101
|
Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC, Walzl G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014; 13:619-30. [PMID: 24702486 DOI: 10.1586/14760584.2014.905746] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis remains a major health threat and vaccines better than bacillus Calmette-Guérin (BCG) are urgently required. Here we describe our experience with a recombinant BCG expressing listeriolysin and deficient in urease. This potential replacement vaccine has demonstrated superior efficacy and safety over BCG in Mycobacterium tuberculosis aerosol-challenged mice and was safe in numerous animal models including immune-deficient mice, guinea pigs, rabbits and nonhuman primates. Phase I clinical trials in adults in Germany and South Africa have proven safety and a current Phase IIa trial is under way to assess immunogenicity and safety in its target population, newborns in a high tuberculosis incidence setting, with promising early results. Second-generation candidates are being developed to improve safety and efficacy.
Collapse
Affiliation(s)
- Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Lindestam Arlehamn CS, Sette A. Definition of CD4 Immunosignatures Associated with MTB. Front Immunol 2014; 5:124. [PMID: 24715893 PMCID: PMC3970006 DOI: 10.3389/fimmu.2014.00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/11/2014] [Indexed: 01/05/2023] Open
Abstract
We have recently described the first true genome-wide screen for CD4(+) T-cell reactivity directed against Mycobacterium tuberculosis (MTB) in latent TB-infected individuals. The approach relied on predictions of HLA-binding capacity for a panel of DR, DP, and DQ alleles representative of those most commonly expressed in the general population, coupled with high throughput ELISPOT assays. The results identified hundreds of novel epitopes and antigens, and documented the novel observation that T cells in latent MTB infection are confined to the CXCR3(+)CCR6(+) phenotype and largely directed against three antigenic "islands" within the MTB genome. In parallel, we have made generally available to the scientific community the technical approaches and reagents developed in the process, such as motifs, algorithms, and binding assays for several common HLA class II alleles, and a panel of single allele HLA class II transfected cell lines representative of the most frequent specificities in the general population. Recent efforts have been focused on characterization of epitopes and antigens recognized by patients with active TB and individuals vaccinated with BCG, with the aim of providing the first systematic evaluation of the overlap between latent, active, and BCG cohorts. The definition of a broad range of epitopes restricted by common HLA molecules, will facilitate development of diagnostic reagents, allow a rigorous evaluation of T-cell responses associated with TB infection in humans, and enable the evaluation of the immunogenicity of different vaccine candidates. Furthermore, it might suggest new candidates for vaccine and diagnostic development.
Collapse
Affiliation(s)
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
103
|
Meng QL, Liu F, Yang XY, Liu XM, Zhang X, Zhang C, Zhang ZD. Identification of latent tuberculosis infection-related microRNAs in human U937 macrophages expressing Mycobacterium tuberculosis Hsp16.3. BMC Microbiol 2014; 14:37. [PMID: 24521422 PMCID: PMC3925440 DOI: 10.1186/1471-2180-14-37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/10/2014] [Indexed: 01/11/2023] Open
Abstract
Background Latent tuberculosis infection (LTBI) relies on a homeostasis of macrophages and Mycobacterium tuberculosis (Mtb). The small heat shock protein, Mtb Hsp16.3 (also known as latency-associated antigen), plays an important role in Mtb persistence within macrophages. However, the mechanism of LTBI remains elusive. The aim of this study was to delineate LTBI-related miRNA expression in U937 macrophages expressing Mtb Hsp16.3 protein. U937 macrophages were infected with an integrase-deficient Lentivirus vector to transiently express Mtb Hsp16.3, and green fluorescent protein (GFP) as a control. We used a microRNA (miRNA) microarray chip containing more than 1000 probes to identify the significant differentially expressed miRNAs in the infected U937 cells, and employed real-time quantitative polymerase chain reaction (qRT-PCR) for validation. Furthermore, we confirmed these candidate LTBI-related miRNAs in peripheral blood mononuclear cells from subjects with LTBI and in healthy control individuals. Functional annotation prediction of miRNA target genes and pathway enrichment analyses were used to explore the putative links between these miRNAs and LTBI. Results Analysis of the miRNA expression profile identified 149 miRNAs that were differentially expressed in U937 macrophages expressing Mtb Hsp16.3 compared with the control expressing GFP. The expression level of seven miRNAs (miR-424-5p, miR-493-5p, miR-296-5p, miR-27b-3p, miR-377-5p, miR-3680-5p, miR-191-5p) were validated by qRT-PCR. The expression level of four miRNAs (miR-424-5p, miR-27b-3p, miR-377-5p, miR-3680-5p) in the peripheral blood mononuclear cells samples from LTBI and healthy participants reflected the altered patterns observed in the microarray profile. The bioinformatic analyses suggest that the miRNAs may regulate Mtb latent infection by affecting the development of macrophage cells. Conclusions The results suggest that miRNA expression may play a considerable role in the pathogenesis of LTBI, and this would increase our understanding of the molecular basis of Hsp16.3-facilitated Mtb survival in macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Zhang
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | | |
Collapse
|
104
|
Singh S, Saraav I, Sharma S. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 2014; 32:712-6. [DOI: 10.1016/j.vaccine.2013.11.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
105
|
Singh OP, Sundar S. Whole blood assay and visceral leishmaniasis: Challenges and promises. Immunobiology 2014; 219:323-8. [PMID: 24571797 DOI: 10.1016/j.imbio.2014.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/05/2013] [Accepted: 01/19/2014] [Indexed: 12/14/2022]
Abstract
For years, the ability to study immune responses in patients with active visceral leishmaniasis (VL) has been hampered by the absence of detectable antigen-specific Th1 responses using cells from peripheral blood mononuclear cells (PBMCs). Employing whole blood assay (WBA), we recently reported that whole blood cells of active VL patients maintain the capacity to secrete significant levels of antigen driven IFN-γ and IL-10. Furthermore, WBA that uses soluble leishmania antigen (SLA) have advantages over the leishmanin skin test (LST), in terms of higher specificity and better correlation with surrogate markers of exposures to Leishmania donovani. These findings open the door to a series of immunological and epidemiological studies not previously possible for VL. In the present review, we discuss current status, future perspectives as well as obstacles in the research on WBA. Research in this area is essential for development of potential immunological and epidemiological tools for VL.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India.
| |
Collapse
|
106
|
Vordermeier M, Jones GJ, Whelan AO. DIVA reagents for bovine tuberculosis vaccines in cattle. Expert Rev Vaccines 2014; 10:1083-91. [DOI: 10.1586/erv.11.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
107
|
|
108
|
ESAT-6 (EsxA) and TB10.4 (EsxH) based vaccines for pre- and post-exposure tuberculosis vaccination. PLoS One 2013; 8:e80579. [PMID: 24349004 PMCID: PMC3861245 DOI: 10.1371/journal.pone.0080579] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
The ESX systems from Mycobacterium tuberculosis are responsible for the secretion of highly immunogenic proteins of key importance for bacterial survival and growth. The two prototypic proteins, ESAT-6 (EsxA from ESX-1) and TB10.4 (EsxH from ESX-3) share a lot of characteristics regarding genome organization, size, antigenic properties, and vaccine potential but the two molecules clearly have very different roles in bacterial physiology. To further investigate the role of ESAT-6 and TB10.4 as preventive and post-exposure tuberculosis vaccines, we evaluated four different fusion-protein vaccines; H1, H4, H56 and H28, that differ only in these two components. We found that all of these vaccines give rise to protection in a conventional prophylactic vaccination model. In contrast, only the ESAT-6-containing vaccines resulted in significant protection against reactivation, when administered post-exposure. This difference in post-exposure activity did not correlate with a difference in gene expression during infection or a differential magnitude or quality of the vaccine-specific CD4 T cells induced by ESAT-6 versus TB10.4-containing vaccines. The post-exposure effect of the ESAT-6 based vaccines was found to be influenced by the infectious load at the time-point of vaccination and was abolished in chronically infected animals with high bacterial loads at the onset of vaccination. Our data demonstrate that there are specific requirements for the immune system to target an already established tuberculosis infection and that ESAT-6 has a unique potential in post-exposure vaccination strategies.
Collapse
|
109
|
Thillai M, Pollock K, Pareek M, Lalvani A. Interferon-gamma release assays for tuberculosis: current and future applications. Expert Rev Respir Med 2013; 8:67-78. [DOI: 10.1586/17476348.2014.852471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
110
|
Legesse M, Ameni G, Medhin G, Mamo G, Franken KLMC, Ottenhoff THM, Bjune G, Abebe F. IgA response to ESAT-6/CFP-10 and Rv2031 antigens varies in patients with culture-confirmed pulmonary tuberculosis, healthy Mycobacterium tuberculosis-infected and non-infected individuals in a tuberculosis endemic setting, Ethiopia. Scand J Immunol 2013; 78:266-74. [PMID: 23713613 DOI: 10.1111/sji.12080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/16/2013] [Indexed: 11/27/2022]
Abstract
Little attention has been given to the role of antibodies against Mycobacterium tuberculosis (Mtb) infection. We have compared the levels of IgA and IgG against ESAT-6/CFP-10 and Rv2031c antigens in sera of patients with culture-confirmed pulmonary tuberculosis (PTB), healthy Mtb-infected and non-infected individuals in endemic TB settings. Venous blood samples were collected from 166 study participants; sera were separated and assayed by an enzyme-linked immunosorbent assay (ELISA). QuantiFERON-TB Gold In-Tube (QFTGIT) assay was used for the screening of latent TB infection. The mean optical density (OD) values of IgA against ESAT-6/CFP-10 and Rv2031 were significantly higher in sera of patients with culture-confirmed PTB compared with healthy Mtb-infected and non-infected individuals (P < 0.001). The mean OD values of IgG against ESAT-6/CFP-10 and Rv2031 were also significantly higher in sera of patients with culture-confirmed PTB compared with healthy Mtb-infected and non-infected individuals (P < 0.05). The mean OD values of IgA against both antigens were also higher in sera of healthy Mtb-infected cases compared with non-infected individuals. There were positive correlations (P < 0.05) between the level of IFN-γ induced in QFTGIT assay and the OD values of serum IgA against both antigens in healthy Mtb-infected subjects. This study shows the potential of IgA response against ESAT-6/CFP-10 and Rv2031 antigens in discriminating clinical TB from healthy Mtb-infected and non-infected cases. Nevertheless, further well-designed cohort study is needed to fully realize the full potential of this diagnostic marker.
Collapse
Affiliation(s)
- M Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia; Department of Community Medicine, Institute for Health and Society, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kumar A, Lewin A, Rani PS, Qureshi IA, Devi S, Majid M, Kamal E, Marek S, Hasnain SE, Ahmed N. Dormancy Associated Translation Inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine 2013; 64:258-64. [DOI: 10.1016/j.cyto.2013.06.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/16/2022]
|
112
|
Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa. PLoS One 2013; 8:e74080. [PMID: 24040170 PMCID: PMC3769366 DOI: 10.1371/journal.pone.0074080] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. Methods We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. Results There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST- and TST+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST+ contacts (LTBI) compared to TB and TST- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Conclusions Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials.
Collapse
|
113
|
Ayala JC, Pimienta E, Rodríguez C, Anné J, Vallín C, Milanés MT, King-Batsios E, Huygen K, Van Mellaert L. Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J Microbiol Methods 2013; 94:192-8. [DOI: 10.1016/j.mimet.2013.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
|
114
|
Magombedze G, Dowdy D, Mulder N. Latent Tuberculosis: Models, Computational Efforts and the Pathogen's Regulatory Mechanisms during Dormancy. Front Bioeng Biotechnol 2013; 1:4. [PMID: 25023946 PMCID: PMC4090907 DOI: 10.3389/fbioe.2013.00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 01/07/2023] Open
Abstract
Latent tuberculosis is a clinical syndrome that occurs after an individual has been exposed to the Mycobacterium tuberculosis (Mtb) Bacillus, the infection has been established and an immune response has been generated to control the pathogen and force it into a quiescent state. Mtb can exit this quiescent state where it is unresponsive to treatment and elusive to the immune response, and enter a rapid replicating state, hence causing infection reactivation. It remains a gray area to understand how the pathogen causes a persistent infection and it is unclear whether the organism will be in a slow replicating state or a dormant non-replicating state. The ability of the pathogen to adapt to changing host immune response mechanisms, in which it is exposed to hypoxia, low pH, nitric oxide (NO), nutrient starvation, and several other anti-microbial effectors, is associated with a high metabolic plasticity that enables it to metabolize under these different conditions. Adaptive gene regulatory mechanisms are thought to coordinate how the pathogen changes their metabolic pathways through mechanisms that sense changes in oxygen tension and other stress factors, hence stimulating the pathogen to make necessary adjustments to ensure survival. Here, we review studies that give insights into latency/dormancy regulatory mechanisms that enable infection persistence and pathogen adaptation to different stress conditions. We highlight what mathematical and computational models can do and what they should do to enhance our current understanding of TB latency.
Collapse
Affiliation(s)
- Gesham Magombedze
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - David Dowdy
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
115
|
Impairment of IFN-gamma response to synthetic peptides of Mycobacterium tuberculosis in a 7-day whole blood assay. PLoS One 2013; 8:e71351. [PMID: 23951140 PMCID: PMC3738639 DOI: 10.1371/journal.pone.0071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022] Open
Abstract
Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity.
Collapse
|
116
|
Jiménez B, Hinojoza-Loza E, Flores-Valdez M, Prado-Montes de Oca E, Allen K, Estrada-Chávez C, Herrera-Rodríguez S, Flores-Fernández J, Martínez-Velázquez M, Hernández-Gutiérrez R, Alvarez A. Expression of non-replicating persistence associated genes of Mycobacterium bovis in lymph nodes from skin test-reactor cattle. Microb Pathog 2013; 61-62:23-8. [DOI: 10.1016/j.micpath.2013.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 11/28/2022]
|
117
|
Osada-Oka M, Tateishi Y, Hirayama Y, Ozeki Y, Niki M, Kitada S, Maekura R, Tsujimura K, Koide Y, Ohara N, Yamamoto T, Kobayashi K, Matsumoto S. Antigen 85A and mycobacterial DNA-binding protein 1 are targets of immunoglobulin G in individuals with past tuberculosis. Microbiol Immunol 2013; 57:30-7. [PMID: 23157580 DOI: 10.1111/j.1348-0421.2012.12005.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 12/01/2022]
Abstract
Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA-binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.
Collapse
Affiliation(s)
- Mayuko Osada-Oka
- Department of Bacteriology, Osaka City University Graduate School of Medicine, 1-4-3 Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Immune-complex mimics as a molecular platform for adjuvant-free vaccine delivery. PLoS One 2013; 8:e60855. [PMID: 23637771 PMCID: PMC3634044 DOI: 10.1371/journal.pone.0060855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/03/2013] [Indexed: 12/15/2022] Open
Abstract
Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role.
Collapse
|
119
|
Chen T, He L, Deng W, Xie J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. J Cell Biochem 2013; 114:1-6. [PMID: 22833514 DOI: 10.1002/jcb.24302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/17/2012] [Indexed: 11/12/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), which claims approximately two million people annually, remains a global health concern. The non-replicating or dormancy like state of this pathogen which is impervious to anti-tuberculosis drugs is widely recognized as the culprit for this scenario. The dormancy survival regulator (DosR) regulon, composed of 48 co-regulated genes, is held as essential for Mtb persistence. The DosR regulon is regulated by a two-component regulatory system consisting of two sensor kinases-DosS (Rv3132c) and DosT (Rv2027c), and a response regulator DosR (Rv3133c). The underlying regulatory mechanism of DosR regulon expression is very complex. Many factors are involved, particularly the oxygen tension. The DosR regulon enables the pathogen to persist during lengthy hypoxia. Comparative genomic analysis demonstrated that the DosR regulon is widely distributed among the mycobacterial genomes, ranging from the pathogenic strains to the environmental strains. In-depth studies on the DosR response should provide insights into its role in TB latency in vivo and shape new measures to combat this exceeding recalcitrant pathogen.
Collapse
Affiliation(s)
- Tian Chen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | | | | |
Collapse
|
120
|
Anbarasu D, Ponnu Raja C, Raja A. Multiplex analysis of cytokines/chemokines as biomarkers that differentiate healthy contacts from tuberculosis patients in high endemic settings. Cytokine 2013; 61:747-54. [DOI: 10.1016/j.cyto.2012.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/28/2012] [Accepted: 12/28/2012] [Indexed: 01/06/2023]
|
121
|
Cell-mediated and humoral immune responses after immunization of calves with a recombinant multiantigenic Mycobacterium avium subsp. paratuberculosis subunit vaccine at different ages. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:551-8. [PMID: 23389934 DOI: 10.1128/cvi.05574-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratuberculosis proteins (MAP0217, MAP1508, MAP3701c, MAP3783, and MAP1609c/Ag85B) was formulated in a cationic liposome adjuvant (CAF01) and used to vaccinate animals of different ages. Male jersey calves were divided into three groups that were vaccinated at 2, 8, or 16 weeks of age and boosted twice at weeks 4 and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster vaccination with no or only a minor effect from the second booster. However, significant differences were observed in the immunogenicity levels of the different proteins, and it appears that the older age group produced a more consistent IFN-γ response. In contrast, the humoral immune response is seemingly independent of vaccination age as we found no difference in the IgG1 responses when we compared the three vaccination groups. Combined, our results suggest that an appropriate age of vaccination should be considered in vaccination protocols and that there is a possible interference of vaccine-induced immune responses with weaning (week 8).
Collapse
|
122
|
Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 2013; 9:e1003130. [PMID: 23358848 PMCID: PMC3554618 DOI: 10.1371/journal.ppat.1003130] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3+CCR6+ memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB. Mycobacterium tuberculosis is one of the most life-threatening pathogens of all time, having infected one-third of the present human population. There is an urgent need for both novel vaccines and diagnostic strategies. Here, we were able to identify the targets most dominantly recognized by latently infected individual that successfully contain infection. These targets are contained in three broadly genomic antigenic islands, all related to bacterial secretion systems and composed by several distinct ORFs. Thus, our results suggest that vaccination with one or few defined antigens will fail to replicate the response associated with natural immunity. Our analysis also pinpoints that the Th1 cells dominating the response are associated with novel and well-defined phenotypic markers, suggesting that the response is molded by unique MTB associated factors. This study demonstrates further that the approach combining peptide binding predictions with modern high throughput techniques is generally applicable to the study of immunity to other complex pathogens. Together, our data provide a new angle in the worldwide fight against M. tuberculosis and could be used for diagnostic or vaccine developments.
Collapse
Affiliation(s)
| | - Anna Gerasimova
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Federico Mele
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ryan Henderson
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Justine Swann
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason A. Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Eddie A. James
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Randy Taplitz
- Antiviral Research Centre, University of California, San Diego, San Diego, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - William W. Kwok
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
123
|
Zárate-Bladés CR, Rodrigues RF, Souza PRM, Rios WM, Soares LS, Rosada RS, Brandão IT, Masson AP, Floriano EM, Ramos SG, Silva CL. Evaluation of the overall IFN-γ and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis. Hum Vaccin Immunother 2013; 9:1093-103. [PMID: 23324590 DOI: 10.4161/hv.23417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite the enormous efforts displayed globally in the fight against tuberculosis, the disease incidence has modified slightly, which has led to a renewed interest in immunotherapy. In general, successful immunotherapeutic candidates against tuberculosis are agents that can trigger strong, specific pro-inflammatory responses, especially of the T-helper (Th) 1 pattern. However, how these pro-inflammatory agents effectively kill the bacteria without eliciting immunopathology is not well understood. We reasoned that, in addition to the specific immune response elicited by immunotherapy, the evaluation of the overall pro-inflammatory responses should provide additional and valuable information that will be useful in avoiding immunopathology. We evaluated the overall IFN-γ and IL-17 pro-inflammatory responses among CD4(+), CD8(+) and γδ T cells in the lungs of mice that were infected with M. tuberculosis and treated with a DNA vaccine in an immunotherapeutic regimen. Our results demonstrate that mice that effectively combat the pathogen develop a strong, specific Th1 immune response against the therapeutic antigen and have reduced lung inflammation, present in parallel a fine-tuning in the total IFN-γ- and IL-17-mediated immunity in the lungs. This modulation of the total immune response involves reducing the Th17 cell population, augmenting CD8(+) T cells that produce IFN-γ and increasing the total γδ T cell frequency. These results stress the importance of a broad evaluation of not only the specific immune response at the time to evaluate new immune interventional strategies against tuberculosis but also non-conventional T cells, such as γδ T lymphocytes.
Collapse
Affiliation(s)
- Carlos R Zárate-Bladés
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Medicine School of Ribeirão Preto; University of São Paulo; São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Commandeur S, van Meijgaarden KE, Prins C, Pichugin AV, Dijkman K, van den Eeden SJF, Friggen AH, Franken KLMC, Dolganov G, Kramnik I, Schoolnik GK, Oftung F, Korsvold GE, Geluk A, Ottenhoff THM. An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1659-71. [PMID: 23319735 DOI: 10.4049/jimmunol.1201593] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis is responsible for almost 2 million deaths annually. Mycobacterium bovis bacillus Calmette-Guérin, the only vaccine available against tuberculosis (TB), induces highly variable protection against TB, and better TB vaccines are urgently needed. A prerequisite for candidate vaccine Ags is that they are immunogenic and expressed by M. tuberculosis during infection of the primary target organ, that is, the lungs of susceptible individuals. In search of new TB vaccine candidate Ags, we have used a genome-wide, unbiased Ag discovery approach to investigate the in vivo expression of 2170 M. tuberculosis genes during M. tuberculosis infection in the lungs of mice. Four genetically related but distinct mouse strains were studied, representing a spectrum of TB susceptibility controlled by the supersusceptibility to TB 1 locus. We used stringent selection approaches to select in vivo-expressed M. tuberculosis (IVE-TB) genes and analyzed their expression patterns in distinct disease phenotypes such as necrosis and granuloma formation. To study the vaccine potential of these proteins, we analyzed their immunogenicity. Several M. tuberculosis proteins were recognized by immune cells from tuberculin skin test-positive, ESAT6/CFP10-responsive individuals, indicating that these Ags are presented during natural M. tuberculosis infection. Furthermore, TB patients also showed responses toward IVE-TB Ags, albeit lower than tuberculin skin test-positive, ESAT6/CFP10-responsive individuals. Finally, IVE-TB Ags induced strong IFN-γ(+)/TNF-α(+) CD8(+) and TNF-α(+)/IL-2(+) CD154(+)/CD4(+) T cell responses in PBMC from long-term latently M. tuberculosis-infected individuals. In conclusion, these IVE-TB Ags are expressed during pulmonary infection in vivo, are immunogenic, induce strong T cell responses in long-term latently M. tuberculosis-infected individuals, and may therefore represent attractive Ags for new TB vaccines.
Collapse
Affiliation(s)
- Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Ray S, Talukdar A, Kundu S, Khanra D, Sonthalia N. Diagnosis and management of miliary tuberculosis: current state and future perspectives. Ther Clin Risk Manag 2013; 9:9-26. [PMID: 23326198 PMCID: PMC3544391 DOI: 10.2147/tcrm.s29179] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) remains one of the most important causes of death from an infectious disease, and it poses formidable challenges to global health at the public health, scientific, and political level. Miliary TB is a potentially fatal form of TB that results from massive lymphohematogenous dissemination of Mycobacterium tuberculosis bacilli. The epidemiology of miliary TB has been altered by the emergence of the human immunodeficiency virus (HIV) infection and widespread use of immunosuppressive drugs. Diagnosis of miliary TB is a challenge that can perplex even the most experienced clinicians. There are nonspecific clinical symptoms, and the chest radiographs do not always reveal classical miliary changes. Atypical presentations like cryptic miliary TB and acute respiratory distress syndrome often lead to delayed diagnosis. High-resolution computed tomography (HRCT) is relatively more sensitive and shows randomly distributed miliary nodules. In extrapulmonary locations, ultrasonography, CT, and magnetic resonance imaging are useful in discerning the extent of organ involvement by lesions of miliary TB. Recently, positron-emission tomographic CT has been investigated as a promising tool for evaluation of suspected TB. Fundus examination for choroid tubercles, histopathological examination of tissue biopsy specimens, and rapid culture methods for isolation of M. tuberculosis in sputum, body fluids, and other body tissues aid in confirming the diagnosis. Several novel diagnostic tests have recently become available for detecting active TB disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. A high index of clinical suspicion and early diagnosis and timely institution of antituberculosis treatment can be lifesaving. Response to first-line antituberculosis drugs is good, but drug-induced hepatotoxicity and drug-drug interactions in HIV/TB coinfected patients create significant problems during treatment. Data available from randomized controlled trials are insufficient to define the optimum regimen and duration of treatment in patients with drug-sensitive as well as drug-resistant miliary TB, including those with HIV/AIDS, and the role of adjunctive corticosteroid treatment has not been properly studied. Research is going on worldwide in an attempt to provide a more effective vaccine than bacille Calmette-Guérin. This review highlights the epidemiology and clinical manifestation of miliary TB, challenges, recent advances, needs, and opportunities related to TB diagnostics and treatment.
Collapse
Affiliation(s)
- Sayantan Ray
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Arunansu Talukdar
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Supratip Kundu
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Dibbendhu Khanra
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Nikhil Sonthalia
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
126
|
Nikolova M, Markova R, Drenska R, Muhtarova M, Todorova Y, Dimitrov V, Taskov H, Saltini C, Amicosante M. Antigen-specific CD4- and CD8-positive signatures in different phases of Mycobacterium tuberculosis infection. Diagn Microbiol Infect Dis 2012; 75:277-81. [PMID: 23276770 DOI: 10.1016/j.diagmicrobio.2012.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
Abstract
Current diagnostic standards for Mycobacterium tuberculosis (MTB) infection do not distinguish between active and latent tuberculosis (TB). To identify specific biomarkers characterizing the different forms of TB infection, we investigated in parallel with the QuantiFERON -TB Gold In-Tube (QFT-IT) the use of flow cytometry measuring CD4 and CD8 MTB-specific immune response in 17 active-TB patients, 21 health care workers (HCW), 14 recent contacts of TB patients (RC-TB), and 10 bacille Calmette Guerin (BCG)-vaccinated healthy controls (BCG-HC). A correlation (r = 0.4526, P = 0.0002) was found only between the amount of IFN-γ measured by QFT-IT and the frequency of CD4+/CD69+/IFN-γ+ T cells. The frequency of CD4+/CD69+/IFNγ+ responding T cells was higher in active-TB patients (0.254 ± 0.336%, P < 0.01) compared to the other groups. The response of QFT-IT antigen-specific CD8+/CD69+/IFNγ+ T cells was significantly higher in RC-TB (0.245 ± 0.305%, P < 0.05) compared to the other study groups.
Collapse
Affiliation(s)
- Maria Nikolova
- Department of Immunology and Allergology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Sherman DR, Vordermeier HM, Robertson BD, Young DB, Wilkinson RJ. Bioinformatic and empirical analysis of novel hypoxia-inducible targets of the human antituberculosis T cell response. THE JOURNAL OF IMMUNOLOGY 2012; 189:5867-76. [PMID: 23169589 DOI: 10.4049/jimmunol.1202281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed whole genome-based transcriptional profiles of Mycobacterium tuberculosis subjected to prolonged hypoxia to guide the discovery of novel potential Ags, by a combined bioinformatic and empirical approach. We analyzed the fold induction of the 100 most highly induced genes at 7 d of hypoxia, as well as transcript abundance, peptide-binding prediction (ProPred) adjusted for population-specific MHC class II allele frequency, and by literature search. Twenty-six candidate genes were selected by this bioinformatic approach and evaluated empirically using IFN-γ and IL-2 ELISPOT using immunodominant Ags (Acr-1, CFP-10, ESAT-6) as references. Twenty-three of twenty-six proteins induced an IFN-γ response in PBMCs of persons with active or latent tuberculosis. Five novel immunodominant proteins-Rv1957, Rv1954c, Rv1955, Rv2022c, and Rv1471-were identified that induced responses similar to CFP-10 and ESAT-6 in both magnitude and frequency. IL-2 responses were of lower magnitude than were those of IFN-γ. Only moderate evidence of infection stage-specific recognition of Ags was observed. Reconciliation of bioinformatic and empirical hierarchies of immunodominance revealed that Ags could be predicted, providing transcriptomic data were combined with peptide-binding prediction adjusted by population-specific MHC class II allele frequency.
Collapse
Affiliation(s)
- Hannah P Gideon
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Magombedze G, Mulder N. Understanding TB latency using computational and dynamic modelling procedures. INFECTION GENETICS AND EVOLUTION 2012; 13:267-83. [PMID: 23146828 DOI: 10.1016/j.meegid.2012.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/31/2012] [Accepted: 09/25/2012] [Indexed: 12/26/2022]
Abstract
The Mycobacterium tuberculosis bacilli's potency to cause persistent latent infection that is unresponsive to the current cocktail of TB drugs is strongly associated with its ability to adapt to changing intracellular environments, and tolerating, evading and subverting host defence mechanisms. We applied a combination of bioinformatics and mathematical modelling methods to enhance the understanding of TB latency dynamics. Analysis of time course microarray gene expression data was carried out and gene profiles for bacilli adaptation and survival in latency, simulated by hypoxia were determined. Reverse network engineering techniques were used to predict gene dependencies and regulatory interactions. Biochemical systems theory was applied to mathematically model the inferred gene regulatory networks. Significant regulatory genes involved in latency were determined by a combination of systems biology procedures and mathematical modelling of the inferred regulatory networks. Analysis of gene clusters of the inferred networks in the stationary and non-replicating phases of the bacilli predicted probable functions of some of the latency genes to be associated with latency genes of known functions. The systems biology approach and mathematical computational deletion experiments predicted key genes in the TB latency/dormancy program that may be possible TB drug targets. However, these gene candidates require experimental testing and validation.
Collapse
Affiliation(s)
- Gesham Magombedze
- National Institute for Mathematical and Biological Synthesis, 1534 White Ave., University of Tennessee, Knoxville, TN 37996-1527, USA.
| | | |
Collapse
|
129
|
Immune responses to ESAT-6 and CFP-10 by FASCIA and multiplex technology for diagnosis of M. tuberculosis infection; IP-10 is a promising marker. PLoS One 2012; 7:e43438. [PMID: 23144772 PMCID: PMC3493549 DOI: 10.1371/journal.pone.0043438] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 07/23/2012] [Indexed: 12/05/2022] Open
Abstract
Background There is a need for reliable markers to diagnose active and latent tuberculosis (TB). The interferon gamma release assays (IGRAs) are compared to the tuberculin skin test (TST) more specific, but cannot discriminate between recent or remote TB infection. Here the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA), which quantifies expanded T-lymphoblasts by flow-cytometric analysis after long-term antigen stimulation of whole blood, is combined with cytokine/chemokine analysis in the supernatant by multiplex technology for diagnosis of Mycobacterium tuberculosis (Mtb) infection. Methods and Findings Consecutive patients with suspected TB (n = 85), with microbiologically verified active pulmonary TB (n = 33), extra pulmonary TB (n = 21), clinical TB (n = 11), presumed latent TB infection (LTBI) (n = 23), patients negative for TB (n = 8) and 21 healthy controls were studied. Blood samples were analyzed with FASCIA and multiplex technology to determine and correlate proliferative responses and the value of 14 cytokines for diagnosis of Mtb infection: IFN- γ, IL-2, TNF-α, IP-10, IL-12, IL-6, IL-4, IL-5, IL-13, IL-17, MIP-1β, GM-CSF, IFN-α2 and IL-10. Cytokine levels for IFN-γ, IP-10, MIP-1β, IL-2, TNF-α, IL-6, IL-10, IL-13 and GM-CSF were significantly higher after stimulation with the Mtb specific antigens ESAT-6 and CFP-10 in patients with active TB compared to healthy controls (p<0.05) and correlated with proliferative responses. IP-10 was positive in all patients with verified TB, if using a combination of ESAT-6 and CFP-10 and was the only marker significantly more sensitive in detecting active TB then IFN-γ (p = 0.012). Cytokine responses in patients with active TB were more frequent and detected at higher levels than in patients with LTBI. Conclusions IP-10 seems to be an important marker for diagnosis of active and latent TB. Patients with active TB and LTBI responded with similar cytokine profiles against TB antigens but proliferative and cytokine responses were generally higher in patients with active TB.
Collapse
|
130
|
Geluk A, van den Eeden SJF, van Meijgaarden KE, Dijkman K, Franken KLMC, Ottenhoff THM. A multistage-polyepitope vaccine protects against Mycobacterium tuberculosis infection in HLA-DR3 transgenic mice. Vaccine 2012; 30:7513-21. [PMID: 23103299 DOI: 10.1016/j.vaccine.2012.10.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/03/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is responsible for almost 2 million deaths annually. BCG, currently the only TB vaccine, induces variable protection and does not protect against reactivation of latent TB. Thus, efficient vaccines to supplement BCG are required urgently. Since Mtb's proteome differs qualitatively and quantitatively during bacterial replication stages from that expressed during dormancy, improved TB vaccines should drive immune responses to Mtb antigens expressed during multiple stages of infection. Consequently, such "multistage" vaccines should be composed of (immunodominant) antigens expressed during different phases of Mtb infection. As a concept multistage vaccine, we constructed a polyepitope by fusing five HLA-DR3-restricted T-cell epitopes derived from different Mtb proteins either expressed highly by replicating bacteria (Ag85B, hsp65, 19 kDa lipoprotein), or abundantly expressed by dormant bacilli and recognized preferentially by TST(+) individuals (hsp16, Rv1733c). PBMC of HLA-DR3(+) but not HLA-DR3(-) cured TB patients and TST(+) individuals responded well to the multistage-polyepitope in vitro. The in vivo immunogenicity and protective efficacy of the multistage-polyepitope were analyzed using HLA-DR3 transgenic mice lacking endogenous murine class II as a model. Immunization with the multistage-polyepitope adjuvanted with CpG generated high IgG levels as well as polyfunctional CD4(+) T-cells producing IFN-γ, TNF and IL-2, specific for these HLA-DR3-restricted epitopes. Importantly, multistage-polyepitope immunization reduced the number of bacilli in the lungs after Mtb challenge when administered as prophylactic vaccine. Given the extensive repertoire of potential Mtb antigens available for immune recognition, the data of our model demonstrate the potential of multistage-polyepitope vaccines to protect against TB.
Collapse
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Centre, The Netherlands.
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection.
Collapse
Affiliation(s)
- Morten Ruhwald
- Clinical Research Centre, Copenhagen University, Hvidovre Hospital Kettegaards, Alle 30 2650 Hvidovre, Denmark.
| | | |
Collapse
|
132
|
Analysis of immune responses against a wide range of Mycobacterium tuberculosis antigens in patients with active pulmonary tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1907-15. [PMID: 23015647 DOI: 10.1128/cvi.00482-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Characterizing host immune responses to molecular targets of Mycobacterium tuberculosis is essential to develop effective immunodiagnostics and better vaccines. We investigated the immune response against a large series of M. tuberculosis antigens, including 5 classical and 64 nonclassical (39 DosR regulon-encoded, 4 resuscitation-promoting factor [RPF], and 21 reactivation-associated) antigens in active-pulmonary-tuberculosis (TB) patients. Whole blood from TB patients (n = 34) was stimulated in vitro with M. tuberculosis antigens. Gamma interferon (IFN-γ) was measured after 7 days of stimulation, using an enzyme-linked immunosorbent assay (ELISA). The majority of the study participants responded to the classical M. tuberculosis antigens TB10.4 (84.8%), early secreted antigenic target-6 kDa (ESAT-6)/CFP-10 (70.6%), and purified protein derivative (PPD) (55.9%). However, only 26.5% and 24.2% responded to HSP65 and Ag85A/B, respectively. Of the 64 nonclassical antigens, 23 (33.3%) were immunogenic (IFN-γ levels, >62 pg/ml) and 8 were strong inducers of IFN-γ (IFN-γ levels, ≥100 pg/ml). The RPF antigens were the most immunogenic. In addition, we observed distinct cytokine expression profiles in response to several M. tuberculosis antigens by multiplex immunoassay. Tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), and IL-6 were commonly detected at high levels after stimulation with 4/15 latency antigens (Rv0081, Rv2006, Rv2629, and Rv1733c) and were found especially in supernatants of the three strong IFN-γ inducers (Rv2629, Rv1009, and Rv2389c). IL-8, IL-6, and IL-17 were exclusively detected after stimulation with Rv0574c, Rv2630, Rv1998, Rv054c, and Rv2028c. In conclusion, in active-pulmonary-TB patients, we identified 23 new immunogenic M. tuberculosis antigens. The distinct expression levels of IFN-γ, TNF-α, IL-6, and IL-10 in response to specific subsets of M. tuberculosis antigens may be promising for the development of immunodiagnostics.
Collapse
|
133
|
Ottenhoff THM, Dass RH, Yang N, Zhang MM, Wong HEE, Sahiratmadja E, Khor CC, Alisjahbana B, van Crevel R, Marzuki S, Seielstad M, van de Vosse E, Hibberd ML. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 2012; 7:e45839. [PMID: 23029268 PMCID: PMC3448682 DOI: 10.1371/journal.pone.0045839] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/24/2012] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains the leading cause of mortality from a single infectious agent. Each year around 9 million individuals newly develop active TB disease, and over 2 billion individuals are latently infected with M.tb worldwide, thus being at risk of developing TB reactivation disease later in life. The underlying mechanisms and pathways of protection against TB in humans, as well as the dynamics of the host response to M.tb infection, are incompletely understood. We carried out whole-genome expression profiling on a cohort of TB patients longitudinally sampled along 3 time-points: during active infection, during treatment, and after completion of curative treatment. We identified molecular signatures involving the upregulation of type-1 interferon (α/β) mediated signaling and chronic inflammation during active TB disease in an Indonesian population, in line with results from two recent studies in ethnically and epidemiologically different populations in Europe and South Africa. Expression profiles were captured in neutrophil-depleted blood samples, indicating a major contribution of lymphocytes and myeloid cells. Expression of type-1 interferon (α/β) genes mediated was also upregulated in the lungs of M.tb infected mice and in infected human macrophages. In patients, the regulated gene expression-signature normalized during treatment, including the type-1 interferon mediated signaling and a concurrent opposite regulation of interferon-gamma. Further analysis revealed IL15RA, UBE2L6 and GBP4 as molecules involved in the type-I interferon response in all three experimental models. Our data is highly suggestive that the innate immune type-I interferon signaling cascade could be used as a quantitative tool for monitoring active TB disease, and provide evidence that components of the patient’s blood gene expression signature bear similarities to the pulmonary and macrophage response to mycobacterial infection.
Collapse
Affiliation(s)
- Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (THMO); (MLH)
| | | | - Ninghan Yang
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
| | - Mingzi M. Zhang
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
| | - Hazel E. E. Wong
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
| | - Edhyana Sahiratmadja
- Health Research Unit, Faculty of Medicine, Padjadjaran University, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Chiea Chuen Khor
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
| | - Bachti Alisjahbana
- Health Research Unit, Faculty of Medicine, Padjadjaran University, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Mark Seielstad
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin L. Hibberd
- Infectious Disease, Genome Institute of Singapore, Singapore, Singapore
- * E-mail: (THMO); (MLH)
| |
Collapse
|
134
|
Fan L, Xiao HP, Hu ZY, Ernst JD. Variation of Mycobacterium tuberculosis antigen-specific IFN-γ and IL-17 responses in healthy tuberculin skin test (TST)-positive human subjects. PLoS One 2012; 7:e42716. [PMID: 22880090 PMCID: PMC3412824 DOI: 10.1371/journal.pone.0042716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023] Open
Abstract
Objective To determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans. Methods We isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively. Results As in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection. Conclusion Variation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection.
Collapse
Affiliation(s)
- Lin Fan
- Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He-ping Xiao
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-yi Hu
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (ZH); (JE)
| | - Joel D. Ernst
- Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (ZH); (JE)
| |
Collapse
|
135
|
Boon C, Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol 2012; 7:513-8. [PMID: 22439727 DOI: 10.2217/fmb.12.14] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With 2 million deaths per year, TB remains the most significant bacterial killer. The long duration of chemotherapy and the large pool of latently infected people represent challenges in disease control. To develop drugs that effectively eradicate latent infection and shorten treatment duration, the pathophysiology of the causative agent Mycobacterium tuberculosis needs to be understood. The discovery that the tubercle bacillus can develop a drug-tolerant dormant form and the identification of the underlying genetic program 10 years ago paved the way for a deeper understanding of the life of the parasite inside human lesions and for new approaches to antimycobacterial drug discovery. Here, we summarize what we have learnt since the discovery of the master regulator of dormancy, DosR, and the key gaps in our knowledge that remain. Furthermore, we discuss a possible wider clinical relevance of DosR for 'nontuberculous mycobacteria'.
Collapse
Affiliation(s)
- Calvin Boon
- Dx Assays Pte Ltd, Woodlands Central Industrial Estate, 35 Marsiling Industrial Estate Road 3, Unit 02-03/02/01, 739257, Singapore
| | | |
Collapse
|
136
|
Ottenhoff THM. New pathways of protective and pathological host defense to mycobacteria. Trends Microbiol 2012; 20:419-28. [PMID: 22784857 DOI: 10.1016/j.tim.2012.06.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 01/07/2023]
Abstract
Recent studies have uncovered new mechanisms by which the human immune system attempts to control infection and how pathogens elude these mechanisms. Mycobacterial infections are prime examples of chronic battle fields between host and pathogens. The study of tuberculosis and related mycobacterial infectious diseases such as leprosy have greatly aided in deciphering mechanisms of immune mediated protection and pathology in humans. Here we review recent insights into the role of newly discovered T cell subsets including Th17, Tregs and nonclassically restricted T cells in adaptive immunity to mycobacteria. The role of newly discovered innate immune mechanisms in tuberculosis and leprosy along with recent results from 'unbiased' genome-wide and functional genetic approaches, are deciphering critical host pathways in human infectious disease.
Collapse
Affiliation(s)
- Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
137
|
Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, 'dormancy associated translation inhibitor (DATIN)'. PLoS One 2012; 7:e38709. [PMID: 22719925 PMCID: PMC3374827 DOI: 10.1371/journal.pone.0038709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.
Collapse
|
138
|
Ruhwald M, Aabye MG, Ravn P. IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn 2012; 12:175-87. [PMID: 22369377 DOI: 10.1586/erm.11.97] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current state-of-the-art tests for infection with Mycobacterium tuberculosis - the IFN-γ release assays - rely on accurate measurement of the cytokine IFN-γ. Many other potential biomarkers are expressed in concert with IFN-γ, and IP-10 in particular has shown promising results. IP-10 is produced in large amounts, allowing for the development of new and simplified test platforms, such as lateral flow. In this review, we summarize the results of 22 clinical studies exploring the use of IP-10 as an alternative marker to IFN-γ. The studies report that diagnostic accuracy of IP-10 is on par with IFN-γ, but also that IP-10 may be more robust in young children and in HIV-infected individuals with low CD4 cell counts. We conclude the review by presenting limitations of the published works and outline recent developments and future directions.
Collapse
Affiliation(s)
- Morten Ruhwald
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
| | | | | |
Collapse
|
139
|
MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 2012; 80:3018-33. [PMID: 22689819 DOI: 10.1128/iai.00520-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis remains a significant global pathogen, causing extensive morbidity and mortality worldwide. This bacterium persists within granulomatous lesions in a poorly characterized, nonreplicating state. The two-component signal transduction systems MprAB and DosRS-DosT (DevRS-Rv2027c) are responsive to conditions likely to be present within granulomatous lesions and mediate aspects of M. tuberculosis persistence in vitro and in vivo. Here, we describe a previously uncharacterized locus, Rv1813c-Rv1812c, that is coregulated by both MprA and DosR. We demonstrate that MprA and DosR bind to adjacent and overlapping sequences within the promoter region of Rv1813c and direct transcription from an initiation site located several hundred base pairs upstream of the Rv1813 translation start site. We further show that Rv1813c and Rv1812c are cotranscribed, and that the genomic organization of this operon is specific to M. tuberculosis and Mycobacterium bovis. Although Rv1813c is not required for survival of M. tuberculosis in vitro, including under conditions in which MprAB and DosRST signaling are activated, an M. tuberculosis ΔRv1813c mutant is attenuated in the low-dose aerosol model of murine tuberculosis, where it exhibits a lower bacterial burden, delayed time to death, and decreased ability to stimulate proinflammatory cytokines interleukin-1β (IL-1β) and IL-12. Interestingly, overcomplementation of these phenotypes is observed in the M. tuberculosis ΔRv1813c mutant expressing both Rv1813c and Rv1812c, but not Rv1813c alone, in trans. Therefore, Rv1813c and Rv1812c may represent general stress-responsive elements that are necessary for aspects of M. tuberculosis virulence and the host immune response to infection.
Collapse
|
140
|
Chegou NN, Essone PN, Loxton AG, Stanley K, Black GF, van der Spuy GD, van Helden PD, Franken KL, Parida SK, Klein MR, Kaufmann SHE, Ottenhoff THM, Walzl G. Potential of host markers produced by infection phase-dependent antigen-stimulated cells for the diagnosis of tuberculosis in a highly endemic area. PLoS One 2012; 7:e38501. [PMID: 22693640 PMCID: PMC3367928 DOI: 10.1371/journal.pone.0038501] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 11/25/2022] Open
Abstract
Background Recent interferon gamma (IFN-γ)-based studies have identified novel Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens as diagnostic candidates. In this study, the levels of 11 host markers other than IFN-γ, were evaluated in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens, for the diagnosis of TB disease. Methodology and Principal Findings Five M.tb infection phase-dependent antigens, comprising of three DosR-regulon-encoded proteins (Rv2032, Rv0081, Rv1737c), and two resucitation promoting factors (Rv0867c and Rv2389c), were evaluated in a case-control study with 15 pulmonary TB patients and 15 household contacts that were recruited from a high TB incidence setting in Cape Town, South Africa. After a 7-day whole blood culture, supernatants were harvested and the levels of the host markers evaluated using the Luminex platform. Multiple antigen-specific host markers were identified with promising diagnostic potential. Rv0081-specific levels of IL-12(p40), IP-10, IL-10 and TNF-α were the most promising diagnostic candidates, each ascertaining TB disease with an accuracy of 100%, 95% confidence interval for the area under the receiver operating characteristics plots, (1.0 to 1.0). Conclusions Multiple cytokines other than IFN-γ in whole blood culture supernatants after stimulation with M.tb infection phase-dependent antigens show promise as diagnostic markers for active TB. These preliminary findings should be verified in well-designed diagnostic studies employing short-term culture assays.
Collapse
Affiliation(s)
- Novel N Chegou
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
In this review we discuss recent progress in the development, testing, and clinical evaluation of new vaccines against tuberculosis (TB). Over the last 20 years, tremendous progress has been made in TB vaccine research and development: from a pipeline virtually empty of new TB candidate vaccines in the early 1990s, to an era in which a dozen novel TB vaccine candidates have been and are being evaluated in human clinical trials. In addition, innovative approaches are being pursued to further improve existing vaccines, as well as discover new ones. Thus, there is good reason for optimism in the field of TB vaccines that it will be possible to develop better vaccines than BCG, which is still the only vaccine available against TB.
Collapse
Affiliation(s)
- Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
142
|
Arlehamn CSL, Sidney J, Henderson R, Greenbaum JA, James EA, Moutaftsi M, Coler R, McKinney DM, Park D, Taplitz R, Kwok WW, Grey H, Peters B, Sette A. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). THE JOURNAL OF IMMUNOLOGY 2012; 188:5020-31. [PMID: 22504645 DOI: 10.4049/jimmunol.1103556] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diagnosis of tuberculosis often relies on the ex vivo IFN-γ release assays QuantiFERON-TB Gold In-Tube and T-SPOT.TB. However, understanding of the immunological mechanisms underlying their diagnostic use is still incomplete. Accordingly, we investigated T cell responses for the TB Ags included in the these assays and other commonly studied Ags: early secreted antigenic target 6 kDa, culture filtrate protein 10 kDa, Rv2031c, Rv2654c, and Rv1038c. PBMC from latently infected individuals were tested in ex vivo ELISPOT assays with overlapping peptides spanning the entirety of these Ags. We found striking variations in prevalence and magnitude of ex vivo reactivity, with culture filtrate protein 10 kDa being most dominant, followed by early secreted antigenic target 6 kDa and Rv2654c being virtually inactive. Rv2031c and Rv1038c were associated with intermediate patterns of reactivity. Further studies showed that low reactivity was not due to lack of HLA binding peptides, and high reactivity was associated with recognition of a few discrete dominant antigenic regions. Different donors recognized the same core sequence in a given epitope. In some cases, the identified epitopes were restricted by a single specific common HLA molecule (selective restriction), whereas in other cases, promiscuous restriction of the same epitope by multiple HLA molecules was apparent. Definition of the specific restricting HLA allowed to produce tetrameric reagents and showed that epitope-specific T cells recognizing either selectively or promiscuously restricted epitopes were predominantly T effector memory. In conclusion, these results highlight the feasibility of more clearly defined TB diagnostic reagent.
Collapse
|
143
|
Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev 2012; 24:792-805. [PMID: 21976609 DOI: 10.1128/cmr.00014-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes a variety of clinical conditions ranging from life-long asymptomatic infection to overt disease with increasingly severe tissue damage and a heavy bacillary burden. Immune biomarkers should follow the evolution of infection and disease because the host immune response is at the core of protection against disease and tissue damage in M. tuberculosis infection. Moreover, levels of immune markers are often affected by the antigen load. We review how the clinical spectrum of M. tuberculosis infection correlates with the evolution of granulomatous lesions and how granuloma structural changes are reflected in the peripheral circulation. We also discuss how antigen-specific, peripheral immune responses change during infection and how these changes are associated with the physiology of the tubercle bacillus. We propose that a dynamic approach to immune biomarker research should overcome the challenges of identifying those asymptomatic and symptomatic stages of infection that require antituberculosis treatment. Implementation of such a view requires longitudinal studies and a systems immunology approach leading to multianalyte assays.
Collapse
|
144
|
Isaza JP, Duque C, Gomez V, Robledo J, Barrera LF, Alzate JF. Whole genome shotgun sequencing of one Colombian clinical isolate of Mycobacterium tuberculosis reveals DosR regulon gene deletions. FEMS Microbiol Lett 2012; 330:113-20. [DOI: 10.1111/j.1574-6968.2012.02540.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - Camilo Duque
- Grupo Inmunología Celular e Inmunogenética-GICIG, Instituto de Investigaciones Médicas, Facultad de Medicina; Universidad de Antioquia; Medellin; Colombia
| | | | | | | | | |
Collapse
|
145
|
Yuan W, Dong N, Zhang L, Liu J, Lin S, Xiang Z, Qiao H, Tong W, Qin C. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice. Vaccine 2012; 30:2490-7. [DOI: 10.1016/j.vaccine.2011.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/19/2011] [Accepted: 06/09/2011] [Indexed: 12/23/2022]
|
146
|
Abstract
TB remains a public health problem worldwide, in part due to latent TB infection that serves as a global reservoir of potential disease. In the 20th century, the natural history of TB was defined by clinical symptoms, the tuberculin skin test and chest x-ray. The last decade witnessed the invention and application of IFN-γ release assays and newer immunological tools that enabled a re-appraisal of the natural history of TB. Here, we review the conventional understanding of latent TB and recount how immunology has redefined latent TB as a spectrum of pathogen burden and host immune control. We discuss recent and future advances in the fields of TB immunology and diagnostics that will improve public health strategies to control TB.
Collapse
Affiliation(s)
- Saranya Sridhar
- Tuberculosis Research Unit, Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | | | | |
Collapse
|
147
|
Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL, Jain SK. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 2012; 205:595-602. [PMID: 22198962 PMCID: PMC3266133 DOI: 10.1093/infdis/jir786] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/23/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Preclinical evaluation of tuberculosis drugs is generally limited to mice. However, necrosis and hypoxia, key features of human tuberculosis lesions, are lacking in conventional mouse strains. METHODS We used C3HeB/FeJ mice, which develop necrotic lesions in response to Mycobacterium tuberculosis infection. Positron emission tomography in live infected animals, postmortem pimonidazole immunohistochemistry, and bacterial gene expression analyses were used to assess whether tuberculosis lesions in C3HeB/FeJ are hypoxic. Efficacy of combination drug treatment, including PA-824, active against M. tuberculosis under hypoxic conditions, was also evaluated. RESULTS Tuberculosis lesions in C3HeB/FeJ (but not BALB/c) were found to be hypoxic and associated with up-regulation of known hypoxia-associated bacterial genes (P < .001). Contrary to sustained activity reported elsewhere in BALB/c mice, moxifloxacin and pyrazinamide (MZ) combination was not bactericidal beyond 3 weeks in C3HeB/FeJ. Although PA-824 added significant activity, the novel combination of PA-824 and MZ was less effective than the standard first-line regimen in C3HeB/FeJ. CONCLUSIONS We demonstrate that tuberculosis lesions in C3HeB/FeJ are hypoxic. Activities of some key tuberculosis drug regimens in development are represented differently in C3HeB/FeJ versus BALB/c mice. Because C3HeB/FeJ display key features of human tuberculosis, this strain warrants evaluation as a more pathologically relevant model for preclinical studies.
Collapse
Affiliation(s)
- Jamie Harper
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Ciaran Skerry
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Stephanie L. Davis
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Rokeya Tasneen
- Department of Medicine, Center for Tuberculosis Research
| | - Mariah Weir
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Massachusetts
| | | | - Martin G. Pomper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Sanjay K. Jain
- Department of Medicine, Center for Infection and Inflammation Imaging Research
- Department of Medicine, Center for Tuberculosis Research
- Department of Pediatrics
| |
Collapse
|
148
|
Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, Parida SK, Kaufmann SHE, Doherty TM, Friggen AH, Franken KL, Ottenhoff TH, Walzl G. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis 2012; 12:10. [PMID: 22260319 PMCID: PMC3282638 DOI: 10.1186/1471-2334-12-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023] Open
Abstract
Background Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between M.tb infection states. In this study, we assessed the diagnostic potential of 118 different M.tb infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting. Methods Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA. Results Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of M.tb specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation. Conclusions IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between M.tb infection states.
Collapse
Affiliation(s)
- Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Riaño F, Arroyo L, París S, Rojas M, Friggen AH, van Meijgaarden KE, Franken KLMC, Ottenhoff THM, García LF, Barrera LF. T cell responses to DosR and Rpf proteins in actively and latently infected individuals from Colombia. Tuberculosis (Edinb) 2012; 92:148-59. [PMID: 22226907 DOI: 10.1016/j.tube.2011.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis DosR regulon-encoded proteins elicit strong immune T-cell responses in individuals with latent tuberculosis (LTBI). Also, resuscitation (Rpf) proteins can induce such responses. However, variations in the immunogenicity of the DosR and Rpf proteins have been observed in European and African populations, and no data are published from other geographic areas. In Colombian LTBI and patients with recently diagnosed PTB, we therefore studied the immune response to DosR, Rpf, stress, and nominal antigens from Mtb, in 7-day stimulated cultures. Three DosR (Rv1737c, Rv2029c, Rv2628c) and 2 Rpf (Rv0867 and Rv2389c) antigens were recognized most prominently on the basis of the net IFNγ production (DosR) or the percentage of responding individuals (Rpf). Results show that the selected DosR antigens induced a higher proportion of CD4-T cells producing IFNγ from LTBI, compared to pulmonary TB patients (PTB), while there were no differences in the proportion of CD8-T cells. An increased frequency of CD4, but not CD8 T-cells with a CD45RO(+)CD27(+) phenotype was observed in LTBI in response to Rv2029c, Rv0867c, and Rv2389c, compared to PTB. The levels of cytokines and chemokines in the supernatants of stimulated cells, showed that the DosR and Rpf antigens induced higher levels of IFNγ in cultures from LTBI compared to PTB, although the induced pattern of cytokines and chemokines was also antigen dependent. In summary, our results are consistent with the significant immunogenicity of Mtb DosR and Rpf antigens in LTBI individuals, and confirm and extend previously reported data from other TB affected human populations.
Collapse
Affiliation(s)
- Felipe Riaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Carrera 53 #61-30, Medellín, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|