101
|
Shaver AO, Miller IR, Schaye ES, Moya ND, Collins J, Wit J, Blanco AH, Shao FM, Andersen EJ, Khan SA, Paredes G, Andersen EC. Quantifying the fitness effects of resistance alleles with and without anthelmintic selection pressure using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578300. [PMID: 38370666 PMCID: PMC10871296 DOI: 10.1101/2024.02.01.578300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Albendazole and ivermectin are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channel (GluCl) genes, but it is unknown whether these genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required loss of two GluCl genes (avr-14 and avr-15) or loss of three GluCl genes (avr-14, avr-15, and glc-1). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Isabella R. Miller
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Etta S. Schaye
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas D. Moya
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J.B. Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Alyssa H. Blanco
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Fiona M. Shao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Elliot J. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sharik A. Khan
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Gracie Paredes
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
102
|
Mota APZ, Koutsovoulos GD, Perfus-Barbeoch L, Despot-Slade E, Labadie K, Aury JM, Robbe-Sermesant K, Bailly-Bechet M, Belser C, Péré A, Rancurel C, Kozlowski DK, Hassanaly-Goulamhoussen R, Da Rocha M, Noel B, Meštrović N, Wincker P, Danchin EGJ. Unzipped genome assemblies of polyploid root-knot nematodes reveal unusual and clade-specific telomeric repeats. Nat Commun 2024; 15:773. [PMID: 38316773 PMCID: PMC10844300 DOI: 10.1038/s41467-024-44914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Using long-read sequencing, we assembled and unzipped the polyploid genomes of Meloidogyne incognita, M. javanica and M. arenaria, three of the most devastating plant-parasitic nematodes. We found the canonical nematode telomeric repeat to be missing in these and other Meloidogyne genomes. In addition, we find no evidence for the enzyme telomerase or for orthologs of C. elegans telomere-associated proteins, suggesting alternative lengthening of telomeres. Instead, analyzing our assembled genomes, we identify species-specific composite repeats enriched mostly at one extremity of contigs. These repeats are G-rich, oriented, and transcribed, similarly to canonical telomeric repeats. We confirm them as telomeric using fluorescent in situ hybridization. These repeats are mostly found at one single end of chromosomes in these species. The discovery of unusual and specific complex telomeric repeats opens a plethora of perspectives and highlights the evolutionary diversity of telomeres despite their central roles in senescence, aging, and chromosome integrity.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| | - Georgios D Koutsovoulos
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Laetitia Perfus-Barbeoch
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Robbe-Sermesant
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Marc Bailly-Bechet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Arthur Péré
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Corinne Rancurel
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Djampa K Kozlowski
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation, and Interactions, 28 Avenue Valrose, 06000, Nice, France
| | - Rahim Hassanaly-Goulamhoussen
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Martine Da Rocha
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 400 routes des Chappes, 06903, Sophia-Antipolis, France.
| |
Collapse
|
103
|
Ko I, Kranse OP, Senatori B, Eves-van den Akker S. A Critical Appraisal of DNA Transfer from Plants to Parasitic Cyst Nematodes. Mol Biol Evol 2024; 41:msae030. [PMID: 38366574 PMCID: PMC10899095 DOI: 10.1093/molbev/msae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.
Collapse
Affiliation(s)
- Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
- Present address: Department of Plant Pathology, Washington State University, Pullman 99163, USA
| | - Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
104
|
Panska L, Nedvedova S, Vacek V, Krivska D, Konecny L, Knop F, Kutil Z, Skultetyova L, Leontovyc A, Ulrychova L, Sakanari J, Asahina M, Barinka C, Macurkova M, Dvorak J. Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans. Biosci Rep 2024; 44:BSR20230502. [PMID: 38108122 PMCID: PMC10794815 DOI: 10.1042/bsr20230502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.
Collapse
Affiliation(s)
- Lucie Panska
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Stepanka Nedvedova
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Vojtech Vacek
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Daniela Krivska
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
| | - Lukas Konecny
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Filip Knop
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Zsofia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Lubica Skultetyova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Adrian Leontovyc
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Lenka Ulrychova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th Street, CA 94143, USA
| | - Masako Asahina
- Department of Physiology, University of California, San Francisco, 600 16th Street, CA 94143, U.S.A
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Marie Macurkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2 128 00, Czech Republic
| | - Jan Dvorak
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague 165 00, Czech Republic
- Faculty of Environmental Sciences, Center of Infectious Animal Diseases, Czech University of Life Sciences in Prague, Kamycka 129, Prague 165 00, Czech Republic
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo n. 2, Prague 160 00, Czech Republic
| |
Collapse
|
105
|
Peng F, Nordgren CE, Murray JI. A spatiotemporally resolved atlas of mRNA decay in the C. elegans embryo reveals differential regulation of mRNA stability across stages and cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575757. [PMID: 38293118 PMCID: PMC10827189 DOI: 10.1101/2024.01.15.575757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
During embryonic development, cells undergo dynamic changes in gene expression that are required for appropriate cell fate specification. Although both transcription and mRNA degradation contribute to gene expression dynamics, patterns of mRNA decay are less well-understood. Here we directly measured spatiotemporally resolved mRNA decay rates transcriptome-wide throughout C. elegans embryogenesis by transcription inhibition followed by bulk and single-cell RNA-sequencing. This allowed us to calculate mRNA half-lives within specific cell types and developmental stages and identify differentially regulated mRNA decay throughout embryonic development. We identified transcript features that are correlated with mRNA stability and found that mRNA decay rates are associated with distinct peaks in gene expression over time. Moreover, we provide evidence that, on average, mRNA is more stable in the germline compared to in the soma and in later embryonic stages compared to in earlier stages. This work suggests that differential mRNA decay across cell states and time helps to shape developmental gene expression, and it provides a valuable resource for studies of mRNA turnover regulatory mechanisms.
Collapse
Affiliation(s)
- Felicia Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
106
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
107
|
Bryant AS, Akimori D, Stoltzfus JDC, Hallem EA. A standard workflow for community-driven manual curation of Strongyloides genome annotations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220443. [PMID: 38008112 PMCID: PMC10676816 DOI: 10.1098/rstb.2022.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 11/28/2023] Open
Abstract
Advances in the functional genomics and bioinformatics toolkits for Strongyloides species have positioned these species as genetically tractable model systems for gastrointestinal parasitic nematodes. As community interest in mechanistic studies of Strongyloides species continues to grow, publicly accessible reference genomes and associated genome annotations are critical resources for researchers. Genome annotations for multiple Strongyloides species are broadly available via the WormBase and WormBase ParaSite online repositories. However, a recent phylogenetic analysis of the receptor-type guanylate cyclase (rGC) gene family in two Strongyloides species highlights the potential for errors in a large percentage of current Strongyloides gene models. Here, we present three examples of gene annotation updates within the Strongyloides rGC gene family; each example illustrates a type of error that may occur frequently within the annotation data for Strongyloides genomes. We also extend our analysis to 405 previously curated Strongyloides genes to confirm that gene model errors are found at high rates across gene families. Finally, we introduce a standard manual curation workflow for assessing gene annotation quality and generating corrections, and we discuss how it may be used to facilitate community-driven curation of parasitic nematode biodata. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
| | | | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
108
|
McClure CR, Patel R, Hallem EA. Invade or die: behaviours and biochemical mechanisms that drive skin penetration in Strongyloides and other skin-penetrating nematodes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220434. [PMID: 38008119 PMCID: PMC10676818 DOI: 10.1098/rstb.2022.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 11/28/2023] Open
Abstract
Skin-penetrating nematodes, including the human threadworm Strongyloides stercoralis and hookworms in the genera Necator and Ancylostoma, are gastrointestinal parasites that are a major cause of neglected tropical disease in low-resource settings worldwide. These parasites infect hosts as soil-dwelling infective larvae that navigate towards hosts using host-emitted sensory cues such as odorants and body heat. Upon host contact, they invade the host by penetrating through the skin. The process of skin penetration is critical for successful parasitism but remains poorly understood and understudied. Here, we review current knowledge of skin-penetration behaviour and its underlying mechanisms in the human parasite S. stercoralis, the closely related rat parasite Strongyloides ratti, and other skin-penetrating nematodes such as hookworms. We also highlight important directions for future investigations into this underexplored process and discuss how recent advances in molecular genetic and genomic tools for Strongyloides species will enable mechanistic investigations of skin penetration and other essential parasitic behaviours in future studies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Courtney R. McClure
- Molecular Toxicology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
109
|
Li X, Weth O, Haimann M, Möscheid MF, Huber TS, Grevelding CG. Rhodopsin orphan GPCR20 interacts with neuropeptides and directs growth, sexual differentiation, and egg production in female Schistosoma mansoni. Microbiol Spectr 2024; 12:e0219323. [PMID: 38047698 PMCID: PMC10783048 DOI: 10.1128/spectrum.02193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Schistosomes cause schistosomiasis, one of the neglected tropical diseases as defined by the WHO. For decades, the treatment of schistosomiasis relies on a single drug, praziquantel. Due to its wide use, there is justified fear of resistance against this drug, and a vaccine is not available. Besides its biological relevance in signal transduction processes, the class of G protein-coupled receptors (GPCRs) is also well suited for drug design. Against this background, we characterized one GPCR of Schistosoma mansoni, SmGPCR20, at the molecular and functional level. We identified two potential neuropeptides (NPPs) as ligands, SmNPP26 and SmNPP40, and unraveled their roles, in combination with SmGPCR20, in neuronal processes controlling egg production, oogenesis, and growth of S. mansoni females. Since eggs are closely associated with the pathogenesis of schistosomiasis, our results contribute to the understanding of processes leading to egg production in schistosomes, which is under the control of pairing in this exceptional parasite.
Collapse
Affiliation(s)
- Xuesong Li
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Weth
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Haimann
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Max F. Möscheid
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Theresa S. Huber
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
110
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
111
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
112
|
Park SK, Sprague DJ, Rohr CM, Chulkov EG, Petrow I, Kumar S, Marchant JS. The anthelmintic meclonazepam activates a schistosome transient receptor potential channel. J Biol Chem 2024; 300:105528. [PMID: 38043794 PMCID: PMC10788528 DOI: 10.1016/j.jbc.2023.105528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Parasitic flatworms cause various clinical and veterinary infections that impart a huge burden worldwide. The most clinically impactful infection is schistosomiasis, a neglected tropical disease caused by parasitic blood flukes. Schistosomiasis is treated with praziquantel (PZQ), an old drug introduced over 40 years ago. New drugs are urgently needed, as while PZQ is broadly effective it suffers from several limitations including poor efficacy against juvenile worms, which may prevent it from being completely curative. An old compound that retains efficacy against juvenile worms is the benzodiazepine meclonazepam (MCLZ). However, host side effects caused by benzodiazepines preclude development of MCLZ as a drug and MCLZ lacks an identified parasite target to catalyze rational drug design for engineering out human host activity. Here, we identify a transient receptor potential ion channel of the melastatin subfamily, named TRPMMCLZ, as a parasite target of MCLZ. MCLZ potently activates Schistosoma mansoni TRPMMCLZ through engagement of a binding pocket within the voltage-sensor-like domain of the ion channel to cause worm paralysis, tissue depolarization, and surface damage. TRPMMCLZ reproduces all known features of MCLZ action on schistosomes, including a lower activity versus Schistosoma japonicum, which is explained by a polymorphism within this voltage-sensor-like domain-binding pocket. TRPMMCLZ is distinct from the TRP channel targeted by PZQ (TRPMPZQ), with both anthelmintic chemotypes targeting unique parasite TRPM paralogs. This advances TRPMMCLZ as a novel druggable target that could circumvent any target-based resistance emerging in response to current mass drug administration campaigns centered on PZQ.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel J Sprague
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Claudia M Rohr
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Evgeny G Chulkov
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ian Petrow
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sushil Kumar
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
113
|
LoVerde PT. Schistosomiasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:75-105. [PMID: 39008264 DOI: 10.1007/978-3-031-60121-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.
Collapse
Affiliation(s)
- Philip T LoVerde
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
114
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
115
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572835. [PMID: 38187595 PMCID: PMC10769430 DOI: 10.1101/2023.12.21.572835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Maxim V. Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Lead Contact
| |
Collapse
|
116
|
Schiedel M, McArdle DJB, Padalino G, Chan AKN, Forde-Thomas J, McDonough M, Whiteland H, Beckmann M, Cookson R, Hoffmann KF, Conway SJ. Small Molecule Ligands of the BET-like Bromodomain, SmBRD3, Affect Schistosoma mansoni Survival, Oviposition, and Development. J Med Chem 2023; 66:15801-15822. [PMID: 38048437 PMCID: PMC10726355 DOI: 10.1021/acs.jmedchem.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Darius J. B. McArdle
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gilda Padalino
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Anthony K. N. Chan
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Michael McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Helen Whiteland
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Manfred Beckmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Rosa Cookson
- GlaxoSmithKline
R&D, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Karl F. Hoffmann
- The
Department of Life Sciences (DLS), Aberystwyth
University, Wales SY23 3DA, U.K.
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|
117
|
Zhong H, Hou L, Qin F, Ren Y, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Gu S, Jin Y. Molecular and functional characterization of Schistosoma japonicum annexin A13. Vet Res 2023; 54:116. [PMID: 38049816 PMCID: PMC10696758 DOI: 10.1186/s13567-023-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Fanglin Qin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
118
|
Lim J, Kim W, Kim J, Lee J. Telomeric repeat evolution in the phylum Nematoda revealed by high-quality genome assemblies and subtelomere structures. Genome Res 2023; 33:1947-1957. [PMID: 37918961 PMCID: PMC10760449 DOI: 10.1101/gr.278124.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Telomeres are composed of tandem arrays of telomeric-repeat motifs (TRMs) and telomere-binding proteins (TBPs), which are responsible for ensuring end-protection and end-replication of chromosomes. TRMs are highly conserved owing to the sequence specificity of TBPs, although significant alterations in TRM have been observed in several taxa, except Nematoda. We used public whole-genome sequencing data sets to analyze putative TRMs of 100 nematode species and determined that three distinct branches included specific novel TRMs, suggesting that evolutionary alterations in TRMs occurred in Nematoda. We focused on one of the three branches, the Panagrolaimidae family, and performed a de novo assembly of four high-quality draft genomes of the canonical (TTAGGC) and novel TRM (TTAGAC) isolates; the latter genomes revealed densely clustered arrays of the novel TRM. We then comprehensively analyzed the subtelomeric regions of the genomes to infer how the novel TRM evolved. We identified DNA damage-repair signatures in subtelomeric sequences that were representative of consequences of telomere maintenance mechanisms by alternative lengthening of telomeres. We propose a hypothetical scenario in which TTAGAC-containing units are clustered in subtelomeric regions and pre-existing TBPs capable of binding both canonical and novel TRMs aided the evolution of the novel TRM in the Panagrolaimidae family.
Collapse
Affiliation(s)
- Jiseon Lim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea;
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
119
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
120
|
Cao M. CRISPR-Cas9 genome editing in Steinernema entomopathogenic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568619. [PMID: 38045388 PMCID: PMC10690278 DOI: 10.1101/2023.11.24.568619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Molecular tool development in traditionally non-tractable animals opens new avenues to study gene functions in the relevant ecological context. Entomopathogenic nematodes (EPN) Steinernema and their symbiotic bacteria of Xenorhabdus spp are a valuable experimental system in the laboratory and are applicable in the field to promote agricultural productivity. The infective juvenile (IJ) stage of the nematode packages mutualistic symbiotic bacteria in the intestinal pocket and invades insects that are agricultural pests. The lack of consistent and heritable genetics tools in EPN targeted mutagenesis severely restricted the study of molecular mechanisms underlying both parasitic and mutualistic interactions. Here, I report a protocol for CRISPR-Cas9 based genome-editing that is successful in two EPN species, S. carpocapsae and S. hermaphroditum . I adapted a gonadal microinjection technique in S. carpocapsae , which created on-target modifications of a homologue Sc-dpy-10 (cuticular collagen) by homology-directed repair. A similar delivery approach was used to introduce various alleles in S. hermaphroditum including Sh-dpy-10 and Sh-unc-22 (a muscle gene), resulting in visible and heritable phenotypes of dumpy and twitching, respectively. Using conditionally dominant alleles of Sh-unc-22 as a co-CRISPR marker, I successfully modified a second locus encoding Sh-Daf-22 (a homologue of human sterol carrier protein SCPx), predicted to function as a core enzyme in the biosynthesis of nematode pheromone that is required for IJ development. As a proof of concept, Sh-daf-22 null mutant showed IJ developmental defects in vivo ( in insecta) . This research demonstrates that Steinernema spp are highly tractable for targeted mutagenesis and has great potential in the study of gene functions under controlled laboratory conditions within the relevant context of its ecological niche.
Collapse
|
121
|
Djune-Yemeli L, Hertz M, Nana-Djeunga HC, Rush A, Erdmann-Gilmore P, Sprung R, Bopda JG, Townsend R, Netongo PM, Kamgno J, Budge PJ. Longitudinal study of cross-reactive antigenemia in individuals with high Loa loa microfilarial density reveals promising biomarkers for distinguishing lymphatic filariasis from loiasis. FRONTIERS IN PARASITOLOGY 2023; 2:1292837. [PMID: 39176078 PMCID: PMC11340908 DOI: 10.3389/fpara.2023.1292837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 08/24/2024]
Abstract
Background and methods Circulating Loa loa antigens are often detected in individuals with heavy L. loa infections by diagnostic tests for lymphatic filariasis (LF) caused by Wuchereria bancrofti. This is a major challenge to LF mapping and elimination efforts in loiasis co-endemic areas. However, it also provides an opportunity to identify antigen biomarkers for loiasis. To determine which L. loa antigens might be promising biomarkers for distinguishing true LF from loiasis, we screened for L. loa antigens in a group of individuals with heavy L. loa infections living in the Okola Health District of Cameroon. In this longitudinal study, participants were tested for cross-reactive antigenemia by filariasis test strip (FTS), ELISA, and western blot, and were monitored for FTS status at 6, 9, 12, and 15 months post-enrollment. We then identified specific circulating L. loa antigens by liquid chromatography-tandem mass spectrometry (LC-MS/MS) from baseline and 15-month plasma samples. Principal findings and conclusions Among 73 FTS-positive (FTS+) and 13 FTS-negative (FTS-) participants with high L. loa microfilarial loads, 83% maintained their FTS status over the course of the study, while 17% experienced at least one FTS conversion event (from FTS+ to FTS- or vice versa). Cross-reactive antigens were detected in both FTS+ and FTS- sera by western blot, and there was poor agreement in antigen detection by FTS, western blot, and ELISA methods. One protein family, a group of Nas-14 metalloproteases, was detected by LC MS/MS in >80% of tested samples, including FTS- samples. These data identify Nas-14 as a promising loiasis biomarker potentially capable of distinguishing loiasis from lymphatic filariasis.
Collapse
Affiliation(s)
- Linda Djune-Yemeli
- Higher Institute of Scientific and Medical Research (ISM), Yaoundé, Cameroon
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaoundé I (BTC-UY-I), Yaoundé, Cameroon
| | - Marla Hertz
- Office of Scholarly Communication, University of Alabama at Birmingham Libraries, Birmingham, AL, United States
| | | | - Amy Rush
- Infectious Disease Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jean Gabin Bopda
- Higher Institute of Scientific and Medical Research (ISM), Yaoundé, Cameroon
| | - Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Palmer Masumbe Netongo
- Molecular Diagnostics Research Group, Biotechnology Centre-University of Yaoundé I (BTC-UY-I), Yaoundé, Cameroon
- Departement of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joseph Kamgno
- Higher Institute of Scientific and Medical Research (ISM), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Philip J. Budge
- Infectious Disease Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
122
|
Brown A, Selkirk ME, Sarkies P. Identification of proteins that bind extracellular microRNAs secreted by the parasitic nematode Trichinella spiralis. Biol Open 2023; 12:bio060096. [PMID: 37906081 PMCID: PMC10660789 DOI: 10.1242/bio.060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Small non-coding RNAs such as microRNAs (miRNAs) are conserved across eukaryotes and play key roles in regulating gene expression. In many organisms, miRNAs are also secreted from cells, often encased within vesicles such as exosomes, and sometimes extravesicular. The mechanisms of miRNA secretion, how they are stabilised outside of cells and their functional importance are poorly understood. Recently, we characterised the parasitic nematode Trichinella spiralis as a model to study miRNA secretion. T. spiralis muscle-stage larvae (MSL) secrete abundant miRNAs which are largely extravesicular. Here, we investigated how T. spiralis miRNAs might remain stable outside of cells. Using proteomics, we identified two RNA binding proteins secreted by T. spiralis larvae and characterised their RNA binding properties. One, a homologue of the known RNA binding protein KSRP, binds miRNA in a selective and sequence-specific fashion. Another protein, which is likely a novel RNA binding protein, binds to miRNA without exhibiting sequence specificity. Our results suggest a possible mechanism for miRNA secretion by T. spiralis and may have relevance for understanding the biology of extracellular miRNA more widely.
Collapse
Affiliation(s)
- Alice Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
123
|
Torabi S, Seifi S, Geddes-McAlister J, Tenuta A, Wally O, Torkamaneh D, Eskandari M. Soybean-SCN Battle: Novel Insight into Soybean's Defense Strategies against Heterodera glycines. Int J Mol Sci 2023; 24:16232. [PMID: 38003422 PMCID: PMC10671692 DOI: 10.3390/ijms242216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.
Collapse
Affiliation(s)
- Sepideh Torabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Soren Seifi
- Aurora Cannabis Inc., Comox, BC V9M 4A1, Canada;
| | | | - Albert Tenuta
- Ontario Ministry of Agriculture, Food and Rural Affairs, Ridgetown, ON N0P 2C0, Canada;
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N0R 1G0, Canada;
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
124
|
Choi YJ, Fischer K, Méité A, Koudou BG, Fischer PU, Mitreva M. Distinguishing recrudescence from reinfection in lymphatic filariasis: a genomics-based approach for monitoring worm burden. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.05.23297155. [PMID: 37986785 PMCID: PMC10659506 DOI: 10.1101/2023.11.05.23297155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background The Global Program to Eliminate Lymphatic Filariasis is the largest public health program based on mass drug administration (MDA). Despite decades of MDA, ongoing transmission in some countries remains a challenge. To optimize interventions, it is essential to differentiate between recrudescence (poor drug response and persistent infection) and new infections (ongoing transmission). Since adult filariae are inaccessible in humans, an approach that relies on genotyping the offspring microfilariae (mf) is required. Methods We utilized Brugia malayi adults and mf obtained from gerbils with a known pedigree to develop and validate our whole-genome amplification and kinship analysis approach. We then sequenced the genomes of Wuchereria bancrofti mf from infected humans from Côte d'Ivoire (CDI), characterized the population genetic diversity, and made inferences about the adult breeders. We developed a whole-exome capture panel for W. bancrofti to enrich parasite nuclear DNA from lower-quality samples contaminated with host DNA. Results We established a robust analysis pipeline using B. malayi adult and mf. We estimated the pre-treatment genetic diversity in W. bancrofti from 269 mf collected from 18 individuals, and further analyzed 1-year post-treatment samples of 74 mf from 4 individuals. By reconstructing and temporally tracking sibling relationships across pre- and post-treatment samples, we differentiated between new and established maternal families, suggesting reinfection in one subject and recrudescence in three subjects. Estimated reproductively active adult females ranged between 3 and 9 in the studied subjects. Hemizygosity of the male X-chromosome allowed for direct inference of haplotypes, facilitating robust maternal parentage inference, even when the genetic diversity was low. Population structure analysis revealed genetically distinct parasites among our CDI samples. Sequence composition and variant analysis of whole-exome libraries showed that the hybridization capture approach can effectively enrich parasite nuclear DNA and identify protein-coding variants with ∼95% genotype concordance rate. Conclusions We have generated resources to facilitate development of field-deployable genotyping tools that can estimate worm burdens and monitor parasite populations. These tools are essential for the success of lymphatic filariasis MDA programs. With further expansion of the databases to include geographically diverse samples, we will be able to spatially track parasite movement associated with host/vector migration.
Collapse
|
125
|
Buddenborg SK, Lu Z, Sankaranarayan G, Doyle SR, Berriman M. The stage- and sex-specific transcriptome of the human parasite Schistosoma mansoni. Sci Data 2023; 10:775. [PMID: 37935722 PMCID: PMC10630280 DOI: 10.1038/s41597-023-02674-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
The flatworm Schistosoma mansoni is an important but neglected pathogen that causes the disease schistosomiasis in millions of people worldwide. The parasite has a complex life cycle, undergoing sexual reproduction in a mammalian host and asexual replication in a snail host. Understanding the molecular mechanisms that the parasite uses to transition between hosts and develop into dimorphic reproductively competent adults may reveal new strategies for control. We present the first comprehensive transcriptomic analysis of S. mansoni, from eggs to sexually naïve worms. Focusing on eight life stages spanning free-living water-borne and parasitic stages from both intermediate and definitive hosts, we have generated deep RNA-seq data for five replicates per group for a total of 75 data sets. The data were produced using a single approach to increase the accuracy of stage-to-stage comparisons and made accessible via a user-friendly tool to visualise and explore gene expression ( https://lifecycle.schisto.xyz/ ). These data are valuable for understanding the biology and sex-specific development of schistosomes and the interpretation of complementary genomic and functional genetics studies.
Collapse
Affiliation(s)
| | - Zhigang Lu
- Wellcome Sanger Institute, Cambridgeshire, CB10 1SA, Hinxton, UK
| | | | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire, CB10 1SA, Hinxton, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Cambridgeshire, CB10 1SA, Hinxton, UK.
- School of Infection and Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
126
|
Chevalier FD, Clec’h WL, Berriman M, Anderson TJ. A single locus determines praziquantel response in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565202. [PMID: 37961217 PMCID: PMC10635054 DOI: 10.1101/2023.11.01.565202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We previously performed a genome-wide association study (GWAS) to identify the genetic basis of praziquantel (PZQ) response in schistosomes, identifying two quantitative trait loci (QTL) situated on chromosome 2 and chromosome 3. We reanalyzed this GWAS using the latest (v10) genome assembly showing that a single locus on chromosome 3, rather than two independent loci, determines drug response. These results reveal that praziquantel response is monogenic and demonstrates the importance of high-quality genomic information.
Collapse
Affiliation(s)
- Frédéric D. Chevalier
- Host-Pathogen Interactions program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| | - Winka Le Clec’h
- Host-Pathogen Interactions program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| | - Matthew Berriman
- School of Infection and Immunity, University of Glasgow; Glasgow G12 8TA, UK
| | - Timothy J.C. Anderson
- Disease Intervention and Prevention program, Texas Biomedical Research Institute; San Antonio, TX 78227, USA
| |
Collapse
|
127
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564729. [PMID: 37961435 PMCID: PMC10635002 DOI: 10.1101/2023.10.30.564729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including C. elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologs with divergent dynamics across this developmental period between the two species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with TGF-β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. Widespread transcriptional divergence between these species is unexpected and may be a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- University of Oregon, Eugene, Oregon, USA
- Current institution: University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | |
Collapse
|
128
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
129
|
Bay ÖF, Hayes KS, Schwartz JM, Grencis RK, Roberts IS. A genome-scale metabolic model of parasitic whipworm. Nat Commun 2023; 14:6937. [PMID: 37907472 PMCID: PMC10618284 DOI: 10.1038/s41467-023-42552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Genome-scale metabolic models are widely used to enhance our understanding of metabolic features of organisms, host-pathogen interactions and to identify therapeutics for diseases. Here we present iTMU798, the genome-scale metabolic model of the mouse whipworm Trichuris muris. The model demonstrates the metabolic features of T. muris and allows the prediction of metabolic steps essential for its survival. Specifically, that Thioredoxin Reductase (TrxR) enzyme is essential, a prediction we validate in vitro with the drug auranofin. Furthermore, our observation that the T. muris genome lacks gsr-1 encoding Glutathione Reductase (GR) but has GR activity that can be inhibited by auranofin indicates a mechanism for the reduction of glutathione by the TrxR enzyme in T. muris. In addition, iTMU798 predicts seven essential amino acids that cannot be synthesised by T. muris, a prediction we validate for the amino acid tryptophan. Overall, iTMU798 is as a powerful tool to study not only the T. muris metabolism but also other Trichuris spp. in understanding host parasite interactions and the rationale design of new intervention strategies.
Collapse
Affiliation(s)
- Ömer F Bay
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Bioinformatics, Abdullah Gül University, Kayseri, Türkiye
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kelly S Hayes
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K Grencis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Ian S Roberts
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
130
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
131
|
Cole R, Holroyd N, Tracey A, Berriman M, Viney M. The parasitic nematode Strongyloides ratti exists predominantly as populations of long-lived asexual lineages. Nat Commun 2023; 14:6427. [PMID: 37833369 PMCID: PMC10575991 DOI: 10.1038/s41467-023-42250-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Nematodes are important parasites of people and animals, and in natural ecosystems they are a major ecological force. Strongyloides ratti is a common parasitic nematode of wild rats and we have investigated its population genetics using single-worm, whole-genome sequencing. We find that S. ratti populations in the UK consist of mixtures of mainly asexual lineages that are widely dispersed across a host population. These parasite lineages are likely very old and may have originated in Asia from where rats originated. Genes that underly the parasitic phase of the parasite's life cycle are hyperdiverse compared with the rest of the genome, and this may allow the parasites to maximise their fitness in a diverse host population. These patterns of parasitic nematode population genetics have not been found before and may also apply to Strongyloides spp. that infect people, which will affect how we should approach their control.
Collapse
Affiliation(s)
- Rebecca Cole
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Matt Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- School of Infection & Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
132
|
Takeuchi T, Nakamura R, Hamasaki M, Oyama M, Hamano S, Hatanaka T. In vitro evaluation of the effect of galectins on Schistosoma mansoni motility. BMC Res Notes 2023; 16:266. [PMID: 37817269 PMCID: PMC10566010 DOI: 10.1186/s13104-023-06530-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Galectins are sugar-binding proteins that participate in many biological processes, such as immunity, by regulating host immune cells and their direct interaction with pathogens. They are involved in mediating infection by Schistosoma mansoni, a parasitic trematode that causes schistosomiasis. However, their direct effects on schistosomes have not been investigated. RESULTS We found that galectin-2 recognizes S. mansoni glycoconjugates and investigated whether galectin-1, 2, and 3 can directly affect S. mansoni in vitro. Adult S. mansoni were treated with recombinant galectin-1, 2, and 3 proteins or praziquantel, a positive control. Treatment with galectin-1, 2, and 3 had no significant effect on S. mansoni motility, and no other differences were observed under a stereoscopic microscope. Hence, galectin-1, 2, and 3 may have a little direct effect on S. mansoni. However, they might play a role in the infection in vivo via the modulation of the host immune response or secretory molecules from S. mansoni. To the best of our knowledge, this is the first study to investigate the direct effect of galectins on S. mansoni and helps in understanding the roles of galectins in S. mansoni infection in vivo.
Collapse
Affiliation(s)
- Tomoharu Takeuchi
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| | - Risa Nakamura
- Department of Parasitology, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Megumi Hamasaki
- Department of Parasitology, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Midori Oyama
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Tomomi Hatanaka
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
133
|
Brabec J, Salomaki ED, Kolísko M, Scholz T, Kuchta R. The evolution of endoparasitism and complex life cycles in parasitic platyhelminths. Curr Biol 2023; 33:4269-4275.e3. [PMID: 37729914 DOI: 10.1016/j.cub.2023.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Within flatworms, the vast majority of parasitism is innate to Neodermata, the most derived and diversified group of the phylum Platyhelminthes.1,2 The four major lineages of Neodermata maintain various combinations of life strategies.3 They include both externally (ecto-) and internally feeding (endo-) parasites. Some lineages complete their life cycles directly by infecting a single host, whereas others succeed only through serial infections of multiple hosts of various vertebrate and invertebrate groups. Food sources and modes of digestion add further combinatorial layers to the often incompletely understood mosaic of neodermatan life histories. Their evolutionary trajectories have remained molecularly unresolved because of conflicting evolutionary inferences and a lack of genomic data.4 Here, we generated transcriptomes for nine early branching neodermatan representatives and performed detailed phylogenomic analyses to address these critical gaps. Polyopisthocotylea, mostly hematophagous ectoparasites, form a group with the mostly hematophagous but endoparasitic trematodes (Trematoda), rather than sharing a common ancestor with Monopisthocotylea, ectoparasitic epithelial feeders. Phylogenetic placement of the highly specialized endoparasitic Cestoda alters depending on the model. Regardless of this uncertainty, this study brings an unconventional perspective on the evolution of platyhelminth parasitism, rejecting a common origin for the endoparasitic lifestyle intrinsic to cestodes and trematodes. Instead, our data indicate that complex life cycles and invasion of vertebrates' gut lumen, the hallmark features of these parasites, evolved independently within Neodermata. We propose the demise of the traditionally recognized class Monogenea and the promotion of its two subclasses to the class level as Monopisthocotyla new class and Polyopisthocotyla new class.
Collapse
Affiliation(s)
- Jan Brabec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, 180 George St, Providence, RI 02906, USA
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
134
|
Liu S, Gao F, Wang R, Li W, Wang S, Zhang X. Molecular Characteristics of the Fatty-Acid-Binding Protein (FABP) Family in Spirometra mansoni-A Neglected Medical Tapeworm. Animals (Basel) 2023; 13:2855. [PMID: 37760255 PMCID: PMC10525997 DOI: 10.3390/ani13182855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The plerocercoid larva of the tapeworm Spirometra mansoni can parasitize humans and animals, causing serious parasitic zoonosis. The molecular characteristics and adaptive parasitism mechanism of Spirometra tapeworms are still unknown. In this study, 11 new members of the fatty-acid-binding protein (FABP) family were characterized in S. mansoni. A clustering analysis showed 11 SmFABPs arranged into two groups, and motif patterns within each group had similar organizations. RT-qPCR showed that SmFABPs were highly expressed in the adult stage, especially in gravid proglottid. A high genetic diversity of SmFABPs and relative conservation of FABPs in medical platyhelminthes were observed in the phylogenetic analysis. Immunolocalization revealed that natural SmFABP is mainly located in the tegument and parenchymal tissue of the plerocercoid and the uterus, genital pores, and cortex of adult worms. rSmFABP can build a more stable holo form when binding with palmitic acid to protect the hydrolytic sites of the protein. A fatty acid starvation induction test suggested that SmFABP might be involved in fatty acid absorption, transport, and metabolism in S. mansoni. The findings in this study will lay the foundation to better explore the underlying mechanisms of FABPs involved in Spirometra tapeworms as well as related taxa.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.L.); (F.G.); (R.W.); (W.L.); (S.W.)
| |
Collapse
|
135
|
Blanco V, Mozzo B, Alvite G. Dimerization, host-parasite communication and expression studies of an Echinococcus granulosus 2DBD nuclear receptor. Parasitol Res 2023; 122:2055-2063. [PMID: 37395819 DOI: 10.1007/s00436-023-07905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate various biological processes, such as metabolism, development and reproduction. Although NRs with two DNA-binding domains (2DBD) were identified in Schistosoma mansoni (Platyhelminth, Trematoda) more than fifteen years ago, these proteins have been poorly studied. 2DBD-NRs could become attractive therapeutic targets to combat parasitic diseases such as cystic echinococcosis since this type of protein is absent in vertebrate hosts. Cystic echinococcosis is a worldwide zoonosis caused by the larval stage of the parasitic platyhelminth Echinococcus granulosus (Cestoda) that generates an important public health problem and a significant economic loss. Recently, our research group identified four 2DBD-NRs in E. granulosus, named Eg2DBDα, Eg2DBDα.1 (an isoform of Eg2DBDα), Eg2DBDβ, and Eg2DBDγ. This work demonstrated that Eg2DBDα.1 forms homodimers through the E and F regions, whereas its interaction with EgRXRβa could not be detected. In addition, the stimulation of Eg2DBDα.1 homodimerization by intermediate host serum was shown, suggesting that at least one lipophilic molecule from bovine serum could bind to Eg2DBDα.1. Finally, Eg2DBDs expression studies in the protoscolex larval stage were performed, indicating that Eg2dbdγ is not expressed, whereas Eg2dbdα has the highest expression level followed by Eg2dbdβ and Eg2dbdα.1 in decreased order. Overall, these findings provide new insights into the mechanism of action of Eg2DBDα.1 and its potential role in host-parasite communication.
Collapse
Affiliation(s)
- Valentina Blanco
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
- Functional Genomics Laboratory, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Bruno Mozzo
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Gabriela Alvite
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
136
|
Choi CP, Villeneuve AM. CRISPR/Cas9 mediated genome editing of Caenorhabditis nigoni using the conserved dpy-10 co-conversion marker. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000937. [PMID: 37720684 PMCID: PMC10500344 DOI: 10.17912/micropub.biology.000937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
In this study, we developed an efficient co-conversion marker, using the conserved dpy-10 gene, to facilitate creation and detection of CRISPR/Cas9-mediated targeted genomic changes in an emerging male/female nematode model system, Caenorhabditis nigoni .
Collapse
Affiliation(s)
- Charlotte P. Choi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| |
Collapse
|
137
|
Lee YC, Ke HM, Liu YC, Lee HH, Wang MC, Tseng YC, Kikuchi T, Tsai IJ. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res 2023; 51:8035-8047. [PMID: 37526286 PMCID: PMC10450198 DOI: 10.1093/nar/gkad647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
138
|
Nedvědová Š, De Stefano D, Walker O, Hologne M, Miele AE. Revisiting Schistosoma mansoni Micro-Exon Gene (MEG) Protein Family: A Tour into Conserved Motifs and Annotation. Biomolecules 2023; 13:1275. [PMID: 37759676 PMCID: PMC10526429 DOI: 10.3390/biom13091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Genome sequencing of the human parasite Schistosoma mansoni revealed an interesting gene superfamily, called micro-exon gene (meg), that encodes secreted MEG proteins. The genes are composed of short exons (3-81 base pairs) regularly interspersed with long introns (up to 5 kbp). This article recollects 35 S. mansoni specific meg genes that are distributed over 7 autosomes and one pair of sex chromosomes and that code for at least 87 verified MEG proteins. We used various bioinformatics tools to produce an optimal alignment and propose a phylogenetic analysis. This work highlighted intriguing conserved patterns/motifs in the sequences of the highly variable MEG proteins. Based on the analyses, we were able to classify the verified MEG proteins into two subfamilies and to hypothesize their duplication and colonization of all the chromosomes. Together with motif identification, we also proposed to revisit MEGs' common names and annotation in order to avoid duplication, to help the reproducibility of research results and to avoid possible misunderstandings.
Collapse
Affiliation(s)
- Štěpánka Nedvědová
- UMR 5280 Institute of Analytical Sciences, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (Š.N.); (O.W.); (M.H.)
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
- Department of Zoology and Fisheries, Center of Infectious Animal Diseases, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Davide De Stefano
- UMR 5280 Institute of Analytical Sciences, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (Š.N.); (O.W.); (M.H.)
| | - Olivier Walker
- UMR 5280 Institute of Analytical Sciences, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (Š.N.); (O.W.); (M.H.)
| | - Maggy Hologne
- UMR 5280 Institute of Analytical Sciences, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (Š.N.); (O.W.); (M.H.)
| | - Adriana Erica Miele
- UMR 5280 Institute of Analytical Sciences, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (Š.N.); (O.W.); (M.H.)
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
139
|
Lim DS, Kim J, Kim W, Kim N, Lee SH, Lee D, Lee J. daf-42 is an evolutionarily young gene essential for dauer development in Caenorhabditis elegans. Genetics 2023; 224:iyad097. [PMID: 37216205 DOI: 10.1093/genetics/iyad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Under adverse environmental conditions, nematodes arrest into dauer, an alternative developmental stage for diapause. Dauer endures unfavorable environments and interacts with host animals to access favorable environments, thus playing a critical role in survival. Here, we report that in Caenorhabditis elegans, daf-42 is essential for development into the dauer stage, as the null mutant of daf-42 exhibited a "no viable dauer" phenotype in which no viable dauers were obtained in any dauer-inducing conditions. Long-term time lapse microscopy of synchronized larvae revealed that daf-42 is involved in developmental changes from the pre-dauer L2d stage to the dauer stage. daf-42 encodes large, disordered proteins of various sizes that are expressed in and secreted from the seam cells within a narrow time window shortly before the molt into dauer stage. Transcriptome analysis showed that the transcription of genes involved in larval physiology and dauer metabolism is highly affected by the daf-42 mutation. Contrary to the notion that essential genes that control the life and death of an organism may be well conserved across diverse species, daf-42 is an evolutionarily young gene conserved only in the Caenorhabditis genus. Our study shows that dauer formation is a vital process that is controlled not only by conserved genes but also by newly emerged genes, providing important insights into evolutionary mechanisms.
Collapse
Affiliation(s)
- Daisy S Lim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonjoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Nari Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Hee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- Korea Basic Science Institute, Ochang, Cheongju, Chungbuk 28119, Republic of Korea
| | - Daehan Lee
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
140
|
Rosa BA, Zarlenga DS, Fournet VM, Beshah E, Hill DE, Zarlenga A, Yee A, Liang X, Shandling AD, Oberai A, Urban JF, Mitreva M. Identification of broadly-conserved parasitic nematode proteins that activate immunity. FRONTIERS IN PARASITOLOGY 2023; 2:1223942. [PMID: 39816844 PMCID: PMC11731683 DOI: 10.3389/fpara.2023.1223942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/20/2023] [Indexed: 01/18/2025]
Abstract
Introduction Soil transmitted nematodes are impediments to human health and agricultural production. Poor anthelmintic efficiencies, the emergence of resistant strains, and the persistence of infective stages highlight the need for more effective control strategies. Parasitic nematodes elicit a Th2-type immune response that most often is not protective. Vaccination has thus far been unsuccessful due to unrealized antigenic characters and unknown mechanisms that nematodes use to circumvent host immunity. Methods Here, we used a genomics/proteomics approach (including immunoblot experiments from pigs infected with T. suis) to prioritize putative immunogenic excretory/secretory (E/S) proteins conserved across and specific to several gastrointestinal (GI) parasitic nematode species. A cocktail of five recombinant proteins optimized for conserved GI nematode targets was used immunize pigs and test for active antibody responses in both the serum and intestinal ileal fluid of immunized pigs. An antibody-protein array of putative immunogenic proteins was developed from a combined bioinformatic, experimental, and literature-based prioritization of homologous parasite proteins. Results Screening the array with sera and ileal fluid samples from immunized pigs suggested cross-reactivity among homologous proteins and a general activation of immunity. PCA clustering showed that the overall immune responses were altered by immunization, but no substantial changes were observed following direct worm challenge with either Ascaris suum or Trichuris suis. Discussion Proteins that activated immunity are potential antigens for immunization and the multi-omics phylum-spanning prioritization database that was created is a valuable resource for identifying target proteins in a wide array of different parasitic nematodes. This research strongly supports future studies using a computational, comparative genomics/proteomics approach to produce an effective parasite vaccine.
Collapse
Affiliation(s)
- Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Dante S. Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Valsin M. Fournet
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Ethiopia Beshah
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Dolores E. Hill
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Alexander Zarlenga
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Angela Yee
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Xiaowu Liang
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Adam D. Shandling
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Amit Oberai
- Antigen Discovery Inc. (ADI) ImmPORT Therapeutics Inc., Irvine, CA, United States
| | - Joseph F. Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
141
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
142
|
Bowler-Barnett EH, Fan J, Luo J, Magrane M, Martin MJ, Orchard S. UniProt and Mass Spectrometry-Based Proteomics-A 2-Way Working Relationship. Mol Cell Proteomics 2023; 22:100591. [PMID: 37301379 PMCID: PMC10404557 DOI: 10.1016/j.mcpro.2023.100591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
The human proteome comprises of all of the proteins produced by the sequences translated from the human genome with additional modifications in both sequence and function caused by nonsynonymous variants and posttranslational modifications including cleavage of the initial transcript into smaller peptides and polypeptides. The UniProtKB database (www.uniprot.org) is the world's leading high-quality, comprehensive and freely accessible resource of protein sequence and functional information and presents a summary of experimentally verified, or computationally predicted, functional information added by our expert biocuration team for each protein in the proteome. Researchers in the field of mass spectrometry-based proteomics both consume and add to the body of data available in UniProtKB, and this review highlights the information we provide to this community and the knowledge we in turn obtain from groups via deposition of large-scale datasets in public domain databases.
Collapse
Affiliation(s)
- E H Bowler-Barnett
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - J Fan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - J Luo
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - M Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - M J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - S Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom.
| |
Collapse
|
143
|
Ittiprasert W, Moescheid MF, Chaparro C, Mann VH, Quack T, Rodpai R, Miller A, Wisitpongpun P, Buakaew W, Mentink-Kane M, Schmid S, Popratiloff A, Grevelding CG, Grunau C, Brindley PJ. Targeted insertion and reporter transgene activity at a gene safe harbor of the human blood fluke, Schistosoma mansoni. CELL REPORTS METHODS 2023; 3:100535. [PMID: 37533651 PMCID: PMC10391569 DOI: 10.1016/j.crmeth.2023.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 08/04/2023]
Abstract
The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Max F. Moescheid
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Thomas Quack
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Rutchanee Rodpai
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Parasitology and Excellence in Medical Innovation, and Technology Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Prapakorn Wisitpongpun
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Watunyoo Buakaew
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Sarah Schmid
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA
| | - Anastas Popratiloff
- Nanofabrication and Imaging Center, Science & Engineering Hall, George Washington University, Washington, DC 20052, USA
| | - Christoph G. Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Grunau
- IHPE, University of Perpignan Via Domitia, CNRS, IFREMER, University Montpellier, Perpignan, France
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
144
|
Kern CC, Srivastava S, Ezcurra M, Hsiung KC, Hui N, Townsend S, Maczik D, Zhang B, Tse V, Konstantellos V, Bähler J, Gems D. C. elegans ageing is accelerated by a self-destructive reproductive programme. Nat Commun 2023; 14:4381. [PMID: 37474586 PMCID: PMC10359416 DOI: 10.1038/s41467-023-40088-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Shivangi Srivastava
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Marina Ezcurra
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nancy Hui
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - StJohn Townsend
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dominik Maczik
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Victoria Tse
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Viktoras Konstantellos
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
145
|
Irvine A, McKenzie D, McCoy CJ, Graham RLJ, Graham C, Huws SA, Atkinson LE, Mousley A. Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLoS Pathog 2023; 19:e1011508. [PMID: 37523405 PMCID: PMC10414684 DOI: 10.1371/journal.ppat.1011508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are immune effectors that are key components of the invertebrate innate immune system providing protection against pathogenic microbes. Parasitic helminths (phylum Nematoda and phylum Platyhelminthes) share complex interactions with their hosts and closely associated microbiota that are likely regulated by a diverse portfolio of antimicrobial immune effectors including AMPs. Knowledge of helminth AMPs has largely been derived from nematodes, whereas the flatworm AMP repertoire has not been described. This study highlights limitations in the homology-based approaches, used to identify putative nematode AMPs, for the characterisation of flatworm AMPs, and reveals that innovative algorithmic AMP prediction approaches provide an alternative strategy for novel helminth AMP discovery. The data presented here: (i) reveal that flatworms do not encode traditional lophotrochozoan AMP groups (Big Defensin, CSαβ peptides and Myticalin); (ii) describe a unique integrated computational pipeline for the discovery of novel helminth AMPs; (iii) reveal >16,000 putative AMP-like peptides across 127 helminth species; (iv) highlight that cysteine-rich peptides dominate helminth AMP-like peptide profiles; (v) uncover eight novel helminth AMP-like peptides with diverse antibacterial activities, and (vi) demonstrate the detection of AMP-like peptides from Ascaris suum biofluid. These data represent a significant advance in our understanding of the putative helminth AMP repertoire and underscore a potential untapped source of antimicrobial diversity which may provide opportunities for the discovery of novel antimicrobials. Further, unravelling the role of endogenous worm-derived antimicrobials and their potential to influence host-worm-microbiome interactions may be exploited for the development of unique helminth control approaches.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Robert L. J. Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaren Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
146
|
Vorel J, Kmentová N, Hahn C, Bureš P, Kašný M. An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio. BMC Genomics 2023; 24:363. [PMID: 37380941 DOI: 10.1186/s12864-023-09461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, Diepenbeek, B-3590, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
147
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
148
|
Macharia TN, Duong TA, Moleleki LN. In silico secretome analyses of the polyphagous root-knot nematode Meloidogyne javanica: a resource for studying M. javanica secreted proteins. BMC Genomics 2023; 24:296. [PMID: 37264326 DOI: 10.1186/s12864-023-09366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Plant-parasitic nematodes (PPNs) that cause most damage include root-knot nematodes (RKNs) which are a major impediment to crop production. Root-knot nematodes, like other parasites, secrete proteins which are required for parasite proliferation and survival within the host during the infection process. RESULTS Here, we used various computational tools to predict and identify classically and non-classically secreted proteins encoded in the Meloidogyne javanica genome. Furthermore, functional annotation analysis was performed using various integrated bioinformatic tools to determine the biological significance of the predicted secretome. In total, 7,458 proteins were identified as secreted ones. A large percentage of this secretome is comprised of small proteins of ≤ 300 aa sequence length. Functional analyses showed that M. javanica secretome comprises cell wall degrading enzymes for facilitating nematode invasion, and migration by disintegrating the complex plant cell wall components. In addition, peptidases and peptidase inhibitors are an important category of M. javanica secretome involved in compatible host-nematode interactions. CONCLUSION This study identifies the putative secretome encoded in the M. javanica genome. Future experimental validation analyses can greatly benefit from this global analysis of M. javanica secretome. Equally, our analyses will advance knowledge of the interaction between plants and nematodes.
Collapse
Affiliation(s)
- Teresia Nyambura Macharia
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
149
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
150
|
Li X, Weth O, Haeberlein S, Grevelding CG. Molecular characterization of Sm tdc-1 and Sm ddc-1 discloses roles as male-competence factors for the sexual maturation of Schistosoma mansoni females. Front Cell Infect Microbiol 2023; 13:1173557. [PMID: 37305409 PMCID: PMC10252128 DOI: 10.3389/fcimb.2023.1173557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.
Collapse
Affiliation(s)
| | | | | | - Christoph G. Grevelding
- Institute for Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| |
Collapse
|