101
|
Abstract
PURPOSE OF REVIEW The aim of this systematic review is to present the proposed theories of pathogenesis for idiopathic anaphylaxis (IA), to discuss its classification, its diagnostic approach, and management. RECENT FINDINGS IA represents a major diagnostic challenge and is diagnosed when excluding the possible identifiable triggers of anaphylaxis. The current research, however, revealed that certain conditions including mastocytosis, mast cell activation syndromes, and hereditary alpha tryptasemia can masquerade and overlap with its symptomatology. Also, newly identified galactose-alpha-1,3-galactose mammalian red meat allergy has recently been recognized as underlying cause of anaphylaxis in some cases that were previously considered as IA. IA comprises a heterogenous group of conditions where, in some cases, inherently dysfunctional mast cells play a role in pathogenesis. The standard trigger avoidance strategies are ineffective, and episodes are unpredictable. Therefore, prompt recognition and treatment as well as prophylaxis are critical. The patients should always carry an epinephrine autoinjector.
Collapse
Affiliation(s)
- Theo Gulen
- Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden.
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
- Mastocytosis Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
102
|
Affiliation(s)
- Nathan Houchens
- From the Veterans Affairs (VA) Ann Arbor Healthcare System Medicine Service (N.H., S.H, D.C., S.S.), the Department of Internal Medicine, University of Michigan Medical School (N.H., S.H, D.C., S.S.), and the Department of VA Health Services Research and Development Center of Excellence (S.S.) - all in Ann Arbor; and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill (S.P.C.)
| | - Sarah Hartley
- From the Veterans Affairs (VA) Ann Arbor Healthcare System Medicine Service (N.H., S.H, D.C., S.S.), the Department of Internal Medicine, University of Michigan Medical School (N.H., S.H, D.C., S.S.), and the Department of VA Health Services Research and Development Center of Excellence (S.S.) - all in Ann Arbor; and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill (S.P.C.)
| | - Scott P Commins
- From the Veterans Affairs (VA) Ann Arbor Healthcare System Medicine Service (N.H., S.H, D.C., S.S.), the Department of Internal Medicine, University of Michigan Medical School (N.H., S.H, D.C., S.S.), and the Department of VA Health Services Research and Development Center of Excellence (S.S.) - all in Ann Arbor; and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill (S.P.C.)
| | - Dru Claar
- From the Veterans Affairs (VA) Ann Arbor Healthcare System Medicine Service (N.H., S.H, D.C., S.S.), the Department of Internal Medicine, University of Michigan Medical School (N.H., S.H, D.C., S.S.), and the Department of VA Health Services Research and Development Center of Excellence (S.S.) - all in Ann Arbor; and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill (S.P.C.)
| | - Sanjay Saint
- From the Veterans Affairs (VA) Ann Arbor Healthcare System Medicine Service (N.H., S.H, D.C., S.S.), the Department of Internal Medicine, University of Michigan Medical School (N.H., S.H, D.C., S.S.), and the Department of VA Health Services Research and Development Center of Excellence (S.S.) - all in Ann Arbor; and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill (S.P.C.)
| |
Collapse
|
103
|
Ng YQ, Gupte TP, Krause PJ. Tick hypersensitivity and human tick-borne diseases. Parasite Immunol 2021; 43:e12819. [PMID: 33428244 DOI: 10.1111/pim.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Immune-mediated hypersensitivity reactions to ticks and other arthropods are well documented. Hypersensitivity to ixodid (hard bodied) ticks is especially important because they transmit infection to humans throughout the world and are responsible for most vector-borne diseases in the United States. The causative pathogens of these diseases are transmitted in tick saliva that is secreted into the host while taking a blood meal. Tick salivary proteins inhibit blood coagulation, block the local itch response and impair host anti-tick immune responses, which allows completion of the blood meal. Anti-tick host immune responses are heightened upon repeated tick exposure and have the potential to abrogate tick salivary protein function, interfere with the blood meal and prevent pathogen transmission. Although there have been relatively few tick bite hypersensitivity studies in humans compared with those in domestic animals and laboratory animal models, areas of human investigation have included local hypersensitivity reactions at the site of tick attachment and generalized hypersensitivity reactions. Progress in the development of anti-tick vaccines for humans has been slow due to the complexities of such vaccines but has recently accelerated. This approach holds great promise for future prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Yu Quan Ng
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Trisha P Gupte
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
104
|
Pacheco I, Fernández de Mera IG, Feo Brito F, Gómez Torrijos E, Villar M, Contreras M, Lima-Barbero JF, Doncel-Pérez E, Cabezas-Cruz A, Gortázar C, de la Fuente J. Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks Tick Borne Dis 2021; 12:101651. [PMID: 33465663 DOI: 10.1016/j.ttbdis.2021.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023]
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the capacity to develop a protective response mediated by anti-α-Gal IgM/IgG antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mainly associated with allergic reactions to mammalian meat consumption. The etiology of the AGS is the exposure to tick bites and the IgE antibody response against α-Gal-containing glycoproteins and glycolipids. The objective of this study was to characterize the anti-α-Gal antibody response in association with the immune-mediated peripheral neuropathy, Guillain-Barré syndrome (GBS), and compare it with different factors known to modulate the antibody response to α-Gal such as exposure to tick bites and development of allergic reactions in response to tick bites. The results showed a significant decrease in the IgM/IgG response to α-Gal in GBS patients when compared to healthy individuals. In contrast, the IgM/IgG levels to α-Gal did not change in patients with allergic reactions to tick bites. The IgE response was not affected in GBS patients, but as expected, the IgE levels significantly increased in individuals exposed to tick bites and patients with tick-associated allergies. These results suggest that the immune pathways of anti-α-Gal IgM/IgG and IgE production are independent. Further studies should consider the susceptibility to allergic reactions to tick bites in GBS patients.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
105
|
Abstract
Glycosylation is a common posttranslational modification of therapeutic proteins. The glycosylation pattern is dependent on many parameters such as the host cell line or the culture conditions. N- and O-linked glycans usually play a great role on the stability, safety, and efficacy of the drug. For this reason, glycosylation is considered as a critical quality attribute of therapeutic glycoproteins, and a thorough characterization should be performed, as well as a systematic control for each batch produced. This chapter gives a short presentation of the structure of glycans commonly found on recombinant therapeutic proteins, and their role on the properties of the drug, in terms of stability, pharmacokinetics, safety, and efficacy. Lastly, the use of mass spectrometry for the analysis of glycoproteins is briefly described.
Collapse
|
106
|
Garcia MB, Gomez-Samper AF, Garcia E, Peñaranda A. Delayed urticaria or anaphylaxis after consumption of red meat with evidence of alpha-gal sensitisation. BMJ Case Rep 2020; 13:13/12/e236923. [PMID: 33372012 PMCID: PMC7771198 DOI: 10.1136/bcr-2020-236923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Food allergies to red meat, specifically to galactose-alpha-1,3-galactose (alpha-gal), a mammalian oligosaccharide, are considered to be very rare, especially in Asia and Latin America. Most of the cases reported are characterised by symptoms of delayed urticaria or anaphylaxis after the consumption of red meat. Sensitisation to red meat has been linked to the use of cetuximab or tick bites, especially from the Amblyomma americanum and Ixodes spp species. Here, we documented a case study from a Colombian male patient with symptoms of delayed urticaria and anaphylaxis with a history of tick bites in Colombia. The patient presented with IgE antibodies specific to alpha-gal, which is the most common epitope linked to red meat allergy induced by tick bites.
Collapse
Affiliation(s)
- Maria Beatriz Garcia
- Allergology Service, Fundacion Santa Fé de Bogotá, Bogotá, Colombia,Allergology Service, Unimeq, Bogotá, Colombia,School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | | | - Elizabeth Garcia
- Allergology Service, Fundacion Santa Fé de Bogotá, Bogotá, Colombia,Allergology Service, Unimeq, Bogotá, Colombia,School of Medicine, Universidad de los Andes, Bogotá, Colombia
| | - Augusto Peñaranda
- School of Medicine, Universidad de los Andes, Bogotá, Colombia,Otolaryngology Department, Fundación Santa Fé de Bogotá, Bogotá, Colombia,Otolaryngology Service, Unimeq, Bogotá, Colombia
| |
Collapse
|
107
|
Solymosi D, Sárdy M, Pónyai G. Interdisciplinary Significance of Food-Related Adverse Reactions in Adulthood. Nutrients 2020; 12:nu12123725. [PMID: 33276661 PMCID: PMC7761565 DOI: 10.3390/nu12123725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Adults frequently interpret food-associated adverse reactions as indicators of a food allergy. However, the public perception of food allergy may differ from a clinician's point of view. The prevalence of patient-reported food allergy tends to be higher than physician-confirmed cases. Dermatological manifestations (urticaria, pruritus, dermatitis, and edema) are frequently reported by patients. Objective: The aim of this study was to describe patient-reported symptoms related to suspected food allergies and particularly to characterize and highlight the volume of patients who visit Budapest allergy clinics with suspected food allergies. Methods: In this prospective study, adult (≥18 years) patients were examined at the Allergology Outpatient Unit of the Dept. of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest. The examination included a detailed medical history; physical examination; and when necessary the measurement of allergen-specific serum immunoglobulin E (IgE) levels. Results: Data from 501 patients (393 women, 108 men) were analyzed. Intolerance to dietary biogenic amines occurred in 250 cases (250/501, 50%). Oral allergy syndrome was confirmed in 71 patients (71/501, 14%). Allergy to food preservatives was diagnosed in 14 (14/501, 3%) cases by a dermatologist-allergist specialist. Five individuals (5/501, 1%) were diagnosed with IgE-mediated food allergy. In some cases (28/501, 6%), edema-inducing/enhancing side effects of drugs were observed which patients had misattributed to various foods. Among the food groups considered to be provoking factors, the most frequently mentioned were fruits (198/501, 40%), milk/dairy products (174/501, 35%), and nuts/oilseeds (144/501, 29%). Overwhelmingly, urticaria (47%) was the most common dermatological diagnosis, followed by dermatitis (20%) and allergic contact dermatitis (8%). Conclusion: Improvement is needed in food allergy, food intolerance, and general nutritional knowledge among the general public. According to our data, perceived/self-reported food allergies were overestimated by adults when compared against physician-confirmed food allergies; however, other diseases potentially responsible for food-related problems were underestimated. The prevalence of oral allergy syndrome was high in the cohort. Intolerance to dietary biogenic amines was common, and although the role of dietary histamine and biogenic amine is not entirely understood in eliciting patients' symptoms, improvements in complaints were reported during the control visits.
Collapse
Affiliation(s)
- Dóra Solymosi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (M.S.); (G.P.)
- Doctoral School of Clinical Medicine, Semmelweis University, 1085 Budapest, Hungary
- Correspondence:
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (M.S.); (G.P.)
| | - Györgyi Pónyai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (M.S.); (G.P.)
| |
Collapse
|
108
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 04/04/2024] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
109
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
110
|
Kim J, Luo H, White W, Rees W, Venkat R, Albarghouthi M. Impact of Fc N-linked glycans on in vivo clearance of an immunoglobulin G1 antibody produced by NS0 cell line. MAbs 2020; 12:1844928. [PMID: 33171078 PMCID: PMC7671047 DOI: 10.1080/19420862.2020.1844928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterogeneity of glycosylation on therapeutic monoclonal antibodies (mAbs) may affect the safety and efficacy of these agents. In particular, glycans of nonhuman origin, such as galactose-alpha-1,3-galactose (gal-α-gal) and N-glycolylneuraminic acid (NGNA), in the Fc region of therapeutic mAbs produced from murine cell lines carry a risk of immunogenicity. Immunogenic glycan structures can have immune-mediated clearance, resulting in faster clearance from in vivo circulation than non-immunogenic structures. To demonstrate the impact of these Fc nonhuman glycans on in vivo clearance, we purified and analyzed the glycan profile of a monoclonal antibody (mAb1) from human serum samples collected from clinical study participants. We purified mAb1 in a three-step chromatographic separation process (protein A, immobilized anti-mAb1 antibody affinity, and weak cation exchange chromatography) and extracted and labeled its N-linked oligosaccharide structures with 2-aminobenzamide acid for analysis on ultrahigh-performance hydrophilic interaction liquid chromatography. A comparison of the glycan profile of mAb1 recovered from human serum on the same day and 4 weeks after dosing revealed no significant differences, indicating similar clearance of mAb1 with nonhuman gal-α-gal or NGNA glycan in the Fc region compared with the human glycans. The relative proportions of the glycans remained similar, and all patients who had already received multiple doses of mAb1 over the course of a year were negative for antidrug antibodies, suggesting that none of the glycans induced an immune response. Therefore, we concluded that mAb1 gal-α-gal and NGNA glycoforms represent a low risk of conferring immunogenicity.
Collapse
Affiliation(s)
- Jun Kim
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Haibin Luo
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Wendy White
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - William Rees
- Research and Development, Viela Bio , Gaithersburg, MD, USA
| | - Raghavan Venkat
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Methal Albarghouthi
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| |
Collapse
|
111
|
Laible G, Cole S, Brophy B, Maclean P, How Chen L, Pollock DP, Cavacini L, Fournier N, De Romeuf C, Masiello NC, Gavin WG, Wells DN, Meade HM. Transgenic goats producing an improved version of cetuximab in milk. FASEB Bioadv 2020; 2:638-652. [PMID: 33205005 PMCID: PMC7655094 DOI: 10.1096/fba.2020-00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10 g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs.
Collapse
Affiliation(s)
- Götz Laible
- AgResearchRuakura Research CentreHamiltonNew Zealand
- School of Medical SciencesUniversity of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Sally Cole
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | - Brigid Brophy
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | - Paul Maclean
- AgResearchRuakura Research CentreHamiltonNew Zealand
| | | | | | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical SchoolBostonMAUSA
| | | | | | | | | | | | | |
Collapse
|
112
|
|
113
|
IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel) 2020; 9:antib9040055. [PMID: 33081206 PMCID: PMC7709114 DOI: 10.3390/antib9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.
Collapse
|
114
|
Karasuyama H, Miyake K, Yoshikawa S. Immunobiology of Acquired Resistance to Ticks. Front Immunol 2020; 11:601504. [PMID: 33154758 PMCID: PMC7591762 DOI: 10.3389/fimmu.2020.601504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking arthropods of great importance in the medical and veterinary fields worldwide. They are considered second only to mosquitos as vectors of pathogenic microorganisms that can cause serious infectious disorders, such as Lyme borreliosis and tick-borne encephalitis. Hard (Ixodid) ticks feed on host animals for several days and inject saliva together with pathogens to hosts during blood feeding. Some animal species can acquire resistance to blood-feeding by ticks after a single or repeated tick infestation, resulting in decreased weights and numbers of engorged ticks or the death of ticks in subsequent infestations. Importantly, this acquired tick resistance (ATR) can reduce the risk of pathogen transmission from pathogen-infected ticks to hosts. This is the basis for the development of tick antigen-targeted vaccines to forestall tick infestation and tick-borne diseases. Accumulation of basophils is detected in the tick re-infested skin lesion of animals showing ATR, and the ablation of basophils abolishes ATR in mice and guinea pigs, illustrating the critical role for basophils in the expression of ATR. In this review article, we provide a comprehensive overview of recent advances in our understanding of the cellular and molecular mechanisms responsible for the development and manifestation of ATR, with a particular focus on the role of basophils.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
115
|
Yuile A, Fanuli C, van Nunen S, Diakos C, Clarke S, Steiner C, MacMillan R, Oatley M, Pavlakis N. Increased rates of cetuximab reactions in tick prevalent regions and a proposed protocol for risk mitigation. Asia Pac J Clin Oncol 2020; 17:448-453. [PMID: 32970939 DOI: 10.1111/ajco.13465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cetuximab is an anti-epidermal growth factor receptor mouse-human chimeric monoclonal antibody used to treat advanced colorectal cancers. Initial data suggest that severe infusion reactions occurred in 4.5%, many on first exposure. The majority of those with anaphylactic reactions possess predeveloped IgE antibodies to galactose-alpha-1,3-galactose. It is thought that the vector for preexposure to alpha-gal is antigen inoculation via tick bites. This retrospective study reviews the experience of two community cancer centers in high tick exposure areas in Sydney with cetuximab anaphylaxis and proposes a protocol to avoid this. METHOD Severe cetuximab infusion reactions occurring in the Northern Cancer Institute Frenchs Forest and St Leonards clinics, Sydney, from May 2014 to February 2019 were recorded. Area of residence was then compared to areas of known high tick prevalence. RESULTS A total of 87 patients received cetuximab in this period. Six patients (6.9%) experienced at least a grade 3 reaction, three females, age range 41-72 years (median 57.5 years). All were receiving cetuximab for metastatic colorectal cancer and their anaphylaxis occurred with the first infusion in all cases. CONCLUSION These cases support the existing theory of increased rates of cetuximab anaphylaxis in areas of high tick prevalence. Given this, we recommend the following protocol for patients being considered for cetuximab therapy: known mammalian meat allergy as an absolute contraindication; all patients receiving cetuximab should have RAST (ImmunoCAP® ) testing for alpha-gal specific-IgE-specific antibodies before first infusion and those who test positive to be considered alternate therapy.
Collapse
Affiliation(s)
- Alexander Yuile
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Claudia Fanuli
- Northern Cancer Institute, Sydney, New South Wales, Australia
| | - Sheryl van Nunen
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Connie Diakos
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Stephen Clarke
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Christian Steiner
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Robyn MacMillan
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Meredith Oatley
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Nick Pavlakis
- Northern Cancer Institute, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
116
|
Luetscher RND, McKitrick TR, Gao C, Mehta AY, McQuillan AM, Kardish R, Boligan KF, Song X, Lu L, Heimburg-Molinaro J, von Gunten S, Alter G, Cummings RD. Unique repertoire of anti-carbohydrate antibodies in individual human serum. Sci Rep 2020; 10:15436. [PMID: 32963315 PMCID: PMC7509809 DOI: 10.1038/s41598-020-71967-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20-60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease.
Collapse
Affiliation(s)
- Ralph N D Luetscher
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Tanya R McKitrick
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Chao Gao
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Alyssa M McQuillan
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Robert Kardish
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Scienion US, 2640 West Medtronic Way, Tempe, AZ, 85281, USA
| | | | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30303, USA
| | - Lenette Lu
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | | | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Richard D Cummings
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
117
|
Zhang B, Hauk M, Clyne J. Alpha-gal antibody due to Lone Star tick bite, a unique case of allergic reaction. IDCases 2020; 22:e00908. [PMID: 32904381 PMCID: PMC7452663 DOI: 10.1016/j.idcr.2020.e00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Billy Zhang
- Lankenau Medical Center, Department of Internal Medicine, United States
| | - Michael Hauk
- University of Virginia, Department of Internal Medicine, United States
| | - James Clyne
- Johns Hopkins Medicine, Department of Internal Medicine, United States
| |
Collapse
|
118
|
Mites, ticks, anaphylaxis and allergy: The Acari hypothesis. Med Hypotheses 2020; 144:110257. [PMID: 33254563 DOI: 10.1016/j.mehy.2020.110257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
Anaphylaxis is a poorly understood immune process in which a Th2-/IgE-mediated adaptive response commandeers cellular machinery, typically reserved for defense against multicellular ectoparasites, to activate against otherwise benign molecules. Its clinical manifestations consist of rapid pathophysiological reflexes that target epithelial surfaces. The galactose-α-1,3-galactose hypersensitivity response is a compelling model of anaphylaxis for which causation has been demonstrated. At the core of the model, a tick bite sensitizes a recipient to a tick foodstuff. As proposed herein, the model likely informs on the origin of all allergic inflammation; namely, allergy is not intended to protect against seemingly harmless and irrelevant materials, but is, instead, intended to rid epithelial surfaces of pathogen-bearing Acari, i.e., mites and ticks. The demonstrated adjuvant activity of acarian gastrointestinal secretions, when paired with the polyphagous diet of mites, renders acarians eminently suited to accounting, mechanistically, for many, if not all, human allergies.
Collapse
|
119
|
Schuler CF, Gupta M, Sanders GM. Immunoglobulin E-mediated food allergy diagnosis and differential diagnosis. JOURNAL OF FOOD ALLERGY 2020; 2:26-30. [PMID: 39022149 PMCID: PMC11250609 DOI: 10.2500/jfa.2020.2.200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Food allergies consist of aberrant immunologic, typically immunoglobulin E mediated, reactions that involve food proteins. A clinical history with regard to the suspected food, temporal associations, the duration of symptoms, characteristic symptom complex, and reproducibility in some cases is the key to making an accurate diagnosis. The differential diagnosis includes, for example, other immunologic adverse food reactions, nonimmunologic adverse food reactions, and reactions that involve nonfood items. Skin and blood immunoglobulin E testing for the suspected food antigen can aid the diagnosis in the context of a supportive clinical history. Immunoglobulin E testing for food components may further enhance diagnostic accuracy. Novel testing modalities are under development but are not yet ready to replace the current paradigm. Thus, double-blinded placebo controlled oral food challenge is considered the criterion standard of testing, although unblinded oral food challenges are usually confirmatory.
Collapse
Affiliation(s)
- Charles F. Schuler
- From the Division of Allergy and Clinical Immunology, Department of Internal Medicine and Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan
| | - Malika Gupta
- From the Division of Allergy and Clinical Immunology, Department of Internal Medicine and Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan
| | - Georgiana M. Sanders
- From the Division of Allergy and Clinical Immunology, Department of Internal Medicine and Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
120
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
121
|
Holbert SE, Patel D, Rizk T, Dimitri NG, Jones M. Intraoperative Anaphylaxis in Response to Hemostatic Agents With Protein Derivatives. Cureus 2020; 12:e9881. [PMID: 32963920 PMCID: PMC7500731 DOI: 10.7759/cureus.9881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topical hemostatic agents are commonly used in a wide variety of surgical procedures to assist in hemostasis. However, the use of these agents is not without risk as many contain biologically active agents derived from human and animal products that have the potential to cause adverse reactions. This case report covers a 44-year-old man with a history of alpha-gal syndrome who was scheduled for an open reduction and internal fixation of a left distal radius fracture. Alpha-gal syndrome is characterized by an IgE-mediated type 1 hypersensitivity reaction to a mammalian oligosaccharide epitope. Patients with this condition have a history of a past tick bite and subsequent development of an allergic reaction to mammalian protein products, most notably red meat. The patient had concerns about products used during surgery and potential reactions based on his allergy. The intent of this case report is to promote physician awareness of the widespread use of mammalian products in surgical hemostatic agents and potential immunogenic reactions. By increasing awareness of the alpha-gal syndrome, the goal is that medical device companies will actively disclose product components that could potentiate these adverse reactions and continue to develop alternative agents.
Collapse
Affiliation(s)
- S Elliott Holbert
- Surgery, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| | - Darren Patel
- Orthopedics, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| | - Tony Rizk
- Interventional Radiology, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| | - Nahu G Dimitri
- Emergency Medicine, University of Medicine and Health Sciences, Basseterre, KNA
| | - Micah Jones
- Orthopedic Surgery, LewisGale Medical Center, Salem, USA
| |
Collapse
|
122
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
123
|
Kim TK, Tirloni L, Berger M, Diedrich JK, Yates JR, Termignoni C, da Silva Vaz I, Mulenga A. Amblyomma americanum serpin 41 (AAS41) inhibits inflammation by targeting chymase and chymotrypsin. Int J Biol Macromol 2020; 156:1007-1021. [PMID: 32320803 PMCID: PMC11005088 DOI: 10.1016/j.ijbiomac.2020.04.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 01/01/2023]
Abstract
Ticks inject serine protease inhibitors (serpins) into their feeding sites to evade serine protease-mediated host defenses against tick-feeding. This study describes two highly identitical (97%) but functionally different Amblyomma americanum tick saliva serpins (AAS41 and 46) that are secreted at the inception of tick-feeding. We show that AAS41, which encodes a leucine at the P1 site inhibits inflammation system proteases: chymase (SI = 3.23, Ka = 5.6 ± 3.7X103M-1 s-1) and α-chymotrypsin (SI = 3.18, Ka = 1.6 ± 4.1X104M-1 s-1), while AAS46, which encodes threonine has no inhibitory activity. Similary, rAAS41 inhibits rMCP-1 purified from rat peritonuem derived mast cells. Consistently, rAAS41 inhibits chymase-mediated inflammation induced by compound 48/80 in rat paw edema and vascular permeability models. Native AAS41/46 proteins are among tick saliva immunogens that provoke anti-tick immunity in repeatedly infested animals as revealed by specific reactivity with tick immune sera. Of significance, native AAS41/46 play critical tick-feeding functions in that RNAi-mediated silencing caused ticks to ingest significantly less blood. Importantly, monospecific antibodies to rAAS41 blocked inhibitory functions of rAAS41, suggesting potential for design of vaccine antigens that provokes immunity to neutralize functions of this protein at the tick-feeding site. We discuss our findings with reference to tick-feeding physiology and discovery of effective tick vaccine antigens.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jolene K Diedrich
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA.
| |
Collapse
|
124
|
Blessmann J, Hanlodsomphou S, Santisouk B, Choumlivong K, Soukhaphouvong S, Chanthilat P, Brockow K, Biedermann T. Serum IgE against galactose-alpha-1,3-galactose is common in Laotian patients with snakebite envenoming but not the major trigger for early anaphylactic reactions to antivenom. Toxicon X 2020; 7:100054. [PMID: 32776003 PMCID: PMC7393571 DOI: 10.1016/j.toxcx.2020.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022] Open
Abstract
Snake antivenom is the only specific treatment for snakebite envenoming, but life-threatening anaphylaxis is a severe side effect and drawback for the use of these typically mammalian serum products. The present study investigates the hypotheses whether serum IgE antibodies against the epitope galactose-alpha-1,3-galactose (α-gal) located on the heavy chain of non-primate mammalian antibodies are a possible cause for hypersensitivity reactions to snake antivenom. Serum samples from 55 patients with snakebite envenoming were obtained before administration of snake antivenom and tested for serum IgE (sIgE) against α-gal and total IgE. Early anaphylactic reactions (EARs) during the first 3 h after antivenom administration were classified into mild, moderate or severe and correlated with the presence of sIgE against α-gal. Fifteen (27%) out of 55 patients (37 male, 18 female, median 34 years, range 9-90 years) developed EARs after antivenom administration. Eleven, three and one patients had mild, moderate and severe EARs, respectively. Serum IgE against α-gal was detected in 17 patients (31%); in five (33%) out of 15 patients with EARs and in 12 (30%) out of 40 patients without EAR (Odds Ratio = 1.2; 95%-confidence interval: 0.3-4.2) with no correlation to severity. Although the prevalence of serum IgE against α-gal was high in the study population, very high levels of total IgE in the majority of patients question their clinical relevance and rather indicate unspecific sIgE binding instead of allergy. Lack of correlation between α-gal sIgE and EARs together with significantly increased total IgE levels suggest that sIgE against α-gal is not the major trigger for hypersensitivity reactions against snake antivenom.
Collapse
Affiliation(s)
- Joerg Blessmann
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Setthatirath Hospital, Vientiane, Laos
- Corresponding author. Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
125
|
Golden DBK, Carter MC. Insect Sting Anaphylaxis-Or Mastocytosis-Or Something Else? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1117-1123. [PMID: 30961837 DOI: 10.1016/j.jaip.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Insect sting anaphylaxis and mast cell disorders are intertwined in a specific and unusual way. There may be specific subsets of clonal mast cell disorders that are predisposed to sting anaphylaxis. The clinical characteristics of the sting reactions should raise suspicion of underlying mastocytosis (eg, hypotension without hives especially in a male). A baseline serum tryptase level is helpful in the evaluation of patients with insect sting anaphylaxis because it correlates with important risks for these patients, and they have a high frequency of abnormally elevated baseline levels. Elevated baseline serum tryptase level has been reported to correlate with clonal mast cell disease in patients with insect sting anaphylaxis but may also indicate one of several possible underlying syndromes, including mast cell activation syndrome (MCAS), familial hypertryptasemia, and idiopathic anaphylaxis. There is some overlap in these conditions, so it is important to evaluate the clinical pattern at presentation as well as laboratory markers, and to consider bone marrow biopsy to make a final and specific diagnosis of clonal mast cell disease. The presence of venom-IgE does not prove that the patient's previous sting reactions were IgE-mediated, but even low levels of venom-IgE in patients with mastocytosis predispose to severe sting anaphylaxis. Evaluation of all these possible factors will affect the recommendation for venom immunotherapy.
Collapse
Affiliation(s)
- David B K Golden
- Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, Md.
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
126
|
Ferastraoaru D, Bax HJ, Bergmann C, Capron M, Castells M, Dombrowicz D, Fiebiger E, Gould HJ, Hartmann K, Jappe U, Jordakieva G, Josephs DH, Levi-Schaffer F, Mahler V, Poli A, Rosenstreich D, Roth-Walter F, Shamji M, Steveling-Klein EH, Turner MC, Untersmayr E, Karagiannis SN, Jensen-Jarolim E. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI). Clin Transl Allergy 2020; 10:32. [PMID: 32695309 PMCID: PMC7366896 DOI: 10.1186/s13601-020-00335-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Elevated serum IgE levels are associated with allergic disorders, parasitosis and specific immunologic abnormalities. In addition, epidemiological and mechanistic evidence indicates an association between IgE-mediated immune surveillance and protection from tumour growth. Intriguingly, recent studies reveal a correlation between IgE deficiency and increased malignancy risk. This is the first review discussing IgE levels and links to pathological conditions, with special focus on the potential clinical significance of ultra-low serum IgE levels and risk of malignancy. In this Position Paper we discuss: (a) the utility of measuring total IgE levels in the management of allergies, parasitosis, and immunodeficiencies, (b) factors that may influence serum IgE levels, (c) IgE as a marker of different disorders, and d) the relationship between ultra-low IgE levels and malignancy susceptibility. While elevated serum IgE is generally associated with allergic/atopic conditions, very low or absent IgE may hamper anti-tumour surveillance, indicating the importance of a balanced IgE-mediated immune function. Ultra-low IgE may prove to be an unexpected biomarker for cancer risk. Nevertheless, given the early stage of investigations conducted mostly in patients with diseases that influence IgE levels, in-depth mechanistic studies and stratification of malignancy risk based on associated demographic, immunological and clinical co-factors are warranted.
Collapse
Affiliation(s)
- D Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY USA
| | - H J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - C Bergmann
- ENT Research Institute for Clinical Studies, Essen, Germany
| | - M Capron
- LIRIC-Unite Mixte de Recherche 995 INSERM, Universite de Lille 2, CHRU de Lille, Lille, France
| | - M Castells
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - D Dombrowicz
- Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - E Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine Research, Children's University Hospital Boston, Boston, MA USA
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, New Hunt's House, London, SE1 1UL UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - K Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - U Jappe
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany.,Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - G Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - D H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - F Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - V Mahler
- Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - A Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - D Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY USA
| | - F Roth-Walter
- The Interuniversity Messerli Research Inst, Univ. of Vet. Medicine Vienna, Med. Univ. Vienna, Univ. Vienna, Vienna, Austria
| | - M Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical Immunology, Imperial College London, London, UK
| | - E H Steveling-Klein
- Department of Dermatology, Allergy Division, University Hospital Basel, Basel, Switzerland
| | - M C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - E Untersmayr
- Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, 9th Floor, Guy's Tower, London, SE1 9RT UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, UK
| | - E Jensen-Jarolim
- The Interuniversity Messerli Research Inst, Univ. of Vet. Medicine Vienna, Med. Univ. Vienna, Univ. Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
127
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
128
|
de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn 2020; 20:905-911. [PMID: 32628573 DOI: 10.1080/14737159.2020.1792781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The α-Gal syndrome (AGS) is a type of allergy characterized by an IgE antibody response against the carbohydrate Galα1-3Galβ1-4GlcNAc-R (α-Gal). Tick bites are recognized as the most important cause of anti-α-Gal IgE antibody increase in humans. Several risk factors have been associated with the development of AGS, but their integration into a standardized disease diagnosis has proven challenging. AREAS COVERED Herein we discuss the current AGS diagnosis based on anti-α-Gal IgE titers and propose an algorithm that considers all co-factors in the clinical history of α-Gal-sensitized patients to be incorporated into the AGS diagnosis. The need for identification of host-derived gene markers and tick-derived proteins for the diagnosis of the AGS is also discussed. EXPERT OPINION The current AGS diagnosis based on anti-α-Gal IgE titers has limitations because not all patients sensitized to α-Gal and with anti-α-Gal IgE antibodies higher than the cutoff (0.35 IU/ml) develop anaphylaxis to mammalian meat and AGS. The basophil activation test proposed to differentiate between patients with AGS and asymptomatic α-Gal sensitization cannot be easily implemented as a generalized clinical test. In coming years, the algorithm proposed here could be used in a mobile application for easier AGS diagnosis in the clinical practice.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Iván Pacheco
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain
| |
Collapse
|
129
|
Fischer J, Riel S, Fehrenbacher B, Frank A, Schaller M, Biedermann T, Hilger C, Mackenstedt U. Spatial distribution of alpha-gal in Ixodes ricinus - A histological study. Ticks Tick Borne Dis 2020; 11:101506. [PMID: 32723636 DOI: 10.1016/j.ttbdis.2020.101506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Alpha-gal syndrome is a complex allergic disease in humans that is caused by specific IgE (sIgE) against the carbohydrate galactose-α-1,3-galactose (alpha-gal). Tick saliva contains alpha-gal, and tick bites are considered a major cause of the induction of alpha-gal-sIgE. The origin of alpha-gal in tick saliva remains unclarified. The presence of alpha-gal in tick tissue was visualized in this study to provide an overview of the spatial distribution of alpha-gal and to further elucidate the origin of alpha-gal in tick saliva. Fed and unfed Ixodes ricinus females were examined by histology, immunohistochemistry, immunofluorescence, transmission electron microscopy and immunoelectron microscopy using the alpha-gal-specific monoclonal antibody M86 and Marasmius oreades agglutinin (MOA) lectin. Alpha-gal epitopes were detected in the midgut, hemolymph and salivary glands, and the immunofluorescence analysis revealed signs of the endocytosis of alpha-gal-containing constituents during the process of hematophagy. Alpha-gal epitopes in endosomes of the digestive gut cells of the ticks were observed via immunoelectron microscopy. Alpha-gal epitopes were detected in dried droplets of hemolymph from unfed ticks. Intense staining of alpha-gal epitopes was found in type II granular acini of the salivary glands of fed and unfed ticks. Our data suggest that alpha-gal is not ubiquitously expressed in tick tissue but is present in both fed and unfed ticks. The findings also indicate that both the metabolic incorporation of constituents from a mammalian blood meal and endogenous production contribute to the presence of alpha-gal epitopes in ticks.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Simon Riel
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alisa Frank
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technische Universität, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| |
Collapse
|
130
|
Abstract
Red meat allergies have followed tick bites on every continent except Antarctica. The sensitizing antigen is galactose-α-1,3-galactose (α-gal), an oligosaccharide constituent of nonprimate blood and meat, acquired by ticks during animal bloodfeeding. Because red meat allergy after tick bites is a worldwide phenomenon, the objectives of this review were to describe the global epidemiology of red meat allergy after tick bites and its immunological mechanisms; to identify the human risk factors for red meat allergy after tick bites; to identify the most common tick vectors of red meat allergy worldwide; to describe the clinical manifestations, diagnostic confirmation, and management of patients with red meat allergy after tick bites; and to recommend strategies for the prevention of tick bites. To meet these objectives, Internet search engines were queried with keywords to select scientific articles for review. The keywords included ticks, tick bites, allergy, anaphylaxis, and meat allergy. The study period was defined as 1980-2019. The major risk factors for red meat allergy after tick bites included male sex, non-B blood type, systemic mastocytosis, a bioprosthetic (bovine or porcine) heart valve, and preexisting allergies to gelatin or animal dander. Following confirmation by challenge testing, patients with red meat allergies should avoid red meats, foods containing gelatin, and intravenous immunotherapy with monoclonal antibodies such as cetuximab and infliximab produced in SP2/0 mouse cell lines. Red meat allergy after tick bites represents an emerging threat from tick bites in addition to infectious diseases.
Collapse
Affiliation(s)
- James H Diaz
- From the School of Public Health, Environmental, and Occupational Health Sciences, Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
131
|
Román-Carrasco P, Hemmer W, Klug C, Friedrich A, Stoll P, Focke-Tejkl M, Altmann F, Quirce S, Swoboda I. Individuals with IgE antibodies to α-Gal and CCD show specific IgG subclass responses different from subjects non-sensitized to oligosaccharides. Clin Exp Allergy 2020; 50:1107-1110. [PMID: 32578253 PMCID: PMC7540519 DOI: 10.1111/cea.13695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Christoph Klug
- Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Anja Friedrich
- Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Peter Stoll
- Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ines Swoboda
- Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| |
Collapse
|
132
|
Matricardi PM. IgE to cross-reactive carbohydrate determinants: Origins, functions, and confounding role in nPhl p 4-IgE assays. J Allergy Clin Immunol 2020; 145:1554-1555. [PMID: 32507231 DOI: 10.1016/j.jaci.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Paolo Maria Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
133
|
Mateos-Hernández L, Risco-Castillo V, Torres-Maravilla E, Bermúdez-Humarán LG, Alberdi P, Hodžić A, Hernández-Jarguin A, Rakotobe S, Galon C, Devillers E, de la Fuente J, Guillot J, Cabezas-Cruz A. Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental Aspergillus Infection in Poultry. Vaccines (Basel) 2020; 8:vaccines8020285. [PMID: 32517302 PMCID: PMC7350254 DOI: 10.3390/vaccines8020285] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring human antibodies (Abs) of the isotypes IgM and IgG and reactive to the galactose-α-1,3-galactose (α-Gal) epitope are associated with protection against infectious diseases, caused by pathogens expressing the glycan. Gut microbiota bacteria expressing α-Gal regulate the immune response to this glycan in animals lacking endogenous α-Gal. Here, we asked whether the production of anti-α-Gal Abs in response to microbiota stimulation in birds, confers protection against infection by Aspergillus fumigatus, a major fungal pathogen that expresses α-Gal in its surface. We demonstrated that the oral administration of Escherichia coli O86:B7 strain, a bacterium with high α-Gal content, reduces the occurrence of granulomas in lungs and protects turkeys from developing acute aspergillosis. Surprisingly, the protective effect of E. coli O86:B7 was not associated with an increase in circulating anti-α-Gal IgY levels, but with a striking reduction of anti-α-Gal IgA in the lungs of infected turkeys. Subcutaneous immunization against α-Gal did not induce a significant reduction of lung anti-α-Gal IgA and failed to protect against an infectious challenge with A. fumigatus. Oral administration of E. coli O86:B7 was not associated with the upregulation of lung cytokines upon A. fumigatus infection. We concluded that the oral administration of bacteria expressing high levels of α-Gal decreases the levels of lung anti-α-Gal IgA, which are mediators of inflammation and lung damage during acute aspergillosis.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Edgar Torres-Maravilla
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Angelica Hernández-Jarguin
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Tamaulipas 87000, Mexico
| | - Sabine Rakotobe
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Clemence Galon
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Elodie Devillers
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacques Guillot
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
- Correspondence: ; Tel.: +33-1-49-774-677
| |
Collapse
|
134
|
Pacheco I, Contreras M, Villar M, Risalde MA, Alberdi P, Cabezas-Cruz A, Gortázar C, de la Fuente J. Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis. Vaccines (Basel) 2020; 8:E195. [PMID: 32344637 PMCID: PMC7348772 DOI: 10.3390/vaccines8020195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The alpha-Gal syndrome (AGS) is associated with tick bites that can induce in humans high levels of IgE antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate primarily delayed anaphylaxis to mammalian meat consumption. It has been proposed that humans evolved by losing the capacity to synthesize α-Gal to increase the protective immune response against pathogens with this modification on their surface. This evolutionary adaptation suggested the possibility of developing vaccines and other interventions to induce the anti-α-Gal IgM/IgG protective response against pathogen infection and multiplication. However, the protective effect of the anti-α-Gal immune response for the control of tuberculosis caused by Mycobacterium spp. has not been explored. To address the possibility of using vaccination with α-Gal for the control of tuberculosis, in this study, we used the zebrafish-Mycobacterium marinum model. The results showed that vaccination with α-Gal protected against mycobacteriosis in the zebrafish model of tuberculosis and provided evidence on the protective mechanisms in response to vaccination with α-Gal. These mechanisms included B-cell maturation, antibody-mediated opsonization of mycobacteria, Fc-receptor (FcR)-mediated phagocytosis, macrophage response, interference with the α-Gal antagonistic effect of the toll-like receptor 2 (TLR2)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)-mediated immune response, and upregulation of pro-inflammatory cytokines. These results provided additional evidence supporting the role of the α-Gal-induced immune response in the control of infections caused by pathogens with this modification on their surface and the possibility of using this approach for the control of multiple infectious diseases.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
| | - Marinela Contreras
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
| | - Margarita Villar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - María Angeles Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba (UCO), Agrifood Excellence International Campus (ceiA3), 14071 Córdoba, Spain;
| | - Pilar Alberdi
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (I.P.); (M.C.); (M.V.); (P.A.); (C.G.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
135
|
Villar M, Pacheco I, Merino O, Contreras M, Mateos-Hernández L, Prado E, Barros-Picanço DK, Lima-Barbero JF, Artigas-Jerónimo S, Alberdi P, Fernández de Mera IG, Estrada-Peña A, Cabezas-Cruz A, de la Fuente J. Tick and Host Derived Compounds Detected in the Cement Complex Substance. Biomolecules 2020; 10:E555. [PMID: 32260542 PMCID: PMC7226240 DOI: 10.3390/biom10040555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Ticks are obligate hematophagous arthropods and vectors of pathogens affecting human and animal health worldwide. Cement is a complex protein polymerization substance secreted by ticks with antimicrobial properties and a possible role in host attachment, sealing the feeding lesion, facilitating feeding and pathogen transmission, and protection from host immune and inflammatory responses. The biochemical properties of tick cement during feeding have not been fully characterized. In this study, we characterized the proteome of Rhipicephalus microplus salivary glands (sialome) and cement (cementome) together with their physicochemical properties at different adult female parasitic stages. The results showed the combination of tick and host derived proteins and other biomolecules such as α-Gal in cement composition, which varied during the feeding process. We propose that these compounds may synergize in cement formation, solidification and maintenance to facilitate attachment, feeding, interference with host immune response and detachment. These results advanced our knowledge of the complex tick cement composition and suggested that tick and host derived compounds modulate cement properties throughout tick feeding.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km 5, Carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico;
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
| | - Dina Karen Barros-Picanço
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | - José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
- Sabiotec, Camino de Moledores s/n. 13003, 13071 Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | - Isabel G. Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.V.); (I.P.); (M.C.); (L.M.-H.); (D.K.B.-P.); (J.F.L.-B.); (S.A.-J.); (P.A.); (I.G.F.d.M.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
136
|
Contreras M, Pacheco I, Alberdi P, Díaz-Sánchez S, Artigas-Jerónimo S, Mateos-Hernández L, Villar M, Cabezas-Cruz A, de la Fuente J. Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Front Cell Infect Microbiol 2020; 10:78. [PMID: 32211341 PMCID: PMC7075944 DOI: 10.3389/fcimb.2020.00078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
137
|
Radwan SS, Gill G, Ghazzal A, Malik A, Barnett C. Plaque Rupture-Induced Myocardial Infarction and Mechanical Circulatory Support in Alpha-Gal Allergy. Case Rep Cardiol 2020; 2020:5282843. [PMID: 32128263 PMCID: PMC7048905 DOI: 10.1155/2020/5282843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Alpha-gal (AG) allergy is an IgE-mediated allergic reaction to galactose-alpha-1,3-galactose found in mammalian meat. Heparin, being derived from porcine intestinal tissue, may have a degree of cross-reactivity with AG antigen and thus place patients at risk for allergic and even anaphylactic reactions. This is especially important in patients with myocardial infarction (MI) and mechanical circulatory support, such as a left ventricular assist device (LVAD), since anticoagulation is immediately required. Therefore, individualized assessment and preoperative planning is needed regarding the use of heparin vs. nonheparinoid products in such a population.
Collapse
Affiliation(s)
| | | | - Amre Ghazzal
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Awais Malik
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | |
Collapse
|
138
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
139
|
Analysis of cetuximab N-Glycosylation using multiple fractionation methods and capillary electrophoresis mass spectrometry. J Pharm Biomed Anal 2020; 180:113035. [DOI: 10.1016/j.jpba.2019.113035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
|
140
|
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma. Drug Saf 2020; 42:769-784. [PMID: 30649752 PMCID: PMC6520328 DOI: 10.1007/s40264-018-00788-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. External evaluation for anaphylaxis by Sampson criteria found no tralokinumab-related severe hypersensitivity or anaphylaxis reactions. Conclusion Preclinical assessments suggested a low likelihood of immunogenicity for tralokinumab. In STRATOS 1 and 2, ADA incidence was low, no differences were found between tralokinumab-treated and placebo groups in reporting of hypersensitivity reactions, and there were no Sampson criteria-evaluated anaphylaxis events with tralokinumab treatment. Together, the results suggest that tralokinumab treatment would not increase the risk for severe hypersensitivity or anaphylactic reactions. Electronic supplementary material The online version of this article (10.1007/s40264-018-00788-w) contains supplementary material, which is available to authorized users.
Collapse
|
141
|
Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104:1905-1914. [DOI: 10.1007/s00253-020-10368-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
142
|
Abstract
Food allergy presents in all ages and has a significant impact on an individual's quality of life. Some of the food allergies that start in childhood remain into adulthood and new-onset allergies can occur at any point of life. Health care providers caring for adult patients should be aware of various food allergy presentations and syndromes. In this article, the authors cover recent literature on food allergies in adults and discuss the epidemiology of adult food allergy as well as common clinical scenarios and presentations of various types of food allergies.
Collapse
Affiliation(s)
- Mahboobeh Mahdavinia
- Division of Allergy and Immunology, Department of Internal Medicine, Rush University Medical Center, Professional Building, 1725 West Harrison Street, Suite 117, Chicago, IL 60612, USA.
| |
Collapse
|
143
|
Jaros J, Shi VY, Katta R. Diet and Chronic Urticaria: Dietary Modification as a Treatment Strategy. Dermatol Pract Concept 2019; 10:e2020004. [PMID: 31921491 DOI: 10.5826/dpc.1001a04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with chronic urticaria (CU) often ask about dietary modification. Research has indicated that specific dietary changes may be helpful in a subset of patients. Immunological food reactions are rare, but potential triggers of CU include those seen in certain settings, as in patients with a history of tick bites, a history of raw or marinated fish ingestion, or those with celiac disease. Nonimmunological food intolerances may also contribute, although mechanism of action is not well understood. Trials of pseudoallergen-free diets and low-histamine diets have resulted in partial remission in a subset of patients, while oral provocation testing has confirmed that some patients experience worsening of symptoms after ingestion of food additives, tomatoes, herbs, seafood, alcohol, and other foods. An increased prevalence of vitamin D deficiency has also been noted in patients with CU compared with healthy controls. While oral antihistamines remain the mainstay of therapy in CU, education on potential dietary factors may be offered to a selection of the group of patients. For those at risk or reporting symptoms suggestive of celiac disease, vitamin D deficiency, delayed reactions to mammalian meat, or exposure to raw fish, further workup is recommended. While education on dietary modification may be offered to other patients, this approach may benefit only a subset, and no test is available to identify these patients. A minimum of 3 weeks may be needed to determine response, and only specific diets that have been systematically studied should be considered. Any elimination diet should be used with caution because of the potential for nutritional deficiencies.
Collapse
Affiliation(s)
- Joanna Jaros
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Vivian Y Shi
- Department of Medicine, Dermatology Division, University of Arizona at Tucson, AZ, USA
| | - Rajani Katta
- Dermatology, McGovern Medical School at UT Health, Bellaire, TX, USA
| |
Collapse
|
144
|
Iglesia EGA, Stone CA, Flaherty MG, Commins SP. Regional and temporal awareness of alpha-gal allergy: An infodemiological analysis using Google Trends. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1725-1727.e1. [PMID: 31857260 DOI: 10.1016/j.jaip.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Edward G A Iglesia
- Division of Pediatric Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - Cosby A Stone
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Mary Grace Flaherty
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Scott P Commins
- Division of Rheumatology, Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
145
|
Fischer J, Huynh HN, Hebsaker J, Forchhammer S, Yazdi AS. Prevalence and Impact of Type I Sensitization to Alpha-Gal in Patients Consulting an Allergy Unit. Int Arch Allergy Immunol 2019; 181:119-127. [PMID: 31805569 DOI: 10.1159/000503966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alpha-gal syndrome is a complex allergy with high clinical relevance regarding mammalian-derived food and drugs and is characterized by the presence of IgE antibodies directed at the carbohydrate galactose-α-1,3-galactose. As not all alpha-gal sIgE-positive individuals pre-sent clinical symptoms upon consumption of mammalian meat, the diagnostic value of alpha-gal sIgE has yet to be clarified. OBJECTIVE To investigate the prevalence of alpha-gal-sIgE positivity among allergy patients, examine the impact of tick bites as associated risk factors and determine the diagnostic value of alpha-gal-sIgE positivity. METHODS A retrospective cross-sectional study evaluating patients in the Allergy Unit was performed. Alpha-gal-sIgE levels were assessed by ImmunoCAP assay. Exposure to tick bites was assessed by a questionnaire. A receiver operating characteristics (ROC) curve analysis was performed to determine the diagnostic value of alpha-gal sIgE for the diagnosis of alpha-gal syndrome. RESULTS In the study population (n = 1369), the overall prevalence of alpha-gal-sIgE-positive (≥0.10 kUA/L) individuals was 19.9%, and the highest prevalence (30.2%) was found in patients with insect venom allergies. A reported tick bite within the 12 months prior to blood sampling significantly increased the risk of alpha-gal-sIgE positivity (OR 2.084). The ROC curve analysis indicated alpha-gal sIgE ≥0.54 kUA/L as the optimal cutoff point for assessing the diagnostic value of alpha-gal syndrome in allergy patients. CONCLUSIONS In allergy care settings, alpha-gal-sIgE positivity is a common finding. Alpha-gal sIgE is a sensitive marker in the diagnosis of alpha-gal syndrome but has limited predictive value for the characteristics or severity of this allergy.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany,
| | - Hoai-Nam Huynh
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Hebsaker
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Amir Sadegh Yazdi
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Dermatology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
146
|
Sun X, Liu C, Shi Y, Li C, Sun L, Hou L, Wang X. The assessment of xenogeneic bone immunotoxicity and risk management study. Biomed Eng Online 2019; 18:108. [PMID: 31727050 PMCID: PMC6857292 DOI: 10.1186/s12938-019-0729-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Background Xenogeneic bone has been widely used in a variety of clinical bone-related disease to promote bone healing and restore bone defects. However, the adverse effects of immune system limit its application in the clinic. The aim of this study was to evaluate xenogeneic bone safety of immunotoxicity and explore the methods for immune risk supervision. Results Xenogeneic bone, which is freeze-dried bovine cancellous bone, was implanted into the muscle of mice. On day 7, 14 and 28, the effects of xenogeneic bone were examined on humoral immunity and cellular immunity, including the levels of IgG, IgM, C3, inflammatory factors (TNF-α, IL-6), alkaline phosphatase (ALP) and the lymphocyte phenotype. The data showed that xenogeneic bone implantation had no potential to induce immune responses not only in humoral immunity but also in cellular immunity. To reveal the risk of immunogenicity, the residual DNA and the clearance of α-gal epitope were analyzed in 2 different bones (bone 1 is deproteinized bone, bone 2 is acellular and defatted bone). It was suggested that DNA of xenogeneic bone can be limited to < 50 ng per mg dry weight for the repair or regeneration with the acceptable immune risk. And α-gal clearance of xenogeneic bone could be an effective risk factor for improving xenograft quality management. Conclusions Through the detection of xenogeneic bone immunotoxicity, our findings indicated that the supervisions of risk factors could contribute to reduce the immune risk. And the risk factors under the acceptable limitation could decrease or replace animal experiment. However, it still needs to be studied on the limitation of α-gal epitope to predict rejection of xenogeneic bone more accurately.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China. .,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China.
| | - Chenghu Liu
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| | - Yanping Shi
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| | - Chunling Li
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| | - Likui Sun
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| | - Li Hou
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| | - Xin Wang
- Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan, 250101, People's Republic of China.,Shandong Quality Inspection Center for Medical Devices, No. 15166 Century Avenue, Jinan H-T Industrial Development Zone, Jinan, 250101, Shandong, People's Republic of China
| |
Collapse
|
147
|
Mangla A, Agarwal N. Relevance of Anti-Galactose-α-1,3-Galactose Antibodies in the Era of Monoclonal Antibodies. J Oncol Pract 2019; 15:679-680. [PMID: 31693451 DOI: 10.1200/jop.19.00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ankit Mangla
- Ankit Mangla, MD, Case Western Reserve University, Cleveland, OH; and Nikki Agarwal, MD, MetroHealth Medical Center, Cleveland, OH
| | - Nikki Agarwal
- Ankit Mangla, MD, Case Western Reserve University, Cleveland, OH; and Nikki Agarwal, MD, MetroHealth Medical Center, Cleveland, OH
| |
Collapse
|
148
|
Dunkman WJ, Rycek W, Manning MW. What Does a Red Meat Allergy Have to Do With Anesthesia? Perioperative Management of Alpha-Gal Syndrome. Anesth Analg 2019; 129:1242-1248. [DOI: 10.1213/ane.0000000000003460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
149
|
Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front Immunol 2019; 10:2396. [PMID: 31681287 PMCID: PMC6803385 DOI: 10.3389/fimmu.2019.02396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
The two major sialic acids described in mammalian cells are the N-glycolylneuraminic acid (Neu5Gc) and the N-acetylneuraminic acid (Neu5Ac). Neu5Gc synthesis starts from the N-acetylneuraminic acid (Neu5Ac) precursor modified by an hydroxylic group addition catalyzed by CMP-Neu5Ac hydroxylase enzyme (CMAH). In humans, CMAH was inactivated by a 92 bp deletion occurred 2-3 million years ago. Few other mammals do not synthetize Neu5Gc, however livestock species used for food production and as a source of biological materials for medical applications carry Neu5Gc. Trace amounts of Neu5Gc are up taken through the diet and incorporated into various tissues including epithelia and endothelia cells. Humans carry "natural," diet-induced Anti-Neu5Gc antibodies and when undertaking medical treatments or receiving transplants or devices that contain animal derived products they can cause immunological reaction affecting pharmacology, immune tolerance, and severe side effect like serum sickness disease (SSD). Neu5Gc null mice have been the main experimental model to study such phenotype. With the recent advances in genome editing, pigs and cattle KO for Neu5Gc have been generated always in association with the αGal KO. These large animals are normal and fertile and provide additional experimental models to study such mutation. Moreover, they will be the base for the development of new therapeutic applications like polyclonal IgG immunotherapy, Bioprosthetic Heart Valves, cells and tissues replacement.
Collapse
Affiliation(s)
- Andrea Perota
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| |
Collapse
|
150
|
Román‐Carrasco P, Lieder B, Somoza V, Ponce M, Szépfalusi Z, Martin D, Hemmer W, Swoboda I. Only α-Gal bound to lipids, but not to proteins, is transported across enterocytes as an IgE-reactive molecule that can induce effector cell activation. Allergy 2019; 74:1956-1968. [PMID: 31102539 PMCID: PMC6852507 DOI: 10.1111/all.13873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The oligosaccharide galactose-α-1,3-galactose (α-Gal), present in mammalian proteins and lipids, causes an unusual delayed allergic reaction 3 to 6 hours after ingestion of mammalian meat in individuals with IgE antibodies against α-Gal. To better understand the delayed onset of allergic symptoms and investigate whether protein-bound or lipid-bound α-Gal causes these symptoms, we analyzed the capacity of α-Gal conjugated proteins and lipids to cross a monolayer of intestinal cells. METHODS Extracts of proteins and lipids from beef were prepared, subjected to in vitro digestions, and added to Caco-2 cells grown on permeable supports. The presence of α-Gal in the basolateral medium was investigated by immunoblotting, thin-layer chromatography with immunostaining and ELISA, and its allergenic activity was analyzed in a basophil activation test. RESULTS After addition of beef proteins to the apical side of Caco-2 cells, α-Gal containing peptides were not detected in the basolateral medium. Those peptides that crossed the Caco-2 monolayer did not activate basophils from an α-Gal allergic patient. Instead, when Caco-2 cells were incubated with lipids extracted from beef, α-Gal was detected in the basolateral medium. Furthermore, these α-Gal lipids were able to activate the basophils of an α-Gal allergic patient in a dose-dependent manner. CONCLUSION Only α-Gal bound to lipids, but not to proteins, is able to cross the intestinal monolayer and trigger an allergic reaction. This suggests that the slower digestion and absorption of lipids might be responsible for the unusual delayed allergic reactions in α-Gal allergic patients and identifies glycolipids as potential allergenic molecules.
Collapse
Affiliation(s)
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry University of Vienna Vienna Austria
| | - Marta Ponce
- Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC‐UAM) Madrid Spain
| | | | - Ines Swoboda
- Molecular Biotechnology Section University of Applied Sciences Vienna Austria
| |
Collapse
|