene expression of inflammatory markers and apoptosis in MACs exposed to SA. Under these conditions, naringenin-4′-O-glucuronide and hesperetin-7-O-glucuronide were able to modulate inflammation, while no flavanone glucuronide was effective in curbing stearate-induced lipoapoptosis. These results demonstrate that some flavanone metabolites, derived from the in vivo transformation of bergamot juice phenolics in humans, may mitigate stearate-induced inflammation in MACs.
Collapse
Affiliation(s)
- Valentina Spigoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drugs, University of Parma, 43125 Parma, Italy.
| | - Federica Fantuzzi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Michele Tassotti
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drugs, University of Parma, 43125 Parma, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drugs, University of Parma, 43125 Parma, Italy.
| | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drugs, University of Parma, 43125 Parma, Italy.
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy.
| |
Collapse
|
119
|
Hou X, Lu X, Tang S, Wang L, Guo Y. Graphene oxide reinforced ionic liquid-functionalized adsorbent for solid-phase extraction of phenolic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:123-129. [PMID: 29149736 DOI: 10.1016/j.jchromb.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
An environmental friendly sorbent of polymeric ionic liquids modified graphene oxide-grafted silica (PILs@GO@Sil) was synthesized for solid-phase extraction (SPE) of phenolic acids. The sorbent was prepared via a chemical layer-to-layer fabrication including amidation reaction, surface radical chain-transfer polymerization and in situ anion exchange. After modification with PILs, the silica surface had higher positive potential so that it would exhibit stronger electrostatic interaction for acidic compounds compared with GO@Sil. The adsorption performance of phenolic acids was investigated through the theoretical calculation and static, kinetic state adsorption experiments. Under the optimized conditions, wide linear ranges were obtained with correlation coefficients ranging from 0.9912 to 0.9998, and limits of detection were in the range of 0.20-0.50μgL-1. Compared with other reported methods, the proposed PILs@GO@Sil-SPE-HPLC showed higher extraction efficiency. Finally, the black wolfberry yogurt and urine were analyzed as real samples and good recoveries spiked with standard solution were obtained.
Collapse
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
120
|
Zhong S, Sandhu A, Edirisinghe I, Burton‐Freeman B. Characterization of Wild Blueberry Polyphenols Bioavailability and Kinetic Profile in Plasma over 24‐h Period in Human Subjects. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700405] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/30/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Siqiong Zhong
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Amandeep Sandhu
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Indika Edirisinghe
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
| | - Britt Burton‐Freeman
- Food Science and Nutrition Department and Center for Nutrition ResearchInstitute for Food Safety and HealthIllinois Institute of Technology Chicago USA
- Nutrition DepartmentUC Davis Davis USA
| |
Collapse
|
121
|
Pereira-Caro G, Polyviou T, Ludwig IA, Nastase AM, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am J Clin Nutr 2017; 106:791-800. [PMID: 28747329 DOI: 10.3945/ajcn.116.149898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/21/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones.Objective: We investigated the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained males before and after cessation of training for 7 d.Design: Ten fit, endurance-trained males, with a mean ± SD maximal oxygen consumption of 58.2 ± 5.3 mL · kg-1 · min-1, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ containing 398 μmol of (poly)phenols, of which 330 μmol was flavanones. After the volunteers stopped training for 7 d the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites with the use of high-pressure liquid chromatography-high resolution mass spectrometry.Results: During training, 0-24-h urinary excretion of flavanone metabolites, mainly hesperetin-3'-O-glucuronide, hesperetin-3'-sulfate, naringenin-4'-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 d. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites, which, after supplementation in the trained state, were excreted in amounts equivalent to 51% of intake compared with 59% after cessation of training. However, urinary excretion of 3 colonic catabolites of bacterial origin, most notably, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed postcessation compared with precessation of training. Data were also obtained on interindividual variations in flavanone bioavailability.Conclusions: A 7-d cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and whether they extend to the bioavailability of other dietary (poly)phenols remain to be determined. Hesperetin-3'-O-glucuronide and the colonic microbiota-derived catabolite 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products. This trial was registered at clinicaltrials.gov as NCT02627547.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Thelma Polyviou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iziar A Ludwig
- Department of Food Technology, University of Lleida, Lleida, Spain; and
| | - Ana-Maria Nastase
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)-Alameda del Obispo, Cordoba, Spain
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
122
|
Teixeira LL, Costa GR, Dörr FA, Ong TP, Pinto E, Lajolo FM, Hassimotto NMA. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food Funct 2017; 8:2266-2274. [PMID: 28541359 DOI: 10.1039/c7fo00076f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bioavailability and metabolism of anthocyanins and ellagitannins following acute intake of grumixama fruit, native Brazilian cherry, by humans, and its in vitro antiproliferative activity against breast cancer cells (MDA-MB-231) were investigated. A single dose of grumixama juice was administered to healthy women (n = 10) and polyphenol metabolites were analyzed in urine and plasma samples collected over 24 h. The majority of the metabolites circulating and excreted in urine were phenolic acids and urolithin conjugates, the gut microbiota catabolites of both classes of polyphenols, respectively. According to pharmacokinetic parameters, the subjects were divided into two distinct groups, high and low urinary metabolite excretors. The pool of polyphenol metabolites found in urine samples showed a significant inhibition of cell proliferation and G2/M cell cycle arrest in MDA-MB-231 cells. Our findings demonstrate the large interindividual variability concerning the polyphenol metabolism, which possibly could reflect in health promotion.
Collapse
Affiliation(s)
- L L Teixeira
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
123
|
Igwe EO, Charlton KE, Roodenrys S, Kent K, Fanning K, Netzel ME. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutr Res 2017; 47:28-43. [PMID: 29241576 DOI: 10.1016/j.nutres.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Consumption of anthocyanins from fruit sources may exert protection against hypertension and improve cognition. However, the effect of dose timing in studies is rarely considered. We hypothesized that timed-dose consumption of juice from an anthocyanin-rich Japanese plum variety (Queen Garnet plum, QGP) will have acute and dose-timing effects on cardiovascular responses, cognition, and urinary anthocyanin excretion profiles. Our study objective was to investigate the impact of plum juice on these health parameters. Twelve older (65+ years) and 12 younger (18-45 years) adults participated in an acute crossover study. Participants received, randomly, either 1 × 300 mL or 3 × 100 mL plum juice over 3 hours on 2 different occasions with a 2-week washout period. A battery of cognitive tasks was administered at 0 and 6 hours on each study day. Blood pressure (BP) and urinary anthocyanin/metabolite excretion profiles were measured over 24 hours. Area under the curve for BP was calculated (0-6 hours). A significant reduction in BP and cardiovascular responses was observed in both age groups which was more obvious in the older age group on the single dose for systolic BP, diastolic BP, mean arterial pressure, and heart rate (P values = .035, .028, .017, and .006, respectively). No significant difference was observed between dose-timing regimens for either age group. There was no observed effect on cognition. Native QGP anthocyanins, as well as methylated/glucuronidated metabolites, were detected in urine with no significant differences between age groups or dose timing. High-anthocyanin plum juice significantly reduced BP, but dose timing did not appear to be a significant factor in the potential acute BP-lowering effect of QGP juice.
Collapse
Affiliation(s)
- E O Igwe
- School of Medicine, University of Wollongong
| | - K E Charlton
- School of Medicine, University of Wollongong; Illawarra Health and Medical Research Institute, University of Wollongong.
| | - S Roodenrys
- School of Medicine, University of Wollongong
| | - K Kent
- School of Medicine, University of Wollongong; Centre for Rural Health, School of Health Sciences, Faculty of Health, University of Tasmania
| | - K Fanning
- Department of Agriculture and Fisheries, Queensland Government
| | - M E Netzel
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland
| |
Collapse
|
124
|
|
125
|
Cremonini E, Mastaloudis A, Hester SN, Verstraeten SV, Anderson M, Wood SM, Waterhouse AL, Fraga CG, Oteiza PI. Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food Funct 2017; 8:2915-2923. [PMID: 28740990 DOI: 10.1039/c7fo00625j] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An increased permeability of the intestinal barrier is proposed as a major event in the pathophysiology of conditions characterized by chronic gut inflammation. This study investigated the capacity of pure anthocyanins (AC), and berry and rice extracts containing different types and amounts of AC, to inhibit tumor necrosis alpha (TNFα)-induced permeabilization of Caco-2 cell monolayers. Caco-2 cells differentiated into intestinal epithelial cell monolayers were incubated in the absence/presence of TNFα, with or without the addition of AC or AC-rich plant extracts (ACRE). AC and ACRE inhibited TNFα-induced loss of monolayer permeability as assessed by changes in transepithelial electrical resistance (TEER) and paracellular transport of FITC-dextran. In the range of concentrations tested (0.25-1 μM), O-glucosides of cyanidin, and delphinidin, but not those of malvidin, peonidin and petunidin protected the monolayer from TNFα-induced decrease of TEER and increase of FITC-dextran permeability. Cyanidin and delphinidin acted by mitigating TNFα-triggered activation of transcription factor NF-κB, and downstream phosphorylation of myosin light chain (MLC). The protective actions of the ACRE on TNFα-induced TEER increase was positively correlated with the sum of cyanidins and delphinidins (r2 = 0.83) content in the ACRE. However, no correlation was observed between TEER and ACRE total AC, malvidin, or peonidin content. Results support a particular capacity of cyanidins and delphinidins in the protection of the intestinal barrier against inflammation-induced permeabilization, in part through the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA. and Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | | | - Sandra V Verstraeten
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina and Instituto de Quimica y Fisicoquímica Biológicas (IQUIFIB), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maureen Anderson
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Steven M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA. and Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina. and Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA. and Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
126
|
de Mello VD, Lankinen MA, Lindström J, Puupponen-Pimiä R, Laaksonen DE, Pihlajamäki J, Lehtonen M, Uusitupa M, Tuomilehto J, Kolehmainen M, Törrönen R, Hanhineva K. Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes. Mol Nutr Food Res 2017; 61. [PMID: 28556578 DOI: 10.1002/mnfr.201700019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 01/23/2023]
Abstract
SCOPE Urinary hippuric acid has been proposed as a biomarker for fruit, vegetable, and polyphenol consumption. We assessed how serum hippuric acid changes after a bilberry-enriched diet (BB; high anthocyanin intake) and another berry diet including strawberries, raspberries, and cloudberries (SRC; lower anthocyanin intake) and how these changes associate with insulin and glucose metabolism. METHODS AND RESULTS Hippuric acid was measured with LC-QTOF-MS metabolite profiling analysis from fasting serum samples at baseline and after an 8-week intervention in 47 individuals with features of the metabolic syndrome who were randomized to either a BB diet (n = 15), an SRC diet (n = 20) or a control diet (n = 12). Fasting serum hippuric acid increased significantly (3.5-fold, p = 0.001) only in the BB group and correlated with changes in fasting plasma glucose concentration (r = -0.54, p < 0.05) and insulin secretion (r = 0.59, p < 0.05). These associations were confirmed in the Finnish Diabetes Prevention Study (n = 198). CONCLUSION Fasting serum hippuric acid is increased after consumption of anthocyanin-rich bilberries, and may contribute to the beneficial effect of bilberry consumption through its associations with better glycemic control and β-cell function.
Collapse
Affiliation(s)
- Vanessa Df de Mello
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Maria A Lankinen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jaana Lindström
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | | | - David E Laaksonen
- Institute of Clinical Medicine, Internal Medicine, Kuopio University Hospital, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Jaakko Tuomilehto
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland.,Center for Vascular Prevention, Danube-University Krems, Austria.,Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Riitta Törrönen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| |
Collapse
|
127
|
Interactions between the major bioactive polyphenols of berries: effects on antioxidant properties. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2948-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
128
|
Savi M, Bocchi L, Mena P, Dall'Asta M, Crozier A, Brighenti F, Stilli D, Del Rio D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2017; 16:80. [PMID: 28683791 PMCID: PMC5501434 DOI: 10.1186/s12933-017-0561-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Emerging evidence suggests that specific (poly)phenols may constitute new preventative strategies to counteract cell oxidative stress and myocardial tissue inflammation, which have a key role in the patho-physiology of diabetic cardiomyopathy. In a rat model of early diabetes, we evaluated whether in vivo administration of urolithin A (UA) or urolithin B (UB), the main gut microbiota phenolic metabolites of ellagitannin-rich foods, can reduce diabetes-induced microenvironmental changes in myocardial tissue, preventing cardiac functional impairment. Methods Adult Wistar rats with streptozotocin-induced type-1 diabetes (n = 29) were studied in comparison with 10 control animals. Diabetic rats were either untreated (n = 9) or subjected to daily i.p. injection of UA (n = 10) or UB (n = 10). After 3 weeks of hyperglycaemia, hemodynamics, cardiomyocyte contractile properties and calcium transients were measured to assess cardiac performance. The myocardial expression of the pro-inflammatory cytokine fractalkine and proteins involved in calcium dynamics (sarcoplasmic reticulum calcium ATPase, phospholamban and phosphorylated phospholamban) were evaluated by immunoblotting. Plasma, urine and tissue distribution of UA, UB and their phase II metabolites were determined. Results In vivo urolithin treatment reduced by approximately 30% the myocardial expression of the pro-inflammatory cytokine fractalkine, preventing the early inflammatory response of cardiac cells to hyperglycaemia. The improvement in myocardial microenvironment had a functional counterpart, as documented by the increase in the maximal rate of ventricular pressure rise compared to diabetic group (+18% and +31% in UA and UB treated rats, respectively), and the parallel reduction in the isovolumic contraction time (−12%). In line with hemodynamic data, both urolithins induced a recovery of cardiomyocyte contractility and calcium dynamics, leading to a higher re-lengthening rate (+21%, on average), lower re-lengthening times (−56%), and a more efficient cytosolic calcium clearing (−32% in tau values). UB treatment also increased the velocity of shortening (+27%). Urolithin metabolites accumulated in the myocardium, with a higher concentration of UB and UB-sulphate, potentially explaining the slightly higher efficacy of UB administration. Conclusions In vivo urolithin administration may be able to prevent the initial inflammatory response of myocardial tissue to hyperglycaemia and the negative impact of the altered diabetic milieu on cardiac performance.
Collapse
Affiliation(s)
- Monia Savi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Margherita Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA, 95616-5270, USA
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
129
|
Onopiuk A, Półtorak A, Moczkowska M, Szpicer A, Wierzbicka A. The impact of ozone on health-promoting, microbiological, and colour properties ofRubus ideausraspberries. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1317669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anna Onopiuk
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Półtorak
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Moczkowska
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
130
|
Selby-Pham SNB, Miller RB, Howell K, Dunshea F, Bennett LE. Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci Rep 2017; 7:1931. [PMID: 28512322 PMCID: PMC5434065 DOI: 10.1038/s41598-017-01888-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023] Open
Abstract
A diet high in phytochemical-rich plant foods is associated with reducing the risk of chronic diseases such as cardiovascular and neurodegenerative diseases, obesity, diabetes and cancer. Oxidative stress and inflammation (OSI) is the common component underlying these chronic diseases. Whilst the positive health effects of phytochemicals and their metabolites have been demonstrated to regulate OSI, the timing and absorption for best effect is not well understood. We developed a model to predict the time to achieve maximal plasma concentration (Tmax) of phytochemicals in fruits and vegetables. We used a training dataset containing 67 dietary phytochemicals from 31 clinical studies to develop the model and validated the model using three independent datasets comprising a total of 108 dietary phytochemicals and 98 pharmaceutical compounds. The developed model based on dietary intake forms and the physicochemical properties lipophilicity and molecular mass accurately predicts Tmax of dietary phytochemicals and pharmaceutical compounds over a broad range of chemical classes. This is the first direct model to predict Tmax of dietary phytochemicals in the human body. The model informs the clinical dosing frequency for optimising uptake and sustained presence of dietary phytochemicals in circulation, to maximise their bio-efficacy for positively affect human health and managing OSI in chronic diseases.
Collapse
Affiliation(s)
- Sophie N B Selby-Pham
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, 3030, Australia
| | | | - Kate Howell
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
| | - Frank Dunshea
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, 3010, Australia
| | - Louise E Bennett
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, 3030, Australia.
| |
Collapse
|
131
|
Bresciani L, Martini D, Mena P, Tassotti M, Calani L, Brigati G, Brighenti F, Holasek S, Malliga DE, Lamprecht M, Del Rio D. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries. Nutrients 2017; 9:nu9030194. [PMID: 28245627 PMCID: PMC5372857 DOI: 10.3390/nu9030194] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.
Collapse
Affiliation(s)
- Letizia Bresciani
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Daniela Martini
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Michele Tassotti
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Luca Calani
- Department of Food & Drug, University of Parma, 43124 Parma, Italy.
| | - Giacomo Brigati
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
| | - Sandra Holasek
- Institute of Pathophysiology and Immunology, Medical University of Graz, A-8010 Graz, Austria.
| | - Daniela-Eugenia Malliga
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, A-8010 Graz, Austria.
| | - Manfred Lamprecht
- Institute of Physiological Chemistry, Medical University of Graz, A-8010 Graz, Austria.
- Green Beat-Institute of Nutrient Research and Sport Nutrition, 8042 Graz, Austria.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy.
- The Need for Nutrition Education/Innovation Programme (NNEdPro), Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge CB4 0WS, UK.
| |
Collapse
|
132
|
Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu Rev Food Sci Technol 2017; 8:155-180. [PMID: 28125348 DOI: 10.1146/annurev-food-030216-025636] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review considers recent investigations on the bioavailability of anthocyanins and flavanones. Both flavonoids are significant dietary components and are considered to be poorly bioavailable, as only low levels of phase II metabolites appear in the circulatory system and are excreted in urine. However, when lower molecular weight phenolic and aromatic ring-fission catabolites, produced primarily by the action of the colonic microbiota, are taken into account, it is evident that anthocyanins and flavanones are much more bioavailable than previously envisaged. The metabolic events to which these flavonoids are subjected as they pass along the gastrointestinal tract and are absorbed into the circulatory system prior to their rapid elimination by renal excretion are highlighted. Studies on the impact of other food components and the probiotic intake on flavonoid bioavailability are summarized, as is the bioactivity of metabolites and catabolites assayed using a variety of in vitro model systems.
Collapse
Affiliation(s)
- Colin D Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Gema Pereira-Caro
- Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida, 25198 Lleida, Spain
| | - Michael N Clifford
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 5XH, Surrey, United Kingdom
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, California 95616-5270;
| |
Collapse
|
133
|
McDougall GJ, Allwood JW, Pereira-Caro G, Brown EM, Verrall S, Stewart D, Latimer C, McMullan G, Lawther R, O'Connor G, Rowland I, Crozier A, Gill CIR. Novel colon-available triterpenoids identified in raspberry fruits exhibit antigenotoxic activities in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27613504 DOI: 10.1002/mnfr.201600327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
SCOPE Ileostomy studies provide a unique insight into digestion of food, allowing identification of physiologically relevant dietary phytochemicals and their metabolites important to gut health. We previously reported the consistent increase of components in ileal fluids of ileostomates after consumption of raspberries with use of nontargeted LC-MSn techniques and data deconvolution software highlighting two major unknown components (m/z 355 and 679). METHODS AND RESULTS In-depth LC-MSn analyses suggested that the ileal m/z 355 components were p-coumaroyl glucarates. These compounds have not been identified previously and were confirmed in raspberry extracts after partial purification. The major ileal component with m/z 679 was a glycoside with an aglycone of m/z 517 and was present as two peaks in extracts of whole puree, unseeded puree, and isolated seeds. These components were purified using Sephadex LH20 and C18 SPE units and identified as major, novel raspberry triterpenoid glycosides. This triterpenoid-enriched fraction (100 nM) protected against H2 O2 -induced DNA damage in both colon cancer and normal cell lines and altered expression of cytoprotective genes. CONCLUSION The presence of these novel raspberry triterpenoid components in ileal fluids indicates that they would be colon-available in vivo, so confirmation of their anticancer bioactivities is of key physiological relevance.
Collapse
Affiliation(s)
- Gordon J McDougall
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - J William Allwood
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - Gema Pereira-Caro
- Postharvest, Technology and Agrifood Industry Area, IFAPA, Córdoba, Spain
| | - Emma M Brown
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Susan Verrall
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - Derek Stewart
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland.,NIBIO, Norsk Institut for Bioøkonomi, Bodø, Norway
| | - Cheryl Latimer
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Ian Rowland
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, USA
| | - Chris I R Gill
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
134
|
McDougall GJ, Allwood JW, Pereira-Caro G, Brown EM, Ternan N, Verrall S, Stewart D, Lawther R, O'Connor G, Rowland I, Crozier A, Gill CIR. Nontargeted LC-MS n Profiling of Compounds in Ileal Fluids That Decrease after Raspberry Intake Identifies Consistent Alterations in Bile Acid Composition. JOURNAL OF NATURAL PRODUCTS 2016; 79:2606-2615. [PMID: 27643821 DOI: 10.1021/acs.jnatprod.6b00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ileostomy studies provide a unique insight into the digestion of foods, allowing identification of physiologically relevant dietary phytochemicals and their metabolites that are important to gut health. We previously reported an increase of components, including novel triterpenoids, in ileal fluids of 11 ileostomates following consumption of raspberries using nontargeted LC-MSn techniques in combination with data deconvolution software. The current study focused on components that consistently decreased postsupplementation. After data deconvolution, 32 components were identified that met exclusion parameters of m/z signals and which decreased significantly in ileal fluids from eight of 11 participants post-raspberry supplementation. Two-thirds of these components were identified putatively from their MS properties. Consistent decreases were observed in components that possibly reflected "washing out" of presupplementation intake of common foods/drinks including (poly)phenol metabolites. Metabolites associated with fat metabolism such as hydroxylated fatty acids and cholate-type bile acids were specifically reduced. However, more directed re-examination of the data revealed that although some cholates were consistently reduced, the more polar glyco- and tauro-linked bile acid derivatives increased consistently, by as much as 100-fold over presupplementation levels. The possible reasons for these substantial alterations in bile acid composition in ileal fluids in response to raspberry intake are discussed.
Collapse
Affiliation(s)
- Gordon J McDougall
- Environmental and Biochemical Sciences Group, The James Hutton Institute , Invergowrie, Dundee, DD2 5DA, Scotland
| | - J William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute , Invergowrie, Dundee, DD2 5DA, Scotland
| | - Gema Pereira-Caro
- Postharvest, Technology and Agrifood Industry Area, IFAPA , Córdoba, Spain
| | - Emma M Brown
- Centre for Molecular Biosciences, University of Ulster , Coleraine, BT52 1SA, Northern Ireland
| | - Nigel Ternan
- Altnagelvin Area Hospital, Western Health and Social Care Trust , Londonderry, BT47 6SB, Northern Ireland
| | - Susan Verrall
- Environmental and Biochemical Sciences Group, The James Hutton Institute , Invergowrie, Dundee, DD2 5DA, Scotland
| | - Derek Stewart
- Environmental and Biochemical Sciences Group, The James Hutton Institute , Invergowrie, Dundee, DD2 5DA, Scotland
- School of Life Sciences, Heriot-Watt University , Edinburgh, EH14 4AS, Scotland
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust , Londonderry, BT47 6SB, Northern Ireland
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust , Londonderry, BT47 6SB, Northern Ireland
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading , Reading, RG6 6AP, England
| | - Alan Crozier
- Department of Nutrition, University of California , Davis, California 95616, United States
| | - Chris I R Gill
- Centre for Molecular Biosciences, University of Ulster , Coleraine, BT52 1SA, Northern Ireland
| |
Collapse
|
135
|
Kent K, Charlton KE, Netzel M, Fanning K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review. J Hum Nutr Diet 2016; 30:260-274. [PMID: 27730693 DOI: 10.1111/jhn.12431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Preclinical evidence suggests that the anthocyanins, which comprise a subclass of dietary flavonoids providing the purple and red pigmentation in plant-based foods, may have a beneficial impact on cognitive outcomes. METHODS A systematic review was conducted to identify the published literature on food-based anthocyanin consumption and cognitive outcomes in human intervention trials. The literature search followed PRISMA guidelines and included six databases, as well as additional hand searching. RESULTS Seven studies were included in this review, comprising acute trials (n = 4) and longer-term (n = 3) interventions that assessed multiple cognitive outcomes in children, adults and older adults with cognitive impairment. Six of seven studies reported improvements in either a single, or multiple, cognitive outcomes, including verbal learning and memory, after anthocyanin-rich food consumption. As a result of methodological limitations and the large clinical and methodological diversity of the studies, the pooling of data for quantitative analysis was not feasible. CONCLUSIONS The impact of food-based anthocyanin consumption on both acute and long-term cognition appears promising. However, adequately powered studies that include sensitive cognitive tasks are needed to confirm these findings and allow the translation of research into dietary messages.
Collapse
Affiliation(s)
- K Kent
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - K E Charlton
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - M Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - K Fanning
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| |
Collapse
|
136
|
Feliciano RP, Istas G, Heiss C, Rodriguez-Mateos A. Plasma and Urinary Phenolic Profiles after Acute and Repetitive Intake of Wild Blueberry. Molecules 2016; 21:molecules21091120. [PMID: 27571052 PMCID: PMC6273248 DOI: 10.3390/molecules21091120] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that blueberries may have cardiovascular and cognitive health benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual variability in plasma and urinary polyphenol levels was also investigated. Blood samples were collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline, of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between 40%–48% in plasma and 47%–54% in urine. Taken together, our results illustrate that blueberry (poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects observed after blueberry consumption.
Collapse
Affiliation(s)
- Rodrigo P Feliciano
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Geoffrey Istas
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
137
|
Feliciano RP, Mecha E, Bronze MR, Rodriguez-Mateos A. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J Chromatogr A 2016; 1464:21-31. [PMID: 27527878 DOI: 10.1016/j.chroma.2016.08.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022]
Abstract
A rapid and high-throughput micro-solid phase extraction (μ-SPE) method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF MS) analysis was optimized and validated for the quantification of 67 (poly)phenol metabolites in human plasma and urine using authentic standards. The method was fully validated in terms of specificity, linearity, method detection limit (MDL), method quantification limit (MQL), repeatability, intra- and inter-day precision, accuracy and matrix effects. The method proved to be specific and results showed linearity of responses for all compounds, with MDL ranging between 0.04nM and 86nM in plasma and between 0.01nM and 136nM in urine. MQL ranged between 0.14nM and 286nM in plasma and between 0.03nM and 465nM in urine. Repeatability varied between 1.7 and 9.2% in plasma and between 2.2% and 10.4% in urine. Median precision values of 8.7 and 11.5% (intra-day), and 10.8% and 10.0% (inter-day) were obtained in plasma and urine, respectively. The median recovery was 89% in both biological matrices. Matrix effects were determined and median values of -1.2% and -6.8% in plasma and urine were obtained. After method validation, 49 and 57 compounds, including phase II and gut microbial metabolites, were quantified in plasma and urine, respectively, following cranberry juice consumption. This methodology can be applied to large-scale human dietary intervention trials allowing for high sample throughput.
Collapse
Affiliation(s)
- Rodrigo P Feliciano
- Division of Cardiology, Pulmonology and Vascular Medicine, University of Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Elsa Mecha
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria R Bronze
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal; Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; iMED, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology and Vascular Medicine, University of Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.
| |
Collapse
|
138
|
Pereira-Caro G, Ludwig IA, Polyviou T, Malkova D, García A, Moreno-Rojas JM, Crozier A. Identification of Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5724-5735. [PMID: 27339035 DOI: 10.1021/acs.jafc.6b02088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0-24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography-high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites-comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol-and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Postharvest Technology and Agrifood Industry Area, Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida , 25198 Lleida, Spain
| | - Thelma Polyviou
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Dalia Malkova
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Ada García
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Science, and School of Medicine, University of Glasgow , Glasgow G12 8QQ, U.K
| | - José Manuel Moreno-Rojas
- Postharvest Technology and Agrifood Industry Area, Andalusian Institute of Agricultural and Fishery Research and Training (IFAPA) Alameda del Obispo, 14004 Córdoba, Spain
| | - Alan Crozier
- Department of Nutrition, University of California-Davis , Davis, California 95616-5270, United States
| |
Collapse
|
139
|
Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500901] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rocío García-Villalba
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María A. Núñez-Sánchez
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María V. Selma
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María T. García-Conesa
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - Juan Carlos Espín
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
140
|
Feliciano RP, Boeres A, Massacessi L, Istas G, Ventura MR, Nunes dos Santos C, Heiss C, Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch Biochem Biophys 2016; 599:31-41. [DOI: 10.1016/j.abb.2016.01.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
|
141
|
Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proc Nutr Soc 2016; 75:342-55. [PMID: 27170557 DOI: 10.1017/s0029665116000240] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of type 2 diabetes (T2D) is predicted to reach unprecedented levels in the next few decades. In addition to excess body weight, there may be other overlapping dietary drivers of impaired glucose homeostasis that are associated with an obesogenic diet, such as regular exposure to postprandial spikes in blood glucose arising from diets dominated by highly refined starches and added sugars. Strategies to reduce postprandial hyperglycaemia by optimising the functionality of foods would strengthen efforts to reduce the risk of T2D. Berry bioactives, including anthocyanins, are recognised for their inhibitory effects on carbohydrate digestion and glucose absorption. Regular consumption of berries has been associated with a reduction in the risk of T2D. This review aims to examine the evidence from in vitro, animal and human studies, showing that berries and berry anthocyanins may act in the gut to modulate postprandial glycaemia. Specifically, berry extracts and anthocyanins inhibit the activities of pancreatic α-amylase and α-glucosidase in the gut lumen, and interact with intestinal sugar transporters, sodium-dependent glucose transporter 1 and GLUT2, to reduce the rate of glucose uptake into the circulation. Growing evidence from randomised controlled trials suggests that berry extracts, purées and nectars acutely inhibit postprandial glycaemia and insulinaemia following oral carbohydrate loads. Evidence to date presents a sound basis for exploring the potential for using berries/berry extracts as an additional stratagem to weight loss, adherence to dietary guidelines and increasing physical exercise, for the prevention of T2D.
Collapse
|
142
|
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016; 8:78. [PMID: 26861391 PMCID: PMC4772042 DOI: 10.3390/nu8020078] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol-gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.
Collapse
Affiliation(s)
- Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Architecture, Okan Univesity, Tuzla, Istanbul TR-34959, Turkey.
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China.
| | - Dilek Boyacioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| |
Collapse
|