101
|
Anilinopyrazines as potential mitochondrial uncouplers. Bioorg Med Chem Lett 2020; 30:127057. [DOI: 10.1016/j.bmcl.2020.127057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
|
102
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2693] [Impact Index Per Article: 538.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
103
|
Childress ES, Salamoun JM, Hargett SR, Alexopoulos SJ, Chen SY, Shah DP, Santiago-Rivera J, Garcia CJ, Dai Y, Tucker SP, Hoehn KL, Santos WL. [1,2,5]Oxadiazolo[3,4- b]pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:2511-2526. [PMID: 32017849 DOI: 10.1021/acs.jmedchem.9b01440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule mitochondrial uncouplers are emerging as a new class of molecules for the treatment of nonalcoholic steatohepatitis. We utilized BAM15, a potent protonophore that uncouples the mitochondria without depolarizing the plasma membrane, as a lead compound for structure-activity profiling. Using oxygen consumption rate as an assay for determining uncoupling activity, changes on the 5- and 6-position of the oxadiazolopyrazine core were introduced. Our studies suggest that unsymmetrical aniline derivatives bearing electron withdrawing groups are preferred compared to the symmetrical counterparts. In addition, alkyl substituents are not tolerated, and the N-H proton of the aniline ring is responsible for the protonophore activity. In particular, compound 10b had an EC50 value of 190 nM in L6 myoblast cells. In an in vivo model of NASH, 10b decreased liver triglyceride levels and showed improvement in fibrosis, inflammation, and plasma ALT. Taken together, our studies indicate that mitochondrial uncouplers have potential for the treatment of NASH.
Collapse
Affiliation(s)
- Elizabeth S Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - José Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., 2035 Sydney, Australia.,Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
104
|
Berkowitz BA, Olds HK, Richards C, Joy J, Rosales T, Podolsky RH, Childers KL, Hubbard WB, Sullivan PG, Gao S, Li Y, Qian H, Roberts R. Novel imaging biomarkers for mapping the impact of mild mitochondrial uncoupling in the outer retina in vivo. PLoS One 2020; 15:e0226840. [PMID: 31923239 PMCID: PMC6953833 DOI: 10.1371/journal.pone.0226840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To test the hypothesis that imaging biomarkers are useful for evaluating in vivo rod photoreceptor cell responses to a mitochondrial protonophore. METHODS Intraperitoneal injections of either the mitochondrial uncoupler 2,4 dinitrophenol (DNP) or saline were given to mice with either higher [129S6/eVTac (S6)] or lower [C57BL/6J (B6)] mitochondrial reserve capacities and were studied in dark or light. We measured: (i) the external limiting membrane-retinal pigment epithelium region thickness (ELM-RPE; OCT), which decreases substantially with upregulation of a pH-sensitive water removal co-transporter on the apical portion of the RPE, and (ii) the outer retina R1 (= 1/(spin lattice relaxation time (T1), an MRI parameter proportional to oxygen / free radical content. RESULTS In darkness, baseline rod energy production and consumption are relatively high compared to that in light, and additional metabolic stimulation with DNP provoked thinning of the ELM-RPE region compared to saline injection in S6 mice; ELM-RPE thickness was unresponsive to DNP in B6 mice. Also, dark-adapted S6 mice given DNP showed a decrease in outer retina R1 values compared to saline injection in the inferior retina. In dark-adapted B6 mice, transretinal R1 values were unresponsive to DNP in superior and inferior regions. In light, with its relatively lower basal rod energy production and consumption, DNP caused ELM-RPE thinning in both S6 and B6 mice. CONCLUSIONS The present results raise the possibility of non-invasively evaluating the mouse rod mitochondrial energy ecosystem using new DNP-assisted OCT and MRI in vivo assays.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
- * E-mail:
| | - Hailey K. Olds
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Collin Richards
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Joydip Joy
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Tilman Rosales
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Robert H. Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States of America
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States of America
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
- Lexington VA Health Care System, Lexington, KY, United States of America
| | - Shasha Gao
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Ophthalmology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
105
|
Palese LL. Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments. Biophys Chem 2019; 256:106276. [PMID: 31731070 DOI: 10.1016/j.bpc.2019.106276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/28/2022]
Abstract
Heme-copper oxidases couple the exergonic oxygen reduction with the endergonic proton translocation. Redox-linked structural changes have been localized in deeply buried regions of the protein, near the low-potential heme. How these movements can modulate distant gating events along the intramolecular proton path, where the entry (exit) of pumped proton occurs, is a major concern for the proton pump models. Generally, these models associate, more or less directly, all translocation events with redox transitions. Although they can account for many phenomenological aspects of the pump, evidences from single-molecules experiments about leak states of the pump represent a formidable challenge. Disconnecting the redox-linked pKa shifts of the proton loading site from the external barriers, we obtain a simple stochastic mechanism which behaves similarly to the real enzyme, able to reverse the flow of the proton transfer.
Collapse
|
106
|
Edelmann D, Berghoff BA. Type I toxin-dependent generation of superoxide affects the persister life cycle of Escherichia coli. Sci Rep 2019; 9:14256. [PMID: 31582786 PMCID: PMC6776643 DOI: 10.1038/s41598-019-50668-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Induction of growth stasis by bacterial toxins from chromosomal toxin-antitoxin systems is suspected to favor formation of multidrug-tolerant cells, named persisters. Recurrent infections are often attributed to resuscitation and regrowth of persisters upon termination of antibiotic therapy. Several lines of evidence point to oxidative stress as a crucial factor during the persister life cycle. Here, we demonstrate that the membrane-depolarizing type I toxins TisB, DinQ, and HokB have the potential to provoke reactive oxygen species formation in Escherichia coli. More detailed work with TisB revealed that mainly superoxide is formed, leading to activation of the SoxRS regulon. Deletion of the genes encoding the cytoplasmic superoxide dismutases SodA and SodB caused both a decline in TisB-dependent persisters and a delay in persister recovery upon termination of antibiotic treatment. We hypothesize that expression of depolarizing toxins during the persister formation process inflicts an oxidative challenge. The ability to counteract oxidative stress might determine whether cells will survive and how much time they need to recover from dormancy.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
107
|
Tan Y, Chen S, Zhong J, Ren J, Dong M. Mitochondrial Injury and Targeted Intervention in Septic Cardiomyopathy. Curr Pharm Des 2019; 25:2060-2070. [PMID: 31284854 DOI: 10.2174/1381612825666190708155400] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022]
Abstract
Background:
Sepsis and septic shock are known to prompt multiple organ failure including cardiac
contractile dysfunction, which is typically referred to as septic cardiomyopathy. Among various theories postulated
for the etiology of septic cardiomyopathy, mitochondrial injury (both morphology and function) in the heart
is perceived as the main culprit for reduced myocardial performance and ultimately heart failure in the face of
sepsis.
Methods:
Over the past decades, ample of experimental and clinical work have appeared, focusing on myocardial
mitochondrial changes and related interventions in septic cardiomyopathy.
Results and Conclusion:
Here we will briefly summarize the recent experimental and clinical progress on myocardial
mitochondrial morphology and function in sepsis, and discuss possible underlying mechanisms, as well as
the contemporary interventional options.
Collapse
Affiliation(s)
- Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, 528300, Guangdong, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
108
|
Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport. Antioxidants (Basel) 2019; 8:antiox8080285. [PMID: 31390791 PMCID: PMC6719910 DOI: 10.3390/antiox8080285] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) can be either detrimental or beneficial depending on the amount, duration, and location of their production. Mitochondrial complex I is a component of the electron transport chain and transfers electrons from NADH to ubiquinone. Complex I is also a source of ROS production. Under certain thermodynamic conditions, electron transfer can reverse direction and reduce oxygen at complex I to generate ROS. Conditions that favor this reverse electron transport (RET) include highly reduced ubiquinone pools, high mitochondrial membrane potential, and accumulated metabolic substrates. Historically, complex I RET was associated with pathological conditions, causing oxidative stress. However, recent evidence suggests that ROS generation by complex I RET contributes to signaling events in cells and organisms. Collectively, these studies demonstrate that the impact of complex I RET, either beneficial or detrimental, can be determined by the timing and quantity of ROS production. In this article we review the role of site-specific ROS production at complex I in the contexts of pathology and physiologic signaling.
Collapse
|
109
|
García‐Calvo J, Torroba T, Brañas‐Fresnillo V, Perdomo G, Cózar‐Castellano I, Li Y, Legrand Y, Barboiu M. Manipulation of Transmembrane Transport by Synthetic K
+
Ionophore Depsipeptides and Its Implications in Glucose‐Stimulated Insulin Secretion in β‐Cells. Chemistry 2019; 25:9287-9294. [DOI: 10.1002/chem.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José García‐Calvo
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | - Tomás Torroba
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | | | - Germán Perdomo
- Department of Health SciencesSchool of Health SciencesUniversity of Burgos 09001 Burgos Spain
| | - Irene Cózar‐Castellano
- Institute of Molecular Biology and Genetics-IBGMUniversity of Valladolid-CSIC 47003 Valladolid Spain
| | - Yu‐Hao Li
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Yves‐Marie Legrand
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| |
Collapse
|
110
|
Ogando DG, Choi M, Shyam R, Li S, Bonanno JA. Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Redox Biol 2019; 26:101260. [PMID: 31254733 PMCID: PMC6604051 DOI: 10.1016/j.redox.2019.101260] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
SLC4A11 is a NH3 sensitive membrane transporter with H+ channel-like properties that facilitates Glutamine catabolism in Human and Mouse corneal endothelium (CE). Loss of SLC4A11 activity induces oxidative stress and cell death, resulting in Congenital Hereditary Endothelial Dystrophy (CHED) with corneal edema and vision loss. However, the mechanism by which SLC4A11 prevents ROS production and protects CE is unknown. Here we demonstrate that SLC4A11 is localized to the inner mitochondrial membrane of CE and SLC4A11 transfected PS120 fibroblasts, where it acts as an NH3-sensitive mitochondrial uncoupler that enhances glutamine-dependent oxygen consumption, electron transport chain activity, and ATP levels by suppressing damaging Reactive Oxygen Species (ROS) production. In the presence of glutamine, Slc4a11-/- (KO) mouse CE generate significantly greater mitochondrial superoxide, a greater proportion of damaged depolarized mitochondria, and more apoptotic cells than WT. KO CE can be rescued by MitoQ, reducing NH3 production by GLS1 inhibition or dimethyl αKetoglutarate supplementation, or by BAM15 mitochondrial uncoupling. Slc4a11 KO mouse corneal edema can be partially reversed by αKetoglutarate eye drops. Moreover, we demonstrate that this role for SLC4A11 is not specific to CE cells, as SLC4A11 knockdown in glutamine-addicted colon carcinoma cells reduced glutamine catabolism, increased ROS production, and inhibited cell proliferation. Overall, our studies reveal a unique metabolic mechanism that reduces mitochondrial oxidative stress while promoting glutamine catabolism.
Collapse
Affiliation(s)
- Diego G Ogando
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Moonjung Choi
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Rajalekshmy Shyam
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Shimin Li
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Joseph A Bonanno
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States.
| |
Collapse
|
111
|
Petersen MH, Willert CW, Andersen JV, Waagepetersen HS, Skotte NH, Nørremølle A. Functional Differences between Synaptic Mitochondria from the Striatum and the Cerebral Cortex. Neuroscience 2019; 406:432-443. [PMID: 30876983 DOI: 10.1016/j.neuroscience.2019.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction has been shown to play a major role in neurodegenerative disorders such as Huntington's disease, Alzheimer's disease and Parkinson's disease. In these and other neurodegenerative disorders, disruption of synaptic connectivity and impaired neuronal signaling are among the early signs. When looking for potential causes of neurodegeneration, specific attention is drawn to the function of synaptic mitochondria, as the energy supply from mitochondria is crucial for normal synaptic function. Mitochondrial heterogeneity between synaptic and non-synaptic mitochondria has been described, but very little is known about possible differences between synaptic mitochondria from different brain regions. The striatum and the cerebral cortex are often affected in neurodegenerative disorders. In this study we therefore used isolated nerve terminals (synaptosomes) from female mice, striatum and cerebral cortex, to investigate differences in synaptic mitochondrial function between these two brain regions. We analyzed mitochondrial mass, citrate synthase activity, general metabolic activity and mitochondrial respiration in resting as well as veratridine-activated synaptosomes using glucose and/or pyruvate as substrate. We found higher mitochondrial oxygen consumption rate in both resting and activated cortical synaptosomes compared to striatal synaptosomes, especially when using pyruvate as a substrate. The higher oxygen consumption rate was not caused by differences in mitochondrial content, but instead corresponded with a higher proton leak in the cortical synaptic mitochondria compared to the striatal synaptic mitochondria. Our results show that the synaptic mitochondria of the striatum and cortex differently regulate respiration both in response to activation and variations in substrate conditions.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | - Niels Henning Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
112
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
113
|
Han P, Yuan C, Wang Y, Wang M, Weng W, Zhan H, Yu X, Wang T, Li Y, Yi W, Shao M, Li S, Yi T, Sun H. Niclosamide ethanolamine protects kidney in adriamycin nephropathy by regulating mitochondrial redox balance. Am J Transl Res 2019; 11:855-864. [PMID: 30899385 PMCID: PMC6413276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Chronic kidney disease (CKD) is commonly characterized by proteinuria and leads to progressive glomerulosclerosis and tubulointerstitial fibrosis. Accumulating evidence implicates mitochondrial dysfunction including reactive oxygen species (ROS) overproduction in the pathogenesis of CKD. Mitochondrial function and ROS production are regulated by mitochondrial uncoupling. Niclosamide ethanolamine salt (NEN) is a mild mitochondrial uncoupler, which reduces urinary albumin excretion in mice with diabetic kidney disease. However, its role in nondiabetic kidney disease has not been investigated. Here we show that NEN exerts renoprotective effects in adriamycin induced nondiabetic kidney disease. It reduces urinary protein excretion, restores podocyte function, ameliorates renal pathological injury, and decreases the excretion of the urinary tubular injury biomarkers NGAL and Kim-1. Specifically, NEN uncouples isolated kidney mitochondria, and dose-dependently decreases the renal production and urinary excretion of H2O2. Moreover, NEN increases catalase and PGC-1α expression, which might accelerate H2O2 scavenging. The results of this study provide the first evidence that NEN protects kidney in nondiabetic kidney disease by regulating redox balance.
Collapse
Affiliation(s)
- Pengxun Han
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Changjian Yuan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Yao Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Menghua Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Wenci Weng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Hongyue Zhan
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Taifen Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Yuyan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Wuyong Yi
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| | - Tiegang Yi
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
- Shenzhen Key Laboratory of Hospital Chinese Medicine PreparationShenzhen, Guangdong, China
| | - Huili Sun
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen, Guangdong, China
| |
Collapse
|
114
|
Pal A, Pal A, Banerjee S, Batabyal S, Chatterjee PN. Mutation in Cytochrome B gene causes debility and adverse effects on health of sheep. Mitochondrion 2019; 46:393-404. [PMID: 30660753 DOI: 10.1016/j.mito.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Cytochrome B is the mitochondrial protein, which functions as part of the electron transport chain and is the main subunit of transmembrane cytochrome bc1 and b6f complexes affecting energy metabolism through oxidative phosphorylation. The present study was conducted to study the effect of mutation of Cytochrome B gene on the health condition of sheep, which the first report of association of mitochondrial gene with disease traits in livestock species. Non-synonymous substitutions (F33 L and D171N) and Indel mutations were observed for Cytochrome B gene, leading to a truncated protein, where anemia, malfunctioning of most of the vital organs as liver, kidney and mineral status was observed and debility with exercise intolerance and cardiomyopathy in extreme cases were depicted. These findings were confirmed by bioinformatics analysis, haematological and biochemical data analysis, and other phenotypical physiological data pertaining to different vital organs. The molecular mechanism of cytochrome B mutation was that the mutant variant interferes with the site of heme binding (iron containing) domain and calcium binding essential for electron transport chain. Mutation at amino acid site 33 is located within transmembrane helix A, a hydrophobic environment at the Qi site and close to heme binding domain, and mutation effects these domain and diseases occur. Thermodynamic stability was also observed to decrease in mutant variant. Sheep Cytochrome B being genetically more similar to the human, it may be used as a model for studying human diseases related to cytochrome B defects. Future prospect of the study includes the therapeutic application of recombinant protein, gene therapy and marker-assisted selection of disease-resistant livestock.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India.
| | - Abantika Pal
- Indian Institute of Technology, Kharagpur, Paschim Medinipur, West Bengal, India
| | - Samiddha Banerjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - S Batabyal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| |
Collapse
|
115
|
Mailloux RJ. Cysteine Switches and the Regulation of Mitochondrial Bioenergetics and ROS Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:197-216. [PMID: 31452142 DOI: 10.1007/978-981-13-8367-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic organelles that perform a number of interconnected tasks that are elegantly intertwined with the regulation of cell functions. This includes the provision of ATP, reactive oxygen species (ROS), and building blocks for the biosynthesis of macromolecules while also serving as signaling platforms for the cell. Although the functions executed by mitochondria are complex, at its core these roles are, to a certain degree, fulfilled by electron transfer reactions and the establishment of a protonmotive force (PMF). Indeed, mitochondria are energy conserving organelles that extract electrons from nutrients to establish a PMF, which is then used to drive ATP and NADPH production, solute import, and many other functions including the propagation of cell signals. These same electrons extracted from nutrients are also used to produce ROS, pro-oxidants that can have potentially damaging effects at high levels, but also serve as secondary messengers at low amounts. Mitochondria are also enriched with antioxidant defenses, which are required to buffer cellular ROS. These same redox buffering networks also fulfill another important role; regulation of proteins through the reversible oxidation of cysteine switches. The modification of cysteine switches with the antioxidant glutathione, a process called protein S-glutathionylation, has been found to play an integral role in controlling various mitochondrial functions. In addition, recent findings have demonstrated that disrupting mitochondrial protein S-glutathionylation reactions can have some dire pathological consequences. Accordingly, this chapter focuses on the role of mitochondrial cysteine switches in the modulation of different physiological functions and how defects in these pathways contribute to the development of disease.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
116
|
Zimmerman MA, Biggers CD, Li PA. Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci 2018; 19:82. [PMID: 30594149 PMCID: PMC6310999 DOI: 10.1186/s12868-018-0482-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cobalt chloride (CoCl2) induces chemical hypoxia through activation of hypoxia-inducible factor-1 alpha (HIF-1α). Mammalian target of rapamycin (mTOR) is a multifaceted protein capable of regulating cell growth, angiogenesis, metabolism, proliferation, and survival. In this study, we tested the efficacy of a well-known mTOR inhibitor, rapamycin, in reducing oxidative damage and increasing cell viability in the mouse hippocampal cell line, HT22, during a CoCl2-simulated hypoxic insult. RESULTS CoCl2 caused cell death in a dose-dependent manner and increased protein levels of cleaved caspase-9 and caspase-3. Rapamycin increased viability of HT22 cells exposed to CoCl2 and reduced activation of caspases-9 and -3. Cells exposed to CoCl2 displayed increased reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial membrane, both of which rapamycin successfully blocked. mTOR protein itself, along with its downstream signaling target, phospho-S6 ribosomal protein (pS6), were significantly inhibited with CoCl2 and rapamycin addition did not significantly lower expression further. Rapamycin promoted protein expression of Beclin-1 and increased conversion of microtubule-associated protein light chain 3 (LC3)-I into LC3-II, suggesting an increase in autophagy. Pro-apoptotic protein, Bcl-2 associated × (Bax), exhibited a slight, but significant decrease with rapamycin treatment, while its anti-apoptotic counterpart, B cell lymphoma-2 (Bcl-2), was to a similar degree upregulated. Finally, the protein expression ratio of phosphorylated mitogen-activated protein kinase (pMAPK) to its unphosphorylated form (MAPK) was dramatically increased in rapamycin and CoCl2 co-treated cells. CONCLUSIONS Our results indicate that rapamycin confers protection against CoCl2-simulated hypoxic insults to neuronal cells. This occurs, as suggested by our results, independent of mTOR modification, and rather through stabilization of the mitochondrial membrane with concomitant decreases in ROS production. Additionally, inhibition of caspase-9 and -3 activation and stimulation of protective autophagy reduces cell death, while a decrease in the Bax/Bcl-2 ratio and an increase in pMAPK promotes cell survival during CoCl2 exposure. Together these results demonstrate the therapeutic potential of rapamycin against hypoxic injury and highlight potential pathways mediating the protective effects of rapamycin treatment.
Collapse
Affiliation(s)
- Mary A. Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC USA
| | - Christan D. Biggers
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC USA
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC USA
| |
Collapse
|
117
|
Chouchani ET, Liesa M, Trifunovic A. Mechanisms of Mitochondria Assembly, Dynamics and Turnover in Health and Disease. J Mol Biol 2018; 430:4821-4822. [PMID: 30428302 DOI: 10.1016/j.jmb.2018.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Center for Health Sciences, Los Angeles, CA, USA.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
118
|
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
|
119
|
Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res 2018; 202:52-68. [PMID: 30165038 DOI: 10.1016/j.trsl.2018.07.014.mitochondria] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
Affiliation(s)
- Balaji Banoth
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suzanne L Cassel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
120
|
Albert M, Bécares M, Falqui M, Fernández-Lozano C, Guerra S. ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis. Viruses 2018; 10:v10110629. [PMID: 30428561 PMCID: PMC6265978 DOI: 10.3390/v10110629] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Viruses are responsible for the majority of infectious diseases, from the common cold to HIV/AIDS or hemorrhagic fevers, the latter with devastating effects on the human population. Accordingly, the development of efficient antiviral therapies is a major goal and a challenge for the scientific community, as we are still far from understanding the molecular mechanisms that operate after virus infection. Interferon-stimulated gene 15 (ISG15) plays an important antiviral role during viral infection. ISG15 catalyzes a ubiquitin-like post-translational modification termed ISGylation, involving the conjugation of ISG15 molecules to de novo synthesized viral or cellular proteins, which regulates their stability and function. Numerous biomedically relevant viruses are targets of ISG15, as well as proteins involved in antiviral immunity. Beyond their role as cellular powerhouses, mitochondria are multifunctional organelles that act as signaling hubs in antiviral responses. In this review, we give an overview of the biological consequences of ISGylation for virus infection and host defense. We also compare several published proteomic studies to identify and classify potential mitochondrial ISGylation targets. Finally, based on our recent observations, we discuss the essential functions of mitochondria in the antiviral response and examine the role of ISG15 in the regulation of mitochondrial processes, specifically OXPHOS and mitophagy.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Martina Bécares
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Carlos Fernández-Lozano
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
121
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|