101
|
Johnson HW, Schell MJ. Neuronal IP3 3-kinase is an F-actin-bundling protein: role in dendritic targeting and regulation of spine morphology. Mol Biol Cell 2010; 20:5166-80. [PMID: 19846664 DOI: 10.1091/mbc.e09-01-0083] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The actin microstructure in dendritic spines is involved in synaptic plasticity. Inositol trisphosphate 3-kinase A (ITPKA) terminates Ins(1,4,5)P(3) signals emanating from spines and also binds filamentous actin (F-actin) through its amino terminal region (amino acids 1-66, N66). Here we investigated how ITPKA, independent of its kinase activity, regulates dendritic spine F-actin microstructure. We show that the N66 region of the protein mediates F-actin bundling. An N66 fusion protein bundled F-actin in vitro, and the bundling involved N66 dimerization. By mutagenesis we identified a point mutation in a predicted helical region that eliminated both F-actin binding and bundling, rendering the enzyme cytosolic. A fusion protein containing a minimal helical region (amino acids 9-52, N9-52) bound F-actin in vitro and in cells, but had lower affinity. In hippocampal neurons, GFP-tagged N66 expression was highly polarized, with targeting of the enzyme predominantly to spines. By contrast, N9-52-GFP expression occurred in actin-rich structures in dendrites and growth cones. Expression of N66-GFP tripled the length of dendritic protrusions, induced longer dendritic spine necks, and induced polarized actin motility in time-lapse assays. These results suggest that, in addition to its ability to regulate intracellular Ca(2+) via Ins(1,4,5)P(3) metabolism, ITPKA regulates structural plasticity.
Collapse
Affiliation(s)
- Hong W Johnson
- Department of Pharmacology, Uniformed Services University, Bethesda, MD 20814, USA
| | | |
Collapse
|
102
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
103
|
A reciprocal interdependence between Nck and PI(4,5)P(2) promotes localized N-WASp-mediated actin polymerization in living cells. Mol Cell 2010; 36:525-35. [PMID: 19917259 DOI: 10.1016/j.molcel.2009.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 07/29/2009] [Accepted: 10/28/2009] [Indexed: 11/21/2022]
Abstract
Modulation of actin dynamics through the N-WASp/Arp2/3 pathway is important in cell locomotion, membrane trafficking, and pathogen infection. Here, we demonstrate that Nck is essential for actin remodeling stimulated by phosphatidylinositol 4,5 bisphosphate (PI(4,5)P(2)) and, conversely, that PI(4,5)P(2) is necessary for localized actin polymerization induced by Nck in vivo. Nck knockdown or knockout suppressed actin comets induced by phosphatidylinositol 5-kinase (PIP5K), and PIP5K stimulated tyrosine phosphorylation of an Nck SH2 domain binding partner, suggesting that Nck couples phosphotyrosine- and phosphoinositide-dependent signals. We show that PI(4,5)P(2) and PIP5K are both enriched at actin comets induced by Nck aggregates and that formation of actin comets was strongly inhibited by coclustering with an inositol 5-phosphatase domain to decrease local PI(4,5)P(2) levels. The extent of Nck-induced actin polymerization was also modulated by PI(4,5)P(2)-sensitive N-WASp mutants. This study uncovers a strong reciprocal interdependence between Nck and PI(4,5)P(2) in promoting localized N-WASp-mediated actin polymerization in cells.
Collapse
|
104
|
Abstract
The proteins of the Wiskott-Aldrich syndrome protein (WASP) family are activators of the ubiquitous actin nucleation factor, the Arp2/3 complex. WASP family proteins contain a C-terminal VCA domain that binds and activates the Arp2/3 complex in response to numerous inputs, including Rho family GTPases, phosphoinositide lipids, SH3 domain-containing proteins, kinases, and phosphatases. In the archetypal members of the family, WASP and N-WASP, these signals are integrated through two levels of regulation, an allosteric autoinhibitory interaction, in which the VCA is sequestered from the Arp2/3 complex, and dimerization/oligomerization, in which multi-VCA complexes are better activators of the Arp2/3 complex than monomers. Here, we review the structural, biochemical, and biophysical details of these mechanisms and illustrate how they work together to control WASP activity in response to multiple inputs. These regulatory principles, derived from studies of WASP and N-WASP, are likely to apply broadly across the family.
Collapse
Affiliation(s)
- Shae B. Padrick
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Michael K. Rosen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
105
|
Loose M, Schwille P. Biomimetic membrane systems to study cellular organization. J Struct Biol 2009; 168:143-51. [DOI: 10.1016/j.jsb.2009.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
|
106
|
Richer SM, Stewart NK, Webb SA, Tomaszewski JW, Oakley MG. High affinity binding to profilin by a covalently constrained, soluble mimic of phosphatidylinositol-4,5-bisphosphate micelles. ACS Chem Biol 2009; 4:733-9. [PMID: 19639958 DOI: 10.1021/cb900121r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphoinositide (PI) lipids are essential regulators of a wide variety of cellular functions. We present here the preparation of a multivalent analogue of a phosphatidylinositol-4,5-bisphosphate (PIP(2)) micelle containing only the polar headgroup portion of this lipid. We show that this dendrimer binds to the cytoskeletal protein profilin with an affinity indistinguishable from that of PIP(2), despite the fact that profilin discriminates between PIP(2) and its monomeric hydrolysis product inositol-1,4,5-triphosphate (IP(3)) under physiological conditions. These data demonstrate that the diacylglycerol (DAG) moiety of PIP(2) is not required for high-affinity binding and suggest that profilin uses multivalency as a key means to distinguish between the intact lipid and IP(3). The class of soluble membrane analogues described here is likely to have broad applicability in the study of protein.PI interactions.
Collapse
Affiliation(s)
- Sarah M. Richer
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405
| | - Nichole K. Stewart
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405
| | - Sarah A. Webb
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405
| | - John W. Tomaszewski
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405
| | - Martha G. Oakley
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405
| |
Collapse
|
107
|
Erlmann P, Schmid S, Horenkamp FA, Geyer M, Pomorski TG, Olayioye MA. DLC1 activation requires lipid interaction through a polybasic region preceding the RhoGAP domain. Mol Biol Cell 2009; 20:4400-11. [PMID: 19710422 DOI: 10.1091/mbc.e09-03-0247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deleted in Liver Cancer 1 (DLC1) is a GTPase-activating protein (GAP) with specificity for RhoA, RhoB, and RhoC that is frequently deleted in various tumor types. By inactivating these small GTPases, DLC1 controls actin cytoskeletal remodeling and biological processes such as cell migration and proliferation. Here we provide evidence that DLC1 binds to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) through a previously unrecognized polybasic region (PBR) adjacent to its RhoGAP domain. Importantly, PI(4,5)P(2)-containing membranes are shown to stimulate DLC1 GAP activity in vitro. In living cells, a DLC1 mutant lacking an intact PBR inactivated Rho signaling less efficiently and was severely compromised in suppressing cell spreading, directed migration, and proliferation. We therefore propose that PI(4,5)P(2) is an important cofactor in DLC1 regulation in vivo and that the PBR is essential for the cellular functions of the protein.
Collapse
Affiliation(s)
- Patrik Erlmann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
108
|
A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proc Natl Acad Sci U S A 2009; 106:13359-64. [PMID: 19666604 DOI: 10.1073/pnas.0906945106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large GTPase dynamin plays a key role in clathrin-mediated endocytosis in animal cells, although its mechanism of action remains unclear. Dynamins 1, 2, and 3 contain a pleckstrin homology (PH) domain that binds phosphoinositides with a very low affinity (K(D) > 1 mM), and this interaction appears to be crucial for function. These observations prompted the suggestion that an array of PH domains drives multivalent binding of dynamin oligomers to phosphoinositide-containing membranes. Although in vitro experiments reported here are consistent with this hypothesis, we find that PH domain mutations that abolish dynamin function do not alter localization of the protein in transfected cells, indicating that the PH domain does not play a simple targeting role. An alternative possibility is suggested by the geometry of dynamin helices resolved by electron microscopy. Even with one phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] molecule bound per PH domain, these dynamin assemblies will elevate the concentration of PtdIns(4,5)P(2) at coated pit necks, and effectively cluster (or sequester) this phosphoinositide. In vitro fluorescence quenching studies using labeled phosphoinositides are consistent with dynamin-induced PtdIns(4,5)P(2) clustering. We therefore propose that the ability of dynamin to alter the local distribution of PtdIns(4,5)P(2) could be crucial for the role of this GTPase in promoting membrane scission during clathrin-mediated endocytosis. PtdIns(4,5)P(2) clustering could promote vesicle scission through direct effects on membrane properties, or might play a role in dynamin's ability to regulate actin polymerization.
Collapse
|
109
|
Abstract
Phosphoinositides constitute only a small fraction of cellular phospholipids, yet their importance in the regulation of cellular functions can hardly be overstated. The rapid metabolic response of phosphoinositides after stimulation of certain cell surface receptors was the first indication that these lipids could serve as regulatory molecules. These early observations opened research areas that ultimately clarified the plasma membrane role of phosphoinositides in Ca(2+) signaling. However, research of the last 10 years has revealed a much broader range of processes dependent on phosphoinositides. These lipids control organelle biology by regulating vesicular trafficking, and they modulate lipid distribution and metabolism more generally via their close relationship with lipid transfer proteins. Phosphoinositides also regulate ion channels, pumps, and transporters as well as both endocytic and exocytic processes. The significance of phosphoinositides found within the nucleus is still poorly understood, and a whole new research concerns the highly phosphorylated inositols that also appear to control multiple nuclear processes. The expansion of research and interest in phosphoinositides naturally created a demand for new approaches to determine where, within the cell, these lipids exert their effects. Imaging of phosphoinositide dynamics within live cells has become a standard cell biological method. These new tools not only helped us localize phosphoinositides within the cell but also taught us how tightly phosphoinositide control can be linked with distinct effector protein complexes. The recent progress allows us to understand the underlying causes of certain human diseases and design new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
110
|
Richer SM, Stewart NK, Tomaszewski JW, Stone MJ, Oakley MG. NMR Investigation of the Binding between Human Profilin I and Inositol 1,4,5-Triphosphate, the Soluble Headgroup of Phosphatidylinositol 4,5-Bisphosphate. Biochemistry 2008; 47:13455-62. [DOI: 10.1021/bi801535f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah M. Richer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Nichole K. Stewart
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - John W. Tomaszewski
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Martin J. Stone
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Martha G. Oakley
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
111
|
Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 2008; 29:389-401. [PMID: 19001085 DOI: 10.1128/mcb.00904-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.
Collapse
|
112
|
Padrick SB, Cheng HC, Ismail AM, Panchal SC, Doolittle LK, Kim S, Skehan BM, Umetani J, Brautigam CA, Leong JM, Rosen MK. Hierarchical regulation of WASP/WAVE proteins. Mol Cell 2008; 32:426-38. [PMID: 18995840 PMCID: PMC2680354 DOI: 10.1016/j.molcel.2008.10.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/12/2008] [Accepted: 10/08/2008] [Indexed: 12/13/2022]
Abstract
Members of the Wiskott-Aldrich syndrome protein (WASP) family control actin dynamics in eukaryotic cells by stimulating the actin nucleating activity of the Arp2/3 complex. The prevailing paradigm for WASP regulation invokes allosteric relief of autoinhibition by diverse upstream activators. Here we demonstrate an additional level of regulation that is superimposed upon allostery: dimerization increases the affinity of active WASP species for Arp2/3 complex by up to 180-fold, greatly enhancing actin assembly by this system. This finding explains a large and apparently disparate set of observations under a common mechanistic framework. These include WASP activation by the bacterial effector EspFu and a large number of SH3 domain proteins, the effects on WASP of membrane localization/clustering and assembly into large complexes, and cooperativity between different family members. Allostery and dimerization act in hierarchical fashion, enabling WASP/WAVE proteins to integrate different classes of inputs to produce a wide range of cellular actin responses.
Collapse
Affiliation(s)
- Shae B. Padrick
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hui-Chun Cheng
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ayman M. Ismail
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sanjay C. Panchal
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lynda K. Doolittle
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Soyeon Kim
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Brian M. Skehan
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Junko Umetani
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chad A. Brautigam
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John M. Leong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Michael K. Rosen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
113
|
Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S, Backert S, Rosenshine I, Aroeti B. Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 2008; 20:544-55. [PMID: 18987340 DOI: 10.1091/mbc.e08-05-0516] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P(2) and PI(3,4,5)P(3) in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P(2) accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P(2) depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P(2) contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P(3) clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P(3) beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity.
Collapse
Affiliation(s)
- Hagit Sason
- Department of Cell and Animal Biology, Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Li H, Chen G, Zhou B, Duan S. Actin filament assembly by myristoylated alanine-rich C kinase substrate-phosphatidylinositol-4,5-diphosphate signaling is critical for dendrite branching. Mol Biol Cell 2008; 19:4804-13. [PMID: 18799624 DOI: 10.1091/mbc.e08-03-0294] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dendrites undergo extensive growth and branching at early stages, but relatively little is known about the molecular mechanisms underlying these processes. Here, we show that increasing the level of myristoylated, alanine-rich C kinase substrate (MARCKS), a prominent substrate of protein kinase C and a phosphatidylinositol-4,5-diphosphate [PI(4,5)P2] sequestration protein highly expressed in the brain, enhanced branching and growth of dendrites both in vitro and in vivo. Conversely, knockdown of endogenous MARCKS by RNA interference reduced dendritic arborization. Results from expression of different mutants indicated that membrane binding is essential for MARCKS-induced dendritic morphogenesis. Furthermore, MARCKS increased the number and length of filamentous actin-based filopodia along neurites, as well as the motility of filopodia, in a PI(4,5)P2-dependent manner. Time-lapse imaging showed that MARCKS increased frequency of filopodia initiation but did not affect filopodia longevity, suggesting that MARCKS may increase dendritic branching through its action on filopodia initiation. These findings demonstrate a critical role for MARCKS-PI(4,5)P2 signaling in regulating dendrite development.
Collapse
Affiliation(s)
- Haimin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | |
Collapse
|
115
|
CALLE Y, ANTÓN I, THRASHER A, JONES G. WASP and WIP regulate podosomes in migrating leukocytes. J Microsc 2008; 231:494-505. [DOI: 10.1111/j.1365-2818.2008.02062.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
116
|
Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA. Membrane-induced bundling of actin filaments. NATURE PHYSICS 2008; 4:789-793. [PMID: 19746192 PMCID: PMC2739388 DOI: 10.1038/nphys1071] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dynamic interplay between the plasma membrane and underlying cytoskeleton is essential for cellular shape change. Spatial organization of actin filaments, whose growth generates membrane deformations during motility 1, phagocytosis 2, endocytosis 3, and cytokinesis 4, is mediated by specific protein-protein interactions that branch, crosslink, and bundle filaments into networks that interact with the membrane. Although membrane curvature has been found to influence binding of proteins with curvature-sensitive domains 5, the direct effect of membrane elasticity on cytoskeletal network organization is not clear. Here we show through in vitro reconstitution and elastic modeling that a lipid bilayer can drive the emergence of bundled actin filament protrusions from branched actin filament networks, thus playing a role normally attributed to actin-binding proteins. Formation of these filopodium-like protrusions with only a minimal set of purified proteins points to an active participation of the membrane in organizing actin filaments at the plasma membrane. In this way, elastic interactions between the membrane and cytoskeleton can cooperate with accessory proteins to drive cellular shape change.
Collapse
Affiliation(s)
- Allen P. Liu
- Graduate Group in Biophysics, University of California at Berkeley, Berkeley, CA 94720
| | - David L. Richmond
- Graduate Group in Biophysics, University of California at Berkeley, Berkeley, CA 94720
| | - Lutz Maibaum
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sander Pronk
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720
| | - Phillip L. Geissler
- Graduate Group in Biophysics, University of California at Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chemical Sciences and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Daniel A. Fletcher
- Graduate Group in Biophysics, University of California at Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
117
|
Yalovsky S, Bloch D, Sorek N, Kost B. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. PLANT PHYSIOLOGY 2008; 147:1527-43. [PMID: 18678744 PMCID: PMC2492628 DOI: 10.1104/pp.108.122150] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 06/12/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
118
|
|
119
|
Nucleoside diphosphate kinase B (NDKB) scaffolds endoplasmic reticulum membranes in vitro. Exp Cell Res 2008; 314:2702-14. [PMID: 18601920 DOI: 10.1016/j.yexcr.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 12/29/2022]
Abstract
The mechanisms that structure the mammalian endoplasmic reticulum (ER) network are not fully understood. Here we show that salt extraction of semi-intact normal rat kidney (NRK) fibroblasts and subsequent incubation of the extracted cells with ATP resulted in dramatic ER network retraction. Under these conditions, addition of a single protein, Nucleoside Diphosphate Kinase B (NDKB), was sufficient to reverse the retraction and to promote ER network extension. The underlying mechanism of membrane extension involved direct lipid binding, as NDKB bound phosphatidylinositol (PtdIns)(4)P, PtdIns(4,5)P(2) and phosphatidic acid (PA); binding to these anionic lipids required clusters of basic residues on the surface of the NDKB hexamer; and amino acid changes in NDKB that blocked lipid binding also blocked ER network extension. Remarkably, purified NDKB transformed a uniform population of synthetic lipid vesicles into extensive membrane networks, and this also required its phospholipid-binding activity. Altogether these results identify a protein sufficient to scaffold extended membrane networks, and suggest a possible role for NDKB-like proteins, as well as phosphoinositides and/or acidic phospholipids, in modulating ER network morphogenesis.
Collapse
|
120
|
Orlando K, Zhang J, Zhang X, Yue P, Chiang T, Bi E, Guo W. Regulation of Gic2 localization and function by phosphatidylinositol 4,5-bisphosphate during the establishment of cell polarity in budding yeast. J Biol Chem 2008; 283:14205-12. [PMID: 18387956 PMCID: PMC2386929 DOI: 10.1074/jbc.m708178200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 03/31/2008] [Indexed: 12/12/2022] Open
Abstract
Establishment of cell polarity is important for a wide range of biological processes, from asymmetric cell growth in budding yeast to neurite formation in neurons. In the yeast Saccharomyces cerevisiae, the small GTPase Cdc42 controls polarized actin organization and exocytosis toward the bud. Gic2, a Cdc42 effector, is targeted to the bud tip and plays an important role in early bud formation. The GTP-bound Cdc42 interacts with Gic2 through the Cdc42/Rac interactive binding domain located at the N terminus of Gic2 and activates Gic2 during bud emergence. Here we identify a polybasic region in Gic2 adjacent to the Cdc42/Rac interactive binding domain that directly interacts with phosphatidylinositol 4,5-bisphosphate in the plasma membrane. We demonstrate that this interaction is necessary for the polarized localization of Gic2 to the bud tip and is important for the function of Gic2 in cell polarization. We propose that phosphatidylinositol 4,5-bisphosphate and Cdc42 act in concert to regulate polarized localization and function of Gic2 during polarized cell growth in the budding yeast.
Collapse
Affiliation(s)
- Kelly Orlando
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol 2008; 15:452-61. [PMID: 18454158 PMCID: PMC2440660 DOI: 10.1038/nsmb.1418] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/20/2008] [Indexed: 11/08/2022]
Abstract
The kinetics of Ras activation by Son of sevenless (SOS) changes profoundly when Ras is tethered to membranes, instead of being in solution. SOS has two binding sites for Ras, one of which is an allosteric site that is distal to the active site. The activity of the SOS catalytic unit (SOS(cat)) is up to 500-fold higher when Ras is on membranes compared to rates in solution, because the allosteric Ras site anchors SOS(cat) to the membrane. This effect is blocked by the N-terminal segment of SOS, which occludes the allosteric site. We show that SOS responds to the membrane density of Ras molecules, to their state of GTP loading and to the membrane concentration of phosphatidylinositol-4,5-bisphosphate (PIP2), and that the integration of these signals potentiates the release of autoinhibition.
Collapse
Affiliation(s)
- Jodi Gureasko
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - William J. Galush
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sean Boykevisch
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Holger Sondermann
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, QB3 Institute, 176 Stanley Hall, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
122
|
Abstract
AbstractAlthough membrane phospholipid phosphatidylinositol-4,5bisphosphate (PIP2) plays a key role as signaling intermediate and coordinator of actin dynamics and vesicle trafficking, it remains completely unknown its involvement in the activation of cytolytic machinery. By live confocal imaging of primary human natural killer (NK) cells expressing the chimeric protein GFP-PH, we observed, during effector-target cell interaction, the consumption of a preexisting PIP2 pool, which is critically required for the activation of cytolytic machinery. We identified type I phosphatidylinositol-4-phosphate-5-kinase (PI5KI) α and γ isoforms as the enzymes responsible for PIP2 synthesis in NK cells. By hRNA-driven gene silencing, we observed that both enzymes are required for the proper activation of NK cytotoxicity and for inositol-1,4,5-trisphosphate (IP3) generation on receptor stimulation. In an attempt to elucidate the specific step controlled by PI5KIs, we found that lytic granule secretion but not polarization resulted in impaired PI5KIα- and PI5KIγ-silenced cells. Our findings delineate a novel mechanism implicating PI5KIα and PI5KIγ isoforms in the synthesis of PIP2 pools critically required for IP3-dependent Ca2+ response and lytic granule release.
Collapse
|
123
|
Yan J, Wen W, Chan LN, Zhang M. Split pleckstrin homology domain-mediated cytoplasmic-nuclear localization of PI3-kinase enhancer GTPase. J Mol Biol 2008; 378:425-35. [PMID: 18371979 DOI: 10.1016/j.jmb.2008.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/12/2008] [Accepted: 02/25/2008] [Indexed: 11/25/2022]
Abstract
Cytoplasm-nucleus shuttling of phosphoinositol 3-kinase enhancer (PIKE) is known to correlate directly with its cellular functions. However, the molecular mechanism governing this shuttling is not known. In this work, we demonstrate that PIKE is a new member of split pleckstrin homology (PH) domain-containing proteins. The structure solved in this work reveals that the PIKE PH domain is split into halves by a positively charged nuclear localization sequence. The PIKE PH domain binds to the head groups of di- and triphosphoinositides with similar affinities. Lipid membrane binding of the PIKE PH domain is further enhanced by the positively charged nuclear localization sequence, which is juxtaposed to the phosphoinositide head group-binding pocket of the domain. We demonstrate that the cytoplasmic-nuclear shuttling of PIKE is dynamically regulated by the balancing actions of the lipid-binding property of both the split PH domain and the nuclear targeting function of its nuclear localization sequence.
Collapse
Affiliation(s)
- Jing Yan
- Department of Biochemistry, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|
124
|
Deacon SW, Peterson JR. Chemical inhibition through conformational stabilization of Rho GTPase effectors. Handb Exp Pharmacol 2008:431-460. [PMID: 18491063 DOI: 10.1007/978-3-540-72843-6_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Rho family of small GTP-binding proteins can activate a large number of downstream effectors and participate in a wide variety of biological processes, including cell motility, membrane trafficking, cell polarity, gene transcription, and mitosis. Specific small-molecule inhibitors of individual effector proteins downstream of Rho GTPases would be powerful tools to elucidate the contributions of particular effectors to these processes. In this chapter we describe the identification of a chemical inhibitor of a Rho effector and scaffolding protein neural-Wiskott-Aldrich syndrome protein (N-WASP), and the discovery of its novel mechanism of action, stabilization of N-WASP's native autoinhibited conformation. Inasmuch as several other Rho GTPase effectors are regulated by autoinhibition, we discuss how this regulatory mechanism could be exploited by small molecules to develop highly specific inhibitors of other Rho GTPase effectors. We illustrate this concept with the Rac/Cdc42 effector p21-activated kinase (Pak1) and the Rho effector mammalian diaphanous-related formin (mDia1).
Collapse
Affiliation(s)
- S W Deacon
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
125
|
Ramachandran R, Schmid SL. Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. EMBO J 2007; 27:27-37. [PMID: 18079695 DOI: 10.1038/sj.emboj.7601961] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/21/2007] [Indexed: 11/09/2022] Open
Abstract
The GTPase dynamin is a mechanochemical enzyme involved in membrane fission, but the molecular nature of its membrane interactions and their regulation by guanine nucleotides and protein effectors remain poorly characterized. Using site-directed fluorescence labeling and several independent fluorescence spectroscopic techniques, we have developed robust assays for the detection and real-time monitoring of dynamin-membrane and dynamin-dynamin interactions. We show that dynamin interacts preferentially with highly curved, PIP2-dense membranes and inserts partially into the lipid bilayer. Our kinetic measurements further reveal that cycles of GTP binding and hydrolysis elicit major conformational rearrangements in self-assembled dynamin that favor dynamin-membrane association and dissociation, respectively. Sorting nexin 9, an abundant dynamin partner, transiently stabilizes dynamin on the membrane at the onset of stimulated GTP hydrolysis and may function to couple dynamin's mechanochemical conformational changes to membrane destabilization. Amphiphysin I has the opposite effect. Thus, dynamin's mechanochemical properties on a membrane surface are dynamically regulated by its GTPase cycle and major binding partners.
Collapse
Affiliation(s)
- Rajesh Ramachandran
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
126
|
DiNitto JP, Delprato A, Lee MTG, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 2007; 28:569-83. [PMID: 18042453 PMCID: PMC2156038 DOI: 10.1016/j.molcel.2007.09.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/30/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.
Collapse
Affiliation(s)
- Jonathan P. DiNitto
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Anna Delprato
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Meng-Tse Gabe Lee
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Thomas C. Cronin
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Shaohui Huang
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Adilson Guilherme
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael P. Czech
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
127
|
Yarar D, Surka MC, Leonard MC, Schmid SL. SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 2007; 9:133-46. [PMID: 17988218 DOI: 10.1111/j.1600-0854.2007.00675.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sorting nexin 9 (SNX9) functions at the interface between membrane remodeling and the actin cytoskeleton. In particular, SNX9 links membrane binding to potentiation of N-WASP and dynamin GTPase activities. SNX9 is one of a growing number of proteins that contain two lipid-binding domains, a phox homology (PX) and a Bin1/Amphiphysin/RVS167 (BAR) domain, and localizes to diverse membranes that are enriched in different phosphoinositides. Here, we investigate the mechanism by which SNX9 functions at these varied membrane environments. We show that SNX9 has low-lipid-binding affinity and harnesses a broad range of phosphoinositides to synergistically enhance both dynamin and N-WASP activities. We introduced point mutations in either the PX domain, BAR domain or both that are predicted to disrupt their functions and examined their respective roles in lipid-binding, and dynamin and N-WASP activation. We show that the broad lipid specificity of SNX9 is not because of independent and additive contributions by individual domains. Rather, the two domains appear to function in concert to confer lipid-binding and SNX9's membrane active properties. We also demonstrate that the two domains are differentially required for full SNX9 activity in N-WASP and dynamin regulation, and for localization of SNX9 to clathrin-coated pits and dorsal ruffles. In total, our results suggest that SNX9 can integrate signals from varied lipids through two domains to direct membrane remodeling events at multiple cellular locations.
Collapse
Affiliation(s)
- Defne Yarar
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
128
|
Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 2007; 32:509-19. [PMID: 17949986 DOI: 10.1016/j.tibs.2007.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/03/2023]
Abstract
The INhibitor of Growth (ING) family of type II tumour suppressors are encoded by five genes in mammals (ING1-ING5), most of which encode multiple isoforms via splicing, and all of which contain a highly conserved plant homeodomain (PHD) finger motif. Since their discovery approximately ten years ago, significant progress has been made in understanding their subcellular targeting, their relationship to p53, their activation by bioactive phospholipids, and their key role in reading the histone code via PHD fingers, with subsequent effects on histone acetylation and transcriptional regulation. In the past year, we have begun to understand how ING proteins integrate stress signals with interpretation and modification of the histone epigenetic code to function as tumour suppressors.
Collapse
Affiliation(s)
- Mohamed A Soliman
- Department of Biochemistry University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
129
|
Takahashi S, Pryciak PM. Identification of novel membrane-binding domains in multiple yeast Cdc42 effectors. Mol Biol Cell 2007; 18:4945-56. [PMID: 17914055 PMCID: PMC2096579 DOI: 10.1091/mbc.e07-07-0676] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP(2)-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase-dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein-protein and protein-membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M. Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
130
|
Brügger B, Krautkrämer E, Tibroni N, Munte CE, Rauch S, Leibrecht I, Glass B, Breuer S, Geyer M, Kräusslich HG, Kalbitzer HR, Wieland FT, Fackler OT. Human immunodeficiency virus type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology 2007; 4:70. [PMID: 17908312 PMCID: PMC2065869 DOI: 10.1186/1742-4690-4-70] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/01/2007] [Indexed: 01/03/2023] Open
Abstract
Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nadine Tibroni
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Claudia E Munte
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Susanne Rauch
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Iris Leibrecht
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Bärbel Glass
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Sebastian Breuer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | - Matthias Geyer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | | | - Hans Robert Kalbitzer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Oliver T Fackler
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
131
|
He B, Xi F, Zhang X, Zhang J, Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 2007; 26:4053-65. [PMID: 17717527 PMCID: PMC2230670 DOI: 10.1038/sj.emboj.7601834] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 07/23/2007] [Indexed: 01/01/2023] Open
Abstract
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.
Collapse
Affiliation(s)
- Bing He
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengong Xi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoyu Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
132
|
Blin G, Margeat E, Carvalho K, Royer CA, Roy C, Picart C. Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate. Biophys J 2007; 94:1021-33. [PMID: 17827228 PMCID: PMC2186265 DOI: 10.1529/biophysj.107.110213] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Among the proteins involved in the direct linkage between the cytoskeleton and the plasma membrane is the ezrin/radixin/moesin (ERM) family. The FERM (4.1 ezrin/radixin/moesin) domain in their N-terminus contains a phosphatidylinositol 4,5 bisphosphate (PIP(2)) (membrane) binding site whereas their C-terminus binds actin. In this work, our aim was to quantify the interaction of ezrin with large unilamellar vesicles (LUVs) containing PIP(2). For this purpose, we produced human recombinant ezrin bearing a cysteine residue at its C-terminus for subsequent labeling with Alexa488 maleimide. The functionality of labeled ezrin was checked by comparison with that of wild-type ezrin. The affinity constant between ezrin and LUVs was determined by cosedimentation assays and fluorescence correlation spectroscopy. The affinity was found to be approximately 5 microM for PIP(2)-LUVs and 20- to 70-fold lower for phosphatidylserine-LUVs. These results demonstrate, as well, that the interaction between ezrin and PIP(2)-LUVs is not cooperative. Finally, we found that ezrin FERM domain (area of approximately 30 nm(2)) binding to a single PIP(2) can block access to neighboring PIP(2) molecules and thus contributes to lower the accessible PIP(2) concentration. In addition, no evidence exists for a clustering of PIP(2) induced by ezrin addition.
Collapse
Affiliation(s)
- Guillaume Blin
- DIMNP, Universités Montpellier II et I, CNRS, Montpellier cedex 05, France
| | - Emmanuel Margeat
- Institut National de la Sante et de la Recherche Medicale Unité 554, and Université Montpellier, Centre National de Recherche Scientifique, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - Kévin Carvalho
- DIMNP, Universités Montpellier II et I, CNRS, Montpellier cedex 05, France
| | - Catherine A. Royer
- Institut National de la Sante et de la Recherche Medicale Unité 554, and Université Montpellier, Centre National de Recherche Scientifique, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| | - Christian Roy
- DIMNP, Universités Montpellier II et I, CNRS, Montpellier cedex 05, France
| | - Catherine Picart
- DIMNP, Universités Montpellier II et I, CNRS, Montpellier cedex 05, France
- Address reprint requests to Catherine Picart.
| |
Collapse
|
133
|
Liu J, Zuo X, Yue P, Guo W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol Biol Cell 2007; 18:4483-92. [PMID: 17761530 PMCID: PMC2043555 DOI: 10.1091/mbc.e07-05-0461] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through its direct interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). Furthermore, we have identified key conserved residues at the C-terminus of Exo70 that are crucial for the interaction of Exo70 with PI(4,5)P(2). Disrupting Exo70-PI(4,5)P(2) interaction abolished the membrane association of Exo70. We have also found that wild-type Exo70 but not the PI(4,5)P(2)-binding-deficient Exo70 mutant is capable of recruiting other exocyst components to the PM. Using the ts045 vesicular stomatitis virus glycoprotein trafficking assay, we demonstrate that Exo70-PI(4,5)P(2) interaction is critical for the docking and fusion of post-Golgi secretory vesicles, but not for their transport to the PM.
Collapse
Affiliation(s)
- Jianglan Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Xiaofeng Zuo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| |
Collapse
|
134
|
Sun JP, Luo Y, Yu X, Wang WQ, Zhou B, Liang F, Zhang ZY. Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. J Biol Chem 2007; 282:29043-29051. [PMID: 17656357 DOI: 10.1074/jbc.m703537200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatase of regenerating liver (PRL) phosphatases are implicated in a number of tumorigenesis and metastasis processes. The PRLs are unique among protein-tyrosine phosphatases in that they have extremely low phosphatase activity, a high propensity for trimer formation, and a polybasic region that precedes the C-terminal prenylation motif. To investigate the functional significance of these distinctive biochemical and structural features, we established a cell-based system in which ectopic PRL1 expression increased cell proliferation and migration, whereas knockdown of endogenous PRL1 abrogated these cellular activities. We showed that the intrinsic PRL1 phosphatase activity is obligatory for its biological function. We provided evidence that trimerization may be a general property for all PRL enzymes, and that PRL1 trimer formation is essential for the PRL1-mediated cell growth and migration. This finding indicates a novel mechanism for phosphatase regulation. We further demonstrated that the conserved C-terminal polybasic region is important for specific phosphoinositide recognition by PRL1. Both the polybasic residues and the adjacent prenylation motif are required for proper PRL1 subcellular localization and full biological activity.
Collapse
Affiliation(s)
- Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yong Luo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wei-Qing Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Bo Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Fubo Liang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
135
|
Dueber JE, Mirsky EA, Lim WA. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat Biotechnol 2007; 25:660-2. [PMID: 17515908 DOI: 10.1038/nbt1308] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/01/2007] [Indexed: 11/09/2022]
Abstract
Many signaling proteins are built from simple, modular components, yet display highly complex signal-processing behavior. Here we explore how modular domains can be used to build an ultrasensitive switch--a nonlinear input/output function that is central to many complex biological behaviors. By systematically altering the number and affinity of modular autoinhibitory interactions, we show that we can predictably convert a simple linear signaling protein into an ultrasensitive switch.
Collapse
Affiliation(s)
- John E Dueber
- Program in Biological Sciences, University of California, San Francisco, California 94158-2517, USA
| | | | | |
Collapse
|
136
|
Mattila PK, Pykäläinen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. ACTA ACUST UNITED AC 2007; 176:953-64. [PMID: 17371834 PMCID: PMC2064081 DOI: 10.1083/jcb.200609176] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P(2)-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P(2)-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin-bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis.
Collapse
Affiliation(s)
- Pieta K Mattila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
137
|
Co C, Wong DT, Gierke S, Chang V, Taunton J. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 2007; 128:901-13. [PMID: 17350575 PMCID: PMC2047291 DOI: 10.1016/j.cell.2006.12.049] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/12/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Actin filament networks exert protrusive and attachment forces on membranes and thereby drive membrane deformation and movement. Here, we show that N-WASP WH2 domains play a previously unanticipated role in vesicle movement by transiently attaching actin filament barbed ends to the membrane. To dissect the attachment mechanism, we reconstituted the propulsive motility of lipid-coated glass beads, using purified soluble proteins. N-WASP WH2 mutants assembled actin comet tails and initiated movement, but the comet tails catastrophically detached from the membrane. When presented on the surface of a lipid-coated bead, WH2 domains were sufficient to maintain comet tail attachment. In v-Src-transformed fibroblasts, N-WASP WH2 mutants were severely defective in the formation of circular podosome arrays. In addition to creating an attachment force, interactions between WH2 domains and barbed ends may locally amplify signals for dendritic actin nucleation.
Collapse
Affiliation(s)
- Carl Co
- Department of Cellular and Molecular Pharmacology, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
- Program in Biological Sciences, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
| | - Derek T. Wong
- Joint Graduate Group in Bioengineering, University of California, Berkeley and University of California, San Francisco Berkeley, California, 94720
| | - Sarah Gierke
- Department of Cellular and Molecular Pharmacology, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
| | - Vicky Chang
- Department of Cellular and Molecular Pharmacology, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
- Program in Biological Sciences, UCSF/UCB Cell Propulsion Lab (www.qb3.org/CPL), University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
138
|
Ching KH, Kisailus AE, Burbelo PD. Biochemical characterization of distinct regions of SPEC molecules and their role in phagocytosis. Exp Cell Res 2007; 313:10-21. [PMID: 17045588 DOI: 10.1016/j.yexcr.2006.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Cdc42 signaling pathways play important roles in immune cell polarization and cytoskeletal changes. Although the small Cdc42-binding proteins SPEC1 and SPEC2 play a role in F-actin accumulation in activated T lymphocytes, little is known about their precise activities in other cell types. Here, we mapped the Cdc42-binding activity of SPEC1 to the CRIB sequence and a downstream alpha helical region. Biochemical studies revealed that SPEC1 did not interact with a Rac1 switch-of-function mutant capable of inducing Cdc42-like filopodia, potentially eliminating a role for SPECs in this process. A phosphoinositide-binding region was identified within a basic region N-terminal to the CRIB sequence of SPEC1. Using an anti-SPEC2 antibody, we found that endogenous SPEC2 colocalized with Cdc42 at the phagocytic cup of macrophages internalizing zymosan A particles prior to significant F-actin accumulation. Overexpression studies of the related SPEC1 protein induced marked macrophage contraction and prevented particle binding and phagocytosis. Although a Cdc42-binding mutant of SPEC1 still caused macrophage contraction, mutations within the N-terminal cysteines and phosphoinositide-binding region reversed macrophage contraction but still resulted in impaired phagocytosis. These results identify three distinct structural and functional regions within SPECs and demonstrate their likely role in early contractile events in phagocytosis.
Collapse
Affiliation(s)
- Kathryn H Ching
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
139
|
Le Rumeur E, Pottier S, Da Costa G, Metzinger L, Mouret L, Rocher C, Fourage M, Rondeau-Mouro C, Bondon A. Binding of the dystrophin second repeat to membrane di-oleyl phospholipids is dependent upon lipid packing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:648-54. [PMID: 17157263 DOI: 10.1016/j.bbamem.2006.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Dystrophin is the genetically deficient protein in Duchenne Muscular Dystrophy. Its C- and N-terminal ends interact with cytoskeletal and membrane proteins, establishing a link between the cytoskeleton and the extracellular matrix. In a previous study, we showed that there is an interaction between the second repeat of the rod domain and membrane phospholipids, which places tryptophan residues in close contact with the membrane. Here, we examine the binding of the dystrophin repeat-2 to small unilamellar vesicles with varying composition. We find that the protein binds predominantly to di-oleyl-phosphatidylserine. The binding as a function of increasing mol% of DOPS appears to be cooperative due to reduction of dimensionality, greatly enhanced in the absence of salts, and partly modulated by pH. Substituting small by large unilamellar vesicles induces a 30-fold lower affinity of the protein for the membrane phospholipids. However, modifying the packing of the acyl chains by introducing lipids such as phosphatidylethanolamine and cholesterol to the vesicle leads to an approximately 7-fold increase in affinity. Taken together, these results show that the binding involves electrostatic forces in addition to hydrophobic ones.
Collapse
Affiliation(s)
- Elisabeth Le Rumeur
- UMR CNRS 6026 - IFR 140, Equipe RMN-Interactions lipides protéines, Faculté de Médecine, Université de Rennes 1, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM. Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 2006; 17:4856-65. [PMID: 16971510 PMCID: PMC1635404 DOI: 10.1091/mbc.e06-05-0449] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP(2) in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.
Collapse
Affiliation(s)
- David E. Hokanson
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Joseph M. Laakso
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - Tianming Lin
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, MO 63130
| | - E. Michael Ostap
- *The Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085; and
| |
Collapse
|
141
|
Liu AP, Fletcher DA. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 2006; 91:4064-70. [PMID: 16963509 PMCID: PMC1635687 DOI: 10.1529/biophysj.106.090852] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been identified. Here we show that branched actin networks formed on model lipid membranes enriched with the lipid second messenger PIP(2) trigger both temporal and spatial rearrangement of membrane components. Using giant unilamellar vesicles able to separate into two coexisting liquid phases, we demonstrate that polymerization of dendritic actin networks on the membrane induces phase separation of initially homogenous vesicles. This switch-like behavior depends only on the PIP(2)-N-WASP link between the membrane and actin network, and we find that the presence of a preexisting actin network spatially biases the location of phase separation. These results show that dynamic, membrane-bound actin networks alone can control when and where membrane domains form and may actively contribute to membrane organization during cell signaling.
Collapse
Affiliation(s)
- Allen P Liu
- Biophysics Program, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
142
|
Kaadige MR, Ayer DE. The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. J Biol Chem 2006; 281:28831-6. [PMID: 16893883 DOI: 10.1074/jbc.m605624200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant homeodomain (PHD) zinc finger is one of 14 known zinc-binding domains. PHD domains have been found in more than 400 eukaryotic proteins and are characterized by a Cys(4)-His-Cys(3) zinc-binding motif that spans 50-80 residues. The precise function of PHD domains is currently unknown; however, the PHD domains of the ING1 and ING2 tumor suppressors have been shown recently to bind phosphoinositides (PIs). We have recently identified a novel PHD-containing protein, Pf1, as a binding partner for the abundant and ubiquitous transcriptional corepressor mSin3A. Pf1 contains two PHD zinc fingers, PHD1 and PHD2, and functions to bridge mSin3A to the TLE1 corepressor. Here, we show that PHD1, but not PHD2, binds several monophosporylated PIs but most strongly to PI(3)P. Surprisingly, a polybasic region that follows the PHD1 is necessary for PI(3)P binding. Furthermore, this polybasic region binds specifically to PI(3)P when fused to maltose-binding protein, PHD2, or as an isolated peptide, demonstrating that it is sufficient for specific PI binding. By exchanging the polybasic regions between different PHD fingers we show that this region is a strong determinant of PI binding specificity. These findings establish the Pf1 polybasic region as a phosphoinositide-binding module and suggest that the PHD domains function down-stream of phosphoinositide signaling triggered by the interaction between polybasic regions and phosphoinositides.
Collapse
Affiliation(s)
- Mohan R Kaadige
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
143
|
Heuer K, Sylvester M, Kliche S, Pusch R, Thiemke K, Schraven B, Freund C. Lipid-binding hSH3 domains in immune cell adapter proteins. J Mol Biol 2006; 361:94-104. [PMID: 16831444 DOI: 10.1016/j.jmb.2006.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
SH3 domains represent versatile scaffolds within eukaryotic cells by targeting proline-rich sequences within intracellular proteins. More recently, binding of SH3 domains to unusual peptide motifs, folded proteins or lipids has been reported. Here we show that the newly defined hSH3 domains of immune cell adapter proteins bind lipid membranes with distinct affinities. The interaction of the hSH3 domains of adhesion and degranulation promoting adapter protein (ADAP) and PRAM-1 (Promyelocytic-Retinoic acid receptor alpha target gene encoding an Adaptor Molecule-1), with phosphatidylcholine-containing liposomes is observed upon incorporation of phosphatidylserine (PS) or phosphoinositides (PIs) into the membrane bilayer. Mechanistically we show that stable association of the N-terminal, amphipathic helix with the beta-sheet scaffold favours lipid binding and that the interaction with PI(4,5)P(2)-containing liposomes is consistent with a single-site, non-cooperative binding mechanism. Functional investigations indicate that deletion of both amphipathic helices of the hSH3 domains reduces the ability of ADAP to enhance adhesion and migration in stimulated T cells.
Collapse
Affiliation(s)
- Katja Heuer
- Protein Engineering Group, Leibniz Institute of Molecular Pharmacology and Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
144
|
Kovacs EM, Makar RS, Gertler FB. Tuba stimulates intracellular N-WASP-dependent actin assembly. J Cell Sci 2006; 119:2715-26. [PMID: 16757518 DOI: 10.1242/jcs.03005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuba is a multidomain scaffolding protein that links cytoskeletal dynamics and membrane trafficking pathways. The N-terminus of Tuba binds dynamin1, and the C-terminus contains domains that can interact with signaling pathways and cytoskeletal regulatory elements. We investigated Tuba localization, distribution and function in B16 melanoma cells. Tuba overexpression stimulated dorsal ruffles that occurred independently of dynamin function. Tuba expression induced actin-driven motility of small puncta that required the C-terminal SH3, GEF and BAR domains. Additionally, Tuba was recruited to lipid vesicles generated by overexpression of phosphatidylinositol-4-phosphate 5-kinase type Ialpha (PIP5Kalpha), localizing prominently to the head of the comets and at lower levels along the actin tail. We propose that Tuba facilitates dorsal ruffling of melanoma cells through direct interaction with actin-regulatory proteins and the recruitment of signaling molecules to lipid microdomains for the coordinated assembly of a cytoskeletal network. Knockdown of Tuba by RNA interference (RNAi) attenuated PIP5Kalpha-generated comet formation and the invasive behavior of B16 cells, implying that Tuba function is required for certain aspects of these processes. These results suggest first that Tuba-stimulated dorsal ruffling might represent a novel mechanism for the coordination of N-WASP-dependent cytoskeletal rearrangements and second that Tuba function is implicated in motility processes.
Collapse
Affiliation(s)
- Eva M Kovacs
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
145
|
Abstract
The physiological effects of many extracellular stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid-signaling pathways. These signaling responses include the classically described conversion of PtdIns(4,5)P(2) to the Ca(2+)-mobilizing second messenger Ins(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. Here we discuss how the family of PLCs elaborates a minimal catalytic core typified by PLC-delta to confer multiple modes of regulation on their phospholipase activities. Although PLC-dependent signaling is prominently regulated by direct interactions with heterotrimeric G proteins or tyrosine kinases, the existence of at least 13 divergent PLC isozymes promises a diverse repertoire of regulatory mechanisms for this class of important signaling proteins. We focus here on the recently realized and extensive regulation of inositol lipid signaling by Ras superfamily GTPases directly acting on PLC isozymes and conclude by considering the biological and pharmacological ramifications of this regulation.
Collapse
Affiliation(s)
- T Kendall Harden
- Departments of Pharmacology, Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
146
|
Wang KZQ, Wara-Aswapati N, Boch JA, Yoshida Y, Hu CD, Galson DL, Auron PE. TRAF6 activation of PI 3-kinase-dependent cytoskeletal changes is cooperative with Ras and is mediated by an interaction with cytoplasmic Src. J Cell Sci 2006; 119:1579-91. [PMID: 16569657 DOI: 10.1242/jcs.02889] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interleukin 1 (IL-1) has been implicated in the reorganization of the actin cytoskeleton. An expression vector encoding a PKB/Akt pleckstrin-homology domain fused to a fluorescent protein was used to detect phosphoinositide 3-kinase (PI 3-kinase) products. It was observed that PI 3-kinase was activated either by treatment with IL-1 or by expression of either TRAF6, Src, MyD88 or dominant-positive PI 3-kinase, and resulted in the formation of long filopodia-like cellular protrusions that appeared to branch at membrane sites consisting of clusters of phosphoinositide. This depended upon a TRAF6 polyproline motif and Src catalytic activity, and was blocked by inhibitors of PI 3-kinase, Src and Ras. Using both conventional and split fluorescent protein probes fused to expressed TRAF6 and Src in living cells, the polyproline sequence of TRAF6 and the Src-homology 3 (SH3) domain of Src were shown to be required for interaction between these two proteins. Interaction occurred within the cytoplasm, and not at either the cell membrane or cytoplasmic sequestosomes. In addition, co-transfection of vectors expressing fluorescent-protein-fused TRAF6 and non-fluorescent MyD88, IRAK1 and IRAK2 revealed an inverse correlation between increased sequestosome formation and activation of both PI 3-kinase and NF-kappaB. Although a key factor in TRAF6-dependent activation of PI 3-kinase, ectopic expression of Src was insufficient for NF-kappaB activation and, in contrast to NF-kappaB, was not inhibited by IRAK2.
Collapse
Affiliation(s)
- Kent Z Q Wang
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Hokanson DE, Ostap EM. Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A 2006; 103:3118-23. [PMID: 16492791 PMCID: PMC1413866 DOI: 10.1073/pnas.0505685103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Myosin-I is the single-headed member of the myosin superfamily that associates with acidic phospholipids through its basic tail domain. Membrane association is essential for proper myosin-I localization and function. However, little is known about the physiological relevance of the direct association of myosin-I with phospholipids or about phospholipid headgroup-binding specificity. To better understand the mechanism of myosin-I-membrane association, we measured effective dissociation constants for the binding of a recombinant myo1c tail construct (which includes three IQ domains and bound calmodulins) to large unilamellar vesicles (LUVs) composed of phosphatidylcholine and various concentrations of phosphatidylserine (PS) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). We found that the myo1c-tail binds tightly to LUVs containing >60% PS but very weakly to LUVs containing physiological PS concentrations (<40%). The myo1c tail and not the IQ motifs bind tightly to LUVs containing 2% PIP(2). Additionally, we found that the myo1c tail binds to soluble inositol-1,4,5-trisphosphate with nearly the same affinity as to PIP(2) in LUVs, suggesting that myo1c binds specifically to the headgroup of PIP(2). We also show that a GFP-myosin-I-tail chimera expressed in epithelial cells is transiently localized to regions known to be enriched in PIP(2). Our results suggest that myo1c does not bind to physiological concentrations of PS but rather binds tightly to PIP(2).
Collapse
Affiliation(s)
- David E. Hokanson
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
| | - E. Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
148
|
Torres E, Rosen MK. Protein-tyrosine Kinase and GTPase Signals Cooperate to Phosphorylate and Activate Wiskott-Aldrich Syndrome Protein (WASP)/Neuronal WASP. J Biol Chem 2006; 281:3513-20. [PMID: 16293614 DOI: 10.1074/jbc.m509416200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinases and Rho GTPases regulate many cellular processes, including the reorganization and dynamics of the actin cytoskeleton. The Wiskott-Aldrich syndrome protein (WASP) and its homolog neuronal WASP (N-WASP) are effectors of the Rho GTPase Cdc42 and provide a direct link between activated membrane receptors and the actin cytoskeleton. WASP and N-WASP are also regulated by a large number of other activators, including protein-tyrosine kinases, phosphoinositides, and Src homology 3-containing adaptor proteins, and can therefore serve as signal integrators inside cells. Here we show that Cdc42 and the Src family kinase Lck cooperate at two levels to enhance WASP activation. First, autoinhibition in N-WASP decreases the efficiency (kcat/Km) of phosphorylation and dephosphorylation of the GTPase binding domain by 30- and 40-fold, respectively, and this effect is largely reversed by Cdc42. Second, Cdc42 and the Src homology 3-Src homology 2 module of Lck cooperatively stimulate the activity of phosphorylated WASP, with coupling energy of approximately 2.4 kcal/mol between the two activators. These combined effects provide mechanisms for high specificity in WASP activation by coincident GTPase and kinase signals.
Collapse
Affiliation(s)
- Eduardo Torres
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
149
|
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), which comprises only about 1% of the phospholipids in the cytoplasmic leaflet of the plasma membrane, is the source of three second messengers, activates many ion channels and enzymes, is involved in both endocytosis and exocytosis, anchors proteins to the membrane through several structured domains and has other roles. How can a single lipid in a fluid bilayer regulate so many distinct physiological processes? Spatial organization might be the key to this. Recent studies suggest that membrane proteins concentrate PIP2 and, in response to local increases in intracellular calcium concentration, release it to interact with other biologically important molecules.
Collapse
Affiliation(s)
- Stuart McLaughlin
- Department of Physiology and Biophysics, Health Sciences Center, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
150
|
Pelish HE, Peterson JR, Salvarezza SB, Rodriguez-Boulan E, Chen JL, Stamnes M, Macia E, Feng Y, Shair MD, Kirchhausen T. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat Chem Biol 2005; 2:39-46. [PMID: 16408091 DOI: 10.1038/nchembio751] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/31/2005] [Indexed: 01/06/2023]
Abstract
Inspired by the usefulness of small molecules to study membrane traffic, we used high-throughput synthesis and phenotypic screening to discover secramine, a molecule that inhibits membrane traffic out of the Golgi apparatus by an unknown mechanism. We report here that secramine inhibits activation of the Rho GTPase Cdc42, a protein involved in membrane traffic, by a mechanism dependent upon the guanine dissociation inhibitor RhoGDI. RhoGDI binds Cdc42 and antagonizes its membrane association, nucleotide exchange and effector binding. In vitro, secramine inhibits Cdc42 binding to membranes, GTP and effectors in a RhoGDI-dependent manner. In cells, secramine mimics the effects of dominant-negative Cdc42 expression on protein export from the Golgi and on Golgi polarization in migrating cells. RhoGDI-dependent Cdc42 inhibition by secramine illustrates a new way to inhibit Rho GTPases with small molecules and provides a new means to study Cdc42, RhoGDI and the cellular processes they mediate.
Collapse
Affiliation(s)
- Henry E Pelish
- Department of Cell Biology and the CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|