101
|
Nami S, Baradaran B, Mansoori B, Kordbacheh P, Rezaie S, Falahati M, Mohamed Khosroshahi L, Safara M, Zaini F. The Utilization of RNA Silencing Technology to Mitigate the Voriconazole Resistance of Aspergillus Flavus; Lipofectamine-Based Delivery. Adv Pharm Bull 2017; 7:53-59. [PMID: 28507937 PMCID: PMC5426734 DOI: 10.15171/apb.2017.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/25/2016] [Accepted: 12/28/2017] [Indexed: 02/01/2023] Open
Abstract
Purpose: Introducing the effect of RNAi in fungi to downregulate essential genes has made it a powerful tool to investigate gene function, with potential strategies for novel disease treatments. Thus, this study is an endeavor to delve into the silencing potentials of siRNA on cyp51A and MDR1 in voriconazole-resistant Aspergillus flavus as the target genes.
Methods: In this study, we designed three cyp51A-specific siRNAs and three MDR1-specific siRNAs and after the co-transfection of siRNA into Aspergillus flavus, using lipofectamine, we investigated the effect of different siRNA concentrations (5, 15, 25, 50nM) on cyp51A and MDR1 expressions by qRT-PCR. Finally, the Minimum Inhibitory Concentrations (MICs) of voriconazole for isolates were determined by broth dilution method.
Results: Cyp51A siRNA induced 9, 22, 33, 40-fold reductions in cyp51A mRNA expression in a voriconazole-resistant strain following the treatment of the cells with concentrations of 5, 15, 25, 50nM siRNA, respectively. Identically, the same procedure was applied to MDR1, even though it induced 2, 3, 4, 10-fold reductions. The results demonstrated a MIC for voriconazole in the untreated group (4µg per ml), when compared to the group treated with cyp51A-specific siRNA and MDR1-specific siRNA, both at concentrations of 25 and 50nM, yielding 2µg per ml and 1µg per ml when 25 nM was applied and 2µg per ml and 0.5µg per ml when the concentration doubled to 50 nM.
Conclusion: In this study, we suggested that siRNA-mediated specific inhibition of cyp51A and MDR1 genes play roles in voriconazole-resistant A.flavus strain and these could be apt target genes for inactivation. The current study promises a bright prospect for the treatment of invasive aspergillosis through the effective deployment of RNAi and gene therapy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parivash Kordbacheh
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Rezaie
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehraban Falahati
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahin Safara
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Zaini
- Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
102
|
Yablokov E, Florinskaya A, Medvedev A, Sergeev G, Strushkevich N, Luschik A, Shkel T, Haidukevich I, Gilep A, Usanov S, Ivanov A. Thermodynamics of interactions between mammalian cytochromes P450 and b5. Arch Biochem Biophys 2017; 619:10-15. [DOI: 10.1016/j.abb.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
|
103
|
Characterization of 1-Aminobenzotriazole and Ketoconazole as Novel Inhibitors of Monoamine Oxidase (MAO): An In Vitro Investigation. Eur J Drug Metab Pharmacokinet 2017; 42:827-834. [DOI: 10.1007/s13318-017-0401-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
104
|
Hydroxyurea Induces Cytokinesis Arrest in Cells Expressing a Mutated Sterol-14α-Demethylase in the Ergosterol Biosynthesis Pathway. Genetics 2016; 204:959-973. [PMID: 27585850 DOI: 10.1534/genetics.116.191536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/18/2016] [Indexed: 12/30/2022] Open
Abstract
Hydroxyurea (HU) has been used for the treatment of multiple diseases, such as cancer. The therapeutic effect is generally believed to be due to the suppression of ribonucleotide reductase (RNR), which slows DNA polymerase movement at replication forks and induces an S phase cell cycle arrest in proliferating cells. Although aberrant mitosis and DNA damage generated at collapsed forks are the likely causes of cell death in the mutants with defects in replication stress response, the mechanism underlying the cytotoxicity of HU in wild-type cells remains poorly understood. While screening for new fission yeast mutants that are sensitive to replication stress, we identified a novel mutation in the erg11 gene encoding the enzyme sterol-14α-demethylase in the ergosterol biosynthesis pathway that dramatically sensitizes the cells to chronic HU treatment. Surprisingly, HU mainly arrests the erg11 mutant cells in cytokinesis, not in S phase. Unlike the reversible S phase arrest in wild-type cells, the cytokinesis arrest induced by HU is relatively stable and occurs at low doses of the drug, which likely explains the remarkable sensitivity of the mutant to HU. We also show that the mutation causes sterol deficiency, which may predispose the cells to the cytokinesis arrest and lead to cell death. We hypothesize that in addition to the RNR, HU may have a secondary unknown target(s) inside cells. Identification of such a target(s) may greatly improve the chemotherapies that employ HU or help to expand the clinical usage of this drug for additional pathological conditions.
Collapse
|
105
|
Rabelo VW, Santos TF, Terra L, Santana MV, Castro HC, Rodrigues CR, Abreu PA. Targeting CYP51 for drug design by the contributions of molecular modeling. Fundam Clin Pharmacol 2016; 31:37-53. [PMID: 27487199 DOI: 10.1111/fcp.12230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
CYP51 is an enzyme of sterol biosynthesis pathway present in animals, plants, protozoa and fungi. This enzyme is described as an important drug target that is still of interest. Therefore, in this work, we reviewed the structure and function of CYP51 and explored the molecular modeling approaches for the development of new antifungal and antiprotozoans that target this enzyme. Crystallographic structures of CYP51 of some organisms have already been described in the literature, which enable the construction of homology models of other organisms' enzymes and molecular docking studies of new ligands. The binding mode and interactions of some new series of azoles with antifungal or antiprotozoan activities has been studied and showed important residues of the active site. Molecular modeling is an important tool to be explored for the discovery and optimization of CYP51 inhibitors with better activities, pharmacokinetics, and toxicological profiles.
Collapse
Affiliation(s)
- Vitor W Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| | - Taísa F Santos
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| | - Luciana Terra
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Marcos V Santana
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Helena C Castro
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Paula A Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| |
Collapse
|
106
|
Guengerich FP, Waterman MR, Egli M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 2016; 37:625-640. [PMID: 27267697 PMCID: PMC4961565 DOI: 10.1016/j.tips.2016.05.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
107
|
Warrilow AGS, Parker JE, Price CL, Nes WD, Garvey EP, Hoekstra WJ, Schotzinger RJ, Kelly DE, Kelly SL. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrob Agents Chemother 2016; 60:4530-8. [PMID: 27161631 PMCID: PMC4958158 DOI: 10.1128/aac.00349-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 01/07/2023] Open
Abstract
Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 μM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 μM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 μM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - W David Nes
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | | | | | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| |
Collapse
|
108
|
Singh A, Paliwal S, Sharma M, Mittal A, Sharma S, Tripathi N, Tilak A. Identification of novel antifungal lead compounds through pharmacophore modeling, virtual screening, molecular docking, antimicrobial evaluation, and gastrointestinal permeation studies. J Biomol Struct Dyn 2016; 35:2363-2371. [PMID: 27464511 DOI: 10.1080/07391102.2016.1218369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aarti Singh
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Sarvesh Paliwal
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Mukta Sharma
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Anupama Mittal
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Swapnil Sharma
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Neetika Tripathi
- a Department of Pharmacy , Banasthali University , Banasthali , Rajasthan 304022 , India
| | - Amita Tilak
- b Department of Pharmacy , GSVM Medical College , Swaroop Nagar, Kanpur , Uttar Pradesh 208002 , India
| |
Collapse
|
109
|
Hargrove TY, Friggeri L, Wawrzak Z, Sivakumaran S, Yazlovitskaya EM, Hiebert SW, Guengerich FP, Waterman MR, Lepesheva GI. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. J Lipid Res 2016; 57:1552-63. [PMID: 27313059 DOI: 10.1194/jlr.m069229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL
| | - Suneethi Sivakumaran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
110
|
Warrilow AGS, Price CL, Parker JE, Rolley NJ, Smyrniotis CJ, Hughes DD, Thoss V, Nes WD, Kelly DE, Holman TR, Kelly SL. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa. Sci Rep 2016; 6:27690. [PMID: 27291783 PMCID: PMC4904373 DOI: 10.1038/srep27690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022] Open
Abstract
Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Nicola J Rolley
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | | | - David D Hughes
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, United Kingdom
| | - Vera Thoss
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, LL57 2UW, United Kingdom
| | - W David Nes
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| | - Theodore R Holman
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064 USA
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|
111
|
Rad MNS, Behrouz S, Behrouz M, Sami A, Mardkhoshnood M, Zarenezhad A, Zarenezhad E. Design, synthesis and biological evaluation of novel 1,2,3-triazolyl $$\upbeta $$ β -hydroxy alkyl/carbazole hybrid molecules. Mol Divers 2016; 20:705-18. [DOI: 10.1007/s11030-016-9678-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/22/2016] [Indexed: 12/14/2022]
|
112
|
Sagatova AA, Keniya MV, Wilson RK, Sabherwal M, Tyndall JDA, Monk BC. Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14α-demethylase. Sci Rep 2016; 6:26213. [PMID: 27188873 PMCID: PMC4870556 DOI: 10.1038/srep26213] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022] Open
Abstract
Emergence of fungal strains showing resistance to triazole drugs can make treatment of fungal disease problematic. Triazole resistance can arise due to single mutations in the drug target lanosterol 14α-demethylase (Erg11p/CYP51). We have determined how commonly occurring single site mutations in pathogenic fungi affect triazole binding using Saccharomyces cerevisiae Erg11p (ScErg11p) as a target surrogate. The mutations Y140F/H were introduced into full-length hexahistidine-tagged ScErg11p. Phenotypes and high-resolution X-ray crystal structures were determined for the mutant enzymes complexed with short-tailed (fluconazole and voriconazole) or long-tailed (itraconazole and posaconazole) triazoles and wild type enzyme complexed with voriconazole. The mutations disrupted a water-mediated hydrogen bond network involved in binding of short-tailed triazoles, which contain a tertiary hydroxyl not present in long-tailed triazoles. This appears to be the mechanism by which resistance to these short chain azoles occurs. Understanding how these mutations affect drug affinity will aid the design of azoles that overcome resistance.
Collapse
Affiliation(s)
- Alia A Sagatova
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Manya Sabherwal
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Joel D A Tyndall
- New Zealand's National School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Brian C Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand.,Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
113
|
Kitajima S, Kohno S, Kondoh A, Sasaki N, Nishimoto Y, Li F, Abdallah Mohammed MS, Muranaka H, Nagatani N, Suzuki M, Kido Y, Takahashi C. Undifferentiated State Induced by Rb-p53 Double Inactivation in Mouse Thyroid Neuroendocrine Cells and Embryonic Fibroblasts. Stem Cells 2016; 33:1657-69. [PMID: 25694388 DOI: 10.1002/stem.1971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
Abstract
Retinoblastoma tumor suppressor protein (RB) is inactivated more frequently during tumor progression than during tumor initiation. However, its exact role in controlling the malignant features associated with tumor progression is poorly understood. We established in vivo and in vitro models to investigate the undifferentiated state induced by Rb inactivation. Rb heterozygous mice develop well-differentiated thyroid medullary carcinoma. We found that additional deletion of Trp53, without change in lineage, converted these Rb-deficient tumors to a poorly differentiated type associated with higher self-renewal activity. Freshly prepared mouse embryonic fibroblasts (MEFs) of Rb(-/-) ; Trp53(-/-) background formed stem cell-like spheres that expressed significant levels of embryonic genes despite of lacking the ability to form colonies on soft agar or tumors in immune-deficient mice. This suggested that Rb-p53 double inactivation resulted in an undifferentiated status but without carcinogenic conversion. We next established Rb(-/-) ; N-ras(-/-) MEFs that harbored a spontaneous carcinogenic mutation in Trp53. These cells (RN6), in an Rb-dependent manner, efficiently generated spheres that expressed very high levels of embryonic genes, and appeared to be carcinogenic. We then screened an FDA-approved drug library to search for agents that suppressed the spherogenic activity of RN6 cells. Data revealed that RN6 cells were sensitive to specific agents including ones those are effective against cancer stem cells. Taken together, all these findings suggest that the genetic interaction between Rb and p53 is a critical determinant of the undifferentiated state in normal and tumor cells.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Division of Oncology and Molecular Biology, Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
The Metabolism, Analysis, and Targeting of Steroid Hormones in Breast and Prostate Cancer. Discov Oncol 2016; 7:149-64. [PMID: 26969590 DOI: 10.1007/s12672-016-0259-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Breast and prostate cancers are malignancies in which steroid hormones drive cellular proliferation. Over the past century, this understanding has led to successful treatment strategies aimed to inhibit hormone-mediated tumor growth. Nonetheless, disease relapse and progression still pose significant clinical problems, with recurrent and metastatic tumors often exhibiting resistance to current drug therapies. The central role of androgens and estrogens in prostate and breast cancer etiology explains not only why endocrine therapies are often initially successful but also why many tumors ultimately become resistant. It is hypothesized that reducing the concentration of active hormones in the systemic circulation may be insufficient to block cancer progression, as this action selects for tumor cells that can generate active steroids from circulating precursors. This review aims to highlight the currently known differences of steroid biosynthesis in normal physiology versus hormone-dependent cancers, modern approaches to the assessment and targeting of these pathways, and priorities for future research.
Collapse
|
115
|
Alphonsa A, Loganathan C, Anand SA, Kabilan S. Molecular structure, NMR, UV–Visible, vibrational spectroscopic and HOMO, LUMO analysis of (E)-1-(2, 6-bis (4-methoxyphenyl)-3, 3-dimethylpiperidine-4-ylidene)-2-(3-(3, 5-dimethyl-1H-pyrazol-1-yl) pyrazin-2-yl) hydrazine by DFT method. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
116
|
Shaikh MH, Subhedar DD, Khan FAK, Sangshetti JN, Nawale L, Arkile M, Sarkar D, Shingate BB. Synthesis of Novel Triazole-incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2598] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mubarak H. Shaikh
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 India
| | - Dnyaneshwar D. Subhedar
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 India
| | - Firoz A. Kalam Khan
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus; Aurangabad 431 001 India
| | - Jaiprakash N. Sangshetti
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus; Aurangabad 431 001 India
| | - Laxman Nawale
- Combi-Chem Resource Centre; CSIR-National Chemical Laboratory; Pune 411 008 India
| | - Manisha Arkile
- Combi-Chem Resource Centre; CSIR-National Chemical Laboratory; Pune 411 008 India
| | - Dhiman Sarkar
- Combi-Chem Resource Centre; CSIR-National Chemical Laboratory; Pune 411 008 India
| | - Bapurao B. Shingate
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 India
| |
Collapse
|
117
|
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59:5131-48. [PMID: 26689671 DOI: 10.1021/acs.jmedchem.5b01281] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aromatase catalyzes the synthesis of estrogen from androgen with high substrate specificity. For the past 40 years, aromatase has been a target of intense inhibitor discovery research for the prevention and treatment of estrogen-dependent breast cancer. The so-called third generation aromatase inhibitors (AIs) letrozole, anastrozole, and the steroidal exemestane were approved in the U.S. in the late 1990s for estrogen-dependent postmenopausal breast cancer. Efforts to develop better AIs with higher selectivity and lower side effects were handicapped by the lack of an experimental structure of this unique P450. The year 2009 marked the publication of the crystal structure of aromatase purified from human placenta, revealing an androgen-specific active site. The structure has reinvigorated research activities on this fascinating enzyme and served as the catalyst for next generation AI discovery research. Here, we present an account of recent developments in the AI field from the perspective of the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
118
|
Yu X, Nandekar P, Mustafa G, Cojocaru V, Lepesheva GI, Wade RC. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design. Biochim Biophys Acta Gen Subj 2015; 1860:67-78. [PMID: 26493722 DOI: 10.1016/j.bbagen.2015.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cytochrome P450 sterol 14α-demethylase (CYP51) is an essential enzyme for sterol biosynthesis and a target for anti-parasitic drug design. However, the design of parasite-specific drugs that inhibit parasitic CYP51 without severe side effects remains challenging. The active site of CYP51 is situated in the interior of the protein. Here, we characterize the potential ligand egress routes and mechanisms in Trypanosoma brucei and human CYP51 enzymes. METHODS We performed Random Acceleration Molecular Dynamics simulations of the egress of four different ligands from the active site of models of soluble and membrane-bound T. brucei CYP51 and of soluble human CYP51. RESULTS In the simulations, tunnel 2f, which leads to the membrane, was found to be the predominant ligand egress tunnel for all the ligands studied. Tunnels S, 1 and W, which lead to the cytosol, were also used in T. brucei CYP51, whereas tunnel 1 was the only other tunnel used significantly in human CYP51. The common tunnels found previously in other CYPs were barely used. The ligand egress times were shorter for human than T. brucei CYP51, suggesting lower barriers to ligand passage. Two gating residues, F105 and M460, in T. brucei CYP51 that modulate the opening of tunnels 2f and S were identified. CONCLUSIONS Although the main egress tunnel was the same, differences in the tunnel-lining residues, ligand passage and tunnel usage were found between T. brucei and human CYP51s. GENERAL SIGNIFICANCE The results provide a basis for the design of selective anti-parasitic agents targeting the ligand tunnels.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Prajwal Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Galina I Lepesheva
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
119
|
Cao X, Xu Y, Cao Y, Wang R, Zhou R, Chu W, Yang Y. Design, synthesis, and structure-activity relationship studies of novel thienopyrrolidone derivatives with strong antifungal activity against Aspergillus fumigates. Eur J Med Chem 2015; 102:471-6. [PMID: 26310892 DOI: 10.1016/j.ejmech.2015.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
Abstract
In order to further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compounds (I), two series of novel azoles featuring thieno[2,3-c]pyrrolidone and thieno[3,2-c]pyrrolidone nuclei were designed and evaluated for their in vitro activity on the basis of the binding mode of albaconazole using molecular docking, along with SARs of antifungal triazoles. Most of target compounds exhibited excellent activity against Candida and Cryptococcus spp., with MIC values in the range of 0.0625 μg/ml to 0.0156 μg/ml. The thieno[3,2-c]pyrrolidone unit was more suited for improving activity against Aspergillus spp. The most potent compound, 18a, was selected for further development due to its significant in vitro activity against Aspergillus spp. (MIC = 0.25 μg/ml), as well as its high metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Xufeng Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yuanyuan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yongbing Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ruilian Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ran Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Wenjing Chu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 555 Zuchong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
120
|
Khedr MA. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4501-13. [PMID: 26309398 PMCID: PMC4539092 DOI: 10.2147/dddt.s84178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (−24.49 and −25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (−18.19 kcal/mol) and fluconazole (−16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole.
Collapse
Affiliation(s)
- Mohammed A Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
121
|
Price CL, Parker JE, Warrilow AGS, Kelly DE, Kelly SL. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. PEST MANAGEMENT SCIENCE 2015; 71:1054-8. [PMID: 25914201 DOI: 10.1002/ps.4029] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 05/08/2023]
Abstract
Plant fungal pathogens can have devastating effects on a wide range of crops, including cereals and fruit (such as wheat and grapes), causing losses in crop yield, which are costly to the agricultural economy and threaten food security. Azole antifungals are the treatment of choice; however, resistance has arisen against these compounds, which could lead to devastating consequences. Therefore, it is important to understand how these fungicides are used and how the resistance arises in order to tackle the problem fully. Here, we give an overview of the problem and discuss the mechanisms that mediate azole resistance in agriculture (point mutations in the CYP51 amino acid sequence, overexpression of the CYP51 enzyme and overexpression of genes encoding efflux pump proteins). © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
122
|
Shcherbinin DS, Gnedenko OV, Khmeleva SA, Usanov SA, Gilep AA, Yantsevich AV, Shkel TV, Yushkevich IV, Radko SP, Ivanov AS, Veselovsky AV, Archakov AI. Computer-aided design of aptamers for cytochrome p450. J Struct Biol 2015; 191:112-9. [PMID: 26166326 DOI: 10.1016/j.jsb.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/25/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M.
Collapse
Affiliation(s)
- Dmitrii S Shcherbinin
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia.
| | - Oksana V Gnedenko
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Andrei A Gilep
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Tatsiana V Shkel
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Ivan V Yushkevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Sergey P Radko
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Alexis S Ivanov
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | | | - Alexander I Archakov
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| |
Collapse
|
123
|
Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrob Agents Chemother 2015; 59:4982-9. [PMID: 26055382 DOI: 10.1128/aac.00925-15] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023] Open
Abstract
Infections by fungal pathogens such as Candida albicans and Aspergillus fumigatus and their resistance to triazole drugs are major concerns. Fungal lanosterol 14α-demethylase belongs to the CYP51 class in the cytochrome P450 superfamily of enzymes. This monospanning bitopic membrane protein is involved in ergosterol biosynthesis and is the primary target of azole antifungal drugs, including fluconazole. The lack of high-resolution structural information for this drug target from fungal pathogens has been a limiting factor for the design of modified triazole drugs that will overcome resistance. Here we report the X-ray structure of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase in complex with fluconazole at a resolution of 2.05 Å. This structure shows the key interactions involved in fluconazole binding and provides insight into resistance mechanisms by revealing a water-mediated hydrogen bonding network between the drug and tyrosine 140, a residue frequently found mutated to histidine or phenylalanine in resistant clinical isolates.
Collapse
|
124
|
De Petris A, Crestoni ME, Pirolli A, Rovira C, Iglesias-Fernández J, Chiavarino B, Ragno R, Fornarini S. Binding of azole drugs to heme: A combined MS/MS and computational approach. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
125
|
Sun B, Song S, Hao CZ, Huang WX, Liu CC, Xie HL, Lin B, Cheng MS, Zhao DM. Molecular recognition of CYP26A1 binding pockets and structure–activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents. J Mol Graph Model 2015; 56:10-9. [DOI: 10.1016/j.jmgm.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 12/26/2022]
|
126
|
Kaluzhsiy LA, Gnedenko OV, Gilep AA, Strushkevich NV, Shkel TV, Chernovetsky MA, Ivanov AS, Lisitsa AV, Usanov AS, Stonik VA, Archakov AI. [The screening of the inhibitors of the human cytochrome P450(51) (CYP51A1): the plant and animal structural lanosterol's analogs]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 60:528-37. [PMID: 25386880 DOI: 10.18097/pbmc20146005528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cholesterol biosynthesis regulation is the important part of the hypercholesterolemia diseases therapy. The inhibition of the post-squalene cholesterol biosynthesis steps provide the alternative to classic statin therapy. Sterol-14a-demethylase (CYP51) is one of the hypothetical targets for it. In this work the screening of the ability to interact with human CYP51 (CYP51A1) for the nature low-weight compounds with steroid-like scaffold were performed by integration of the surface plasmon resonance biosensor and spectral titration methods. The results of the selection were 4 compounds (betulafolientriol, holothurin A, teasaponin, capsicoside A) witch had high affinity to the CYP51A1 active site. These data extend the range of compounds which may be used as specific inhibitors of CYP51 and give the permission to suggest the dynamic of the enzyme.
Collapse
|
127
|
Saxena A, Devillers J, Bhunia S, Bro E. Modelling inhibition of avian aromatase by azole pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:757-82. [PMID: 26535448 PMCID: PMC4673582 DOI: 10.1080/1062936x.2015.1090749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/26/2015] [Indexed: 05/26/2023]
Abstract
The potential effects of pesticides and their metabolites on the endocrine system are of major concern to wildlife and human health. In this context, the azole pesticides have earned special attention due to their cytochrome P450 aromatase inhibition potential. Cytochrome P450 aromatase (CYP19) catalyses the conversion of androstenedione and testosterone into oestrone and oestradiol, respectively. Thus, aromatase modulates the oestrogenic balance essential not only for females, but also for male physiology, including gonadal function. Its inhibition affects reproductive organs, fertility and sexual behaviour in humans and wildlife species. Several studies have shown that azole pesticides are able to inhibit human and fish aromatases but the information on birds is lacking. Consequently, it appeared to be of interest to estimate the aromatase inhibition of azoles in three different avian species, namely Gallus gallus, Coturnix coturnix japonica and Taeniopygia guttata. In the absence of the crystal structure of the aromatase enzyme in these bird species, homology models for the individual avian species were constructed using the crystal structure of human aromatase (hAr) (pdb: 3EQM) that showed high sequence similarity for G. gallus (82.0%), T. guttata (81.9%) and C. japonica (81.2%). A homology model with Oncorhynchus mykiss (81.9%) was also designed for comparison purpose. The homology-modelled aromatase for each avian and fish species and crystal structure of human aromatase were selected for docking 46 structurally diverse azoles and related compounds. We showed that the docking behaviour of the chemicals on the different aromatases was broadly the same. We also demonstrated that there was an acceptable level of correlation between the binding score values and the available aromatase inhibition data. This means that the homology models derived on bird and fish species can be used to approximate the potential inhibitory effects of azoles on their aromatase.
Collapse
Affiliation(s)
| | | | - S.S. Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - E. Bro
- Research Department, National Game and Wildlife Institute (ONCFS), Le Perray en Yvelines, France
| |
Collapse
|
128
|
CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
129
|
Zelenko U, Hodošček M, Rozman D, Golič Grdadolnik S. Structural Insight into the Unique Binding Properties of Pyridylethanol(phenylethyl)amine Inhibitor in Human CYP51. J Chem Inf Model 2014; 54:3384-95. [DOI: 10.1021/ci500556k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Urška Zelenko
- Laboratory
of Biomolecular Structure, National Institute of Chemistry, Hajdrihova
19, 1001 Ljubljana, Slovenia
| | - Milan Hodošček
- Laboratory
of Molecular Modeling, National Institute of Chemistry, Hajdrihova
19, 1001 Ljubljana, Slovenia
| | - Damjana Rozman
- Center
for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory
of Biomolecular Structure, National Institute of Chemistry, Hajdrihova
19, 1001 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia
| |
Collapse
|
130
|
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev 2014; 114:11242-71. [PMID: 25337991 PMCID: PMC4254036 DOI: 10.1021/cr5003134] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Jun Yong Choi
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, and Department of
Pathology, University of California—San
Francisco, San Francisco, California 94158, United States
| | - William R. Roush
- Department
of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
131
|
Kaluzhskiy LA, Gnedenko OV, Gilep AA, Strushkevich NV, Shkel TV, Chernovetsky MA, Ivanov AS, Lisitsa AV, Usanov AS, Stonik VA, Archakov AI. Screening of human cytochrome P450(51) (CYP51A1) inhibitors: Structural lanosterol analogues of plant and animal origin. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s199075081404012x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
132
|
Warfield J, Setzer WN, Ogungbe IV. Interactions of antiparasitic sterols with sterol 14α-demethylase (CYP51) of human pathogens. SPRINGERPLUS 2014; 3:679. [PMID: 25932361 PMCID: PMC4410773 DOI: 10.1186/2193-1801-3-679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/08/2014] [Indexed: 11/29/2022]
Abstract
Sterol 14α-demethylase is a validated and an attractive drug target in human protozoan parasites. Pharmacological inactivation of this important enzyme has proven very effective against fungal infections, and it is a target that is being exploited for new antitrypanosomal and antileishmanial chemotherapy. We have used in silico calculations to identify previously reported antiparasitic sterol-like compounds and their structural congeners that have preferential and high docking affinity for CYP51. The sterol 14α-demethylase from Trypanosoma cruzi and Leishmania infantum, in particular, preferentially dock to taraxerol, epi-oleanolic acid, and α/β-amyrim structural scaffolds. These structural information and predicted interactions can be exploited for fragment/structure-based antiprotozoal drug design.
Collapse
Affiliation(s)
- Jasmine Warfield
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217 USA
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899 USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217 USA
| |
Collapse
|
133
|
The A395T mutation in ERG11 gene confers fluconazole resistance in Candida tropicalis causing candidemia. Mycopathologia 2014; 179:213-8. [PMID: 25398256 DOI: 10.1007/s11046-014-9831-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The mechanism of fluconazole resistance in Candida tropicalis is still unclear. Recently, we isolated a fluconazole-resistant strain of C. tropicalis from the blood specimen of a patient with candidemia in China. In vitro antifungal susceptibility of the isolate was determined by using CLSI M27-A3 and E-test methods. The sequence of ERG11 gene was then analyzed, and the three-dimensional model of Erg11p encoded by ERG11 gene was also investigated. The sequencing of ERG11 gene revealed the mutation of A395T in this fluconazole-resistant isolate of C. tropicalis, resulting in the Y132F substitution in Erg11p. Sequence alignment and three-dimensional model comparison of Erg11ps showed high similarity between fluconazole-susceptible isolates of C. tropicalis and Candida albicans. The comparison of the three-dimensional models of Erg11ps demonstrated that the position of the Y132F substitution in this isolate of C. tropicalis is identical to the isolate of C. albicans with fluconazole resistance resulting from Y132F substitution in Erg11p. Hence, we ascertain that the Y132F substitution of Erg11p caused by A395T mutation in ERG11 gene confers the fluconazole resistance in C. tropicalis.
Collapse
|
134
|
Lucas JA, Hawkins NJ, Fraaije BA. The evolution of fungicide resistance. ADVANCES IN APPLIED MICROBIOLOGY 2014; 90:29-92. [PMID: 25596029 DOI: 10.1016/bs.aambs.2014.09.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fungicides are widely used in developed agricultural systems to control disease and safeguard crop yield and quality. Over time, however, resistance to many of the most effective fungicides has emerged and spread in pathogen populations, compromising disease control. This review describes the development of resistance using case histories based on four important diseases of temperate cereal crops: eyespot (Oculimacula yallundae and Oculimacula acuformis), Septoria tritici blotch (Zymoseptoria tritici), powdery mildew (Blumeria graminis), and Fusarium ear blight (a complex of Fusarium and Microdochium spp). The sequential emergence of variant genotypes of these pathogens with reduced sensitivity to the most active single-site fungicides, methyl benzimidazole carbamates, demethylation inhibitors, quinone outside inhibitors, and succinate dehydrogenase inhibitors illustrates an ongoing evolutionary process in response to the introduction and use of different chemical classes. Analysis of the molecular mechanisms and genetic basis of resistance has provided more rapid and precise methods for detecting and monitoring the incidence of resistance in field populations, but when or where resistance will occur remains difficult to predict. The extent to which the predictability of resistance evolution can be improved by laboratory mutagenesis studies and fitness measurements, comparison between pathogens, and reconstruction of evolutionary pathways is discussed. Risk models based on fungal life cycles, fungicide properties, and exposure to the fungicide are now being refined to take account of additional traits associated with the rate of pathogen evolution. Experimental data on the selection of specific mutations or resistant genotypes in pathogen populations in response to fungicide treatments can be used in models evaluating the most effective strategies for reducing or preventing resistance. Resistance management based on robust scientific evidence is vital to prolong the effective life of fungicides and safeguard their future use in crop protection.
Collapse
Affiliation(s)
- John A Lucas
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Nichola J Hawkins
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Bart A Fraaije
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| |
Collapse
|
135
|
Khedkar VM, Arya N, Coutinho EC, Shishoo CJ, Jain KS. Docking study of novel antihyperlipidemic thieno[2,3-d]pyrimidine; LM-1554, with some molecular targets related to hyperlipidemia - an investigation into its mechanism of action. SPRINGERPLUS 2014; 3:628. [PMID: 25392798 PMCID: PMC4221561 DOI: 10.1186/2193-1801-3-628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/13/2014] [Indexed: 12/24/2022]
Abstract
An investigation into the mechanism of antihyperlipidemic action of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-4(3H)-one (LM-1554) was carried out through docking experiments with six different molecular targets; Niemann Pick C1 Like1 protein (NPC1L1), ATP citrate lyase (ACL), C-reactive protein (CRP), lanosterol 14α-demethylase (LDM), squalene synthase (SqS) and farnesiod X-receptor (FXR) known to be implicated in the physiology of hyperlipidemia. The interactions of LM-1554 were compared with the interactions of their respective co-crystallized native ligands at the active sites of these receptors. These comparisons are based on their docking parameters, as well as, types of interactions and vicinity with various amino acids in the active site pockets. The interaction of LM-1554 with the target, NPC1L1 has been found to be the quite favourable as compared to those with the other targets assessed in this study.
Collapse
Affiliation(s)
- Vijay M Khedkar
- />Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, 400 098 Maharashtra India
| | - Nikhilesh Arya
- />Department of Pharmaceutical Chemistry, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Pune, 410 401 Maharashtra India
- />Department of Chemistry, Banasthali University, Tonk, 304 022 Rajasthan India
| | - Evans C Coutinho
- />Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, 400 098 Maharashtra India
| | - Chamanlal J Shishoo
- />B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, S.G. Highway, Thaltej, Ahmedabad, 380 054 Gujarat India
| | - Kishor S Jain
- />Department of Pharmaceutical Chemistry, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Pune, 410 401 Maharashtra India
| |
Collapse
|
136
|
The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58:7121-7. [PMID: 25224009 DOI: 10.1128/aac.03707-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinant Candida albicans CYP51 (ERG11) and Homo sapiens CYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum with Candida albicans CYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 for Candida albicans CYP51 was high (dissociation constant [Kd], ≤ 39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤ 50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibited Candida albicans CYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml(-1)) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml(-1)). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibited Candida albicans CYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment of Candida infections.
Collapse
|
137
|
Parker JE, Warrilow AGS, Price CL, Mullins JGL, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol 2014; 7:143-61. [PMID: 25320648 DOI: 10.1007/s12154-014-0121-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022] Open
Abstract
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.
Collapse
Affiliation(s)
- Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Jonathan G L Mullins
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|
138
|
Wang J, Yu J, Liu J, Yuan Y, Li N, He M, Qi T, Hui G, Xiong L, Liu D. Novel mutations in CYP51B from Penicillium digitatum involved in prochloraz resistance. J Microbiol 2014; 52:762-70. [DOI: 10.1007/s12275-014-4112-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/25/2022]
|
139
|
Design, synthesis, and biological activities of novel azole-bonded β-hydroxypropyl oxime O-ethers. Mol Divers 2014; 18:797-808. [PMID: 25081563 DOI: 10.1007/s11030-014-9539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Abstract
The synthesis and biological effects of 15 novel azole-bonded β-hydroxypropyl oxime O-ethers have been described. In this synthesis, the oximation of aromatic ketones followed by an O-alkylation reaction with epichlorohydrin and/or epibromohydrin led to the corresponding O-oxime ether adducts. Subsequently, the attained O-oxime ether adducts were used to synthesize the target molecules after treating them with the appropriate azole derivatives. The in vitro antifungal and antibacterial activities of title compounds were obtained against several pathogenic fungi, Gram-positive and/or Gram-negative bacteria. Benzophenone O-2-hydroxy-3-(2-phenyl-1 H-imidazol-1-yl) propyl oxime and 9H-fluoren-9-one O-2-hydroxy-3-(2-phenyl-1 H-imidazol-1-yl)propyl oxime proved to have considerable antifungal activity against Candida albicans, Candida krusei, Aspergillus niger, and Trichophyton rubrum. These two compounds demonstrated comparable antifungal activity to clotrimazole and fluconazole (standard drugs). All compounds were also tested against Escherichia coli and Staphylococcus aureus as Gram-negative and Gram-positive bacteria, respectively, and their activities were compared to gentamycin and ampicillin (reference drugs). In general, marginal antibacterial activity against tested bacteria was observed for the title compounds. A molecular docking study is also discussed for the two most potent compounds against fungi. The docking study reveals a considerable interaction between the two most potent compounds and the active site of Mycobacterium P450DM. Moreover, these two compounds are much strongly bound to the active site of Mycobacterium P450DM compared to fluconazole.
Collapse
|
140
|
Röhrig UF, Majjigapu SR, Chambon M, Bron S, Pilotte L, Colau D, Van den Eynde BJ, Turcatti G, Vogel P, Zoete V, Michielin O. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2014; 84:284-301. [PMID: 25036789 DOI: 10.1016/j.ejmech.2014.06.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/28/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.
Collapse
Affiliation(s)
- Ute F Röhrig
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Somi Reddy Majjigapu
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sylvian Bron
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Luc Pilotte
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Didier Colau
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Benoît J Van den Eynde
- de Duve Institute and the Université catholique de Louvain, B-1200 Brussels, Belgium; Ludwig Institute for Cancer Research, B-1200 Brussels, Belgium.
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Quartier Sorge - Bâtiment Génopode, CH-1015 Lausanne, Switzerland; Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland; Ludwig Center for Cancer Research of the University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
141
|
Vieira DF, Choi JY, Roush WR, Podust LM. Expanding the binding envelope of CYP51 inhibitors targeting Trypanosoma cruzi with 4-aminopyridyl-based sulfonamide derivatives. Chembiochem 2014; 15:1111-20. [PMID: 24771705 PMCID: PMC4091728 DOI: 10.1002/cbic.201402027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 12/29/2022]
Abstract
Chagas disease is a chronic infection caused by the protozoan parasite Trypanosoma cruzi, manifested in progressive cardiomyopathy and/or gastrointestinal dysfunction. Therapeutic options to prevent or treat Chagas disease are limited. CYP51, the enzyme key to the biosynthesis of eukaryotic membrane sterols, is a validated drug target in both fungi and T. cruzi. Sulfonamide derivatives of 4-aminopyridyl-based inhibitors of T. cruzi CYP51 (TcCYP51), including the sub-nanomolar compound 3, have molecular structures distinct from other validated CYP51 inhibitors. They augment the biologically relevant chemical space of molecules targeting TcCYP51. In a 2.08 Å X-ray structure, TcCYP51 is in a conformation that has been influenced by compound 3 and is distinct from the previously characterized ground-state conformation of CYP51 drug-target complexes. That the binding site was modulated in response to an incoming inhibitor for the first time characterizes TcCYP51 as a flexible target rather than a rigid template.
Collapse
Affiliation(s)
- Debora F. Vieira
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, 1700 4th Street, San Francisco, California, 94158 (USA), Fax: (+)1 415 502-8193
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458, (USA), Fax: (+)1 561 228-3052
| | - William R. Roush
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida, 33458, (USA), Fax: (+)1 561 228-3052
| | - Larissa M. Podust
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, 1700 4th Street, San Francisco, California, 94158 (USA), Fax: (+)1 415 502-8193
| |
Collapse
|
142
|
Roelofs MJE, Temming AR, Piersma AH, van den Berg M, van Duursen MBM. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro. Toxicol Rep 2014; 1:271-283. [PMID: 28962244 PMCID: PMC5598417 DOI: 10.1016/j.toxrep.2014.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Conazole fungicides are widely used in agriculture despite their suspected endocrine disrupting properties. In this study, the potential (anti-)androgenic effects of ten conazoles were assessed and mutually compared with existing data. Effects of cyproconazole (CYPRO), fluconazole (FLUC), flusilazole (FLUS), hexaconazole (HEXA), myconazole (MYC), penconazole (PEN), prochloraz (PRO), tebuconazole (TEBU), triadimefon (TRIA), and triticonazole (TRIT) were examined using murine Leydig (MA-10) cells and human T47D-ARE cells stably transfected with an androgen responsive element and a firefly luciferase reporter gene. Six conazoles caused a decrease in basal testosterone (T) secretion by MA-10 cells varying from 61% up to 12% compared to vehicle-treated control. T secretion was concentration-dependently inhibited after exposure of MA-10 cells to several concentrations of FLUS (IC50 = 12.4 μM) or TEBU (IC50 = 2.4 μM) in combination with LH. The expression of steroidogenic and cholesterol biosynthesis genes was not changed by conazole exposure. Also, there were no changes in reactive oxygen species (ROS) formation that could explain the altered T secretion after exposure to conazoles. Nine conazoles decreased T-induced AR activation (IC50s ranging from 10.7 to 71.5 μM) and effect potencies (REPs) were calculated relative to the known AR antagonist flutamide (FLUT). FLUC had no effect on AR activation by T. FLUS was the most potent (REP = 3.61) and MYC the least potent (REP = 0.03) AR antagonist. All other conazoles had a comparable REP from 0.12 to 0.38. Our results show distinct in vitro anti-androgenic effects of several conazole fungicides arising from two mechanisms: inhibition of T secretion and AR antagonism, suggesting potential testicular toxic effects. These effects warrant further mechanistic investigation and clearly show the need for accurate exposure data in order to perform proper (human) risk assessment of this class of compounds.
Collapse
Key Words
- 17β-HSD3, 17β-hydroxysteroid dehydrogenase type 3
- 3β-HSD1, 3β-hydroxysteroid dehydrogenase type 1
- AR, androgen receptor
- Androgen receptor (AR)
- BMR, benchmark response
- CHO cells, Chinese hamster ovary cells
- CYP19, cytochrome P450 enzyme 19 (aromatase)
- CYP51, cytochrome P450 enzyme 51/lanosterol 14α-demethylase
- CYPRO, cyproconazole
- Conazole fungicides
- Cyp11A1, cytochrome P450 enzyme 11A
- Cyp17, cytochrome P450 enzyme 17
- Cyproconazole (PubChem CID: 86132)
- DMEM, Dulbecco's Modified Eagle Medium
- EC50, half maximal effective concentration
- EDCs, endocrine disrupting chemicals
- Endocrine disrupting chemicals (EDCs)
- FLUC, fluconazole
- FLUS, flusilazole
- FLUT, flutamide
- FP, forward primer
- FSH(R), follicle-stimulating hormone (receptor)
- Fluconazole (PubChem CID: 3365)
- Flusilazole (PubChem CID: 73675)
- H295R, human adrenocortical carcinoma cells
- HEXA, hexaconazole
- HMG-CoA red, HMG-CoA reductase
- HSD(s), hydroxysteroid dehydrogenase(s)
- Hexaconazole (PubChem CID: 66461)
- IC50, half maximal inhibitory concentration
- LH(R), luteinizing hormone (receptor)
- MA-10 Leydig cells
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- MYC, myclobutanil
- Myclobutanil (PubChem CID: 6336)
- NCBI, National Center for Biotechnology Information
- PBS, phosphate-buffered saline
- PEN, penconazole
- PRO, prochloraz
- Penconazole (PubChem CID: 91693)
- Por, cytochrome P450 oxidoreductase
- Prochloraz (PubChem CID: 73665)
- REP, relative effect potency
- RIA, radioimmunoassay
- ROS, reactive oxygen species
- RP, reverse primer
- RT-qPCR, real time quantitative polymerase chain reaction
- Spermatogenesis
- StAR, steroidogenic acute regulatory protein
- T, testosterone
- TEBU, tebuconazole
- TRIA, triadimefon
- TRIT, triticonazole
- Tebuconazole (PubChem CID: 86102)
- Testosterone (T)
- Triadimefon (PubChem CID: 39385)
- Triticonazole (PubChem CID: 6537961)
- cAMP, 8-bromoadenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Maarke J E Roelofs
- Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands.,Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - A Roberto Temming
- Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.,Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | - Martin van den Berg
- Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands
| | - Majorie B M van Duursen
- Endocrine Toxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
143
|
Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 2014; 111:3865-70. [PMID: 24613931 DOI: 10.1073/pnas.1324245111] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bitopic integral membrane proteins with a single transmembrane helix play diverse roles in catalysis, cell signaling, and morphogenesis. Complete monospanning protein structures are needed to show how interaction between the transmembrane helix and catalytic domain might influence association with the membrane and function. We report crystal structures of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase, a membrane monospanning cytochrome P450 of the CYP51 family that catalyzes the first postcyclization step in ergosterol biosynthesis and is inhibited by triazole drugs. The structures reveal a well-ordered N-terminal amphipathic helix preceding a putative transmembrane helix that would constrain the catalytic domain orientation to lie partly in the lipid bilayer. The structures locate the substrate lanosterol, identify putative substrate and product channels, and reveal constrained interactions with triazole antifungal drugs that are important for drug design and understanding drug resistance.
Collapse
|
144
|
Jang HH, Davydov DR, Lee GY, Yun CH, Halpert JR. The role of cytochrome P450 2B6 and 2B4 substrate access channel residues predicted based on crystal structures of the amlodipine complexes. Arch Biochem Biophys 2014; 545:100-7. [PMID: 24445070 DOI: 10.1016/j.abb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
Abstract
Recent X-ray crystal structures of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 in complex with amlodipine showed two bound ligand molecules, one in the active site and one in the substrate access channel. Based on the X-ray crystal structures, we investigated the interactions of P450 2B4 and 2B6 with amlodipine using absorbance spectroscopy, and determined the steady-state kinetics of 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin oxidation by some access channel mutants to evaluate the functional role of these residues in substrate turnover. The results of absorbance titrations are consistent with a simple mechanism with two parallel binding events that result in the formation of the enzyme complex with two molecules of amlodipine. Using this model we were able to resolve two separate ligand-binding events, which are characterized by two distinct KD values in each enzyme. The access channel mutants R73K in P450 2B6 and R73K, V216W, L219W, and F220W in P450 2B4 showed a significant decrease in kcat/KM with the both substrates. Overall, the results suggest that P450 2B4 and 2B6 form an enzyme complex with two molecules of amlodipine in solution, and R73, V216, L219 and F220 in P450 2B4 may play an important role in substrate metabolism.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ga-Young Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
145
|
Morrison AMS, Goldstone JV, Lamb DC, Kubota A, Lemaire B, Stegeman JJ. Identification, modeling and ligand affinity of early deuterostome CYP51s, and functional characterization of recombinant zebrafish sterol 14α-demethylase. Biochim Biophys Acta Gen Subj 2013; 1840:1825-36. [PMID: 24361620 DOI: 10.1016/j.bbagen.2013.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. METHODS PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC-MS. RESULTS Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26μM for ketoconazole and 0.64μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51s. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. CONCLUSIONS Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. GENERAL SIGNIFICANCE The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications.
Collapse
Affiliation(s)
- Ann Michelle Stanley Morrison
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David C Lamb
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Akira Kubota
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Benjamin Lemaire
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
146
|
Polymorphisms of CYP51A1 from cholesterol synthesis: associations with birth weight and maternal lipid levels and impact on CYP51 protein structure. PLoS One 2013; 8:e82554. [PMID: 24358204 PMCID: PMC3866192 DOI: 10.1371/journal.pone.0082554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
We investigated the housekeeping cytochrome P450 CYP51A1 encoding lanosterol 14α-demethylase from cholesterol synthesis that was so far not directly linked to human disorders. By direct sequencing of CYP51A1 in 188 women with spontaneous preterm delivery and 188 unrelated preterm infants (gestational age <37 weeks) we identified 22 variants where 10 are novel and rare. In infants there were two novel CYP51A1 variants where damaging effects of p.Tyr145Asp from the substrate recognition region, but not p.Asn193Asp, were predicted by PolyPhen2 and SIFT. This was confirmed by molecular modeling showing that Tyr145Asp substitution results in changed electrostatic potential of the CYP51 protein surface and lengthened distance to the heme which prevents hydrogen bonding. The CYP51 Tyr145Asp mutation is rare and thus very interesting for further structure/function relationship studies. From the 12 identified known variants rs6465348 was chosen for family based association studies due to its high minor allele frequency. Interestingly, this CYP51A1 common variant associates with small for gestational age weight in newborns (p = 0.028) and lower blood total cholesterol and low density lipoprotein cholesterol levels in mothers in 2nd trimester of pregnancy (p = 0.042 and p = 0.046 respectively). Our results indicate a new link between a cholesterol synthesis gene CYP51A1 and pregnancy pathologies.
Collapse
|
147
|
Azole–carbodithioate hybrids as vaginal anti-Candida contraceptive agents: Design, synthesis and docking studies. Eur J Med Chem 2013; 70:68-77. [DOI: 10.1016/j.ejmech.2013.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
|
148
|
Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:465-73. [PMID: 24184423 DOI: 10.1016/j.bbamem.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
Abstract
EPR spectroscopy was applied to investigate the effects of the treatment of Candida albicans cells with fluconazole (FLC) and two newly synthesized azoles (CPA18 and CPA109), in a concentration not altering yeast morphology, on the lipid organization and dynamics of the plasma membrane. Measurements were performed in the temperature range between 0°C and 40°C using 5-doxyl- (5-DSA) and 16-doxyl- (16-DSA) stearic acids as spin probes. 5-DSA spectra were typical of lipids in a highly ordered environment, whereas 16-DSA spectra consisted of two comparable components, one corresponding to a fluid bulk lipid domain in the membrane and the other to highly ordered and motionally restricted lipids interacting with integral membrane proteins. A line shape analysis allowed the relative proportion and the orientational order and dynamic parameters of the spin probes in the different environments to be determined. Smaller order parameters, corresponding to a looser lipid packing, were found for the treated samples with respect to the control one in the region close to the membrane surface probed by 5-DSA. On the other hand, data on 16-DSA indicated that azole treatments hamper the formation of ordered lipid domains hosting integral proteins and/or lead to a decrease in integral protein content in the membrane. The observed effects are mainly ascribable to the inhibition of ergosterol biosynthesis by the antifungal agents, although a direct interaction of the CPA compounds with the membrane bilayer in the region close to the lipid polar head groups cannot be excluded.
Collapse
|
149
|
Cicogna F, Pinzino C, Castellano S, Porta A, Forte C, Calucci L. Interaction of Azole Compounds with DOPC and DOPC/Ergosterol Bilayers by Spin Probe EPR Spectroscopy: Implications for Antifungal Activity. J Phys Chem B 2013; 117:11978-87. [DOI: 10.1021/jp406776x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesca Cicogna
- Istituto di Chimica
dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche −
CNR, Area della Ricerca di Pisa, via
G. Moruzzi 1, 56124, Pisa, Italy
| | - Calogero Pinzino
- Istituto di Chimica
dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche −
CNR, Area della Ricerca di Pisa, via
G. Moruzzi 1, 56124, Pisa, Italy
| | - Sabrina Castellano
- Dipartimento
di Farmacia, Università di Salerno, via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Amalia Porta
- Dipartimento
di Farmacia, Università di Salerno, via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Claudia Forte
- Istituto di Chimica
dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche −
CNR, Area della Ricerca di Pisa, via
G. Moruzzi 1, 56124, Pisa, Italy
| | - Lucia Calucci
- Istituto di Chimica
dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche −
CNR, Area della Ricerca di Pisa, via
G. Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
150
|
Hargrove TY, Wawrzak Z, Alexander PW, Chaplin JH, Keenan M, Charman SA, Perez CJ, Waterman MR, Chatelain E, Lepesheva GI. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J Biol Chem 2013; 288:31602-15. [PMID: 24047900 DOI: 10.1074/jbc.m113.497990] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chagas disease, caused by the eukaryotic (protozoan) parasite Trypanosoma cruzi, is an alarming emerging global health problem with no clinical drugs available to treat the chronic stage. Azole inhibitors of sterol 14α-demethylase (CYP51) were proven effective against Chagas, and antifungal drugs posaconazole and ravuconazole have entered clinical trials in Spain, Bolivia, and Argentina. Here we present the x-ray structures of T. cruzi CYP51 in complexes with two alternative drug candidates, pyridine derivatives (S)-(4-chlorophenyl)-1-(4-(4-(trifluoromethyl)phenyl)-piperazin-1-yl)-2-(pyridin-3-yl)ethanone (UDO; Protein Data Bank code 3ZG2) and N-[4-(trifluoromethyl)phenyl]-N-[1-[5-(trifluoromethyl)-2-pyridyl]-4-piperi-dyl]pyridin-3-amine (UDD; Protein Data Bank code 3ZG3). These compounds have been developed by the Drugs for Neglected Diseases initiative (DNDi) and are highly promising antichagasic agents in both cellular and in vivo experiments. The binding parameters and inhibitory effects on sterol 14α-demethylase activity in reconstituted enzyme reactions confirmed UDO and UDD as potent and selective T. cruzi CYP51 inhibitors. Comparative analysis of the pyridine- and azole-bound CYP51 structures uncovered the features that make UDO and UDD T. cruzi CYP51-specific. The structures suggest that although a precise fit between the shape of the inhibitor molecules and T. cruzi CYP51 active site topology underlies their high inhibitory potency, a longer coordination bond between the catalytic heme iron and the pyridine nitrogen implies a weaker influence of pyridines on the iron reduction potential, which may be the basis for the observed selectivity of these compounds toward the target enzyme versus other cytochrome P450s, including human drug-metabolizing P450s. These findings may pave the way for the development of novel CYP51-targeted drugs with optimized metabolic properties that are very much needed for the treatment of human infections caused by eukaryotic microbial pathogens.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | | | | | | | | | | | | | |
Collapse
|