101
|
O’Connor L, Heyderman R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol 2023:S0966-842X(23)00056-2. [DOI: 10.1016/j.tim.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
102
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
103
|
Aguilar-Vega C, Scoglio C, Clavijo MJ, Robbins R, Karriker L, Liu X, Martínez-López B. A tool to enhance antimicrobial stewardship using similarity networks to identify antimicrobial resistance patterns across farms. Sci Rep 2023; 13:2931. [PMID: 36804990 PMCID: PMC9941107 DOI: 10.1038/s41598-023-29980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens: Actinobacillus suis, Bordetella bronchiseptica, Escherichia coli, Glaesserella parasuis, Pasteurella multocida, Salmonella spp., and Streptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.
Collapse
Affiliation(s)
- Cecilia Aguilar-Vega
- grid.27860.3b0000 0004 1936 9684Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA USA ,grid.4795.f0000 0001 2157 7667Animal Health Department, Faculty of Veterinary Medicine, VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Caterina Scoglio
- grid.36567.310000 0001 0737 1259Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS USA
| | - María J. Clavijo
- grid.34421.300000 0004 1936 7312Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA USA ,Pig Improvement Company (PIC), Hendersonville, TN USA
| | | | - Locke Karriker
- grid.34421.300000 0004 1936 7312Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA USA
| | - Xin Liu
- grid.27860.3b0000 0004 1936 9684Computer Science Department, University of California, Davis, CA USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
104
|
Qumsani AT. Role of Nanocarrier Systems in Drug Delivery for Overcoming Multi-Drug Resistance in Bacteria. Pak J Biol Sci 2023; 26:131-137. [PMID: 37480270 DOI: 10.3923/pjbs.2023.131.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Multidrug-resistant (MDR) bacteria have risen alarmingly in the last few decades, posing a serious threat to human health. The need for effective bacterial resistance treatment is urgent and unmet due to the rise in morbidity and mortality that has coincided with the prevalence of infections caused by MDR bacteria. Using its creative and unconventional methods, effective antibiotics for MDR bacteria could be developed using nanomedicine techniques. To combat microbial resistance, a number of strategies have been developed, including the use of natural bactericides, the introduction of fresh antibiotics, the application of combination therapy and the creation of NP-based antibiotic nanocarriers. The absence of novel antibacterial agents has worsened the situation for MDR bacteria. Ineffective antibiotics used to treat MDR bacteria also contribute to the bacteria's tolerance growing. Nanoparticles (NPs) are the most efficient method for eliminating MDR bacteria because they serve as both carriers of natural antibiotics and antimicrobials and active agents against bacteria. Additionally, surface engineering of nanocarriers has important benefits for focusing on and modifying a variety of resistance mechanisms. The use of nanocarrier systems in drug delivery for overcoming bacterial resistance is covered in this review along with various mechanisms of antibiotic resistance.
Collapse
|
105
|
Rawat N, Sabu B, Jamwal R, Devi PP, Yadav K, Raina HS, Rajagopal R. Understanding the role of insects in the acquisition and transmission of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159805. [PMID: 36461578 DOI: 10.1016/j.scitotenv.2022.159805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance (AR) is a global healthcare threat that requires a comprehensive assessment. Poorly regulated antibiotic stewardship in clinical and non-clinical settings has led to a horizontal dissemination of AR. A variety of often neglected elements facilitate the circulation of AR from antibiotic sinks like concentrated animal feeding operations and healthcare settings to other environments that include healthy human communities. Insects are one of those elements that have received underwhelming attention as vectors of AR, despite their well-known role in transmitting clinically relevant pathogens. We here make an exhaustive attempt to highlight the role of insects as zoonotic reservoirs of AR by discussing the available literature and deriving realistic inferences. We review the AR associated with insects housing various human-relevant environments, namely, animal farm industry, edible-insects enterprise, healthcare institutes, human settlements, agriculture settings and the wild. We also provide evidence-based accounts of the events of the transmission of AR from insects to humans. We evaluate the clinical threats associated with insect-derived AR and propose the adoption of more sophisticated strategies to understand and mitigate future AR concerns facilitated by insects. Future works include a pan-region assessment of insects for AR in the form of AR bacteria (ARB) and AR determinants (ARDs) and the introduction of modern techniques like whole-genome sequencing, metagenomics, and in-silico modelling.
Collapse
Affiliation(s)
- Nitish Rawat
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Rohit Jamwal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Harpreet Singh Raina
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India; Department of Zoology, Sri Guru Teg Bahadur Khalsa College, University of Delhi, Delhi 110007, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India.
| |
Collapse
|
106
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
107
|
Wibowo JT, Bayu A, Aryati WD, Fernandes C, Yanuar A, Kijjoa A, Putra MY. Secondary Metabolites from Marine-Derived Bacteria with Antibiotic and Antibiofilm Activities against Drug-Resistant Pathogens. Mar Drugs 2023; 21:md21010050. [PMID: 36662223 PMCID: PMC9861457 DOI: 10.3390/md21010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The search for new antibiotics against drug-resistant microbes has been expanded to marine bacteria. Marine bacteria have been proven to be a prolific source of a myriad of novel compounds with potential biological activities. Therefore, this review highlights novel and bioactive compounds from marine bacteria reported during the period of January 2016 to December 2021. Published articles containing novel marine bacterial secondary metabolites that are active against drug-resistant pathogens were collected. Previously described compounds (prior to January 2016) are not included in this review. Unreported compounds during this period that exhibited activity against pathogenic microbes were discussed and compared in order to find the cue of the structure-bioactivity relationship. The results showed that Streptomyces are the most studied bacteria with undescribed bioactive compounds, followed by other genera in the Actinobacteria. We have categorized the structures of the compounds in the present review into four groups, based on their biosynthetic origins, as polyketide derivatives, amino acid derivatives, terpenoids, as well as compounds with mixed origin. These compounds were active against one or more drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant Enterococci (VRE), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and amphotericin B-resistant Candida albicans. In addition, some of the compounds also showed activity against biofilm formation of the test bacteria. Some previously undescribed compounds, isolated from marine-derived bacteria during this period, could have a good potential as lead compounds for the development of drug candidates to overcome multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Joko Tri Wibowo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), KST Soekarno Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Asep Bayu
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), KST Soekarno Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Widya Dwi Aryati
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Arry Yanuar
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Correspondence: (A.Y.); (A.K.); (M.Y.P.); Tel.: +351-22-042-8331 (A.K.); +62-2-18754587 (M.Y.P.); Fax: +351-22-206-2232 (A.K.)
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.Y.); (A.K.); (M.Y.P.); Tel.: +351-22-042-8331 (A.K.); +62-2-18754587 (M.Y.P.); Fax: +351-22-206-2232 (A.K.)
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), KST Soekarno Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Correspondence: (A.Y.); (A.K.); (M.Y.P.); Tel.: +351-22-042-8331 (A.K.); +62-2-18754587 (M.Y.P.); Fax: +351-22-206-2232 (A.K.)
| |
Collapse
|
108
|
Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic Strategies against Biofilm Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010172. [PMID: 36676121 PMCID: PMC9866932 DOI: 10.3390/life13010172] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
A biofilm is an aggregation of surface-associated microbial cells that is confined in an extracellular polymeric substance (EPS) matrix. Infections caused by microbes that form biofilms are linked to a variety of animals, including insects and humans. Antibiotics and other antimicrobials can be used to remove or eradicate biofilms in order to treat infections. However, due to biofilm resistance to antibiotics and antimicrobials, clinical observations and experimental research clearly demonstrates that antibiotic and antimicrobial therapies alone are frequently insufficient to completely eradicate biofilm infections. Therefore, it becomes crucial and urgent for clinicians to properly treat biofilm infections with currently available antimicrobials and analyze the results. Numerous biofilm-fighting strategies have been developed as a result of advancements in nanoparticle synthesis with an emphasis on metal oxide np. This review focuses on several therapeutic strategies that are currently being used and also those that could be developed in the future. These strategies aim to address important structural and functional aspects of microbial biofilms as well as biofilms' mechanisms for drug resistance, including the EPS matrix, quorum sensing (QS), and dormant cell targeting. The NPs have demonstrated significant efficacy against bacterial biofilms in a variety of bacterial species. To overcome resistance, treatments such as nanotechnology, quorum sensing, and photodynamic therapy could be used.
Collapse
Affiliation(s)
- Sonal Mishra
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vijay Upadhye
- Department of Microbiology, Parul Institute of Applied Science (PIAS), Center of Research for Development (CR4D), Parul University, Vadodara 391760, Gujarat, India
| | - Suresh C. Singh
- Pathkits Healthcare Pvt. Ltd., Gurugram 122001, Haryana, India
| | - Rajeshwar P. Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Möhrendorf, Germany
- Correspondence: ; Tel.: +49-913-148-730
| |
Collapse
|
109
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
110
|
Modi SK, Gaur S, Sengupta M, Singh MS. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol 2023; 14:1135579. [PMID: 37152753 PMCID: PMC10160668 DOI: 10.3389/fmicb.2023.1135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Antimicrobial Resistance (AMR) raises a serious concern as it contributes to the global mortality by 5 million deaths per year. The overall impact pertaining to significant membrane changes, through broad spectrum drugs have rendered the bacteria resistant over the years. The economic expenditure due to increasing drug resistance poses a global burden on healthcare community and must be dealt with immediate effect. Nanoparticles (NP) have demonstrated inherent therapeutic potential or can serve as nanocarriers of antibiotics against multidrug resistant (MDR) pathogens. These carriers can mask the antibiotics and help evade the resistance mechanism of the bacteria. The targeted delivery can be fine-tuned through surface functionalization of Nanocarriers using aptamers, antibodies etc. This review covers various molecular mechanisms acquired by resistant bacteria towards membrane modification. Mechanistic insight on 'NP surface-bacterial membrane' interactions are crucial in deciding the role of NP as therapeutic. Finally, we highlight the potential accessible membrane targets for designing smart surface-functionalized nanocarriers which can act as bacteria-targeted robots over the existing clinically available antibiotics. As the bacterial strains around us continue to evolve into resistant versions, nanomedicine can offer promising and alternative tools in overcoming AMR.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Smriti Gaur
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- Mrittika Sengupta, ;
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Manu Smriti Singh, ;
| |
Collapse
|
111
|
Feng R, Duan L, Shen S, Cheng Y, Wang Y, Wang W, Yang S. Temporal dynamic of antibiotic resistance genes in the Zaohe-Weihe hyporheic zone: driven by oxygen and bacterial community. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:57-72. [PMID: 36567403 DOI: 10.1007/s10646-022-02616-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The widespread spread of antibiotic resistance genes (ARGs) in hyporheic zone (HZ) has become an emerging environmental problem due to their potentially harmful nature. In this research, three different oxygen treatment systems were set up to study the effects of oxygen changes on the abundance of ARGs in the HZ. In addition, the effects of temperature and salinity on ARGs were investigated under aerobic and anaerobic systems, respectively. The bacterial community composition of sediment samples and the relationship with ARGs were analyzed. The explanation ratio and causality of the driving factors affecting ARGs were analyzed using variation partitioning analysis (VPA) and structural equation model (SEM). The relative abundance of ARGs and mobile genetic elements (MGEs) in the anaerobic system increased significantly, which was higher than that in the aerobic system and the aerobic-anaerobic interaction system. The experiment of salinity and temperature also further proved this result. There were many bacterial communities that affected tetracycline and sulfonamide ARGs in sediments, and these host bacteria are mainly concentrated in Proteobacteria, Firmicutes and Bacteroidetes. VPA and SEM further revealed that the abundance of ARGs was mainly influenced by changes in bacterial communities and oxygen conditions, and horizontal gene transfer (HGT) of MGEs also had a positive effect on the spread of ARGs. Those findings suggest that complex oxygen conditions in the HZ alter bacterial communities and promote MGEs-mediated horizontal transfer, which together lead to the spread of ARGs. This study has value as a reference for formulating effective strategies to minimize the propagation of ARGs in underground environment.
Collapse
Affiliation(s)
- Ruyi Feng
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Siqi Shen
- China United Northwest Institute for Engineering Design & Research Co.,Ltd, Xi'an, China
| | - Yan Cheng
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yanhua Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710054, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
112
|
Sharma U, Rawat D, Mukherjee P, Farooqi F, Mishra V, Sharma RS. Ecological life strategies of microbes in response to antibiotics as a driving factor in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158791. [PMID: 36108841 DOI: 10.1016/j.scitotenv.2022.158791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics as a selection pressure driving the evolution of soil microbial communities is not well understood. Since microbial functions govern ecosystem services, an ecological framework is required to understand and predict antibiotic-induced functional and structural changes in microbial communities. Therefore, metagenomic studies explaining the impacts of antibiotics on soil microbial communities were mined, and alterations in microbial taxa were analyzed through an ecological lens using Grimes's Competitor-Stress tolerator-Ruderal (CSR) model. We propose considering antibiotics as the primary abiotic factor mentioned in the CSR model and classifying non-susceptible microbial taxa as degraders, resistant, and resilient groups analogous to competitors, stress tolerators, and ruderal strategists, respectively. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were among the phyla harboring most members with antibiotic-resistant groups. However, some antibiotic-resistant microbes in these phyla could not only tolerate but also subsist solely on antibiotics, while others degraded antibiotics as a part of secondary metabolism. Irrespective of their taxonomic affiliation, microbes with each life strategy displayed similar phenotypic characteristics. Therefore, it is recommended to consider microbial functional traits associated with each life strategy while analyzing the ecological impacts of antibiotics. Also, potential ecological crises posed by antibiotics through changes in microbial community and ecosystem functions were visualized. Applying ecological theory to understand and predict antibiotics-induced changes in microbial communities will also provide better insight into microbial behavior in the background of emerging contaminants and help develop a robust ecological classification system of microbes.
Collapse
Affiliation(s)
- Udita Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Deepak Rawat
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Paromita Mukherjee
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Furqan Farooqi
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Centre for Interdisciplinary Studies on Mountain & Hill Environment (CISMHE), University of Delhi, Delhi 110007, India.
| | - Radhey Shyam Sharma
- Bioresources & Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
113
|
Akram F, Imtiaz M, Haq IU. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21 st century. Microb Pathog 2023; 174:105923. [PMID: 36526035 DOI: 10.1016/j.micpath.2022.105923] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance has become an indispensably alarming menace to the global community. The primary factors are overuse and abuse of antibiotics, lack of novel medicines under development, the health care industry's focus on profit, and the absence of diagnostic testing prior to the prescription of antibiotics. Additionally, over the past few decades, the main factors contributing to the global spread of antibiotic resistance have been the overuse of antibiotics in livestock and other animals, drug efficacy, development of fewer new vaccines, environmental toxicity, transmission through travel, and lack of funding for healthcare research and development. These factors have accelerated resistance in microorganisms through structural and functional modifications in bacteria such as reduced drug permeability, increased efflux pumps, enzymatic antibiotic modification, and change in drug target, intracellular infection, and biofilm creation. There has been an increase in resistance during the pandemic and among cancer patients due to improper prescriptions. A number of modern therapeutic alternatives have been developed to curb widespread antibiotic resistance such as nanoparticle, bacteriophage, and antimicrobial biochemical approaches. It is high time to explore new alternatives to curtail enormous increase in resistant pathogens which could be an incurable global confrontation. This review highlights the complete insight on the global drivers of resistance along with the modes of action and impacts, finally discussing the latest therapeutic alternatives.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Memoona Imtiaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
114
|
Dawan J, Ahn J. Variability in Adaptive Resistance of Salmonella Typhimurium to Sublethal Levels of Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11121725. [PMID: 36551382 PMCID: PMC9774383 DOI: 10.3390/antibiotics11121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
This study was designed to evaluate the adaptive resistance of Salmonella Typhimurium under continuous sublethal selective pressure. Salmonella Typhimurium ATCC 19585 (STATCC) and S. Typhimurium CCARM 8009 (STCCARM) were sequentially cultured for 3 days at 37 °C in trypticase soy broth containing 1/2 × MICs of cefotaxime (CEF1/2), chloramphenicol (CHL1/2), gentamicin (GEN1/2), and polymyxin B (POL1/2). The STATCC and STCCARM exposed to CEF1/2, CHL1/2, GEN1/2, and POL1/2 were evaluated using antibiotic susceptibility, cross-resistance, and relative fitness. The susceptibilities of STATCC exposed to GEN1/2 and POL1/2 were increased by a 2-fold (gentamicin) and 8-fold (polymyxin B) increase in minimum inhibitory concentration (MIC) values, respectively. The MIC values of STCCARM exposed to CEF1/2, CHL1/2, GEN1/2, and POL1/2 were increased by 4-fold (cefotaxime), 2-fold (chloramphenicol), 2-fold (gentamicin), and 8-fold (polymyxin B). The highest heterogeneous fractions were observed for the STATCC exposed to CEF1/2 (38%) and POL1/2 (82%). The STCCARM exposed to GEN1/2 was cross-resistant to cefotaxime (p < 0.05), chloramphenicol (p < 0.01), and polymyxin B (p < 0.05). The highest relative fitness levels were 0.92 and 0.96, respectively, in STATCC exposed to CEF1/2 and STCCARM exposed to POL1/2. This study provides new insight into the fate of persistent cells and also guidance for antibiotic use.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
115
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
116
|
Saggese A, Giglio R, D’Anzi N, Baccigalupi L, Ricca E. Comparative Genomics and Physiological Characterization of Two Aerobic Spore Formers Isolated from Human Ileal Samples. Int J Mol Sci 2022; 23:14946. [PMID: 36499272 PMCID: PMC9739757 DOI: 10.3390/ijms232314946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| |
Collapse
|
117
|
de Brito FAE, de Freitas APP, Nascimento MS. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022; 11:pathogens11121416. [PMID: 36558750 PMCID: PMC9784232 DOI: 10.3390/pathogens11121416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.
Collapse
|
118
|
Bacterial Resistance to β-Lactam Antibiotics in Municipal Wastewater: Insights from a Full-Scale Treatment Plant in Poland. Microorganisms 2022; 10:microorganisms10122323. [PMID: 36557576 PMCID: PMC9783957 DOI: 10.3390/microorganisms10122323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated enzymatic and genetic determinants of bacterial resistance to β-lactam antibiotics in the biocenosis involved in the process of biological treatment of wastewater by activated sludge. The frequency of bacteria resistant to selected antibiotics and the activity of enzymes responsible for resistance to β-lactam antibiotics were estimated. The phenomenon of selection and spread of a number of genes determining antibiotic resistance was traced using PCR and gene sequencing. An increase in the percentage of bacteria showing resistance to β-lactam antibiotics in the microflora of wastewater during the treatment process was found. The highest number of resistant microorganisms, including multi-resistant strains, was recorded in the aeration chamber. Significant amounts of these bacteria were also present in treated wastewater, where the percentage of penicillin-resistant bacteria exceeded 50%, while those resistant to the new generation β-lactam antibiotics meropenem and imipenem were found at 8.8% and 6.4%, respectively. Antibiotic resistance was repeatedly accompanied by the activity of enzymes such as carbapenemases, metallo-β-lactamases, cephalosporinases and β-lactamases with an extended substrate spectrum. The activity of carbapenemases was shown in up to 97% of the multi-resistant bacteria. Studies using molecular biology techniques showed a high frequency of genes determining resistance to β-lactam antibiotics, especially the blaTEM1 gene. The analysis of the nucleotide sequences of blaTEM1 gene variants present in bacteria at different stages of wastewater treatment showed 50-100% mutual similarity of.
Collapse
|
119
|
Okon EM, Okocha RC, Adesina BT, Ehigie JO, Alabi OO, Bolanle AM, Matekwe N, Falana BM, Tiamiyu AM, Olatoye IO, Adedeji OB. Antimicrobial resistance in fish and poultry: Public health implications for animal source food production in Nigeria, Egypt, and South Africa. FRONTIERS IN ANTIBIOTICS 2022; 1:1043302. [PMID: 39816413 PMCID: PMC11732016 DOI: 10.3389/frabi.2022.1043302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance (AMR) is a significant threat to global public health. Specifically, excessive usage of antimicrobials in food animal production is one significant reason for AMR development in humans. Therefore, it is essential to identify the trends of AMR in fish and poultry and develop better surveillance strategies for the future. Despite this imperative need, such information is not well documented, especially in Africa. This study used a systematic review to assess AMR trend, spatial distribution, and incidence in fish and poultry research in Nigeria, Egypt, and South Africa. A literature assessment was conducted for published studies on AMR between 1989 and 2021 using the Scopus and Web of Science databases. One hundred and seventy-three relevant articles were obtained from the database search. Egypt was the leading exponent of antimicrobial resistance research (43.35%, 75 studies), followed by Nigeria (39.31%, 68 studies), then South Africa (17.34%, 30 studies). The majority of the antimicrobial resistance studies were on poultry in Egypt (81%, 61 studies), Nigeria (87%, 59 studies), and South Africa (80%, 24 studies). Studies on fish were 17% (13 studies), 9% (6 studies), and 10% (3 studies) in Egypt, Nigeria, and South Africa, respectively. Antimicrobial resistance patterns showed multiple drug resistance and variations in resistant genes. AMR research focused on sulfamethoxazole groups, chloramphenicol, trimethoprim, tetracycline, erythromycin, and ampicillin. Most studies employed the disk diffusion method for antimicrobial susceptibility tests. Among the four mechanisms of AMR, limiting drug uptake was the most reported in this study (both in fish and poultry). The findings reveal public and environmental health threats and suggest that it would be useful to promote and advance AMR research, particularly for countries on the global hotspot for antimicrobial use.
Collapse
Affiliation(s)
- Ekemini M. Okon
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Reuben C. Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
- Landmark University SDG 13 (Climate Action Research Group), Omu-Aran, Nigeria
| | - Babatunde T. Adesina
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
- Landmark University SDG 14 (Life Below Water Research Group), Omu-Aran, Nigeria
| | - Judith O. Ehigie
- ICBAS – School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Olayinka O. Alabi
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
- Landmark University SDG 13 (Climate Action Research Group), Omu-Aran, Nigeria
| | - Adeniran M. Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
| | - N. Matekwe
- Department of Agriculture Environmental Affairs, Rural Development and Land Reform, Veterinary Services, Cape Town, South Africa
| | - Babatunde M. Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, Omu-Aran, Nigeria
- Landmark University SDG 14 (Life Below Water Research Group), Omu-Aran, Nigeria
| | - Adebisi M. Tiamiyu
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Isaac O. Olatoye
- Department of Veterinary Public Health and Preventive Medicine University of Ibadan, Ibadan, Nigeria
| | - Olufemi B. Adedeji
- Department of Veterinary Public Health and Preventive Medicine University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
120
|
González-Villarreal JA, González-Lozano KJ, Aréchiga-Carvajal ET, Morlett-Chávez JA, Luévanos-Escareño MP, Balagurusamy N, Salinas-Santander MA. Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Exp Ther Med 2022; 24:753. [PMID: 36561977 PMCID: PMC9748766 DOI: 10.3892/etm.2022.11689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.
Collapse
Affiliation(s)
| | - Katia Jamileth González-Lozano
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Jesús Antonio Morlett-Chávez
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico
| | | | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico
| | - Mauricio Andrés Salinas-Santander
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico,Correspondence to: Dr Mauricio Andrés Salinas-Santander, Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Calle Francisco Murguía Sur 205, Zona Centro, Saltillo, Coahuila 25000, Mexico
| |
Collapse
|
121
|
Goetz JA, Kuehfuss NM, Botschner AJ, Zhu S, Thompson LK, Cox G. Exploring functional interplay amongst Escherichia coli efflux pumps. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36318669 DOI: 10.1099/mic.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.
Collapse
Affiliation(s)
- James A Goetz
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Noah M Kuehfuss
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander J Botschner
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
122
|
Börjesson S, Brouwer MSM, Östlund E, Eriksson J, Elving J, Karlsson Lindsjö O, Engblom LI. Detection of an IMI-2 carbapenemase-producing Enterobacter asburiae at a Swedish feed mill. Front Microbiol 2022; 13:993454. [PMID: 36338068 PMCID: PMC9634252 DOI: 10.3389/fmicb.2022.993454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Occurrence of multidrug resistant Enterobacteriaceae in livestock is of concern as they can spread to humans. A potential introduction route for these bacteria to livestock could be animal feed. We therefore wanted to identify if Escherichia spp., Enterobacter spp., Klebsiella spp., or Raoutella spp. with transferable resistance to extended spectrum cephalosporins, carbapenems or colistin could be detected in the environment at feed mills in Sweden. A second aim was to compare detected isolates to previous described isolates from humans and animals in Sweden to establish relatedness which could indicate a potential transmission between sectors and feed mills as a source for antibiotic resistant bacteria. However, no isolates with transferable resistance to extended-cephalosporins or colistin could be identified, but one isolate belonging to the Enterobacter cloacae complex was shown to be carbapenem-resistant and showing carbapenemase-activity. Based on sequencing by both short-read Illumina and long-read Oxford Nanopore MinIon technologies it was shown that this isolate was an E. asburiae carrying a blaIMI-2 gene on a 216 Kbp plasmid, designated pSB89A/IMI-2, and contained the plasmid replicons IncFII, IncFIB, and a third replicon showing highest similarity to the IncFII(Yp). In addition, the plasmid contained genes for various functions such as plasmid segregation and stability, plasmid transfer and arsenical transport, but no additional antibiotic resistance genes. This isolate and the pSB89A/IMI-2 was compared to three human clinical isolates positive for blaIMI-2 available from the Swedish antibiotic monitoring program Swedres. It was shown that one of the human isolates carried a plasmid similar with regards to gene content to the pSB89A/IMI-2 except for the plasmid transfer system, but that the order of genes was different. The pSB89A/IMI-2 did however share the same transfer system as the blaIMI-2 carrying plasmids from the other two human isolates. The pSB89A/IMI-2 was also compared to previously published plasmids carrying blaIMI-2, but no identical plasmids could be identified. However, most shared part of the plasmid transfer system and DNA replication genes, and the blaIMI-2 gene was located next the transcription regulator imiR. The IS3-family insertion element downstream of imiR in the pSB89A was also related to the IS elements in other blaIMI-carrying plasmids.
Collapse
Affiliation(s)
- Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Stefan Börjesson,
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Emma Östlund
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jenny Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Josefine Elving
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Linda I. Engblom
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
123
|
Klobucar K, Jardine E, Farha MA, MacKinnon MR, Fragis M, Nkonge B, Bhando T, Borrillo L, Tsai CN, Johnson JW, Coombes BK, Magolan J, Brown ED. Genetic and Chemical Screening Reveals Targets and Compounds to Potentiate Gram-Positive Antibiotics against Gram-Negative Bacteria. ACS Infect Dis 2022; 8:2187-2197. [PMID: 36098580 DOI: 10.1021/acsinfecdis.2c00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Emily Jardine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Marc R MacKinnon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brenda Nkonge
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Timsy Bhando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louis Borrillo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
124
|
Lord J, Carter C, Smith J, Locke S, Phillips E, Odoi A. Antimicrobial resistance among Streptococcus equi subspecies zooepidemicus and Rhodococcus equi isolated from equine specimens submitted to a diagnostic laboratory in Kentucky, USA. PeerJ 2022; 10:e13682. [PMID: 36164606 PMCID: PMC9508889 DOI: 10.7717/peerj.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/14/2022] [Indexed: 01/17/2023] Open
Abstract
Background Surveillance of antimicrobial resistance (AMR) among veterinary pathogens is necessary to identify clinically relevant patterns of AMR and to inform antimicrobial use practices. Streptococcus equi subsp. zooepidemicus and Rhodococcus equi are bacterial pathogens of major clinical importance in horses and are frequently implicated in respiratory tract infections. The objectives of this study were to describe antimicrobial resistance patterns and identify predictors of AMR and multidrug resistance (MDR) (resistance to three or more antimicrobial classes) among equine S. zooepidemicus and R. equi isolates. Methods Antimicrobial susceptibility data from equine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory between 2012 and 2017 were used in the study. Temporal trends in AMR and MDR were assessed using the Cochran-Armitage test. Logistic regression was used to identify associations between patient characteristics and the following outcomes: (a) MDR among S. zooepidemicus isolates, and (b) resistance to macrolides and ansamycins (rifampin) among R. equi isolates. Logistic regression was also used to investigate whether resistance of S. zooepidemicus and R. equi isolates to an antimicrobial class could be predicted by resistance to other drug classes. Results The vast majority of S. zooepidemicus (99.6%) and R. equi isolates (83%) were resistant to at least one antimicrobial agent, but no significant temporal trends in AMR were observed. Approximately half (53.3%) of the S. zooepidemicus isolates were multidrug-resistant, and there was a significant (p < 0.001) increasing temporal trend of MDR among S. zooepidemicus isolates. Resistance to penicillin, which is typically recommended for treatment of suspected S. zooepidemicus infections, also increased during the study period, from 3.3% to 9.5%. Among R. equi isolates, 19.2% were resistant to one or more macrolide antibiotics, 24% were resistant to rifampin, and 15.6% were resistant to both macrolide(s) and rifampin. For both organisms, resistance to an antimicrobial class could be predicted based on resistance profiles to other drug classes. For instance, significant (p < 0.01) predictors of β-lactam resistance among S. zooepidemicus isolates included resistance to macrolides (Odds Ratio (OR) = 14.7) and ansamycins (OR = 9.3). Resistance to phenicols (OR = 3.7) and ansamycins (OR = 19.9) were associated with higher odds of macrolide resistance among R. equi isolates. Conclusions The increase in MDR among S. zooepidemicus isolates is concerning. The observed levels of resistance to macrolides and rifampin among R. equi are also worrisome given the limited number of antimicrobials available for treatment of this organism. The findings of this study highlight the importance of ongoing surveillance of AMR to guide treatment decisions and directions for future research.
Collapse
Affiliation(s)
- Jennifer Lord
- Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Craig Carter
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, United States of America
| | - Jacqueline Smith
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, United States of America
| | - Stephan Locke
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, United States of America
| | - Erica Phillips
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, United States of America
| | - Agricola Odoi
- Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
125
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
126
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
127
|
Isatin Bis-Indole and Bis-Imidazothiazole Hybrids: Synthesis and Antimicrobial Activity. Molecules 2022; 27:molecules27185781. [PMID: 36144518 PMCID: PMC9505023 DOI: 10.3390/molecules27185781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Isatin and its derivatives are important heterocycles found in nature and present in numerous bioactive compounds which possess various biological activities. Moreover, it is an essential building block in organic synthesis. The discovery of novel compounds active against human pathogenic bacteria and fungi is an urgent need, and the isatin may represent the suitable scaffold in the design of biologically relevant antimicrobials. A small library of 18 isatin hybrids was synthetized and evaluated for their antimicrobial potential on three reference strains: S. aureus, E. coli, both important human pathogens infamous for causing community- and hospital-acquired severe systemic infections; and C. albicans, responsible for devastating invasive infections, mainly in immunocompromised individuals. The study highlighted two lead compounds, 6k and 6m, endowed with inhibitory activity against S. aureus at very low concentrations (39.12 and 24.83 µg/mL, respectively).
Collapse
|
128
|
Wang J, Pei J, Liu M, Huang R, Li J, Liao S, Liang J. Identification and Evolutionary Relationship of Corynebacterium striatum Clinical Isolates. Pathogens 2022; 11:pathogens11091012. [PMID: 36145444 PMCID: PMC9501166 DOI: 10.3390/pathogens11091012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Corynebacterium striatum has developed into a new community-acquired and hospital-acquired multi-drug resistance (MDR) bacterium, and is a potential target pathogen for infection control and antibacterial management projects. In this study, non-duplicate samples of inpatients were collected from a local central hospital. Mass spectrometry showed that 54 C. striatum isolates mainly appeared in secretion and sputum from 14 departments. Protein fingerprint cluster analysis showed that the isolates were divided into four groups, most of which appeared in summer. The drug resistance test showed that all strains had multi-drug resistance, with high resistance rates to lincosamides, quinolones and tetracycline detected. Further analysis of the phylogenetic tree of C. striatum was conducted by cloning the 16S rRNA gene. It was found that isolates in the same department had high homology and tended to be located in the same branch or to be crossed in the same main branch. The strains in the same evolutionary branch group had the same drug resistance. Screening of site-specific recombinant elements revealed that 18 strains had integrase genes with the same sequence. This study shows that there may be mobile genetic elements in clinical isolates that drive gene exchange among strains, thus causing the cross-infection, spread and evolution of pathogenic bacteria in the hospital.
Collapse
Affiliation(s)
- Jiao Wang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence: (J.W.); (J.P.)
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
- Correspondence: (J.W.); (J.P.)
| | - Mingming Liu
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Rui Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Jiqiang Li
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Shiying Liao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Jian Liang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
129
|
Bharadwaj A, Rastogi A, Pandey S, Gupta S, Sohal JS. Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5419874. [PMID: 36105930 PMCID: PMC9467707 DOI: 10.1155/2022/5419874] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
In the present scenario, resistance to antibiotics is one of the crucial issues related to public health. Earlier, such resistance to antibiotics was limited to nosocomial infections, but it has now become a common phenomenon. Several factors, like extensive development, overexploitation of antibiotics, excessive application of broad-spectrum drugs, and a shortage of target-oriented antimicrobial drugs, could be attributed to this condition. Nowadays, there is a rise in the occurrence of these drug-resistant pathogens due to the availability of a small number of effective antimicrobial agents. It has been estimated that if new novel drugs are not discovered or formulated, there would be no effective antibiotic available to treat these deadly resistant pathogens by 2050. For this reason, we have to look for the formulation of some new novel drugs or other options or substitutes to treat such multidrug-resistant microorganisms (MDR). The current review focuses on the evolution of the most common multidrug-resistant bacteria and discusses how these bacteria escape the effects of targeted antibiotics and become multidrug resistant. In addition, we also discuss some alternative mechanisms to prevent their infection as well.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Swadha Pandey
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| | - Jagdip Singh Sohal
- Department of Biotechnology, GLA University, Mathura (U.P.)-281 406, India
| |
Collapse
|
130
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
131
|
Krukiewicz K, Kazek-Kęsik A, Brzychczy-Włoch M, Łos MJ, Ateba CN, Mehrbod P, Ghavami S, Shyntum DY. Recent Advances in the Control of Clinically Important Biofilms. Int J Mol Sci 2022; 23:9526. [PMID: 36076921 PMCID: PMC9455909 DOI: 10.3390/ijms23179526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, North West University, Private Bag X2046, Mahikeng 2735, South Africa
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Divine Yufetar Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| |
Collapse
|
132
|
Ruest MK, Dennis JJ. The Exploration of Complement-Resistance Mechanisms of Pathogenic Gram-Negative Bacteria to Support the Development of Novel Therapeutics. Pathogens 2022; 11:931. [PMID: 36015050 PMCID: PMC9412335 DOI: 10.3390/pathogens11080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
133
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
134
|
Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. Genes (Basel) 2022; 13:genes13081397. [PMID: 36011308 PMCID: PMC9407594 DOI: 10.3390/genes13081397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.
Collapse
|
135
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Front Microbiol 2022; 13:966016. [PMID: 35992677 PMCID: PMC9387203 DOI: 10.3389/fmicb.2022.966016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Agersø
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Yvonne Agersø,
| |
Collapse
|
136
|
Chawla M, Verma J, Gupta R, Das B. Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front Microbiol 2022; 13:887251. [PMID: 35847117 PMCID: PMC9284026 DOI: 10.3389/fmicb.2022.887251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance in clinically important microbes has emerged as an unmet challenge in global health. Extensively drug-resistant bacterial pathogens have cropped up lately defying the action of even the last resort of antibiotics. This has led to a huge burden in the health sectors and increased morbidity and mortality rate across the world. The dwindling antibiotic discovery pipeline and rampant usage of antibiotics has set the alarming bells necessitating immediate actions to combat this looming threat. Various alternatives to discovery of new antibiotics are gaining attention such as reversing the antibiotic resistance and hence reviving the arsenal of antibiotics in hand. Antibiotic resistance reversal is mainly targeted against the antibiotic resistance mechanisms, which potentiates the effective action of the antibiotic. Such compounds are referred to as resistance breakers or antibiotic adjuvants/potentiators that work in conjunction with antibiotics. Many studies have been conducted for the identification of compounds, which decrease the permeability barrier, expression of efflux pumps and the resistance encoding enzymes. Compounds targeting the stability, inheritance and dissemination of the mobile genetic elements linked with the resistance genes are also potential candidates to curb antibiotic resistance. In pursuit of such compounds various natural sources and synthetic compounds have been harnessed. The activities of a considerable number of compounds seem promising and are currently at various phases of clinical trials. This review recapitulates all the studies pertaining to the use of antibiotic potentiators for the reversal of antibiotic resistance and what the future beholds for their usage in clinical settings.
Collapse
Affiliation(s)
- Meenal Chawla
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Rashi Gupta
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
137
|
Sun H, Schnürer A, Müller B, Mößnang B, Lebuhn M, Makarewicz O. Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154556. [PMID: 35306061 DOI: 10.1016/j.scitotenv.2022.154556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden.
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Mößnang
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
138
|
Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms 2022; 10:microorganisms10071380. [PMID: 35889099 PMCID: PMC9317800 DOI: 10.3390/microorganisms10071380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.
Collapse
|
139
|
Silingardi F, Bonvicini F, Cassani MC, Mazzaro R, Rubini K, Gentilomi GA, Bigi A, Boanini E. Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against Bacterial Growth. J Funct Biomater 2022; 13:jfb13030088. [PMID: 35893456 PMCID: PMC9326691 DOI: 10.3390/jfb13030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023] Open
Abstract
The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
- Correspondence: (M.C.C.); (E.B.)
| | - Raffaello Mazzaro
- Department of Phisics and Astronomy “A. Righi”, University of Bologna, Viale Berti Pichat 6/2, 40138 Bologna, Italy;
| | - Katia Rubini
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Adriana Bigi
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Elisa Boanini
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
- Correspondence: (M.C.C.); (E.B.)
| |
Collapse
|
140
|
Bellioua S, Amari S, Warda K, Aghraz A, Dilagui I, Ouhaddou S, Sissi S, Bekkouche K, Larhsini M, Markouk M. Chemical profile, antioxidant and antimicrobial effects of essential oil from the Moroccan endemic plant cladanthus scariosus (L.). JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2074556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Bellioua
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - S. Amari
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - K. Warda
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - A. Aghraz
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - I. Dilagui
- Laboratory of Microbiology and virology, department of medical biology, Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - S. Ouhaddou
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - S. Sissi
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - K. Bekkouche
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - M. Larhsini
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| | - M. Markouk
- Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Team of Protection and Valorization of Plant Resources, Faculty of Sciences Semlalia, Cadi Ayyad UniversityLaboratory of Agri-Food, Marrakesh, Morocco
- 05), Cadi Ayyad UniversityCenter of Agrobiotechnology and Bioengineering, CNRST Labelled Research Unit (Centre AgroBiotech, URL-CNRST, Marrakesh, Morocco
| |
Collapse
|
141
|
Muurinen J, Cairns J, Ekakoro JE, Wickware CL, Ruple A, Johnson TA. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol Ecol 2022; 98:6589402. [PMID: 35587376 DOI: 10.1093/femsec/fiac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing prevalence of antimicrobial resistant bacterial infections has ushered in a major global public health crisis. Judicious or restricted antimicrobial use in animal agriculture, aiming to confine the use for the treatment of infections, is the most commonly proposed solution to reduce selection pressure for resistant bacterial strains and resistance genes. However, a multifaceted solution will likely be required to make acceptable progress in reducing antimicrobial resistance, due to other common environmental conditions maintaining antimicrobial resistance and limited executionary potential as human healthcare and agriculture will continue to rely heavily on antimicrobials in the foreseeable future. Drawing parallels from systematic approaches to the management of infectious disease agents and biodiversity loss, we provide examples that a more comprehensive approach is required, targeting antimicrobial resistance in agroecosystems on multiple fronts simultaneously. We present one such framework, based on nested biological units of antimicrobial resistance, and describe established or innovative strategies targeting units. Some of the proposed strategies are already in use or ready to be implemented, while some require further research and discussion among scientists and policymakers. We envision that antimicrobial resistance mitigation strategies for animal agriculture combining multiple tools would constitute powerful ecosystem-level interventions necessary to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, 00014 University of Helsinki, Helsinki, Finland
| | - John Eddie Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
142
|
Rahman MM, Alam Tumpa MA, Zehravi M, Sarker MT, Yamin M, Islam MR, Harun-Or-Rashid M, Ahmed M, Ramproshad S, Mondal B, Dey A, Damiri F, Berrada M, Rahman MH, Cavalu S. An Overview of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance. Antibiotics (Basel) 2022; 11:667. [PMID: 35625311 PMCID: PMC9137991 DOI: 10.3390/antibiotics11050667] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development of multiple antimicrobials has become available for humans and animals with no appropriate guidance. As a result, inappropriate use of antimicrobials has significantly produced antimicrobial resistance. However, an increasing number of infections such as sepsis are untreatable due to this antimicrobial resistance. In either case, life-saving drugs are rendered ineffective in most cases. The actual causes of antimicrobial resistance are complex and versatile. A lack of adequate health services, unoptimized use of antimicrobials in humans and animals, poor water and sanitation systems, wide gaps in access and research and development in healthcare technologies, and environmental pollution have vital impacts on antimicrobial resistance. This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antimicrobial use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.A.A.T.); (M.T.S.); (M.Y.); (M.R.I.); (M.H.-O.-R.); (M.A.)
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Fouad Damiri
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mohammed Berrada
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
143
|
Chiș AA, Rus LL, Morgovan C, Arseniu AM, Frum A, Vonica-Țincu AL, Gligor FG, Mureșan ML, Dobrea CM. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022; 10:biomedicines10051121. [PMID: 35625857 PMCID: PMC9138529 DOI: 10.3390/biomedicines10051121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, the efficacy of antibiotics is severely affected by the emergence of the antimicrobial resistance phenomenon, leading to increased morbidity and mortality worldwide. Multidrug-resistant pathogens are found not only in hospital settings, but also in the community, and are considered one of the biggest public health concerns. The main mechanisms by which bacteria develop resistance to antibiotics include changes in the drug target, prevention of entering the cell, elimination through efflux pumps or inactivation of drugs. A better understanding and prediction of resistance patterns of a pathogen will lead to a better selection of active antibiotics for the treatment of multidrug-resistant infections.
Collapse
|
144
|
Laborda P, Sanz-García F, Ochoa-Sánchez LE, Gil-Gil T, Hernando-Amado S, Martínez JL. Wildlife and Antibiotic Resistance. Front Cell Infect Microbiol 2022; 12:873989. [PMID: 35646736 PMCID: PMC9130706 DOI: 10.3389/fcimb.2022.873989] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
Antibiotic resistance is a major human health problem. While health care facilities are main contributors to the emergence, evolution and spread of antibiotic resistance, other ecosystems are involved in such dissemination. Wastewater, farm animals and pets have been considered important contributors to the development of antibiotic resistance. Herein, we review the impact of wildlife in such problem. Current evidence supports that the presence of antibiotic resistance genes and/or antibiotic resistant bacteria in wild animals is a sign of anthropic pollution more than of selection of resistance. However, once antibiotic resistance is present in the wild, wildlife can contribute to its transmission across different ecosystems. Further, the finding that antibiotic resistance genes, currently causing problems at hospitals, might spread through horizontal gene transfer among the bacteria present in the microbiomes of ubiquitous animals as cockroaches, fleas or rats, supports the possibility that these organisms might be bioreactors for the horizontal transfer of antibiotic resistance genes among human pathogens. The contribution of wildlife in the spread of antibiotic resistance among different hosts and ecosystems occurs at two levels. Firstly, in the case of non-migrating animals, the transfer will take place locally; a One Health problem. Paradigmatic examples are the above mentioned animals that cohabit with humans and can be reservoirs and vehicles for antibiotic resistance dissemination. Secondly, migrating animals, such as gulls, fishes or turtles may participate in the dissemination of antibiotic resistance across different geographic areas, even between different continents, which constitutes a Global Health issue.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Sanz-García
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: José Luis Martínez,
| |
Collapse
|
145
|
Kumar S, Mishra S. MALAT1 as master regulator of biomarkers predictive of pan-cancer multi-drug resistance in the context of recalcitrant NRAS signaling pathway identified using systems-oriented approach. Sci Rep 2022; 12:7540. [PMID: 35534592 PMCID: PMC9085754 DOI: 10.1038/s41598-022-11214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
NRAS, a protein mutated in several cancer types, is involved in key drug resistance mechanisms and is an intractable target. The development of drug resistance is one of the major impediments in targeted therapy. Currently, gene expression data is used as the most predictive molecular profile in pan-cancer drug sensitivity and resistance studies. However, the common regulatory mechanisms that drive drug sensitivity/resistance across cancer types are as yet, not fully understood. We focused on GDSC data on NRAS-mutant pan-cancer cell lines, to pinpoint key signaling targets in direct or indirect associations with NRAS, in order to identify other druggable targets involved in drug resistance. Large-scale gene expression, comparative gene co-expression and protein–protein interaction network analyses were performed on selected drugs inducing drug sensitivity/resistance. We validated our data from cell lines with those obtained from primary tissues from TCGA. From our big data studies validated with independent datasets, protein-coding hub genes FN1, CD44, TIMP1, SNAI2, and SPARC were found significantly enriched in signal transduction, proteolysis, cell adhesion and proteoglycans pathways in cancer as well as the PI3K/Akt-signaling pathway. Further studies of the regulation of these hub/driver genes by lncRNAs revealed several lncRNAs as prominent regulators, with MALAT1 as a possible master regulator. Transcription factor EGR1 may control the transcription rate of MALAT1 transcript. Synergizing these studies, we zeroed in on a pan-cancer regulatory axis comprising EGR1-MALAT1-driver coding genes playing a role. These identified gene regulators are bound to provide new paradigms in pan-cancer targeted therapy, a foundation for precision medicine, through the targeting of these key driver genes in the improvement of multi-drug sensitivity or resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
146
|
Ferraro NJ, Pires MM. Genetic Determinants of Surface Accessibility in Staphylococcus aureus. Bioconjug Chem 2022; 33:767-772. [PMID: 35499914 DOI: 10.1021/acs.bioconjchem.2c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial cell walls represent one of the most prominent targets of antibacterial agents. These agents include natural products (e.g., vancomycin) and proteins stemming from the innate immune system (e.g., peptidoglycan-recognition proteins and lysostaphin). Among bacterial pathogens that infect humans, Staphylococcus aureus (S. aureus) continues to impose a tremendous healthcare burden across the globe. S. aureus has evolved countermeasures that can directly restrict the accessibility of innate immune proteins, effectively protecting itself from threats that target key cell well components. We recently described a novel assay that directly reports on the accessibility of molecules to the peptidoglycan layer within the bacterial cell wall of S. aureus. The assay relies on site-specific chemical remodeling of the peptidoglycan with a biorthogonal handle. Here, we disclose the application of our assay to a screen of a nonredundant transposon mutant library for susceptibility of the peptidoglycan layer with the goal of identifying genes that contribute to the control of cell surface accessibility. We discovered several genes that resulted in higher accessibility levels to the peptidoglycan layer and showed that these genes modulate sensitivity to lysostaphin. These results indicate that this assay platform can be leveraged to gain further insight into the biology of bacterial cell surfaces.
Collapse
Affiliation(s)
- Noel J Ferraro
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| |
Collapse
|
147
|
Improvement in Violacein Production by Utilizing Formic Acid to Induce Quorum Sensing in Chromobacterium violaceum. Antioxidants (Basel) 2022; 11:antiox11050849. [PMID: 35624712 PMCID: PMC9137503 DOI: 10.3390/antiox11050849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Violacein has attracted increasing attention due to its various biological activities, such as antibacterial, antifungal, antioxidative, and antitumor effects. To improve violacein production, formic acid (FA) was added to a culture medium, which resulted in a 20% increase (1.02 g/L) compared to the no-FA-addition group (0.85 g/L). The use of a stirred-tank bioreactor system also improved violacein production (by 0.56 g/L). A quorum-sensing (QS)-related gene (cviI) was induced by FA treatment, which revealed that the mechanism induced by FA utilized regulation of the cviI gene to induce the vio gene cluster for violacein production. To analyze the antioxidative properties of the violacein produced, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging tests were conducted, and results reveal that the values of the 50% inhibitory concentration (IC50) of DPPH and ABTS were 0.286 and 0.182 g/L, respectively. Violacein also showed strong inhibitory activity against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). In summary, this study found that the addition of formic acid can promote QS of Chromobacterium violaceum, thereby promoting the synthesis of violacein. Subsequently, the promoting effect was also evaluated in a bioreactor system. These findings will be helpful in establishing an economically beneficial production model for violacein in future work.
Collapse
|
148
|
Comparison of Two Distinct Subpopulations of Klebsiella pneumoniae ST16 Co-Occurring in a Single Patient. Microbiol Spectr 2022; 10:e0262421. [PMID: 35467408 PMCID: PMC9241866 DOI: 10.1128/spectrum.02624-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The higher resistance rate to ceftazidime-avibactam (CZA) is mainly related to carbapenem resistance, especially New Delhi metallo-β-lactamase (NDM). The CZA-susceptible Klebsiella pneumoniae (K191663) and the later CZA-resistant isolates (K191724, K191725, K191773) co-producing NDM-4 and OXA-181 were obtained from the same hospitalized patient returning from Vietnam. Our study aims to elucidate the diversity of K. pneumoniae ST16 through comparative analysis of whole-genome sequencing (WGS) data and identify the potential evolution of plasmids by sequencing longitudinal clinical isolates during antibiotic treatment. Firstly, multilocus sequence typing analysis and phylogenic analysis suggested that these strains belong to the two lineages of K. pneumoniae ST16. Surprisingly, the CZA-resistant strains were closely related to K. pneumoniae ST16 described in South Korea, instead of the blaNDM-4- or blaOXA-181-carrying ST16 reported in Vietnam. Secondly, blaNDM-4, blaTEM-1B, and rmtB co-existed on a self-conjugative IncFII(Yp)-like plasmid, which played a significant role in CZA resistance. It could transfer into the recipient Escherichia coli J53 at high frequency, indicating the risk of mobile carbapenemases. In addition, the loss of 12-kbp fragment occurred in blaNDM-4-positive isolate (K191773), which was likely caused by insertion sequence-mediated homologous recombination. Last but not least, as a repressor of acrAB operon system, acrR was truncated by a frameshift mutation in K191663. Thus, our study provided baseline information for monitoring the occurrence and development of bacterial resistance. IMPORTANCE As a leading health care-acquired infection pathogen, Klebsiella pneumoniae is threatening a large number of inpatients due to its diverse antibiotic resistance and virulence factors. Heretofore, with a growing number of reports about the coexistence of several carbapenemases in carbapenem-resistant K. pneumoniae (CRKP), epidemiologic surveillance has been strengthened. Nevertheless, the nosocomial outbreaks by CRKP ST16 are gradually increasing worldwide. Our study provides a deeper insight into the diversification of clinical isolates of CRKP ST16 in China. In addition, the comparison analysis of resistant plasmids may reveal the transmission of carbapenemase-encoding genes. Furthermore, our study also highlights the importance of longitudinal specimen collection and continuous monitoring during the treatment, which play a crucial role in understanding the development of antibiotic resistance and the evolution of resistance plasmids.
Collapse
|
149
|
Keum H, Kim D, Whang CH, Kang A, Lee S, Na W, Jon S. Impeding the Medical Protective Clothing Contamination by a Spray Coating of Trifunctional Polymers. ACS OMEGA 2022; 7:10526-10538. [PMID: 35382299 PMCID: PMC8973108 DOI: 10.1021/acsomega.1c04919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The risk of fomite-mediated transmission in the clinic is substantially increasing amid the recent COVID-19 pandemic as personal protective equipment (PPE) of hospital workers is easily contaminated by direct contact with infected patients. In this context, it is crucial to devise a means to reduce such transmission. Herein, we report an antimicrobial, antiviral, and antibiofouling trifunctional polymer that can be easily coated onto the surface of medical protective clothing to effectively prevent pathogen contamination on the PPE. The coating layer is formed on the surfaces of PPE by the simple spray coating of an aqueous solution of the trifunctional polymer, poly(dodecyl methacrylate (DMA)-poly(ethylene glycol) methacrylate (PEGMA)-quaternary ammonium (QA)). To establish an optimal ratio of antifouling and antimicrobial functional groups, we performed antifouling, antibacterial, and antiviral tests using four different ratios of the polymers. Antifouling and bactericidal results were assessed using Staphylococcus aureus, a typical pathogenic bacterium that induces an upper respiratory infection. Regardless of the molar ratio, polymer-coated PPE surfaces showed considerable antiadhesion (∼65-75%) and antibacterial (∼75-87%) efficacies soon after being in contact with pathogens and maintained their capability for at least 24 h, which is sufficient for disposable PPEs. Further antiviral tests using coronaviruses showed favorable results with PPE coated at two specific ratios (3.5:6:0.5 and 3.5:5.5:1) of poly(DMA-PEGMA-QA). Moreover, biocompatibility assessments using the two most effective polymer ratios showed no recognizable local or systemic inflammatory responses in mice, suggesting the potential of this polymer for immediate use in the field.
Collapse
Affiliation(s)
- Hyeongseop Keum
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dohyeon Kim
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Chang-Hee Whang
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Aram Kang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Seojung Lee
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Woonsung Na
- College
of Veterinary Medicine, Chonnam University, 77 Yongbong-ro, Gwangju 61186, Republic
of Korea
| | - Sangyong Jon
- KAIST
Institute for the BioCentury, Department of Biological Sciences, Center for Precision
Bio-Nanomedicine, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
150
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|