101
|
Juurik T, Ilves H, Teras R, Ilmjärv T, Tavita K, Ukkivi K, Teppo A, Mikkel K, Kivisaar M. Mutation frequency and spectrum of mutations vary at different chromosomal positions of Pseudomonas putida. PLoS One 2012; 7:e48511. [PMID: 23119042 PMCID: PMC3485313 DOI: 10.1371/journal.pone.0048511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
It is still an open question whether mutation rate can vary across the bacterial chromosome. In this study, the occurrence of mutations within the same mutational target sequences at different chromosomal locations of Pseudomonas putida was monitored. For that purpose we constructed two mutation detection systems, one for monitoring the occurrence of a broad spectrum of mutations and transposition of IS element IS1411 inactivating LacI repressor, and another for detecting 1-bp deletions. Our results revealed that both the mutation frequency and the spectrum of mutations vary at different chromosomal positions. We observed higher mutation frequencies when the direction of transcription of the mutational target gene was opposite to the direction of replisome movement in the chromosome and vice versa, lower mutation frequency was accompanied with co-directional transcription and replication. Additionally, asymmetry of frameshift mutagenesis at homopolymeric and repetitive sequences during the leading and lagging-strand replication was found. The transposition frequency of IS1411 was also affected by the chromosomal location of the target site, which implies that regional differences in chromosomal topology may influence transposition of this mobile element. The occurrence of mutations in the P. putida chromosome was investigated both in growing and in stationary-phase bacteria. We found that the appearance of certain mutational hot spots is strongly affected by the chromosomal location of the mutational target sequence especially in growing bacteria. Also, artificial increasing transcription of the mutational target gene elevated the frequency of mutations in growing bacteria.
Collapse
Affiliation(s)
- Triinu Juurik
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Heili Ilves
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Tanel Ilmjärv
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Kairi Tavita
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Kärt Ukkivi
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Annika Teppo
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Katren Mikkel
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Tartu, Estonia
- * E-mail:
| |
Collapse
|
102
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
103
|
|
104
|
Shee C, Gibson JL, Rosenberg SM. Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep 2012; 2:714-21. [PMID: 23041320 PMCID: PMC3607216 DOI: 10.1016/j.celrep.2012.08.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022] Open
Abstract
Mutation hotspots and showers occur across phylogeny and profoundly influence genome evolution, yet the mechanisms that produce hotspots remain obscure. We report that DNA double-strand breaks (DSBs) provoke mutation hotspots via stress-induced mutation in Escherichia coli. With tet reporters placed 2 kb to 2 Mb (half the genome) away from an I-SceI site, RpoS/DinB-dependent mutations occur maximally within the first 2 kb and decrease logarithmically to ∼60 kb. A weak mutation tail extends to 1 Mb. Hotspotting occurs independently of I-site/tet-reporter-pair position in the genome, upstream and downstream in the replication path. RecD, which allows RecBCD DSB-exonuclease activity, is required for strong local but not long-distance hotspotting, indicating that double-strand resection and gap-filling synthesis underlie local hotspotting, and newly illuminating DSB resection in vivo. Hotspotting near DSBs opens the possibility that specific genomic regions could be targeted for mutagenesis, and could also promote concerted evolution (coincident mutations) within genes/gene clusters, an important issue in the evolution of protein functions.
Collapse
Affiliation(s)
- Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
105
|
Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2012; 2:119. [PMID: 22993722 PMCID: PMC3440604 DOI: 10.3389/fcimb.2012.00119] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
| | | |
Collapse
|
106
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
107
|
Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays 2012; 34:885-92. [PMID: 22911060 PMCID: PMC3533179 DOI: 10.1002/bies.201200050] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.
Collapse
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | |
Collapse
|
108
|
Phenotype switching is a natural consequence of Staphylococcus aureus replication. J Bacteriol 2012; 194:5404-12. [PMID: 22865841 DOI: 10.1128/jb.00948-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogen Staphylococcus aureus undergoes phenotype switching in vivo from its normal colony phenotype (NCP) to a slow-growing, antibiotic-resistant small-colony-variant (SCV) phenotype that is associated with persistence in host cells and tissues. However, it is not clear whether phenotype switching is the result of a constitutive process that is selected for under certain conditions or is triggered by particular environmental stimuli. Examination of cultures of diverse S. aureus strains in the absence of selective pressure consistently revealed a small gentamicin-resistant SCV subpopulation that emerged during exponential-phase NCP growth and increased in number until NCP stationary phase. Treatment of replicating bacteria with the antibiotic gentamicin, which inhibited NCP but not SCV replication, resulted in an initial decrease in SCV numbers, demonstrating that SCVs arise as a consequence of NCP replication. However, SCV population expansion in the presence of gentamicin was reestablished by selection of phenotype-stable SCVs and subsequent SCV replication. In the absence of selective pressure, however, phenotype switching was bidirectional and occurred at a high frequency during NCP replication, resulting in SCV turnover. In summary, these data demonstrate that S. aureus phenotype switching occurs via a constitutive mechanism that generates a dynamic, antibiotic-resistant subpopulation of bacteria that can revert to the parental phenotype. The emergence of SCVs can therefore be considered a normal part of the S. aureus life cycle and provides an insurance policy against exposure to antibiotics that would otherwise eliminate the entire population.
Collapse
|
109
|
Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin DA. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 2012; 46:424-35. [PMID: 22607975 DOI: 10.1016/j.molcel.2012.03.030] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/14/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Mutations are typically perceived as random, independent events. We describe here nonrandom clustered mutations in yeast and in human cancers. Genome sequencing of yeast grown under chronic alkylation damage identified mutation clusters that extend up to 200 kb. A predominance of "strand-coordinated" changes of either cytosines or guanines in the same strand, mutation patterns, and genetic controls indicated that simultaneous mutations were generated by base alkylation in abnormally long single-strand DNA (ssDNA) formed at double-strand breaks (DSBs) and replication forks. Significantly, we found mutation clusters with analogous features in sequenced human cancers. Strand-coordinated clusters of mutated cytosines or guanines often resided near chromosome rearrangement breakpoints and were highly enriched with a motif targeted by APOBEC family cytosine-deaminases, which strongly prefer ssDNA. These data indicate that hypermutation via multiple simultaneous changes in randomly formed ssDNA is a general phenomenon that may be an important mechanism producing rapid genetic variation.
Collapse
Affiliation(s)
- Steven A Roberts
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Simmons AD, Carvalho CMB, Lupski JR. What have studies of genomic disorders taught us about our genome? Methods Mol Biol 2012; 838:1-27. [PMID: 22228005 DOI: 10.1007/978-1-61779-507-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of genomic disorders began with molecular technologies that enabled detection of genomic changes which were (a) smaller than those resolved by traditional cytogenetics (less than 5 Mb) and (b) larger than what could be determined by conventional gel electrophoresis. Methods such as pulsed field gel electrophoresis (PFGE) and fluorescent in situ hybridization (FISH) could resolve such changes but were limited to locus-specific studies. The study of genomic disorders has rapidly advanced with the development of array-based techniques. These enabled examination of the entire human genome at a higher level of resolution, thus allowing elucidation of the basis of many new disorders, mechanisms that result in genomic changes that can result in copy number variation (CNV), and most importantly, a deeper understanding of the characteristics, features, and plasticity of our genome. In this chapter, we focus on the structural and architectural features of the genome, which can potentially result in genomic instability, delineate how mechanisms, such as NAHR, NHEJ, and FoSTeS/MMBIR lead to disease-causing rearrangements, and briefly describe the relationship between the leading methods presently used in studying genomic disorders. We end with a discussion on our new understanding about our genome including: the contribution of new mutation CNV to disease, the abundance of mosaicism, the extent of subtelomeric rearrangements, the frequency of de novo rearrangements associated with sporadic birth defects, the occurrence of balanced and unbalanced translocations, the increasing discovery of insertional translocations, the exploration of complex rearrangements and exonic CNVs. In the postgenomic era, our understanding of the genome has advanced very rapidly as the level of technical resolution has become higher. This leads to a greater understanding of the effects of rearrangements present both in healthy subjects and individuals with clinically relevant phenotypes.
Collapse
|
111
|
Abstract
The deleterious mutation rate plays a key role in a number of important topics in biology, from mating system evolution to human health. Despite this broad significance, the nature and causes of variation in mutation rate are poorly understood, especially in multicellular organisms. We test whether genetic quality, the presence or absence of deleterious alleles, affects the mutation rate in Drosophila melanogaster by using a modified mutation accumulation approach. We find evidence that genotypes constructed to carry deleterious "treatment" alleles on one chromosome during mutation accumulation experience an elevated mutation rate on a different chromosome. Further, this elevation is correlated with the effect of the treatment alleles on phenotypic condition, measured as body mass. Treatment alleles that reduce mass by 10% cause a doubling in the rate of mutational decline. Our results show that mutation rates are sensitive to genetic stress, such that individuals with low-quality genotypes will produce offspring of even lower genetic quality, in a mutational positive feedback loop. This type of variation in mutation rate is expected to alter a variety of predictions based on mutation load theory and accelerate adaptation to new environments. Positive mutational feedback could affect human health by increasing the rate of germline mutation, and possibly somatic mutation, in individuals of poor health because of genetic or environmental stress.
Collapse
|
112
|
Abstract
Numerous empirical studies show that stress of various kinds induces a state of hypermutation in bacteria via multiple mechanisms, but theoretical treatment of this intriguing phenomenon is lacking. We used deterministic and stochastic models to study the evolution of stress-induced hypermutation in infinite and finite-size populations of bacteria undergoing selection, mutation, and random genetic drift in constant environments and in changing ones. Our results suggest that if beneficial mutations occur, even rarely, then stress-induced hypermutation is advantageous for bacteria at both the individual and the population levels and that it is likely to evolve in populations of bacteria in a wide range of conditions because it is favored by selection. These results imply that mutations are not, as the current view holds, uniformly distributed in populations, but rather that mutations are more common in stressed individuals and populations. Because mutation is the raw material of evolution, these results have a profound impact on broad aspects of evolution and biology.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
113
|
Shee C, Ponder R, Gibson JL, Rosenberg SM. What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli? J Mol Microbiol Biotechnol 2012; 21:8-19. [PMID: 22248539 DOI: 10.1159/000335354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stress-induced mutation is a collection of molecular mechanisms in bacterial, yeast and human cells that promote mutagenesis specifically when cells are maladapted to their environment, i.e. when they are stressed. Here, we review one molecular mechanism: double-strand break (DSB)-dependent stress-induced mutagenesis described in starving Escherichia coli. In it, the otherwise high-fidelity process of DSB repair by homologous recombination is switched to an error-prone mode under the control of the RpoS general stress response, which licenses the use of error-prone DNA polymerase, DinB, in DSB repair. This mechanism requires DSB repair proteins, RpoS, the SOS response and DinB. This pathway underlies half of spontaneous chromosomal frameshift and base substitution mutations in starving E. coli [Proc Natl Acad Sci USA 2011;108:13659-13664], yet appeared less efficient in chromosomal than F' plasmid-borne genes. Here, we demonstrate and quantify DSB-dependent stress-induced reversion of a chromosomal lac allele with DSBs supplied by I-SceI double-strand endonuclease. I-SceI-induced reversion of this allele was previously studied in an F'. We compare the efficiencies of mutagenesis in the two locations. When we account for contributions of an F'-borne extra dinB gene, strain background differences, and bypass considerations of rates of spontaneous DNA breakage by providing I-SceI cuts, the chromosome is still ∼100 times less active than F. We suggest that availability of a homologous partner molecule for recombinational break repair may be limiting. That partner could be a duplicated chromosomal segment or sister chromosome.
Collapse
Affiliation(s)
- Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
114
|
Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA. Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 2012; 21:45-58. [PMID: 22248542 DOI: 10.1159/000332751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, it has been proposed that conflicts between transcription and active chromosomal replication engender genome instability events. Furthermore, transcription elongation factors have been reported to prevent conflicts between transcription and replication and avoid genome instability. Here, we examined transcriptional de-repression as a genetic diversity-producing agent and showed, through the use of physiological and genetic means, that transcriptional de-represssion of a leuC defective allele leads to accumulation of Leu(+) mutations. We also showed, by using riboswitches that activate transcription in conditions of tyrosine or methionine starvation, that the effect of transcriptional de-repression of the leuC construct on the accumulation of Leu(+) mutations was independent of selection. We examined the role of Mfd, a transcription elongation factor involved in DNA repair, in this process and showed that proficiency of this factor promotes mutagenic events. These results are in stark contrast to previous reports in Escherichia coli, which showed that Mfd prevents replication fork collapses. Because our assays place cells under non-growing conditions, by starving them for two amino acids, we surmised that the Mfd mutagenic process associated with transcriptional de-repression does not result from conflicts with chromosomal replication. These results raise the interesting concept that transcription elongation factors may serve two functions in cells. In growing conditions, these factors prevent the generation of mutations, while in stress or non-growing conditions they mediate the production of genetic diversity.
Collapse
|
115
|
Fonville NC, Ward RM, Mittelman D. Stress-induced modulators of repeat instability and genome evolution. J Mol Microbiol Biotechnol 2012; 21:36-44. [PMID: 22248541 DOI: 10.1159/000332748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Evolution hinges on the ability of organisms to adapt to their environment. A key regulator of adaptability is mutation rate, which must be balanced to maintain genome fidelity while permitting sufficient plasticity to cope with environmental changes. Multiple mechanisms govern an organism's mutation rate. Constitutive mechanisms include mutator alleles that drive global, permanent increases in mutation rates, but these changes are confined to the subpopulation that carries the mutator allele. Other mechanisms focus mutagenesis in time and space to improve the chances that adaptive mutations can spread through the population. For example, environmental stress can induce mechanisms that transiently relax the fidelity of DNA repair to bring about a temporary increase in mutation rates during times when an organism experiences a reduced fitness for its surroundings, as has been demonstrated for double-strand break repair in Escherichia coli. Still, other mechanisms control the spatial distribution of mutations by directing changes to especially mutable sequences in the genome. In eukaryotic cells, for example, the stress-sensitive chaperone Hsp90 can regulate the length of trinucleotide repeats to fine-tune gene function and can regulate the mobility of transposable elements to enable larger functional changes. Here, we review the regulation of mutation rate, with special emphasis on the roles of tandem repeats and environmental stress in genome evolution.
Collapse
|
116
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
117
|
Stress-induced loss of heterozygosity in Candida: a possible missing link in the ability to evolve. mBio 2011; 2:mBio.00200-11. [PMID: 21933916 PMCID: PMC3175628 DOI: 10.1128/mbio.00200-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diploid organisms are buffered against the effects of mutations by carrying two sets of each gene, which allows compensation if one is mutated. But recombination between "mom" and "dad" chromosomes causes loss of heterozygosity (LOH), stretches of "mom-only" or "dad-only" DNA sequence, suddenly revealing effects of mutations accumulated in entire chromosome arms. LOH creates new phenotypes from old mutations, drives cancer development and evolution, and, in a new study by Forche et al., is shown to be induced by stress in Candida albicans [Forche A, et al, mBio 2(4):e00129-11, 2011]. Stress-induced LOH could speed evolution of Candida specifically when it is poorly adapted to its environment. Moreover, the findings may provide a missing link between recombination-dependent mutagenesis in bacteria and yeast, suggesting that both might be stress induced, both maximizing genetic variation when populations could benefit most from diversity.
Collapse
|
118
|
Lin D, Gibson IB, Moore JM, Thornton PC, Leal SM, Hastings PJ. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLoS Genet 2011; 7:e1002223. [PMID: 21901104 PMCID: PMC3161906 DOI: 10.1371/journal.pgen.1002223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/18/2011] [Indexed: 11/18/2022] Open
Abstract
Copy-number variations (CNVs) constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH), with polymerase chain reaction (pcr) and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300) of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution. Much of the difference between individual humans is in the number of copies of genes and lengths of genome. The mechanisms by which copy number variation arises are not well understood. We sought information on copy number change mechanisms by extensive use of array comparative genomic hybridization of whole genomes in bacteria selected for amplification of part of the genome. We report that about 10% of amplified isolates carried other chromosomal structural changes associated with the amplification, a result comparable to that seen in human copy number variants. Importantly, we found a significant occurrence of structural changes that were not involved in the amplification event. These were not seen in a control sample of stressed cells not carrying amplification. This establishes that chromosomal structural change happens in a subpopulation of cells apparently licensed to undergo these changes. Because the changes occur under the stress of starvation and require two of the cells' stress-response systems, we propose that licensing for cell-wide structural change in this subpopulation is a component of response to stress. This idea has implications for the mechanisms of evolution and cancer progression, suggesting that changes occur in a shower of events rather than as isolated random events.
Collapse
Affiliation(s)
- Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ian B. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. C. Thornton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suzanne M. Leal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
119
|
Martínez-García E, de Lorenzo V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 2011; 13:2702-16. [DOI: 10.1111/j.1462-2920.2011.02538.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
120
|
Stevens KE, Sebert ME. Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae. PLoS Genet 2011; 7:e1002232. [PMID: 21876679 PMCID: PMC3158050 DOI: 10.1371/journal.pgen.1002232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
The appearance of new mutations within a population provides the raw material for evolution. The consistent decline in fitness observed in classical mutation accumulation studies has provided support for the long-held view that deleterious mutations are more common than beneficial mutations. Here we present results of a study using a mutation accumulation design with the bacterium Streptococcus pneumoniae in which the fitness of the derived populations increased. This rise in fitness was associated specifically with adaptation to survival during brief stationary phase periods between single-colony population bottlenecks. To understand better the population dynamics behind this unanticipated adaptation, we developed a maximum likelihood model describing the processes of mutation and stationary-phase selection in the context of frequent population bottlenecks. Using this model, we estimate that the rate of beneficial mutations may be as high as 4.8×10−4 events per genome for each time interval corresponding to the pneumococcal generation time. This rate is several orders of magnitude higher than earlier estimates of beneficial mutation rates in bacteria but supports recent results obtained through the propagation of small populations of Escherichia coli. Our findings indicate that beneficial mutations may be relatively frequent in bacteria and suggest that in S. pneumoniae, which develops natural competence for transformation, a steady supply of such mutations may be available for sampling by recombination. Beneficial mutations have long been considered extremely rare events and were thought to occur with a frequency of approximately one out of a billion times that a bacterium replicates its genome. Rare beneficial mutations would then be amplified by natural selection from the more frequent background of harmful mutations. Mutation accumulation experiments probe the nature of these spontaneous mutations by monitoring changes in fitness of model organisms propagated in the laboratory through numerous generations under conditions where the effects of selection are minimal. Previous mutation accumulation experiments have shown that organisms under study have declined in fitness as random mutations accrue in their genomes, consistent with a predominance of deleterious mutations. We conducted a mutation accumulation study with the bacterial pathogen S. pneumoniae in which a broad measure of fitness instead rose. We demonstrate that this unexpected adaptation was due to frequent beneficial mutations that were further amplified by selection in stationary-phase bacterial colonies. Together with recent work using E. coli, these results demonstrate that beneficial mutations can be common in bacteria and may contribute to our understanding of the evolution of traits such as antibiotic resistance and virulence.
Collapse
Affiliation(s)
- Kathleen E. Stevens
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Sebert
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
121
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
122
|
Karpinets T, Greenwood D, Pogribny I, Samatova N. Bacterial stationary-state mutagenesis and Mammalian tumorigenesis as stress-induced cellular adaptations and the role of epigenetics. Curr Genomics 2011; 7:481-96. [PMID: 18369407 DOI: 10.2174/138920206779315764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/11/2006] [Accepted: 11/23/2006] [Indexed: 01/16/2023] Open
Abstract
Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue that these commonalities of mammalian and bacterial cells result from their stress-induced adaptation that may be described in terms of a common model. Specifically, in both organisms the mutator phenotype is activated in a subpopulation of proliferating stressed cells as a strategy to survival. This strategy is an alternative to other survival strategies, such as senescence and programmed cell death, which are also activated in the stressed cells by different subpopulations. Sustained stress-related proliferative signalling and epigenetic mechanisms play a decisive role in the choice of the mutator phenotype survival strategy in the cells. They reprogram cellular functions by epigenetic silencing of cell-cycle inhibitors, DNA repair, programmed cell death, and by activation of repetitive DNA elements. This reprogramming leads to the mutator phenotype that is implemented by error-prone cell divisions with the involvement of Y family polymerases. Studies supporting the proposed model of stress-induced cellular adaptation are discussed. Cellular mechanisms involved in the bacterial stress-induced adaptation are considered in more detail.
Collapse
Affiliation(s)
- Tv Karpinets
- Computational Biology Institute, Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6164, Oak Ridge, TN 37831, USA
| | | | | | | |
Collapse
|
123
|
McDonald MJ, Wang WC, Huang HD, Leu JY. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol 2011; 9:e1000622. [PMID: 21697975 PMCID: PMC3114760 DOI: 10.1371/journal.pbio.1000622] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/22/2011] [Indexed: 12/24/2022] Open
Abstract
The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.
Collapse
|
124
|
Kelly MK, Alver B, Kirkpatrick DT. Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells. DNA Repair (Amst) 2011; 10:556-66. [PMID: 21515092 PMCID: PMC3109160 DOI: 10.1016/j.dnarep.2011.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
Alterations in minisatellite DNA repeat tracts are associated with a variety of human diseases including Type 1 diabetes, progressive myoclonus epilepsy, and some types of cancer. However, in spite of their role in human health, the factors required for minisatellite alterations are not well understood. We previously identified a stationary phase specific increase in minisatellite instability caused by mutations in the high affinity zinc transporter ZRT1, using a minisatellite inserted into the ADE2 locus in Saccharomyces cerevisiae. Here, we examined ZRT1-mediated minisatellite instability in yeast strains lacking key recombination genes to determine the mechanisms by which these alterations occur. Our analysis revealed that minisatellite alterations in a Δzrt1 mutant occur by a combination of RAD52-dependent and RAD52-independent mechanisms. In this study, plasmid-based experiments demonstrate that ZRT1-mediated minisatellite alterations occur independently of chromosomal context or adenine auxotrophy, and confirmed the stationary phase timing of the events. To further examine the stationary phase specificity of ZRT1-mediated minisatellite alterations, we deleted ETR1 and POR1, genes that were previously shown to differentially affect the viability of quiescent or nonquiescent cells in stationary phase populations. These experiments revealed that minisatellite alterations in Δzrt1 mutants occur exclusively in quiescent stationary phase cells. Finally, we show that loss of ZRT1 stimulates alterations in a derivative of the human HRAS1 minisatellite. We propose that the mechanism of ZRT1-mediated minisatellite instability during quiescence is relevant to human cells, and thus, human disease.
Collapse
Affiliation(s)
- Maire K Kelly
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
125
|
Lambert G, Estévez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, Austin RH. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 2011; 11:375-82. [PMID: 21508974 PMCID: PMC3488437 DOI: 10.1038/nrc3039] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer cells rapidly evolve drug resistance through somatic evolution and, in order to continue growth in the metastatic phase, violate the organism-wide consensus of regulated growth and beneficial communal interactions. We suggest that there is a fundamental mechanistic connection between the rapid evolution of resistance to chemotherapy in cellular communities within malignant tissues and the rapid evolution of antibiotic resistance in bacterial communities. We propose that this evolution is the result of a programmed and collective stress response performed by interacting cells, and that, given this fundamental connection, studying bacterial communities can provide deeper insights into the dynamics of adaptation and the evolution of cells within tumours.
Collapse
Affiliation(s)
- Guillaume Lambert
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Sanders LH, Devadoss B, Raja GV, O'Connor J, Su S, Wozniak DJ, Hassett DJ, Berdis AJ, Sutton MD. Epistatic roles for Pseudomonas aeruginosa MutS and DinB (DNA Pol IV) in coping with reactive oxygen species-induced DNA damage. PLoS One 2011; 6:e18824. [PMID: 21533111 PMCID: PMC3078926 DOI: 10.1371/journal.pone.0018824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/10/2011] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas aeruginosa is especially adept at colonizing the airways of individuals afflicted with the autosomal recessive disease cystic fibrosis (CF). CF patients suffer from chronic airway inflammation, which contributes to lung deterioration. Once established in the airways, P. aeruginosa continuously adapts to the changing environment, in part through acquisition of beneficial mutations via a process termed pathoadaptation. MutS and DinB are proposed to play opposing roles in P. aeruginosa pathoadaptation: MutS acts in replication-coupled mismatch repair, which acts to limit spontaneous mutations; in contrast, DinB (DNA polymerase IV) catalyzes error-prone bypass of DNA lesions, contributing to mutations. As part of an ongoing effort to understand mechanisms underlying P. aeruginosa pathoadaptation, we characterized hydrogen peroxide (H(2)O(2))-induced phenotypes of isogenic P. aeruginosa strains bearing different combinations of mutS and dinB alleles. Our results demonstrate an unexpected epistatic relationship between mutS and dinB with respect to H(2)O(2)-induced cell killing involving error-prone repair and/or tolerance of oxidized DNA lesions. In striking contrast to these error-prone roles, both MutS and DinB played largely accurate roles in coping with DNA lesions induced by ultraviolet light, mitomycin C, or 4-nitroquinilone 1-oxide. Models discussing roles for MutS and DinB functionality in DNA damage-induced mutagenesis, particularly during CF airway colonization and subsequent P. aeruginosa pathoadaptation are discussed.
Collapse
Affiliation(s)
- Laurie H. Sanders
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Babho Devadoss
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Geraldine V. Raja
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jaime O'Connor
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Infectious Disease and Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Anthony J. Berdis
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
127
|
Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG, Xu H, Zhang L, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. Damage-induced localized hypermutability. Cell Cycle 2011; 10:1073-85. [PMID: 21406975 PMCID: PMC3100884 DOI: 10.4161/cc.10.7.15319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/19/2022] Open
Abstract
Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.
Collapse
Affiliation(s)
- Lauranell H Burch
- National Institute of Environmental Health Sciences, Research Triangle Park, NC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 2011; 4:225-48. [PMID: 25567970 PMCID: PMC3352558 DOI: 10.1111/j.1752-4571.2010.00175.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022] Open
Abstract
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from 'promiscuous' activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments.
Collapse
Affiliation(s)
| | - Colin Scott
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | - Rinku Pandey
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | | | | | - Jian-Wei Liu
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | |
Collapse
|
129
|
Torres EM, Williams BR, Tang YC, Amon A. Thoughts on aneuploidy. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:445-51. [PMID: 21289044 PMCID: PMC3293208 DOI: 10.1101/sqb.2010.75.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aneuploidy refers to karyotypic abnormalities characterized by gain or loss of individual chromosomes. This condition is associated with disease and death in all organisms in which it has been studied. We have characterized the effects of aneuploidy on yeast and primary mouse cells and found it to be detrimental at the cellular level. Furthermore, we find that aneuploid cells exhibit phenotypes consistent with increased energy need and proteotoxic stress. These observations, together with the finding that the additional chromosomes found in aneuploid cells are active, lead us to propose that aneuploidy causes an increased burden on protein synthesis and protein quality-control pathways and so induces an aneuploidy stress response.
Collapse
Affiliation(s)
- Eduardo M. Torres
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233 40, Ames Street, Cambridge, MA 02139, USA
| | - Bret R. Williams
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233 40, Ames Street, Cambridge, MA 02139, USA
| | - Yun-Chi Tang
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233 40, Ames Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233 40, Ames Street, Cambridge, MA 02139, USA
| |
Collapse
|
130
|
Storvik KAM, Foster PL. The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2011; 193:660-9. [PMID: 21131491 PMCID: PMC3021229 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|
131
|
Benjamin JAM, Desnoyers G, Morissette A, Salvail H, Massé E. Dealing with oxidative stress and iron starvation in microorganisms: an overview. Can J Physiol Pharmacol 2011; 88:264-72. [PMID: 20393591 DOI: 10.1139/y10-014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron starvation and oxidative stress are 2 hurdles that bacteria must overcome to establish an infection. Pathogenic bacteria have developed many strategies to efficiently infect a broad range of hosts, including humans. The best characterized systems make use of regulatory proteins to sense the environment and adapt accordingly. For example, iron-sulfur clusters are critical for sensing the level and redox state of intracellular iron. The regulatory small RNA (sRNA) RyhB has recently been shown to play a central role in adaptation to iron starvation, while the sRNA OxyS coordinates cellular response to oxidative stress. These regulatory sRNAs are well conserved in many bacteria and have been shown to be essential for establishing a successful infection. An overview of the different strategies used by bacteria to cope with iron starvation and oxidative stress is presented here.
Collapse
Affiliation(s)
- Julie-Anna M Benjamin
- Department of Biochemistry, RNA Group, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
132
|
Chen F, Liu WQ, Liu ZH, Zou QH, Wang Y, Li YG, Zhou J, Eisenstark A, Johnston RN, Liu GR, Yang BF, Liu SL. mutL as a genetic switch of bacterial mutability: turned on or off through repeat copy number changes. FEMS Microbiol Lett 2010; 312:126-32. [DOI: 10.1111/j.1574-6968.2010.02107.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
133
|
Chen F, Liu WQ, Eisenstark A, Johnston RN, Liu GR, Liu SL. Multiple genetic switches spontaneously modulating bacterial mutability. BMC Evol Biol 2010; 10:277. [PMID: 20836863 PMCID: PMC2955026 DOI: 10.1186/1471-2148-10-277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All life forms need both high genetic stability to survive as species and a degree of mutability to evolve for adaptation, but little is known about how the organisms balance the two seemingly conflicting aspects of life: genetic stability and mutability. The DNA mismatch repair (MMR) system is essential for maintaining genetic stability and defects in MMR lead to high mutability. Evolution is driven by genetic novelty, such as point mutation and lateral gene transfer, both of which require genetic mutability. However, normally a functional MMR system would strongly inhibit such genomic changes. Our previous work indicated that MMR gene allele conversion between functional and non-functional states through copy number changes of small tandem repeats could occur spontaneously via slipped-strand mis-pairing during DNA replication and therefore may play a role of genetic switches to modulate the bacterial mutability at the population level. The open question was: when the conversion from functional to defective MMR is prohibited, will bacteria still be able to evolve by accepting laterally transferred DNA or accumulating mutations? RESULTS To prohibit allele conversion, we "locked" the MMR genes through nucleotide replacements. We then scored changes in bacterial mutability and found that Salmonella strains with MMR locked at the functional state had significantly decreased mutability. To determine the generalizability of this kind of mutability 'switching' among a wider range of bacteria, we examined the distribution of tandem repeats within MMR genes in over 100 bacterial species and found that multiple genetic switches might exist in these bacteria and may spontaneously modulate bacterial mutability during evolution. CONCLUSIONS MMR allele conversion through repeats-mediated slipped-strand mis-pairing may function as a spontaneous mechanism to switch between high genetic stability and mutability during bacterial evolution.
Collapse
Affiliation(s)
- Fang Chen
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
134
|
Mittelman D, Wilson JH. Stress, genomes, and evolution. Cell Stress Chaperones 2010; 15:463-6. [PMID: 20521130 PMCID: PMC3006615 DOI: 10.1007/s12192-010-0205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 11/27/2022] Open
Abstract
Evolutionary change, whether in populations of organisms or malignant tumor cells, is contingent on the availability of inherited variation for natural selection to act upon. It is becoming clear that the Hsp90 chaperone, which normally functions to buffer client proteins against the effects of genetic variation, plays a central role in this process. Severe environmental stress can overwhelm the chaperone's buffering capacity, causing previously cryptic genetic variation to be expressed. Recent studies now indicate that in addition to exposing existing variation, Hsp90 can induce novel epigenetic and genetic changes. We discuss key findings that suggest a rich set of pathways by which Hsp90 can mediate the influences of the environment on the genome.
Collapse
Affiliation(s)
- David Mittelman
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
135
|
Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J Bacteriol 2010; 192:4694-700. [PMID: 20639336 DOI: 10.1128/jb.00570-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work showed that about 85% of stress-induced mutations associated with DNA double-strand break repair in carbon-starved Escherichia coli result from error-prone DNA polymerase IV (Pol IV) (DinB) and that the mutagenesis is controlled by the RpoS stress response, which upregulates dinB. We report that the remaining mutagenesis requires high-fidelity Pol II, and that this component also requires RpoS. The results identify a second DNA polymerase contributing to stress-induced mutagenesis and show that RpoS promotes mutagenesis by more than the simple upregulation of dinB.
Collapse
|
136
|
Gibson JL, Lombardo MJ, Thornton PC, Hu KH, Galhardo RS, Beadle B, Habib A, Magner DB, Frost LS, Herman C, Hastings PJ, Rosenberg SM. The sigma(E) stress response is required for stress-induced mutation and amplification in Escherichia coli. Mol Microbiol 2010; 77:415-30. [PMID: 20497332 PMCID: PMC2909356 DOI: 10.1111/j.1365-2958.2010.07213.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Pathways of mutagenesis are induced in microbes under adverse conditions controlled by stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e. are stressed. Stress-induced mutagenesis in the Escherichia coli Lac assay occurs either by 'point' mutation or gene amplification. Point mutagenesis is associated with DNA double-strand-break (DSB) repair and requires DinB error-prone DNA polymerase and the SOS DNA-damage- and RpoS general-stress responses. We report that the RpoE envelope-protein-stress response is also required. In a screen for mutagenesis-defective mutants, we isolated a transposon insertion in the rpoE P2 promoter. The insertion prevents rpoE induction during stress, but leaves constitutive expression intact, and allows cell viability. rpoE insertion and suppressed null mutants display reduced point mutagenesis and maintenance of amplified DNA. Furthermore, sigma(E) acts independently of stress responses previously implicated: SOS/DinB and RpoS, and of sigma(32), which was postulated to affect mutagenesis. I-SceI-induced DSBs alleviated much of the rpoE phenotype, implying that sigma(E) promoted DSB formation. Thus, a third stress response and stress input regulate DSB-repair-associated stress-induced mutagenesis. This provides the first report of mutagenesis promoted by sigma(E), and implies that extracytoplasmic stressors may affect genome integrity and, potentially, the ability to evolve.
Collapse
Affiliation(s)
- Janet L Gibson
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | | | - Philip C Thornton
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | - Kenneth H Hu
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | | | - Bernadette Beadle
- Department of Biological Sciences, University of AlbertaEdmonton, Alberta T6G 2E9, Canada
| | - Anand Habib
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | - Daniel B Magner
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | - Laura S Frost
- Department of Biological Sciences, University of AlbertaEdmonton, Alberta T6G 2E9, Canada
| | - Christophe Herman
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
- Department of Molecular Virology and MicrobiologyHouston, TX 77030-3411, USA
| | - P J Hastings
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
| | - Susan M Rosenberg
- Department of Molecular and Human GeneticsHouston, TX 77030-3411, USA
- Department of Molecular Virology and MicrobiologyHouston, TX 77030-3411, USA
- Department of Biochemistry and Molecular BiologyHouston, TX 77030-3411, USA
- The Dan L Duncan Cancer Center, Baylor College of MedicineHouston, TX 77030-3411, USA
| |
Collapse
|
137
|
Kivisaar M. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 2010; 312:1-14. [DOI: 10.1111/j.1574-6968.2010.02027.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
138
|
Cappadocia L, Maréchal A, Parent JS, Lepage É, Sygusch J, Brisson N. Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. THE PLANT CELL 2010; 22:1849-67. [PMID: 20551348 PMCID: PMC2910959 DOI: 10.1105/tpc.109.071399] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 05/13/2010] [Accepted: 05/25/2010] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.
Collapse
|
139
|
Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, Frisch RL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One 2010; 5:e10862. [PMID: 20523737 PMCID: PMC2877720 DOI: 10.1371/journal.pone.0010862] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at approximately 200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB approximately 10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Effect of translesion DNA polymerases, endonucleases and RpoS on mutation rates in Salmonella typhimurium. Genetics 2010; 185:783-95. [PMID: 20421601 DOI: 10.1534/genetics.110.116376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutations (rifampicin, nalidixic acid, and chlorate resistance and Lac(+) reversion) during various growth conditions and with different levels of four translesion DNA polymerases (Pol II, Pol IV, Pol V, and SamAB) and RpoS. Constitutive derepression of the LexA regulon by a lexA(def) mutation had no effect on Lac(+) reversion rates but increased the other three mutation rates up to 11-fold, and the contribution of the translesion DNA polymerases to this mutagenesis varied with the type of mutation examined. The increase in mutation rates in the lexA(def) mutant required the presence of the LexA-controlled UvrB protein and endonucleases UvrC and Cho. With regard to the potential involvement of RpoS in mutagenesis, neither an increase in RpoS levels conferred by artificial overexpression from a plasmid nor long-term stationary phase incubation or slow growth caused an increase in any of the four mutation rates measured, alone or in combination with overexpression of the translesion DNA polymerases. In conclusion, mutation rates are remarkably robust and no combination of growth conditions, induction of translesion DNA polymerases by inactivation of LexA, or increased RpoS expression could confer an increase in mutation rates higher than the moderate increase caused by derepression of the LexA regulon alone.
Collapse
|
141
|
Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. THE NEW PHYTOLOGIST 2010; 186:299-317. [PMID: 20180912 DOI: 10.1111/j.1469-8137.2010.03195.x] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | | |
Collapse
|
142
|
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 2010; 6:e1000810. [PMID: 20090829 PMCID: PMC2797598 DOI: 10.1371/journal.pgen.1000810] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization. An important feature of genome organization is that transcription and replication are selectively co-oriented. This feature helps to avoid conflicts between head-on replication and transcription. The precise consequences of the conflict and how it affects genome organization remain to be understood. We previously found that reversing the transcription bias slows replication in the Bacillus subtilis genome. Here we engineered new inversions to avoid changes in other aspects of genome organization. We found that the reversed transcription bias is sufficient to decrease replication speed, and it results in lowered fitness of the inversion strains and a competitive disadvantage relative to wild-type cells in minimal medium. Further, by analyzing genomic copy-number snapshots to obtain replication speed as a function of genome position, we found that inversion of the strongly-transcribed rRNA genes obstructs replication during growth in rich medium. This confers a strong growth disadvantage to cells in rich medium, turns on DNA damage responses, and leads to cell death in a subpopulation of cells, while the surviving cells are more sensitive to genotoxic agents. Our results strongly support the hypothesis that evolution has favored co-orientation of transcription with replication, mainly to avoid these effects.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley Tehranchi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jue D. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
143
|
Cohen SE, Walker GC. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr Biol 2009; 20:80-5. [PMID: 20036541 DOI: 10.1016/j.cub.2009.11.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/07/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022]
Abstract
Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac(+) revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac(+) revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis.
Collapse
Affiliation(s)
- Susan E Cohen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
144
|
Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biol Direct 2009; 4:42. [PMID: 19906303 PMCID: PMC2781790 DOI: 10.1186/1745-6150-4-42] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/11/2009] [Indexed: 12/15/2022] Open
Abstract
Background The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection. The concept The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasi)Lamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA). A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT), a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasi)Lamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis can be construed as a quasi-Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism. Conclusion Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment. Reviewers this article was reviewed by Juergen Brosius, Valerian Dolja, and Martijn Huynen. For complete reports, see the Reviewers' reports section.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
145
|
Abstract
Directed mutation is a proposed process that allows mutations to occur at higher frequencies when they are beneficial. Until now, the existence of such a process has been controversial. Here we describe a novel mechanism of directed mutation mediated by the transposon, IS5 in Escherichia coli. crp deletion mutants mutate specifically to glycerol utilization (Glp(+)) at rates that are enhanced by glycerol or the loss of the glycerol repressor (GlpR), depressed by glucose or glpR overexpression, and RecA-independent. Of the four tandem GlpR binding sites (O1-O4) upstream of the glpFK operon, O4 specifically controls glpFK expression while O1 primarily controls mutation rate in a process mediated by IS5 hopping to a specific site on the E. coli chromosome upstream of the glpFK promoter. IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish an example of transposon-mediated directed mutation, identify the protein responsible and define the mechanism involved.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
146
|
Abstract
High-throughput DNA analyses are increasingly being used to detect rare mutations in moderately sized genomes. These methods have yielded genome mutation rates that are markedly higher than those obtained using pre-genomic strategies. Recent work in a variety of organisms has shown that mutation rate is strongly affected by sequence context and genome position. These observations suggest that high-throughput DNA analyses will ultimately allow researchers to identify trans-acting factors and cis sequences that underlie mutation rate variation. Such work should provide insights on how mutation rate variability can impact genome organization and disease progression.
Collapse
Affiliation(s)
- Koodali T Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
147
|
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
148
|
Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 2009; 191:5881-9. [PMID: 19648247 DOI: 10.1128/jb.00732-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations are a common route to clinically relevant beta-lactam antibiotic resistance. We previously constructed an assay system for studying enterobacterial beta-lactam resistance mutations using the well-developed genetics of E. coli by integrating enterobacterial ampRC genes into the E. coli chromosome. Like the cells of other enterobacteria, E. coli cells acquire beta-lactam resistance by ampD mutation. Here we show that starvation and stress responses provoke ampD beta-lactam resistance mutagenesis. When starved on lactose medium, Lac(-) strains used in mutagenesis studies accumulate ampD beta-lactam resistance mutations independent of Lac reversion. DNA double-strand break repair (DSBR) proteins and the SOS and RpoS stress responses are required for this mutagenesis, in agreement with the results obtained for lac reversion in these cells. Surprisingly, the stress-induced ampD mutations require DinB (DNA polymerase IV) and partially require error-prone DNA polymerase V, unlike lac mutagenesis, which requires only DinB. This assay demonstrates that real-world stressors, such as starvation, can induce clinically relevant resistance mutations. Finally, we used the ampD system to observe the true forward-mutation sequence spectrum of DSBR-associated stress-induced mutagenesis, for which previously only frameshift reversions were studied. We found that base substitutions outnumber frameshift mutations, as seen in other experimental systems showing stress-induced mutagenesis. The important evolutionary implication is that not only loss-of-function mutations but also change-of-function mutations can be generated by this mechanism.
Collapse
|
149
|
Koskiniemi S, Andersson DI. Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium. Proc Natl Acad Sci U S A 2009; 106:10248-53. [PMID: 19525399 PMCID: PMC2700912 DOI: 10.1073/pnas.0904389106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Indexed: 01/12/2023] Open
Abstract
How spontaneous deletions form in bacteria is still a partly unresolved problem. Here, we show that deletion formation in Salmonella typhimurium requires the presence of functional translesion polymerases. First, in wild-type bacteria, removal of the known translesion DNA polymerases, PolII (polB), PolIV (dinB), PolV (umuDC), and SamAB (samAB), resulted in a 10-fold decrease in the deletion rate, indicating that 90% of all spontaneous deletions require these polymerases for their formation. Second, overexpression of these polymerases by derepression of the DNA damage-inducible LexA regulon caused a 25-fold increase in deletion rate that depended on the presence of functional translesion polymerases. Third, overexpression of the polymerases PolII and PolIV from a plasmid increased the deletion rate 12- to 30-fold, respectively. Last, in a recBC(-) mutant where dsDNA ends are stabilized due to the lack of the end-processing nuclease RecBC, the deletion rate was increased 20-fold. This increase depended on the translesion polymerases. In lexA(def) mutant cells with constitutive SOS expression, a 10-fold increase in DNA breaks was observed. Inactivation of all 4 translesion polymerases in the lexA(def) mutant reduced the deletion rate 250-fold without any concomitant reduction in the amount of DNA breaks. Mutational inactivation of 3 endonucleases under LexA control reduced the number of DNA breaks to the wild-type level in a lexA(def) mutant with a concomitant 50-fold reduction in deletion rate. These findings suggest that the translesion polymerases are not involved in forming the DNA breaks, but that they require them to stimulate deletion formation.
Collapse
Affiliation(s)
- Sanna Koskiniemi
- Department of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
150
|
Abstract
The mechanisms and rates by which genotypic and phenotypic variation is generated in opportunistic, eukaryotic pathogens during growth in hosts are not well understood. We evaluated genomewide genetic and phenotypic evolution in Candida albicans, an opportunistic fungal pathogen of humans, during passage through a mouse host (in vivo) and during propagation in liquid culture (in vitro). We found slower population growth and higher rates of chromosome-level genetic variation in populations passaged in vivo relative to those grown in vitro. Interestingly, the distribution of long-range loss of heterozygosity (LOH) and chromosome rearrangement events across the genome differed for the two growth environments, while rates of short-range LOH were comparable for in vivo and in vitro populations. Further, for the in vivo populations, there was a positive correlation of cells demonstrating genetic alterations and variation in colony growth and morphology. For in vitro populations, no variation in growth phenotypes was detected. Together, our results demonstrate that passage through a living host leads to slower growth and higher rates of genomic and phenotypic variation compared to in vitro populations. Results suggest that the dynamics of population growth and genomewide rearrangement contribute to the maintenance of a commensal and opportunistic life history of C. albicans.
Collapse
|