101
|
Clonal Dissemination of Plasmid-Mediated Carbapenem and Colistin Resistance in Refugees Living in Overcrowded Camps in North Lebanon. Antibiotics (Basel) 2021; 10:antibiotics10121478. [PMID: 34943690 PMCID: PMC8698793 DOI: 10.3390/antibiotics10121478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Carbapenem and colistin-resistant bacteria represent a global public health problem. Refugees carrying these bacteria and living in inadequate shelters can spread these microorganisms. The aim of this study was to investigate the intestinal carriage of these bacteria in Syrian refugees in Lebanon. Between June and July 2019, 250 rectal swabs were collected from two refugee camps in North Lebanon. Swabs were cultured on different selective media. Antibiotic susceptibility testing was performed using the disk diffusion method. Carbapenemase-encoding genes and mcr genes were investigated using real-time polymerase chain reaction (RT-PCR) and standard polymerase chain reaction (PCR). Epidemiological relatedness was studied using multilocus sequence typing (MLST). From 250 rectal swabs, 16 carbapenem-resistant, 5 colistin-resistant, and 4 colistin and carbapenem-resistant Enterobacteriaceae were isolated. The isolates exhibited multidrug-resistant phenotypes. Seven Klebsiella pneumoniae isolates harboured the blaOXA-48 gene, and in addition four K. pneumoniae had mutations in the two component systems pmrA/pmrB, phoP/phoQ and co-harboured the blaNDM-1 gene. Moreover, the blaNDM-1 gene was detected in six Escherichia coli and three Enterobacter cloacae isolates. The remaining five E. coli isolates harboured the mcr-1 gene. MLST results showed several sequence types, with a remarkable clonal dissemination. An urgent strategy needs to be adopted in order to avoid the spread of such resistance in highly crowded underserved communities.
Collapse
|
102
|
Weerakoon D, Petrov K, Pedebos C, Khalid S. Polymyxin B1 within the E. coli cell envelope: insights from molecular dynamics simulations. Biophys Rev 2021; 13:1061-1070. [PMID: 35047090 PMCID: PMC8724489 DOI: 10.1007/s12551-021-00869-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Polymyxins are used as last-resort antibiotics, where other treatments have been ineffectual due to antibiotic resistance. However, resistance to polymyxins has also been now reported, therefore it is instructive to characterise at the molecular level, the mechanisms of action of polymyxins. Here we review insights into these mechanisms from molecular dynamics simulations and discuss the utility of simulations as a complementary technique to experimental methodologies.
Collapse
Affiliation(s)
| | - Kamen Petrov
- Hertford College, University of Oxford, Oxford, OX1 3BW UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
103
|
Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio 2021; 12:e0277621. [PMID: 34781730 PMCID: PMC8593676 DOI: 10.1128/mbio.02776-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Colistin (polymyxin E) and polymyxin B have been used as last-resort agents for treating infections caused by multidrug-resistant Gram-negative bacteria. However, their efficacy has been challenged by the emergence of the mobile colistin resistance gene mcr-1, which encodes a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. The enzyme catalyzes the transfer of the cationic PEA moiety of phosphatidylethanolamine (PE) to lipid A, thereby neutralizing the negative charge of lipid A and blocking the binding of positively charged polymyxins. This study aims to facilitate understanding of the mechanism of the MCR-1 enzyme by investigating its active-site sequence requirements. For this purpose, 23 active-site residues of MCR-1 protein were randomized by constructing single-codon randomization libraries. The libraries were individually selected for supporting Escherichia coli cell growth in the presence of colistin or polymyxin B. Deep sequencing of the polymyxin-resistant clones revealed that wild-type residues predominates at 17 active-site residue positions, indicating these residues play critical roles in MCR-1 function. These residues include Zn2+-chelating residues as well as residues that may form a hydrogen bond network with the PEA moiety or make hydrophobic interactions with the acyl chains of PE. Any mutations at these residues significantly decrease polymyxin resistance levels and the PEA transferase activity of the MCR-1 enzyme. Therefore, deep sequencing of the randomization libraries of MCR-1 enzyme identifies active-site residues that are essential for its polymyxin resistance function. Thus, these residues may be utilized as targets to develop inhibitors to circumvent MCR-1-mediated polymyxin resistance.
Collapse
|
104
|
Cervoni M, Lo Sciuto A, Bianchini C, Mancone C, Imperi F. Exogenous and Endogenous Phosphoethanolamine Transferases Differently Affect Colistin Resistance and Fitness in Pseudomonas aeruginosa. Front Microbiol 2021; 12:778968. [PMID: 34777328 PMCID: PMC8578941 DOI: 10.3389/fmicb.2021.778968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin represents a last-line treatment option for infections caused by multidrug resistant Gram-negative pathogens, including Pseudomonas aeruginosa. Colistin resistance generally involves the modification of the lipid A moiety of lipopolysaccharide (LPS) with positively charged molecules, namely phosphoethanolamine (PEtN) or 4-amino-4-deoxy-L-arabinose (Ara4N), that reduce colistin affinity for its target. Several lines of evidence highlighted lipid A aminoarabinosylation as the primary colistin resistance mechanism in P. aeruginosa, while the contribution of phosphoethanolamination remains elusive. PEtN modification can be due to either endogenous (chromosomally encoded) PEtN transferase(s) (e.g., EptA in P. aeruginosa) or plasmid borne MCR enzymes, commonly found in enterobacteria. By individually cloning eptA and mcr-1 into a plasmid for inducible gene expression, we demonstrated that MCR-1 and EptA have comparable PEtN transferase activity in P. aeruginosa and confer colistin resistance levels similar to those provided by lipid A aminoarabinosylation. Notably, EptA, but not MCR-1, negatively affects P. aeruginosa growth and, to a lesser extent, cell envelope integrity when expressed at high levels. Mutagenesis experiments revealed that PEtN transferase activity does not account for the noxious effects of EptA overexpression, that instead requires a C-terminal tail unique to P. aeruginosa EptA, whose function remains unknown. Overall, this study shows that both endogenous and exogenous PEtN transferases can promote colistin resistance in P. aeruginosa, and that PEtN and MCR-1 mediated resistance has no impact on growth and cell envelope homeostasis, suggesting that there may be no fitness barriers to the spread of mcr-1 in P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
105
|
Valiakos G, Kapna I. Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. Vet Sci 2021; 8:265. [PMID: 34822638 PMCID: PMC8619609 DOI: 10.3390/vetsci8110265] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.
Collapse
Affiliation(s)
- George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | | |
Collapse
|
106
|
Musa L, Proietti PC, Marenzoni ML, Stefanetti V, Kika TS, Blasi F, Magistrali CF, Toppi V, Ranucci D, Branciari R, Franciosini MP. Susceptibility of Commensal E. coli Isolated from Conventional, Antibiotic-Free, and Organic Meat Chickens on Farms and at Slaughter toward Antimicrobials with Public Health Relevance. Antibiotics (Basel) 2021; 10:1321. [PMID: 34827259 PMCID: PMC8614865 DOI: 10.3390/antibiotics10111321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
The spread of resistant bacteria from livestock to the food industry promoted an increase of alternative poultry production systems, such as organic and antibiotic-free ones, based on the lack of antimicrobial use, except in cases in which welfare is compromised. We aimed to investigate the antibiotic susceptibility of commensal Escherichia coli isolated from organic, antibiotic-free, and conventional broiler farms and slaughterhouses toward several antimicrobials critically important for human health. To assess antimicrobial susceptibility, all E. coli isolates and extended spectrum beta-lactamase (ESBL) E. coli were analysed by the microdilution method. The prevalence of tigecycline, azithromycin and gentamicin E. coli-resistant strains was highest in organic samplings. Conversely, the lowest prevalence of resistant E. coli strains was observed for cefotaxime, ceftazidime and ciprofloxacin in organic systems, representing a significant protective factor compared to conventional systems. All E. coli strains were colistin-susceptible. Contamination of the external environment by drug-resistant bacteria could play a role in the presence of resistant strains detected in organic systems. Of interest is the highest prevalence of cephalosporin resistance of E. coli in conventional samplings, since they are not permitted in poultry. Our results suggest that monitoring of antibiotic resistance of the production chain may be helpful to detect "risks" inherent to different rearing systems.
Collapse
Affiliation(s)
- Laura Musa
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Patrizia Casagrande Proietti
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Tana Shtylla Kika
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania;
| | - Francesca Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Valeria Toppi
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - David Ranucci
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (M.L.M.); (V.S.); (V.T.); (D.R.); (R.B.); (M.P.F.)
| |
Collapse
|
107
|
Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, Mohebi S, Moghadam MT. Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-Resistant Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Bacteria. Curr Microbiol 2021; 78:4023-4036. [PMID: 34633487 PMCID: PMC8503728 DOI: 10.1007/s00284-021-02662-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Colistin-resistant multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria are highly lethal and many researchers have tried hard to combat these microorganisms around the world. Infections caused by these bacteria are resistant to the last resort of antibiotic therapy and have posed a major challenge in clinical and public health. Since the production of new antibiotics is very expensive and also very slow compared to the increasing rate of antibiotic resistance, researchers are suggesting the use of natural substances with high antibacterial potential. Bacteriophages are one of the most effective therapeutic measures that are known to exist for use for incurable and highly resistant infections. Phages are highly taken into consideration due to the lack of side effects, potential spread to various body organs, distinct modes of action from antibiotics, and proliferation at the site of infection. Although the effects of phages on MDR and XDR bacteria have been demonstrated in various studies, only a few have investigated the effect of phage therapy on colistin-resistant isolates. Therefore, in this review, we discuss the problems caused by colistin-resistant MDR and XDR bacteria in the clinics, explain the different mechanisms associated with colistin resistance, introduce bacteriophage therapy as a powerful remedy, and finally present new studies that have used bacteriophages against colistin-resistant isolates.
Collapse
Affiliation(s)
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moradi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Saina Karami
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Maryam Mirshekar
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
108
|
Berry L, Brizuela M, Jackson G, Schweizer F. A niclosamide-tobramycin hybrid adjuvant potentiates cefiderocol against P. aeruginosa. RSC Med Chem 2021; 12:1565-1573. [PMID: 34671738 DOI: 10.1039/d1md00206f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
There is an urgent need for new therapies to overcome antimicrobial resistance (AMR) especially against Gram-negative bacilli (GNB). Multicomponent therapy combining antibiotics with enhancer molecules known as adjuvants is an emerging strategy to combat AMR. We have previously reported tobramycin-based adjuvants which are able to potentiate various antibiotics. In order to expand the repertoire of tobramycin hybrid adjuvants, a new hybrid containing niclosamide, an FDA approved anthelmintic which has recently demonstrated a variety of interesting biological effects, was synthesized. It was found that this conjugate can potentiate several antibiotics against multidrug-resistant GNB, including the recently approved siderophore cephalosporin cefiderocol. 8 μg ml-1 of the niclosamide-tobramycin hybrid in combination therapy against a pandrug-resistant strain of P. aeruginosa was able to lower the cefiderocol MIC 32-fold, from 8 μg ml-1 to 0.25 μg ml-1 in iron-rich media where siderophore uptake is reduced. These results indicate that a niclosamide-tobramycin hybrid adjuvant can serve to potentiate a newly approved antibiotic.
Collapse
Affiliation(s)
- Liam Berry
- Department of Chemistry, University of Manitoba Winnipeg MB Canada
| | - Marc Brizuela
- Department of Chemistry, University of Manitoba Winnipeg MB Canada
| | - Gregory Jackson
- Department of Chemistry, University of Manitoba Winnipeg MB Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba Winnipeg MB Canada .,Department of Medical Microbiology and Infectious Diseases, University of Manitoba Winnipeg MB Canada
| |
Collapse
|
109
|
Allend SO, Garcia MO, da Cunha KF, de Albernaz DTF, da Silva ME, Ishikame RY, Panagio LA, Nakazaro G, Reis GF, Pereira DB, Hartwig DD. Biogenic silver nanoparticle (Bio-AgNP) has an antibacterial effect against carbapenem-resistant Acinetobacter baumannii with synergism and additivity when combined with polymyxin B. J Appl Microbiol 2021; 132:1036-1047. [PMID: 34496109 DOI: 10.1111/jam.15297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022]
Abstract
AIMS Carbapenem-resistant Acinetobacter baumannii represents a public health problem, and the search for new antibacterial drugs has become a priority. Here, we investigate the antibacterial activity of biogenic silver nanoparticles (Bio-AgNPs) synthesized by Fusarium oxysporum, used alone or in combination with polymyxin B against carbapenem-resistant A. baumannii. METHODS AND RESULTS In this study, ATCC® 19606™ strain and four carbapenem-resistant A. baumannii strains were used. The antibacterial activity of Bio-AgNPs and its synergism with polymyxin B were determined using broth microdilution, checkboard methods and time-kill assays. The integrity of the bacterial cell membrane was monitored by protein leakage assay. In addition, the cytotoxicity in the VERO mammalian cell line was also evaluated, and the selectivity index was calculated. Bio-AgNPs have an antibacterial activity with MIC and MBC ranging from 0.460 to 1.870 µg/ml. The combination of polymyxin B and Bio-AgNPs presents synergy against four of the five strains tested and additivity against one strain in the checkerboard assay. Considering the time of cell death, Bio-AgNPs killed all carbapenem-resistant isolates and ATCC® 19606™ within 1 h. When combined, Bio-AgNPs presented 16-fold reduction of the polymyxin B MIC and showed a decrease in terms of viable A. baumannii cells in 4 h of treatment, with synergic and additive effects. Protein leakage was observed with increasing concentrations for Bio-AgNPs treatments. Additionally, Bio-AgNP and polymyxin B showed dose-dependent cytotoxicity against mammalian VERO cells and combined the cytotoxicity which was significantly reduced and presented a greater pharmacological safety. CONCLUSIONS The results presented here indicate that Bio-AgNPs in combination with polymyxin B could represent a good alternative in the treatment of carbapenem-resistant A. baumannii. SIGNIFICANCE AND IMPACT OF STUDY This study demonstrates the synergic effect between Bio-AgNPs and polymyxin B on carbapenem-resistant A. baumannii strains.
Collapse
Affiliation(s)
- Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Marcelle Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Mirian Elert da Silva
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Yudi Ishikame
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Gerson Nakazaro
- Department of Microbiology, State University of Londrina, Londrina, PR, Brazil
| | | | - Daniela Brayer Pereira
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
110
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
111
|
Huang C, Shi Q, Zhang S, Wu H, Xiao Y. Acquisition of the mcr-1 Gene Lowers the Target Mutation to Impede the Evolution of a High-Level Colistin-Resistant Mutant in Escherichia coli. Infect Drug Resist 2021; 14:3041-3051. [PMID: 34408448 PMCID: PMC8364431 DOI: 10.2147/idr.s324303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The spread of the plasmid-mediated colistin resistance gene mcr-1 poses a significant public health threat. Little information is available on the development of high-level colistin-resistant mutants (HLCRMs) in MCR-1-producing Escherichia coli (MCRPEC). The present study was designed to evaluate the impact of chromosomal modifications in pmrAB, phoPQ, and mgrB combined with mcr-1 on colistin resistance in E. coli. Methods Five MCRPEC and three non-MCRPEC (E. coli ATCC25922 and two plasmid-curing) strains were used. The HLCRMs were selected through multi-stepwise colistin exposure. Moreover, two E. coli C600-pMCRs were constructed and used for selection of HLCRMs. Further analysis included mutation rates and DNA sequencing. Transcripts of pmrABC, phoP, mgrB, and mcr-1 were quantified by real-time quantitative PCR. Results All tested HLCRMs were successfully isolated from their parental strains. Non-MCRPEC strains had higher minimum inhibitory concentrations (MICs) and mutation rates than MCRPEC strains. Nineteen amino acid substitutions were identified: seven in PmrA, six in PmrB, one in PhoP, three in PhoQ, and two in MgrB. Most were detected in non-MCRPEC strains. Sorting Intolerant From Tolerant predicted that four substitutions, PmrA Gly15Arg, Gly53Arg, PmrB Pro94Gln, and PhoP Asp86Gly, affected protein function. Two HLCRM isolates did not show amino acid substitutions in contrast to their parental MCRPEC isolates. No further mutations were detected in the second- and third-step mutants. Further transcriptional analysis showed that the up-regulation of pmrCAB expression was greater in the mutant of E. coli C600 than in E. coli C600-pMCR. Conclusion Acquisition of the mcr-1 gene had a negative impact on the development of HLCRMs in E. coli, but was associated with low-level colistin resistance. Thus, colistin-based combination regimens may be effective against infections with MCR-1-producing isolates.
Collapse
Affiliation(s)
- Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingyi Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
112
|
Khoshbayan A, Shariati A, Shahmoradi S, Baseri Z, Mozafari H, Darban-Sarokhalil D. Prevalence and molecular mechanisms of colistin resistance in Acinetobacter baumannii clinical isolates in Tehran, Iran. Acta Microbiol Immunol Hung 2021. [PMID: 34370684 DOI: 10.1556/030.2021.01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023]
Abstract
Colistin is one of the last remaining active antibiotics against multidrug resistant Gram-negative bacteria. However, several recent studies reported colistin-resistant (ColR) Acinetobacter baumannii from different countries. In the current study, we investigated molecular mechanisms involved in colistin resistance in A. baumannii isolates from different clinical samples.A total of 110 clinical A. baumannii isolates were collected from two hospitals in Tehran. Minimum inhibitory concentrations (MICs) were determined by broth microdilution according to the Clinical and Laboratory Standards Institute. For the ColR isolates, mutation was detected in pmrA, pmrB, lpxA, lpxC, and lpxD genes using the polymerase chain reaction (PCR) and sequencing. Moreover, the relative expression of the pmrC gene was calculated using quantitative reverse transcription PCR. Three colistin resistant isolates were identified with MIC between 8 and 16 μg/mL and were resistant to all the tested antimicrobial agents. All the three isolates had a mutation in the pmrB, pmrA, lpxA, lpxD, and lpxC genes. Moreover, the overexpression of pmrC gene was observed in all isolates. Our results showed that the upregulation of the PmrAB two component system was the primary mechanism linked to colistin resistance among the studied colistin resistant A. baumannii isolates.
Collapse
Affiliation(s)
- Amin Khoshbayan
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Shahmoradi
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Baseri
- 2Department of Pathology and Laboratory Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Mozafari
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- 1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
114
|
Miltgen G, Bour M, Allyn J, Allou N, Vedani T, Vuillemenot JB, Triponney P, Martinet O, Lugagne N, Benoit-Cattin T, Dortet L, Birer A, Jaffar-Bandjee MC, Belmonte O, Plésiat P, Potron A. Molecular and epidemiological investigation of a colistin-resistant OXA-23-/NDM-1-producing Acinetobacter baumannii outbreak in the Southwest Indian Ocean Area. Int J Antimicrob Agents 2021; 58:106402. [PMID: 34293453 DOI: 10.1016/j.ijantimicag.2021.106402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Dual resistance to colistin and carbapenems is a milestone reached by certain extensively-drug resistant (XDR) Gram-negative bacteria. This study describes the first outbreak of XDR colistin- and carbapenem-resistant OXA-23-/NDM-1-producing Acinetobacter baumannii (CCRAB) in the European overseas territory of Reunion Island (France, Indian Ocean). Between April 2019 and June 2020, 13 patients admitted to the University Hospital of Reunion Island were involved in the outbreak, of whom eight were infected and six died. The first case was traced to a medical evacuation from Mayotte Island (Comoros archipelago). An epidemiological link could be established for 11 patients. All of the collected CCRAB isolates showed the same resistance profile and co-produced intrinsic β-lactamases OXA-69 and ADC-191, together with acquired carbapenem-hydrolysing β-lactamases OXA-23 and NDM-1. A mutation likely involved in colistin resistance was detected in the two-component system PmrAB (D82N in PmrA). All of the isolates were found to belong to STPas1/STOx231 clonal complex and were phylogenetically indistinguishable. Their further characterization by whole-genome sequence analyses (whole-genome multi-locus sequence typing, single nucleotide polymorphisms) provided hints about the transmission pathways. This study pleads for strict application of control and prevention measures in institutions where the risk of imported XDR bacteria is high.
Collapse
Affiliation(s)
- Guillaume Miltgen
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France; UMR Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM U1187, IRD 249, Université de la Réunion, Sainte-Clotilde, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Jérôme Allyn
- Réanimation polyvalente, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France; Département d'informatique Clinique, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | - Nicolas Allou
- Réanimation polyvalente, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France; Département d'informatique Clinique, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | - Thibaut Vedani
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | - Jean-Baptiste Vuillemenot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France; Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université Bourgogne Franche-Comté, Besançon, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Olivier Martinet
- Réanimation polyvalente, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | - Nathalie Lugagne
- Service d'Hygiène hospitalière, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | | | - Laurent Dortet
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire associé, Centre Hospitalier Universitaire de Bicêtre, Le Kremlin-Bicêtre, France
| | - Aurélien Birer
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire associé, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Olivier Belmonte
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire La Réunion, Saint-Denis, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France; Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université Bourgogne Franche-Comté, Besançon, France
| | - Anaïs Potron
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France; Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Faculté de Médecine-Pharmacie, Université Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
115
|
Genomic characterization of an extensively drug-resistant chicken-borne Salmonella Indiana isolate carrying an IncHI2-IncHI2A plasmid. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
116
|
Park J, Kim M, Shin B, Kang M, Yang J, Lee TK, Park W. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. eLife 2021; 10:66988. [PMID: 34180396 PMCID: PMC8324293 DOI: 10.7554/elife.66988] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Modification of the outer membrane charge by a polymyxin B (PMB)-induced PmrAB two-component system appears to be a dominant phenomenon in PMB-resistant Acinetobacter baumannii. PMB-resistant variants and many clinical isolates also appeared to produce outer membrane vesicles (OMVs). Genomic, transcriptomic, and proteomic analyses revealed that upregulation of the pmr operon and decreased membrane-linkage proteins (OmpA, OmpW, and BamE) are linked to overproduction of OMVs, which also promoted enhanced biofilm formation. The addition of OMVs from PMB-resistant variants into the cultures of PMB-susceptible A. baumannii and the clinical isolates protected these susceptible bacteria from PMB. Taxonomic profiling of in vitro human gut microbiomes under anaerobic conditions demonstrated that OMVs completely protected the microbial community against PMB treatment. A Galleria mellonella-infection model with PMB treatment showed that OMVs increased the mortality rate of larvae by protecting A. baumannii from PMB. Taken together, OMVs released from A. baumannii functioned as decoys against PMB. Wrapped in a thick, protective outer membrane, Acinetobacter baumannii bacteria can sometimes cause serious infections when they find their way into human lungs and urinary tracts. Antibiotics are increasingly ineffective against this threat, which forces physicians to resort to polymyxin B, an old, positively-charged drug that ‘sticks’ to the negatively-charged proteins and fatty components at the surface of A. baumannii. Scientists have noticed that when bacteria are exposed to lethal drugs, they often react by releasing vesicles, small ‘sacs’ made of pieces of the outer membranes which can contain DNA or enzymes. How this strategy protects the cells against antibiotics such as polymyxin B remains poorly understood. To investigate this question, Park et al. examined different strains of A. baumannii, showing that bacteria resistant to polymyxin B had lower levels of outer membrane proteins but would release more vesicles. Adding vesicles from resistant strains to non-resistant A. baumannii cultures helped cells to survive the drugs. In fact, this protective effect extended to other species, shielding whole communities of bacteria against polymyxin B. In vivo, the vesicles protected bacteria in moth larvae infected with A. baumannii, leading to a higher death rate in the animals. Experiments showed that the negatively-charged vesicles worked as decoys, trapping the positively-charged polymyxin B away from its target. Taken together, the findings by Park et al. highlight a new strategy that allows certain strains of bacteria to protect themselves from antibiotics, while also benefitting the rest of the microbial community.
Collapse
Affiliation(s)
- Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Malla CF, Mireles NA, Ramírez AS, Poveda JB, Tavío MM. Aspirin, sodium benzoate and sodium salicylate reverse resistance to colistin in Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother 2021; 75:3568-3575. [PMID: 32989461 DOI: 10.1093/jac/dkaa371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MDR bacterial infections are currently a serious problem for clinicians worldwide. Klebsiella pneumoniae and Enterobacter spp., among Enterobacteriaceae, and Pseudomonas aeruginosa, are part of the group of ESCAPE pathogens or bacteria that 'escape' from common antibacterial treatments. The lack of effectiveness of the first common line of antibiotics has led to the search for new therapies based on older antibiotics, such as colistin. OBJECTIVES We searched for new enhancers of the action of colistin against MDR Gram-negative bacteria that can be easily applicable to clinical treatments. METHODS Colistin MICs were determined alone and with the protonophores CCCP, sodium benzoate, sodium salicylate and aspirin using the broth microdilution method and FIC indexes were calculated to assess synergy between colistin and each chemical. Time-kill assays of colistin with and without protonophores were performed to determine the bactericidal action of combinations of colistin with protonophores. Likewise, the effect of sucrose, l-arginine and l-glutamic acid on the MICs of colistin alone and combined with each protonophore was assessed. RESULTS It was found that sodium benzoate, sodium salicylate and aspirin, at concentrations allowed for human and animal use, partially or totally reversed resistance to colistin in P. aeruginosa and highly resistant enterobacterial strains. The mechanism of action could be related to their negative charge at a physiological pH along with their lipid-soluble character. CONCLUSIONS Sodium benzoate, sodium salicylate and aspirin are good enhancers to use in antibiotic therapies that include colistin.
Collapse
Affiliation(s)
- Cristina F Malla
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,University Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Natalia A Mireles
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana S Ramírez
- University Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José B Poveda
- University Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María M Tavío
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,University Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
118
|
Ghirga F, Stefanelli R, Cavinato L, Lo Sciuto A, Corradi S, Quaglio D, Calcaterra A, Casciaro B, Loffredo MR, Cappiello F, Morelli P, Antonelli A, Rossolini GM, Mangoni M, Mancone C, Botta B, Mori M, Ascenzioni F, Imperi F. A novel colistin adjuvant identified by virtual screening for ArnT inhibitors. J Antimicrob Chemother 2021; 75:2564-2572. [PMID: 32514531 PMCID: PMC7443731 DOI: 10.1093/jac/dkaa200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. Objectives Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. Methods The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. Results A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. Conclusions This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.
Collapse
Affiliation(s)
- Francesca Ghirga
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Roberta Stefanelli
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.,Department of Sciences, 'Department of Excellence 2018 - 2022', Roma Tre University, Rome, Italy
| | - Luca Cavinato
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Lo Sciuto
- Department of Sciences, 'Department of Excellence 2018 - 2022', Roma Tre University, Rome, Italy
| | - Silvia Corradi
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Rome, Italy.,Department of Chemistry and Technology of Drugs, 'Department of Excellence 2018 - 2022', Sapienza University of Rome, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, 'Department of Excellence 2018 - 2022', Sapienza University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, 'Department of Excellence 2018 - 2022', Sapienza University of Rome, Rome, Italy
| | - Bruno Casciaro
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Floriana Cappiello
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Patrizia Morelli
- Microbiology Laboratory, Giannina Gaslini Institute, Genoa, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Marialuisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, 'Department of Excellence 2018 - 2022', Sapienza University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, 'Department of Excellence 2018 - 2022', Sapienza University of Rome, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, 'Department of Excellence 2018 - 2022', University of Siena, Siena, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesco Imperi
- Department of Sciences, 'Department of Excellence 2018 - 2022', Roma Tre University, Rome, Italy
| |
Collapse
|
119
|
Büdel T, Kuenzli E, Campos-Madueno EI, Mohammed AH, Hassan NK, Zinsstag J, Hatz C, Endimiani A. On the island of Zanzibar people in the community are frequently colonized with the same MDR Enterobacterales found in poultry and retailed chicken meat. J Antimicrob Chemother 2021; 75:2432-2441. [PMID: 32562537 DOI: 10.1093/jac/dkaa198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Intestinal colonization with extended-spectrum cephalosporin-resistant (ESC-R) and colistin-resistant (CST-R) Enterobacterales (Ent) can be driven by contact with colonized animals and/or contamination of the food chain. We studied the ESC-R-Ent and COL-R-Ent colonizing poultry as well as contaminating chicken meat in Zanzibar (Tanzania). Results were compared with recently published data obtained from rectal swabs of people in the community. METHODS During June and July 2018, we collected poultry faecal material (n = 62) and retail chicken meat (n = 37) samples. ESC-R and CST-R strains were isolated implementing selective approaches and characterized with different molecular methods, including WGS coupled with core-genome analyses. RESULTS The prevalence of ESC-R-Ent and CST-R-Ent, respectively, were: 88.7% and 48.4% in poultry; and 43.2% and 18.9% in chicken meat. Overall, the following strains and main resistance mechanisms were found in the two settings: 69 ESC-R Escherichia coli (CTX-M-15 subgroup, 75%), 34 ESC-R Klebsiella pneumoniae (CTX-M-9 group, 54.5%), 24 non-ESC-R but CST-R E. coli (mcr-1, 95.8%) and 17 non-ESC-R but CST-R K. pneumoniae (D150G substitution in PhoQ). Several clones (differing by only 0-13 single nucleotide variants) were concomitantly and frequently found in human and non-human settings: mcr-1-carrying E. coli ST46; CTX-M-15-producing E. coli ST361; CTX-M-14-producing K. pneumoniae ST17; and CTX-M-15-producing K. pneumoniae ST1741. CONCLUSIONS This is one of the few studies that have assessed the occurrence of identical MDR Enterobacterales in human and non-human settings. The frequent human gut colonization observed in the community might be favoured by the spread of ESC-R-Ent and CST-R-Ent in poultry and chicken meat. Further studies with a One Health approach should be carried out to better investigate this phenomenon.
Collapse
Affiliation(s)
- Thomas Büdel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Esther Kuenzli
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | | | | | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christoph Hatz
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
120
|
Jiang X, Yang K, Yuan B, Han M, Zhu Y, Roberts KD, Patil NA, Li J, Gong B, Hancock REW, Velkov T, Schreiber F, Wang L, Li J. Molecular dynamics simulations informed by membrane lipidomics reveal the structure-interaction relationship of polymyxins with the lipid A-based outer membrane of Acinetobacter baumannii. J Antimicrob Chemother 2021; 75:3534-3543. [PMID: 32911540 DOI: 10.1093/jac/dkaa376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND MDR bacteria represent an urgent threat to human health globally. Polymyxins are a last-line therapy against life-threatening Gram-negative 'superbugs', including Acinetobacter baumannii. Polymyxins exert antimicrobial activity primarily via permeabilizing the bacterial outer membrane (OM); however, the mechanism of interaction between polymyxins and the OM remains unclear at the atomic level. METHODS We constructed a lipid A-based OM model of A. baumannii using quantitative membrane lipidomics data and employed all-atom molecular dynamics simulations with umbrella sampling techniques to elucidate the structure-interaction relationship and thermodynamics governing the penetration of polymyxins [B1 and E1 (i.e. colistin A) representing the two clinically used polymyxins] into the OM. RESULTS Polymyxin B1 and colistin A bound to the A. baumannii OM by the initial electrostatic interactions between the Dab residues of polymyxins and the phosphates of lipid A, competitively displacing the cations from the headgroup region of the OM. Both polymyxin B1 and colistin A formed a unique folded conformation upon approaching the hydrophobic centre of the OM, consistent with previous experimental observations. Polymyxin penetration induced reorientation of the headgroups of the OM lipids near the penetration site and caused local membrane disorganization, thereby significantly increasing membrane permeability and promoting the subsequent penetration of polymyxin molecules into the OM and periplasmic space. CONCLUSIONS The thermodynamics governing the penetration of polymyxins through the outer leaflet of the A. baumannii OM were examined and novel structure-interaction relationship information was obtained at the atomic and membrane level. Our findings will facilitate the discovery of novel polymyxins against MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Xukai Jiang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Kai Yang
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Bing Yuan
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Meiling Han
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Bin Gong
- School of Computer Science and Technology, Shandong University, Jinan, China
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Australia
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
121
|
Behroz I, Kleebauer L, Hommernick K, Seidel M, Grätz S, Mainz A, Weston JB, Süssmuth RD. Acetylenic Replacement of Albicidin's Methacrylamide Residue Circumvents Detrimental E/Z Photoisomerization and Preserves Antibacterial Activity. Chemistry 2021; 27:9077-9086. [PMID: 33769627 PMCID: PMC8362182 DOI: 10.1002/chem.202100523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 01/07/2023]
Abstract
The natural product albicidin is a highly potent inhibitor of bacterial DNA gyrase. Its outstanding activity, particularly against Gram-negative pathogens, qualifies it as a promising lead structure in the search for new antibacterial drugs. However, as we show here, the N-terminal cinnamoyl moiety of albicidin is susceptible to photochemical E/Z isomerization. Moreover, the newly formed Z isomer exhibits significantly reduced antibacterial activity, which hampers the development and biological evaluation of albicidin and potent derivatives thereof. Hence, we synthesized 13 different variants of albicidin in which the vulnerable para-coumaric acid moiety was replaced; this yielded photostable analogues. Biological activity assays revealed that diaryl alkyne analogues exhibited virtually undiminished antibacterial efficacy. This promising scaffold will therefore serve as a blueprint for the design of a potent albicidin-based drug.
Collapse
Affiliation(s)
- Iraj Behroz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Leonardo Kleebauer
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Kay Hommernick
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Maria Seidel
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Stefan Grätz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Andi Mainz
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - John B. Weston
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Roderich D. Süssmuth
- Institut für Organische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
122
|
Stefaniuk EM, Kozińska A, Waśko I, Baraniak A, Tyski S. Occurrence of Beta-Lactamases in Colistin-Resistant Enterobacterales Strains in Poland - a Pilot Study. Pol J Microbiol 2021; 70:283-288. [PMID: 34349817 PMCID: PMC8326981 DOI: 10.33073/pjm-2021-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/05/2022] Open
Abstract
Sixty-five colistin-resistant Enterobacterales isolates recovered from different clinical specimens were analyzed. The strains were collected in 12 hospitals all over Poland within a period of nine months. Strains were analyzed for eight genes from the mcr family. The presence of mcr-1 gene was detected in three Escherichia coli strains. The 45/65 isolates were identified as ESBL producers. CTX-M-1-like enzymes were the most common ESBLs (n = 40). One E. coli and seven Klebsiella pneumoniae strains produced carbapenemases, with the NDM being produced by five isolates. Among all the strains tested, four and five were resistant to new drugs meropenem/vaborbactam and ceftazidime/avibactam, respectively.
Collapse
Affiliation(s)
- Elżbieta M Stefaniuk
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Aleksandra Kozińska
- Department of Medicines Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Izabela Waśko
- Department of Medicines Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
123
|
Li Y, Jin G, Liu L, Kuang H, Xiao J, Xu C. A portable fluorescent microsphere-based lateral flow immunosensor for the simultaneous detection of colistin and bacitracin in milk. Analyst 2021; 145:7884-7892. [PMID: 33016277 DOI: 10.1039/d0an01463j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polypeptide antibiotics colistin (COL) and bacitracin (Baci) are extensively used as veterinary drugs and feedstock additives in the livestock industry, which inevitably causes residues in animal-origin food, which can accelerate human tolerance to antibiotics. In this study, a portable lateral flow immunoassay (LFIA) for the simultaneous determination of COL and Baci residues in milk was developed. The replacement of gold nanoparticles used in the traditional LFIA with fluorescent microspheres (FMs) to label monoclonal antibodies (mAbs) allowed qualitative and quantitative analyses within a few minutes. Based on the principle of competitive binding to FM-labelled mAbs between analytes in samples and fixed antigens on the membrane, the assay provided qualitative cut-off values of 100 and 50 ng mL-1 for Baci and COL in milk samples. Furthermore, a strip reader-based semi-quantitative detection system could detect lower limits of 7.85 and 1.89 ng mL-1 for Baci and COL, respectively. In conclusion, the proposed multiplex LFIA immunosensor provides an auxiliary analytical tool for the rapid and simultaneous screening of COL and Baci in large cohorts of samples.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
124
|
Cianciulli Sesso A, Lilić B, Amman F, Wolfinger MT, Sonnleitner E, Bläsi U. Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Front Microbiol 2021; 12:626715. [PMID: 33995291 PMCID: PMC8120321 DOI: 10.3389/fmicb.2021.626715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/31/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is notorious for its high-level resistance toward clinically used antibiotics. In fact, Pae has rendered most antimicrobials ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics. Although several resistance mechanisms of Pae are known toward these drugs, a profounder knowledge of hitherto unidentified factors and pathways appears crucial to develop novel strategies to increase their efficacy. Here, we have performed for the first time transcriptome analyses and ribosome profiling in parallel with strain PA14 grown in synthetic cystic fibrosis medium upon exposure to polymyxin E (colistin) and tobramycin. This approach did not only confirm known mechanisms involved in colistin and tobramycin susceptibility but revealed also as yet unknown functions/pathways. Colistin treatment resulted primarily in an anti-oxidative stress response and in the de-regulation of the MexT and AlgU regulons, whereas exposure to tobramycin led predominantly to a rewiring of the expression of multiple amino acid catabolic genes, lower tricarboxylic acid (TCA) cycle genes, type II and VI secretion system genes and genes involved in bacterial motility and attachment, which could potentially lead to a decrease in drug uptake. Moreover, we report that the adverse effects of tobramycin on translation are countered with enhanced expression of genes involved in stalled ribosome rescue, tRNA methylation and type II toxin-antitoxin (TA) systems.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Branislav Lilić
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Michael T. Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
125
|
Darcel L, Bornancin L, Raviglione D, Bonnard I, Mills SC, Sáez-Vásquez J, Banaigs B, Inguimbert N. d-Peptidase Activity in a Marine Mollusk Detoxifies a Nonribosomal Cyclic Lipopeptide: An Ecological Model to Study Antibiotic Resistance. J Med Chem 2021; 64:6198-6208. [PMID: 33914531 DOI: 10.1021/acs.jmedchem.1c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the marine environment, sessile cyanobacteria have developed chemical strategies for protection against grazers. In turn, herbivores have to circumvent these defenses and in certain cases even take advantage of them as shelter from their own predators. This is the case of Stylocheilus striatus, a sea hare that feeds on Anabaena torulosa, a cyanobacterium that produces toxic cyclic lipopeptides of the laxaphycin B family. S. striatus consumes the cyanobacterium without being affected by the toxicity of its compounds and also uses it as an invisibility cloak against predators. In this article, using different substrates analogous to laxaphycin B, we demonstrate the presence of an enzyme in the digestive gland of the mollusk that is able to biotransform laxaphycin B derivatives. The enzyme belongs to the poorly known family of d-peptidases that are suspected to be involved in antibiotic resistance.
Collapse
Affiliation(s)
- Laurine Darcel
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Louis Bornancin
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Delphine Raviglione
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Isabelle Bonnard
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Suzanne C Mills
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, Papetoai, Moorea 98729, French Polynesia.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Julio Sáez-Vásquez
- LGDP, UMR CNRS 5096, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Bernard Banaigs
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Nicolas Inguimbert
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| |
Collapse
|
126
|
Bilal H, Rehman TU, Khan MA, Hameed F, Jian ZG, Han J, Yang X. Molecular Epidemiology of mcr-1, bla KPC-2, and bla NDM-1 Harboring Clinically Isolated Escherichia coli from Pakistan. Infect Drug Resist 2021; 14:1467-1479. [PMID: 33888998 PMCID: PMC8057800 DOI: 10.2147/idr.s302687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The multiple-drug resistant Escherichia coli are among the deadliest pathogens causing life-threatening infections. This study was planned to determine the molecular epidemiology of mcr-1, bla KPC-2, and bla NDM-1 harboring clinically isolated E. coli from Pakistan. Methods In total, 545 strains of E. coli from clinical samples were collected from June 2018 to September 2019. All the isolates were screened for colistin-resistance, extended-spectrum-β-lactamases (ESBL), and carbapenemases through the micro-dilution method, Double-Disk-Synergy-Test (DDST), and Modified-Hodge-Test (MHT). The detection, sequence-typing, conjugal transfer, S1-PFGE, plasmid-replicon-typing, and southern-blotting for mcr, ESBL, and carbapenemase-encoding genes were performed. Findings A total of four (0.73%) colistin-resistant strains carrying alongside mcr-1 and bla CTX-M-15 genes, three of these strains also had the bla TEM-1 gene. The presence of ESBL genes was detected in 139 (25.5%) isolates harboring bla CTXM-15 (74.82%), bla TEM (34.53%), bla SHV (28.06%) and bla OXA-1 (28.78%). In 129 carbapenemase-producers, 35.83% possessed bla NDM-1, 26.67% bla KPC-2, 8.3% bla OXA-48, 25% bla VIM-1, and 20.83% bla IMP-1 genes. The sequence typing revealed that mcr-1 harboring isolates belonged to ST405, ST117, and ST156. Fifty percent of bla KPC-2 and 48.83% of bla NDM-1 were found on ST131 and ST1196, respectively. Two rare types of STs, ST7584, and ST8671 were also identified in this study. The mcr-1 gene was located on Incl2 (60-kb) plasmid. The bla KPC-2 was present on (140-kb) IncH12, (100-kb) IncN, (90-kb) Incl1, while bla NDM-1 was located on (70-kb) IncFIIK, (140-kb) IncH12, (100-kb) IncN, (60-kb) IncA/C, and (45-kb) IncFII plasmids, which were successfully trans-conjugated. Among the plasmid types, the Incl1 carrying bla KPC-2, IncH12 harboring bla KPC-2 and bla NDM-1, and IncFIIK carrying bla NDM-1 were for the first time detected in Pakistan. Conclusion The mcr-1, bla KPC-2, and bla NDM-1 genes finding in various clonal and plasmids types indicate that a substantial selection of the resistance genes had occurred in our clinical strains.
Collapse
Affiliation(s)
- Hazrat Bilal
- Faculty of Health Sciences, Institute of Physical Sciences and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Tayyab Ur Rehman
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Asif Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Fareeha Hameed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zhang Gao Jian
- Faculty of Health Sciences, Institute of Physical Sciences and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Jianxiong Han
- Faculty of Health Sciences, Institute of Physical Sciences and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Xingyuan Yang
- Faculty of Health Sciences, Institute of Physical Sciences and Information Technology, Anhui University, Hefei, People's Republic of China
| |
Collapse
|
127
|
Dortet L, Broda A, Bernabeu S, Glupczynski Y, Bogaerts P, Bonnin R, Naas T, Filloux A, Larrouy-Maumus G. Optimization of the MALDIxin test for the rapid identification of colistin resistance in Klebsiella pneumoniae using MALDI-TOF MS. J Antimicrob Chemother 2021; 75:110-116. [PMID: 31580426 PMCID: PMC6910190 DOI: 10.1093/jac/dkz405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background With the dissemination of carbapenemase producers, a revival of colistin was observed for the treatment of infections caused by MDR Gram-negatives. Unfortunately, the increasing usage of colistin led to the emergence of resistance. In Klebsiella pneumoniae, colistin resistance arises through addition of 4-amino-l-arabinose (l-Ara4N) or phosphoethanolamine (pEtN) to the native lipid A. The underlying mechanisms involve numerous chromosome-encoded genes or the plasmid-encoded pEtN transferase MCR. Currently, detection of colistin resistance is time-consuming since it still relies on MIC determination by broth microdilution. Recently, a rapid diagnostic test based on MALDI-TOF MS detection of modified lipid A was developed (the MALDIxin test) and tested on Escherichia coli and Acinetobacter baumannii. Objectives Optimize the MALDIxin test for the rapid detection of colistin resistance in K. pneumoniae. Methods This optimization consists of an additional mild-acid hydrolysis of 15 min in 1% acetic acid. The optimized method was tested on a collection of 81 clinical K. pneumoniae isolates, including 49 colistin-resistant isolates (45 with chromosome-encoded resistance, 3 with MCR-related resistance and 1 with both mechanisms). Results The optimized method allowed the rapid (<30 min) identification of l-Ara4N- and pEtN-modified lipid A of K. pneumoniae, which are known to be the real triggers of polymyxin resistance. At the same time, it discriminates between chromosome-encoded and MCR-related polymyxin resistance. Conclusions The MALDIxin test has the potential to become an accurate tool for the rapid determination of colistin resistance in clinically relevant Gram-negative bacteria.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.,Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Agnieszka Broda
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sandrine Bernabeu
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Youri Glupczynski
- Laboratory of Clinical Microbiology, Belgian National Reference Centre for Monitoring Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, Belgian National Reference Centre for Monitoring Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Rémy Bonnin
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,French National Reference Centre for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
128
|
Sweileh WM. Global research activity on antimicrobial resistance in food-producing animals. ACTA ACUST UNITED AC 2021; 79:49. [PMID: 33849636 PMCID: PMC8045364 DOI: 10.1186/s13690-021-00572-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global challenge that requires a "One Health" approach to achieve better public health outcomes for people, animals, and the environment. Numerous bibliometric studies were published on AMR in humans. However, none was published in food-producing animals. The current study aimed at assessing and analyzing scientific publications on AMR in food-producing animals. METHOD A validated search query was developed and entered in Scopus advanced search function to retrieve and quantitatively analyze relevant documents. Bibliometric indicators and mapping were presented. The study period was from 2000 to 2019. RESULTS The search query retrieved 2852 documents. During the period from 2015 to 2019, approximately 48% of the retrieved documents were published. The article about the discovery of plasmid-mediated colistin resistance in pigs received the highest number of citations (n = 1970). The Journal of Food Protection (n = 123; 4.3%) ranked first in the number of publications while the Applied and Environmental Microbiology journal ranked first in the number of citations per document. The USA led with 576 (20.2%) documents followed by China (n = 375; 13.1%). When the number of publications was standardized by income and population size, India (n = 51.5) ranked first followed by China (n = 38.3) and Brazil (n = 13.4). The growth of publications from China exceeded that of the USA in the last 3 years of the study period. Research collaboration in this field was inadequate. Mapping author keywords showed that E. coli, Salmonella, poultry, Campylobacter, chicken, cattle, and resistant genes were most frequent. The retrieved documents existed in five research themes. The largest research theme was about AMR in Salmonella in food-producing animals. The most recent research theme was about the dissemination and molecular transfer of AMR genes into the environment and among different bacterial strains. CONCLUSION Hot spots of research on AMR in food-producing animals match the world regions of reported hot spots of AMR in animals. Research collaboration in this field is of great importance, especially with low- and middle-income countries. Data on AMR need to be collected nationally and internationally to implement the "One Health" approach in the fight against AMR.
Collapse
Affiliation(s)
- Waleed M Sweileh
- Department of Physiology, Pharmacology/Toxicology, Division of Biomedical Sciences, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
129
|
Riduan SN, Armugam A, Zhang Y. Antibiotic resistance mitigation: the development of alternative general strategies. J Mater Chem B 2021; 8:6317-6321. [PMID: 32597439 DOI: 10.1039/d0tb01241f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance has become one of the major, deadly threats to public health worldwide. This paper highlights several recent works, which may initiate the development of comprehensive approaches to mitigate antibiotic resistance. The new strategies demonstrate efficiency and efficacy, with very little probability of inducing drug resistance, paving the way for further breakthroughs in drug discovery for infection control.
Collapse
Affiliation(s)
- Siti Nurhanna Riduan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #07-01, Singapore 138669, Singapore.
| |
Collapse
|
130
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
131
|
Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P, Juarez P. Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front Bioeng Biotechnol 2021; 9:640450. [PMID: 33777913 PMCID: PMC7991573 DOI: 10.3389/fbioe.2021.640450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.
Collapse
Affiliation(s)
- Mélanie Grosjean
- Département Recherche et Développement, Smaltis SAS, Besançon, France.,Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Sophie Guénard
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | | | - Cédric Muller
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - Paulo Juarez
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| |
Collapse
|
132
|
Raro OHF, Collar GS, da Silva RMC, Vezzaro P, Mott MP, da Cunha GR, Riche CVW, Dias C, Caierão J. Performance of polymyxin B agar-based tests among carbapenem-resistant Enterobacterales. Lett Appl Microbiol 2021; 72:767-773. [PMID: 33629416 DOI: 10.1111/lam.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
Therapeutic options for infections caused by Carbapenem-resistant Enterobacterales (CRE) are restricted and include polymyxins-centred schemes. Evaluation of in vitro susceptibility is difficult and time consuming. Agar-based methodologies are an alternative to broth microdilution (BMD) and we aimed to evaluate the accuracy of those methods among Enterobacterales. A total of 137 non-duplicated CRE were subjected to polymyxin B BMD, agar screening test (Mueller Hinton plates containing 3 µg ml-1 of polymyxin B) and agar dilution (antibiotic serially diluted 0·25-64 µg ml-1 ). CRE of 42·3% were resistant to polymyxin B (MICs range: 0·25->64 µg ml-1 ) and 16·8% presented borderline MICs. Sensitivity, specificity, PPV and NPV were 86·2, 98·7, 98 and 90·7% for screening test and 86·2, 97·5, 96·1 and 90·6% for agar dilution. ME was 0·73 and 1·5% for screening and agar dilution respectively; VME was 5·8% for both techniques. In general, agar-based methods had a good performance. As far as we know, this is the first study to propose an agar screening test using polymyxin B instead of colistin.
Collapse
Affiliation(s)
- O H F Raro
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - G S Collar
- Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - R M C da Silva
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - P Vezzaro
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - M P Mott
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.,Department of Microbiology, Ernesto Dornelles Hospital, Porto Alegre, Brazil
| | - G R da Cunha
- Department of Microbiology, Ernesto Dornelles Hospital, Porto Alegre, Brazil
| | - C V W Riche
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.,Department of Microbiology, Ernesto Dornelles Hospital, Porto Alegre, Brazil
| | - C Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - J Caierão
- Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduation Program of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
133
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
134
|
De La Cadena E, Mojica MF, García-Betancur JC, Appel TM, Porras J, Pallares CJ, Solano-Gutiérrez JS, Rojas LJ, Villegas MV. Molecular Analysis of Polymyxin Resistance among Carbapenemase-Producing Klebsiella pneumoniae in Colombia. Antibiotics (Basel) 2021; 10:antibiotics10030284. [PMID: 33801833 PMCID: PMC8035654 DOI: 10.3390/antibiotics10030284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Polymyxin resistance in Klebsiella pneumoniae has been attributed to mutations in mgrB, phoPQ, pmrAB, and crrAB and to the presence of mcr plasmid-mediated genes. Herein, we describe the molecular characteristics of 24 polymyxin- and carbapenem-resistant K. pneumoniae isolates recovered from six Colombian cities between 2009 and 2019. Minimum inhibitory concentrations (MICs) to polymyxin were confirmed by broth microdilution, and whole-genome sequencing was performed to determine sequence type, resistome, and mutations in the genes related to polymyxin resistance, as well the presence of mcr. The results showed high-level resistance to polymyxin (MICs ≥ 4 μg/mL). blaKPC-3 was present in the majority of isolates (17/24; 71%), followed by blaKPC-2 (6/24; 25%) and blaNDM-1 (1/24; 4%). Most isolates belonged to the CG258 (17/24; 71%) and presented amino acid substitutions in PmrB (22/24; 92%) and CrrB (15/24; 63%); mutations in mgrB occurred in only five isolates (21%). Additional mutations in pmrA, crrA, and phoPQ nor any of the mcr resistance genes were identified. In conclusion, we found clonal dissemination of polymyxin and carbapenem-resistant K. pneumoniae isolates in Colombia, mainly associated with CG258 and blaKPC-3. Surveillance of this multidrug-resistant clone is warranted due to the limited therapeutic options for the treatment of carbapenem-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Elsa De La Cadena
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Correspondence: ; Tel.: +57-1-6489-000
| | - María Fernanda Mojica
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44106-7164, USA;
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106-7164, USA
| | - Juan Carlos García-Betancur
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Tobías Manuel Appel
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Jessica Porras
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
| | - Christian José Pallares
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Cali 760031, Colombia
| | | | - Laura J. Rojas
- Department of Infectious Diseases, Case Western Reserve University, Cleveland, OH 44106-7164, USA;
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106-7164, USA
| | - María Virginia Villegas
- Grupo de Investigación en Resistencia Antimicrobiana y Epidemiologia Hospitalaria, Universidad El Bosque, Bogotá 110121, Colombia; (M.F.M.); (J.C.G.-B.); (T.M.A.); (J.P.); (C.J.P.); (M.V.V.)
- Comité de Infecciones y Vigilancia Epidemiológica, Clínica Imbanaco, Cali 760031, Colombia
| |
Collapse
|
135
|
Al-Mir H, Osman M, Drapeau A, Hamze M, Madec JY, Haenni M. WGS Analysis of Clonal and Plasmidic Epidemiology of Colistin-Resistance Mediated by mcr Genes in the Poultry Sector in Lebanon. Front Microbiol 2021; 12:624194. [PMID: 33763043 PMCID: PMC7982416 DOI: 10.3389/fmicb.2021.624194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Poultry and poultry meat are important contributors to the global antimicrobial burden. Unregulated and illegal use of extended-spectrum cephalosporins (ESC) in this sector has long been identified as a major cause of massive spread of ESC-resistant Escherichia coli, and colistin usage is considered a main driver of plasmid-mediated mcr genes dissemination. In Lebanon, the first mcr-1-positive E. coli found in poultry dates back to 2015, followed by a few reports of mcr-1-positive E. coli in poultry, swine, humans, and the environment. On the contrary, a comprehensive picture of the population structure of mcr-1-positive E. coli and mcr-1-bearing plasmids carrying the mcr-1 gene using whole-genome analysis is largely lacking. This study reports the prevalence of mcr-1-positive E. coli in poultry originating from 32 farms across three Lebanese governorates and slaughtered in the same place. We report 27/32 (84.4%) mcr-1 positive farms, leading to a total of 84 non-duplicate E. coli collected, of which 62 presented the mcr-1 gene. Numerous associated resistances were identified, including to ESC through the presence of bla CTX-M or bla CMY genes. The mcr-1 gene was mostly carried by IncX4 (n = 36) and IncI2 (n = 24) plasmids, which are both known for their efficient transfer capacities. A high genetic diversity was detected, arguing for the lack of contamination during the slaughter process. ST744 and ST1011 were the most widely identified clones, which have been both regularly associated to mcr-1-carrying E. coli and to the poultry sector. The wide dissemination of colistin-resistance, coupled to resistances to ESC and numerous other molecules, should urge authorities to implement efficient guidelines for the use of antibiotics in the poultry sector in Lebanon.
Collapse
Affiliation(s)
- Hiba Al-Mir
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Antoine Drapeau
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Yves Madec
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Université de Lyon – ANSES Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
136
|
McConville TH, Giddins MJ, Uhlemann AC. An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant Klebsiella pneumoniae. STAR Protoc 2021; 2:100373. [PMID: 33733242 PMCID: PMC7941085 DOI: 10.1016/j.xpro.2021.100373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant (MDR) Klebsiella pneumoniae remains an urgent public health threat. While whole-genome sequencing has helped identify genetic changes underlying resistance, functional validation remains difficult due to a lack of genetic manipulation systems for MDR K. pneumoniae. CRISPR-Cas9 has revolutionized molecular biology, but its use was only recently adapted in bacteria by overcoming the lack of genetic repair systems. We describe a CRISPR-Cas9/lambda recombineering system utilizing a zeocin resistance cassette allowing efficient and versatile genetic manipulation of K. pneumoniae. For complete details on the use and execution of this protocol, please refer to McConville et al. (2020). Gene editing for multi-drug resistant Klebsiella pneumoniae utilizing CRISPR-Cas9 Description of plasmid design, cloning, genetic manipulation, and mutant confirmation Approach allows for gene knockouts and single nucleotide polymorphism editing “Scarless” editing allows for serial modifications in a single bacterial isolate
Collapse
Affiliation(s)
- Thomas H McConville
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Marla J Giddins
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
137
|
Nguyen TNT, Nguyen PLN, Le NTQ, Nguyen LPH, Duong TB, Ho NDT, Nguyen QPN, Pham TD, Tran AT, The HC, Nguyen HH, Nguyen CVV, Thwaites GE, Rabaa MA, Pham DT. Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam. Microb Genom 2021; 7:mgen000519. [PMID: 33565955 PMCID: PMC8190610 DOI: 10.1099/mgen.0.000519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae. Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/blaOXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Nghia Dang Trung Ho
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Trung Duc Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Anh Tuan Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
138
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
139
|
Truong CB, Durham SH, Qian J. Comparisons of adverse event reporting for colistin versus polymyxin B using the US Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2021; 20:603-609. [PMID: 33573405 DOI: 10.1080/14740338.2021.1890024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: The polymyxins (colistin and polymyxin B) have recently reemerged in clinical practice. With the same antimicrobial activities, colistin has been more frequently prescribed in most countries, although available evidence on their nephrotoxicity is conflicting.Methods: The US Food and Drug Administration Adverse Event Reporting System (FAERS) data from Q1-2004 to Q1-2020 were used to identify adverse events (AE) reports. We described the reporting patterns and compare the reporting rates of serious AEs, acute kidney diseases (AKD), and death between colistin and polymyxin B using reporting odds ratios (RORs).Results: The annual number of AE reports increased over time for both drugs. Heterogeneity in reporting characteristics was observed in age and reporter region. RORs of serious, AKD, and death AEs were significantly higher for both drugs versus other drugs. RORs of serious and AKD AEs were higher for colistin compared to polymyxin B (p = 0.0479 and p = 0.0306, respectively), but no difference in death RORs was detected (p = 0.2211).Conclusions: This study showed higher reporting rates of serious AEs and AKD for colistin than polymyxin B, but no difference in death. The findings support future research with stronger study design and larger sample size for the safety comparison between colistin and polymyxin B.
Collapse
Affiliation(s)
- Cong Bang Truong
- Department of Health Outcomes Research and Policy, Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | - Spencer H Durham
- Department of Pharmacy Practice, Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | - Jingjing Qian
- Department of Health Outcomes Research and Policy, Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| |
Collapse
|
140
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
141
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
142
|
Pybus CA, Felder-Scott C, Obuekwe V, Greenberg DE. Cefiderocol Retains Antibiofilm Activity in Multidrug-Resistant Gram-Negative Pathogens. Antimicrob Agents Chemother 2021; 65:e01194-20. [PMID: 33199383 PMCID: PMC7849010 DOI: 10.1128/aac.01194-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multidrug-resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to that of seven commonly used antibiotics in well-characterized multidrug-resistant pathogens and then determined their efficacy in the biofilm setting. MIC90 values for cefiderocol were consistently lower than those of other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, and tobramycin) in all strains tested. Cefiderocol treatment displayed a reduction in the levels of Pseudomonas aeruginosa biofilm (93%, P < 0.0001) superior to that seen with the other antibiotics (49% to 82%). Cefiderocol was generally as effective as or superior to the other antibiotics, depending on the pathogen-antibiotic combination, in reducing biofilm in other pathogens. There was a trend toward greater biofilm reduction seen with increased antibiotic dose or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.
Collapse
Affiliation(s)
- Christine A Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Christina Felder-Scott
- School of Health Professions, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Victor Obuekwe
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| |
Collapse
|
143
|
Antibiotic Resistance and Phylogeny of Pseudomonas spp. Isolated over Three Decades from Chicken Meat in the Norwegian Food Chain. Microorganisms 2021; 9:microorganisms9020207. [PMID: 33498315 PMCID: PMC7909287 DOI: 10.3390/microorganisms9020207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas is ubiquitous in nature and a predominant genus in many foods and food processing environments, where it primarily represents major food spoilage organisms. The food chain has also been reported to be a potential reservoir of antibiotic-resistant Pseudomonas. The purpose of the current study was to determine the occurrence of antibiotic resistance in psychrotrophic Pseudomonas spp. collected over a time span of 26 years from retail chicken in Norway and characterize their genetic diversity, phylogenetic distribution and resistance genes through whole-genome sequence analyses. Among the 325 confirmed Pseudomonas spp. isolates by 16S rRNA gene sequencing, antibiotic susceptibility profiles of 175 isolates to 12 antibiotics were determined. A subset of 31 isolates being resistant to ≥3 antibiotics were whole-genome sequenced. The isolates were dominated by species of the P. fluorescens lineage. Isolates susceptible to all antibiotics or resistant to ≥3 antibiotics comprised 20.6% and 24.1%, respectively. The most common resistance was to aztreonam (72.6%), colistin (30.2%), imipenem (25.6%) and meropenem (12.6%). Resistance properties appeared relatively stable over the 26-year study period but with taxa-specific differences. Whole-genome sequencing showed high genome variability, where isolates resistant to ≥3 antibiotics belonged to seven species. A single metallo-betalactmase gene (cphA) was detected, though intrinsic resistance determinants dominated, including resistance–nodulation (RND), ATP-binding cassette (ABC) and small multidrug resistance (Smr) efflux pumps. This study provides further knowledge on the distribution of psychrotrophic Pseudomonas spp. in chicken meat and their antibiotic resistance properties. Further monitoring should be encouraged to determine food as a source of antibiotic resistance and maintain the overall favorable situation with regard to antibiotic resistance in the Norwegian food chain.
Collapse
|
144
|
Knopp M, Babina AM, Gudmundsdóttir JS, Douglass MV, Trent MS, Andersson DI. A novel type of colistin resistance genes selected from random sequence space. PLoS Genet 2021; 17:e1009227. [PMID: 33411736 PMCID: PMC7790251 DOI: 10.1371/journal.pgen.1009227] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novocolistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura. We expressed over 100 million randomly generated DNA sequences in Escherichia coli and selected 6 variants that encode peptides that provide resistance to the last-resort antibiotic colistin. We show that the selected peptides are auxiliary activators of the two-component system PmrAB, and that resistance is mediated via modifications of the cell envelope causing decreased antibiotic uptake. This is the first example where random expression libraries have been employed to select for peptides that perform an activating function by direct peptide-protein interactions in vivo, adding support to the idea that non-coding DNA can serve as a substrate for de novo gene evolution. Additionally, the described peptides expand the narrow list of colistin resistance genes and further analyses of clinical isolates will be necessary to determine if similar resistance determinants have evolved in natura.
Collapse
Affiliation(s)
- Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- * E-mail: (MK); (DIA)
| | - Arianne M. Babina
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | | | - Martin V. Douglass
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Georgia, United States of America
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Georgia, United States of America
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Georgia, United States of America
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
- * E-mail: (MK); (DIA)
| |
Collapse
|
145
|
McCarthy RR, Larrouy-Maumus GJ, Meiqi Tan MGC, Wareham DW. Antibiotic Resistance Mechanisms and Their Transmission in Acinetobacter baumannii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:135-153. [PMID: 34661894 DOI: 10.1007/978-3-030-67452-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The discovery of penicillin over 90 years ago and its subsequent uptake by healthcare systems around the world revolutionised global health. It marked the beginning of a golden age in antibiotic discovery with new antibiotics readily discovered from natural sources and refined into therapies that saved millions of lives. Towards the end of the last century, the rate of discovery slowed to a near standstill. The lack of discovery is compounded by the rapid emergence and spread of bacterial pathogens that exhibit resistance to multiple antibiotic therapies and threaten the sustainability of global healthcare systems. Acinetobacter baumannii is an opportunistic pathogen whose prevalence and impact has grown significantly over the last 20 years. It is recognised as a barometer of the antibiotic resistance crisis due to the diverse array of mechanisms by which it can become resistant.
Collapse
Affiliation(s)
- Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Gerald J Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Mei Gei C Meiqi Tan
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| |
Collapse
|
146
|
Kim S, Kim H, Kang HS, Kim Y, Kim M, Kwak, H, Ryu S. Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea. J Microbiol Biotechnol 2020; 30:1862-1869. [PMID: 32958736 PMCID: PMC9728184 DOI: 10.4014/jmb.2007.07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hai-Seong Kang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hyosun Kwak,
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Corresponding authors H.Kwak Phone: +82-43-719-4301 Fax: +82-43-719-4300 E-mail:
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea,S.Ryu Phone: +82-2-880-4856 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
147
|
Fam NS, Gamal D, Mohamed SH, Wasfy RM, Soliman MS, El-Kholy AA, Higgins PG. Molecular Characterization of Carbapenem/Colistin-Resistant Acinetobacter baumannii Clinical Isolates from Egypt by Whole-Genome Sequencing. Infect Drug Resist 2020; 13:4487-4493. [PMID: 33364795 PMCID: PMC7751577 DOI: 10.2147/idr.s288865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The rise of carbapenem-resistant A. baumannii (CRAB) is considered a public health problem limiting the treatment options. Our current work studied the emergence and mechanisms of colistin-resistance among CRAB isolates in Egypt. MATERIALS AND METHODS Seventeen clinically recovered A. baumannii were identified and screened for their antimicrobial susceptibilities using VITEK-2 system. Colistin susceptibility was evaluated using broth microdilution, and characterization of carbapenem/colistin resistance determinants was performed using whole-genome sequencing (Illumina MiSeq). RESULTS About 52.9% (9/17) were colistin-resistant. PCR results revealed that all isolates carried bla OXA-51-like genes, bla OXA-23-like was detected in 82.3% (14/17) and bla NDM in 23.5% (4/17). Two isolates harboured bla GES-35 and bla OXA-23. Furthermore, genome analysis of seven isolates revealed six belonged to international clone 2 (IC2) while the remaining isolate was a singleton (ST158), representing a clone circulating in Mediterranean/Middle Eastern countries. CONCLUSION The emergence and high incidence of colistin-resistance among CRAB clinical isolates in Egypt are alarming because it further limits therapy options and requires prudent antimicrobial stewardship and stringent infection control measures. Whole-genome sequence analyses suggest that the resistance to colistin was associated with multiple mutations in the pmrCAB genes. The high incidence of the high-risk lineage IC2 harbouring bla OXA-23-like as well as bla NDM is also of concern.
Collapse
Affiliation(s)
- Nevine S Fam
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Doaa Gamal
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Sara H Mohamed
- Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Reham M Wasfy
- Department of Microbiology, Theodor Bilharz Research Institute, Giza, Egypt
| | - May S Soliman
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amani A El-Kholy
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne50935, Germany
| |
Collapse
|
148
|
Sisay M, Hagos B, Edessa D, Tadiwos Y, Mekuria AN. Polymyxin-induced nephrotoxicity and its predictors: a systematic review and meta-analysis of studies conducted using RIFLE criteria of acute kidney injury. Pharmacol Res 2020; 163:105328. [PMID: 33276108 DOI: 10.1016/j.phrs.2020.105328] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023]
Abstract
Polymyxins are last-resort antibiotics re-emerged to treat infections caused by multidrug resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacterial infections. However, polymyxin-associated nephrotoxicity has become the main safety concern. Therefore, we conducted this systematic review and meta-analysis on polymyxin-induced nephrotoxicity and its predictors using studies conducted based on the validated RIFLE (Risk, Injury, Failure, Loss of Function and End-stage renal disease) criteria of acute kidney damage. Literature search was carried out through visiting legitimate databases and indexing services including PubMed, MEDLINE (Ovid®), EMBASE (Ovid®), and Scopus to retrieve relevant studies. Following screening and eligibility evaluation, relevant data were extracted from included studies and analyzed using STATA 15.0 and Rev-Man 5.3. Inverse variance method with random effects pooling model was used for the analysis of outcome measures at 95% confidence interval. Besides, meta-regression, meta-influence, and publication bias analyses were conducted. A total of 48 studies involving 6,199 adult patients aged ≥ 18 years were included for systematic review and meta-analysis. The pooled incidence of polymyxin-induced nephrotoxicity was found to be 45% (95% CI: 41- 49%; I2 = 92.52%). Stratifying with RIFLE severity scales, pooled estimates of polymyxin-treated patients identified as 'risk', 'injury' and 'failure' were 17% (95% CI: 14-20%), 13% (95% CI: 11-15%), and 10% (95% CI: 9-11%), respectively. Besides, the pooled incidence of colistin-induced nephrotoxicity was about 48% (95% CI: 42-54%), whereas that of polymyxin B was 38% (95% CI: 32-44%). Likewise, colistin had 37% increased risk of developing nephrotoxicity compared to the polymyxin B treated cohorts (RR = 1.37, 95% CI: 1.13-1.67; I2 = 57%). Older age (AOR = 1.03, 95% CI: 1.01-1.05), daily dose (AOR = 1.46, 95% CI: 1.09-1.96), underlying diabetes mellitus (AOR = 1.81, 95% CI: 1.25-2.63), and concomitant nephrotoxic drugs (AOR = 2.31, 95% CI: 1.79-3.00) were independent risk factors for polymyxin-induced nephrotoxicity. Patients with high serum albumin level were less likely (AOR = 0.69, 95% CI: 0.56-0.85] to experience nephrotoxicity compared to those with low albumin level. Despite the resurgence of these antibiotics for the chemotherapy of MDR/XDR-Gram-negative superbugs, the high incidence of nephrotoxicity has become a contemporary clinical concern. Being elderly, high daily dose, having underlying diseases such as diabetes, and use of concomitant nephrotoxic drugs were independent predictors of nephrotoxicity. Therefore, therapeutic drug monitoring should be done to these patients to outweigh the potential benefits of polymyxin therapy from its risk.
Collapse
Affiliation(s)
- Mekonnen Sisay
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| | - Bisrat Hagos
- Department of Social Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| | - Dumessa Edessa
- Department of Clinical Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| | - Yohannes Tadiwos
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| | - Abraham Nigussie Mekuria
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia.
| |
Collapse
|
149
|
El-Sayed Ahmed MAEG, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019). Emerg Microbes Infect 2020; 9:868-885. [PMID: 32284036 PMCID: PMC7241451 DOI: 10.1080/22221751.2020.1754133] [Citation(s) in RCA: 424] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing antibiotic resistance in multidrug-resistant (MDR) Gram-negative bacteria (MDR-GNB) presents significant health problems worldwide, since the vital available and effective antibiotics, including; broad-spectrum penicillins, fluoroquinolones, aminoglycosides, and β-lactams, such as; carbapenems, monobactam, and cephalosporins; often fail to fight MDR Gram-negative pathogens as well as the absence of new antibiotics that can defeat these "superbugs". All of these has prompted the reconsideration of old drugs such as polymyxins that were reckoned too toxic for clinical use. Only two polymyxins, polymyxin E (colistin) and polymyxin B, are currently commercially available. Colistin has re-emerged as a last-hope treatment in the mid-1990s against MDR Gram-negative pathogens due to the development of extensively drug-resistant GNB. Unfortunately, rapid global resistance towards colistin has emerged following its resurgence. Different mechanisms of colistin resistance have been characterized, including intrinsic, mutational, and transferable mechanisms.In this review, we intend to discuss the progress over the last two decades in understanding the alternative colistin mechanisms of action and different strategies used by bacteria to develop resistance against colistin, besides providing an update about what is previously recognized and what is novel concerning colistin resistance.
Collapse
Affiliation(s)
- Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
- Department of Microbiology and Immunology,
Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science
and Technology (MUST), Cairo, Egypt
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Cong Shen
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yohei Doi
- University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Infectious
Diseases, Fujita Health University, School of Medicine, Aichi,
Japan
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| |
Collapse
|
150
|
Liao W, Lin J, Jia H, Zhou C, Zhang Y, Lin Y, Ye J, Cao J, Zhou T. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist 2020; 13:3551-3561. [PMID: 33116674 PMCID: PMC7553605 DOI: 10.2147/idr.s273784] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is being administered as last-line therapy for patients that have failed to respond to other available antibiotics that are active against Escherichia coli. The underlying mechanisms of colistin resistance and heteroresistance remain largely uncharacterized. The present study investigated the mechanisms of resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China. Materials and Methods Colistin resistance was detected by the broth microdilution method (BMD). Colistin heteroresistance was determined by population analysis profiles (PAPs). The polymerase chain reaction (PCR) was conducted to detect mcr-1, mcr-2, mcr-3, pmrA, pmrB, phoP, phoQ and mgrB, and quantitative real-time PCR (qRT-PCR) was used to determine the expression levels of mcr-1, pmrC, pmrA and pmrB. Lipid A characterization was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Results 0.69% (2/291) of Escherichia coli strains were resistant to colistin, whereas the heteroresistance rate reached 1.37% (4/291). mcr-1, the mobile colistin-resistance gene, was present in the two resistant isolates. The substitutions in PmrB were detected in the two heteroresistant isolates. The transcripts levels of the pmrCAB operon were upregulated in two of the heteroresistant isolates. carbonylcyanide m-chlorophenylhydrazone (CCCP) was able to reverse colistin resistance of all isolates tested and exhibited a significantly higher effect on colistin-heteroresistant isolates. MALDI-TOF MS indicated that the additional phosphoethanolamine (PEtn) moieties in lipid A profiles were present both in colistin-resistant and heteroresistant isolates. Conclusion The present study was the first to investigate the differential mechanisms between colistin resistance and heteroresistance. The development of colistin heteroresistance should be addressed in future clinical surveillance.
Collapse
Affiliation(s)
- Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|