101
|
Wang C, Ling T, Zhong N, Xu LG. N4BP3 Regulates RIG-I-Like Receptor Antiviral Signaling Positively by Targeting Mitochondrial Antiviral Signaling Protein. Front Microbiol 2021; 12:770600. [PMID: 34880843 PMCID: PMC8646042 DOI: 10.3389/fmicb.2021.770600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.
Collapse
Affiliation(s)
- Chen Wang
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Ting Ling
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Ni Zhong
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
102
|
Schoeffler AJ, Helgason E, Popovych N, Dueber EC. Diagnosing and mitigating method-based avidity artifacts that confound polyubiquitin-binding assays. BIOPHYSICAL REPORTS 2021; 1:100033. [PMID: 36425458 PMCID: PMC9680732 DOI: 10.1016/j.bpr.2021.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/09/2021] [Indexed: 06/16/2023]
Abstract
Polyubiquitination is a complex form of posttranslational modification responsible for the control of numerous cellular processes. Many ubiquitin-binding proteins recognize distinct polyubiquitin chain types, and these associations help drive ubiquitin-signaling pathways. There is considerable interest in understanding the specificity of ubiquitin-binding proteins; however, because of the multivalent nature of polyubiquitin, affinity measurements of these interactions that rely on affixing ubiquitin-binding proteins to a surface can display artifactual, method-dependent avidity, or "bridging." This artifact, which is distinct from biologically relevant, avid interactions with polyubiquitin, is commonplace in such polyubiquitin-binding measurements and can lead to dramatic overestimations of binding affinities for particular chain types, and thus, incorrect conclusions about specificity. Here, we use surface-based measurements of ubiquitin binding in three model systems to illustrate bridging and lay out practical ways of identifying and mitigating it. Specifically, we describe a simple fitting model that enables researchers to diagnose the severity of bridging artifacts, determine whether they can be minimized, and more accurately evaluate polyubiquitin-binding specificity.
Collapse
Affiliation(s)
- Allyn J. Schoeffler
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Elizabeth Helgason
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Nataliya Popovych
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Erin C. Dueber
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| |
Collapse
|
103
|
Wang J, Zhong W, Su H, Xu J, Yang D, Liu X, Zhu YZ. Histone Methyltransferase Dot1L Contributes to RIPK1 Kinase-Dependent Apoptosis in Cerebral Ischemia/Reperfusion. J Am Heart Assoc 2021; 10:e022791. [PMID: 34796721 PMCID: PMC9075366 DOI: 10.1161/jaha.121.022791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Neuron apoptosis is a pivotal process for brain damage in cerebral ischemia. Dot1L (disruptor of telomeric silencing 1‐like) is only known histone H3K79 methyltransferase. It is not clear whether the role and mechanism of Dot1L on cerebral ischemia is related to regulate neuron apoptosis. Methods and Results We use a combination of mice middle cerebral artery occlusion stroke and neurons exposed to oxygen‐glucose deprivation followed by reoxygenation to investigate the role and mechanism of Dot1L on cerebral ischemia. We find knockdown or inhibition of Dot1L reversed ischemia‐induced neuronal apoptosis and attenuated the neurons injury treated by oxygen‐glucose deprivation followed by reoxygenation. Further, blockade of Dot1L prevents RIPK1 (receptor‐interacting protein kinase 1)‐dependent apoptosis through increased RIPK1 K63‐ubiquitylation and decreased formation of RIPK1/Caspase 8 complexes. In line with this, H3K79me3 enrichment in the promoter region of deubiquitin‐modifying enzyme A20 and deubiquitinase cylindromatosis gene promotes the increasing expression in oxygen‐glucose deprivation followed by reoxygenation ‐induced neuronal cells, on the contrary, oxygen‐glucose deprivation followed by reoxygenation decreases H3K79me3 level in the promoter region of ubiquitin‐modifying enzyme cIAP1 (cellular inhibitors of apoptosis proteins), and both these factors ultimately cause K63‐deubiquitination of RIPK1. Importantly, knockdown or inhibition of Dot1L in vivo attenuates apoptosis in middle cerebral artery occlusion mice and reduces the extent of middle cerebral artery occlusion ‐induced brain injury. Conclusions These data support for the first time, to our knowledge, that Dot1L regulating RIPK1 to the apoptotic death trigger contributes to cerebral ischemia injury. Therefore, targeting Dot1L serves as a new therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Jinghuan Wang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Wen Zhong
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Haibi Su
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Jie Xu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Di Yang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Xinhua Liu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Yi Zhun Zhu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy Macau University of Science and Technology Macau China
| |
Collapse
|
104
|
Du J, Xiang Y, Liu H, Liu S, Kumar A, Xing C, Wang Z. RIPK1 dephosphorylation and kinase activation by PPP1R3G/PP1γ promote apoptosis and necroptosis. Nat Commun 2021; 12:7067. [PMID: 34862394 PMCID: PMC8642546 DOI: 10.1038/s41467-021-27367-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of inflammation and cell death. Many sites on RIPK1, including serine 25, are phosphorylated to inhibit its kinase activity and cell death. How these inhibitory phosphorylation sites are dephosphorylated is poorly understood. Using a sensitized CRISPR whole-genome knockout screen, we discover that protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is required for RIPK1-dependent apoptosis and type I necroptosis. Mechanistically, PPP1R3G recruits its catalytic subunit protein phosphatase 1 gamma (PP1γ) to complex I to remove inhibitory phosphorylations of RIPK1. A PPP1R3G mutant which does not bind PP1γ fails to rescue RIPK1 activation and cell death. Furthermore, chemical prevention of RIPK1 inhibitory phosphorylations or mutation of serine 25 of RIPK1 to alanine largely restores cell death in PPP1R3G-knockout cells. Finally, Ppp1r3g-/- mice are protected from tumor necrosis factor-induced systemic inflammatory response syndrome, confirming the important role of PPP1R3G in regulating apoptosis and necroptosis in vivo.
Collapse
Affiliation(s)
- Jingchun Du
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.410737.60000 0000 8653 1072Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182 China
| | - Yougui Xiang
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.492659.50000 0004 0492 4462Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ 85040 USA
| | - Hua Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006 China
| | - Shuzhen Liu
- grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Ashwani Kumar
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Chao Xing
- grid.267313.20000 0000 9482 7121Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 USA
| | - Zhigao Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
| |
Collapse
|
105
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
106
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
107
|
Jiang Q, Li Z, Tao T, Duan R, Wang X, Su W. TNF-α in Uveitis: From Bench to Clinic. Front Pharmacol 2021; 12:740057. [PMID: 34795583 PMCID: PMC8592912 DOI: 10.3389/fphar.2021.740057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Uveitis is an inflammation of the iris, ciliary body, vitreous, retina, or choroid, which has been shown to be the first manifestation of numerous systemic diseases. Studies about the immunopathogenesis and treatment of uveitis are helpful to comprehend systemic autoimmune diseases, and delay the progression of systemic autoimmune diseases, respectively. Tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, plays a pivotal role in intraocular inflammation based on experimental and clinical data. Evidence of the feasibility of using anti-TNF-α agents for uveitis management has increased. Although there are numerous studies on TNF-α in various autoimmune diseases, the pathological mechanism and research progress of TNF-α in uveitis have not been reviewed. Therefore, the objective of this review is to provide a background on the role of TNF-α in the immunopathogenesis of uveitis, as well as from bench to clinical research progress, to better guide TNF-α-based therapeutics for uveitis.
Collapse
Affiliation(s)
- Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
108
|
Freeman AJ, Kearney CJ, Silke J, Oliaro J. Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends Immunol 2021; 42:1128-1142. [PMID: 34750058 DOI: 10.1016/j.it.2021.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.
Collapse
Affiliation(s)
- Andrew J Freeman
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Conor J Kearney
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
109
|
Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, Tang M, Zhu Y, Lin X, Jin J, Zhang L, Huang J, Zou J, Xia ZP, Xu PL, Shen L, Zhao B, Feng XH. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. SCIENCE ADVANCES 2021; 7:eabh1756. [PMID: 34613781 PMCID: PMC8494447 DOI: 10.1126/sciadv.abh1756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
RIP1 has emerged as a master regulator in TNFα signaling that controls two distinct cellular fates: cell survival versus programmed cell death. Because the default response of most cells to TNFα is NF-κB–mediated inflammation and survival, a specific mechanism must exist to control the divergence of signaling outcome. Here, we identify HSPA13 as a transcription-independent checkpoint to modulate the role of RIP1 in TNFα signaling. Through specific binding to TNFR1 and RIP1, HSPA13 enhances TNFα-induced recruitment of RIP1 to TNFR1, and consequently promotes downstream NF-κB transcriptional responses. Meanwhile, HSPA13 attenuates the participation of RIP1 in cytosolic complex II and prevents cells from programmed death. Loss of HSPA13 shifts the transition of RIP1 from complex I to complex II and promotes both apoptosis and necroptosis. Thus, our study provides compelling evidence for the cellular protective function of HSPA13 in fine-tuning TNFα responses.
Collapse
Affiliation(s)
- Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hanchenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University–Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zong-Ping Xia
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ping-Long Xu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
110
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
111
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
112
|
Wang Q, Fan D, Xia Y, Ye Q, Xi X, Zhang G, Xiao C. The latest information on the RIPK1 post-translational modifications and functions. Biomed Pharmacother 2021; 142:112082. [PMID: 34449307 DOI: 10.1016/j.biopha.2021.112082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
RIPK1 is a protein kinase that simultaneously regulates inflammation, apoptosis, and necroptosis. It is thought that RIPK1 has separate functions through its scaffold structure and kinase domains. Moreover, different post-translational modifications in RIPK1 play distinct or even opposing roles. Under different conditions, in different cells and species, and/or upon exposure to different stimuli, infections, and substrates, RIPK1 activation can lead to diverse results. Despite continuous research, many of the conclusions that have been drawn regarding the complex interactions of RIPK1 are controversial. This review is based on an examination and analysis of recent studies on the RIPK1 structure, post-translational modifications, and activation conditions, which can affect its functions. Finally, because of the diverse functions of RIPK1 and their relevance to the pathogenesis of many diseases, we briefly introduce the roles of RIPK1 in inflammatory and autoimmune diseases and the prospects of its use in future diagnostics and treatments.
Collapse
Affiliation(s)
- Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Ya Xia
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
113
|
Piao X, Byun HS, Lee SR, Ju E, Park KA, Sohn KC, Quan KT, Lee J, Na M, Hur GM. 8-Geranylumbelliferone isolated from Paramignya trimera triggers RIPK1/RIPK3-dependent programmed cell death upon TNFR1 ligation. Biochem Pharmacol 2021; 192:114733. [PMID: 34411570 DOI: 10.1016/j.bcp.2021.114733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
In tumor necrosis factor (TNF) signaling, IκB kinase (IKK) complex-mediated activation of NF-κB is a well-known protective mechanism against cell death via transcriptional induction of pro-survival genes occurring as a late checkpoint. However, recent belief holds that IKK functions as an early cell death checkpoint to suppress the death-inducing signaling complex by regulating receptor interacting protein kinase1 (RIPK1) phosphorylation. In this study, we propose that two major gernaylated 7-hydroxy coumarins, 6-geranyl-7-hydroxycoumarin (ostruthin) and 8-geranyl-7-hydroxycoumarin (8-geranylumbelliferone, 8-GU) isolated from Paramignya timera, facilitate RIPK1-dependent dual modes of apoptosis and necroptosis by targeting IKKβ upon TNF receptor1 (TNFR1) ligation. Analysis of events upstream of NF-κB revealed that 8-GU and ostruthin drastically inhibited TNF-induced IKK phosphorylation, while having no effect on TAK1 phosphorylation and TNFR1 complex-I formation. Interestingly, 8-GU did not affect the cell death induced by Fas ligand or TNF-related apoptosis-inducing ligand or that induced by DNA-damaging agents, indicating that 8-GU sensitizes TNF-induced cell death exclusively. Moreover, 8-GU accelerated TNF-driven necroptosis by up-regulating necrosome formation in FADD deficient cancer cells harboring RIPK3. Thus, the present study provides new insights into the molecular mechanism underlying geranylated 7-hydroxy coumarin-mediated control of the RIPK1-dependent early cell death checkpoint and suggests that 8-GU is a potential anti-cancer therapeutic via an alternative apoptosis-independent strategy to overcome TNF resistance.
Collapse
Affiliation(s)
- Xuezhe Piao
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - So-Ra Lee
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - Jinbae Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea.
| |
Collapse
|
114
|
Yan WT, Lu S, Yang YD, Ning WY, Cai Y, Hu XM, Zhang Q, Xiong K. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 2021; 16:1628-1637. [PMID: 33433494 PMCID: PMC8323674 DOI: 10.4103/1673-5374.303032] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007-2019 to identify research hotspots and prospects. We included 145 necroptosis-related publications and 2239 references published in the Web of Science during 2007-2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan Cai
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
115
|
Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell 2021; 12:769-787. [PMID: 34291435 PMCID: PMC8464644 DOI: 10.1007/s13238-021-00858-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosome-dependent selective degradation pathway implicated in the pathogenesis of cancer and neurodegenerative diseases. However, the mechanisms that regulate CMA are not fully understood. Here, using unbiased drug screening approaches, we discover Metformin, a drug that is commonly the first medication prescribed for type 2 diabetes, can induce CMA. We delineate the mechanism of CMA induction by Metformin to be via activation of TAK1-IKKα/β signaling that leads to phosphorylation of Ser85 of the key mediator of CMA, Hsc70, and its activation. Notably, we find that amyloid-beta precursor protein (APP) is a CMA substrate and that it binds to Hsc70 in an IKKα/β-dependent manner. The inhibition of CMA-mediated degradation of APP enhances its cytotoxicity. Importantly, we find that in the APP/PS1 mouse model of Alzheimer’s disease (AD), activation of CMA by Hsc70 overexpression or Metformin potently reduces the accumulated brain Aβ plaque levels and reverses the molecular and behavioral AD phenotypes. Our study elucidates a novel mechanism of CMA regulation via Metformin-TAK1-IKKα/β-Hsc70 signaling and suggests Metformin as a new activator of CMA for diseases, such as AD, where such therapeutic intervention could be beneficial.
Collapse
|
116
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
117
|
Methods to Study the Effect of IKK Inhibition on TNF-Inducing Apoptosis and Necroptosis in Cultured Cells. Methods Mol Biol 2021. [PMID: 34236642 DOI: 10.1007/978-1-0716-1669-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The engagement of TNF on TNFR can result in cell survival or cell death depending on the different complex formation downstream this interaction. Here we describe reagents and assay procedures that can be used to study caspase-independent cell death (necroptosis) in cultured cells, in response to pharmacological interventions with NF-kappaB and death inhibitors. We provide protocol to detect death-specific proteins using immunoblot and to dissect necrosome complex by sequential co-immunoprecipitation of death-specific components during necroptosis.
Collapse
|
118
|
Cruz JA, Mokashi CS, Kowalczyk GJ, Guo Y, Zhang Q, Gupta S, Schipper DL, Smeal SW, Lee REC. A variable-gain stochastic pooling motif mediates information transfer from receptor assemblies into NF-κB. SCIENCE ADVANCES 2021; 7:7/30/eabi9410. [PMID: 34301608 PMCID: PMC8302133 DOI: 10.1126/sciadv.abi9410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
A myriad of inflammatory cytokines regulate signaling pathways to maintain cellular homeostasis. The IκB kinase (IKK) complex is an integration hub for cytokines that govern nuclear factor κB (NF-κB) signaling. In response to inflammation, IKK is activated through recruitment to receptor-associated protein assemblies. How and what information IKK complexes transmit about the milieu are open questions. Here, we track dynamics of IKK complexes and nuclear NF-κB to identify upstream signaling features that determine same-cell responses. Experiments and modeling of single complexes reveal their size, number, and timing relays cytokine-specific control over shared signaling mechanisms with feedback regulation that is independent of transcription. Our results provide evidence for variable-gain stochastic pooling, a noise-reducing motif that enables cytokine-specific regulation and parsimonious information transfer. We propose that emergent properties of stochastic pooling are general principles of receptor signaling that have evolved for constructive information transmission in noisy molecular environments.
Collapse
Affiliation(s)
- J Agustin Cruz
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaitanya S Mokashi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gabriel J Kowalczyk
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yue Guo
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Qiuhong Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sanjana Gupta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David L Schipper
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Steven W Smeal
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robin E C Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
119
|
Koschel J, Nishanth G, Just S, Harit K, Kröger A, Deckert M, Naumann M, Schlüter D. OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation. Cell Death Differ 2021; 28:2257-2275. [PMID: 33712742 PMCID: PMC8257688 DOI: 10.1038/s41418-021-00752-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
In bacterial and sterile inflammation of the liver, hepatocyte apoptosis is, in contrast to necroptosis, a common feature. The molecular mechanisms preventing hepatocyte necroptosis and the potential consequences of hepatocyte necroptosis are largely unknown. Apoptosis and necroptosis are critically regulated by the ubiquitination of signaling molecules but especially the regulatory function of deubiquitinating enzymes (DUBs) is imperfectly defined. Here, we addressed the role of the DUB OTU domain aldehyde binding-1 (OTUB1) in hepatocyte cell death upon both infection with the hepatocyte-infecting bacterium Listeria monocytogenes (Lm) and D-Galactosamine (DGal)/Tumor necrosis factor (TNF)-induced sterile inflammation. Combined in vivo and in vitro experiments comprising mice lacking OTUB1 specifically in liver parenchymal cells (OTUB1LPC-KO) and human OTUB1-deficient HepG2 cells revealed that OTUB1 prevented hepatocyte necroptosis but not apoptosis upon infection with Lm and DGal/TNF challenge. Lm-induced necroptosis in OTUB1LPC-KO mice resulted in increased alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release and rapid lethality. Treatment with the receptor-interacting serine/threonine-protein kinase (RIPK) 1 inhibitor necrostatin-1s and deletion of the pseudokinase mixed lineage kinase domain-like protein (MLKL) prevented liver damage and death of infected OTUB1LPC-KO mice. Mechanistically, OTUB1 reduced K48-linked polyubiquitination of the cellular inhibitor of apoptosis 1 (c-IAP1), thereby diminishing its degradation. In the absence of OTUB1, c-IAP1 degradation resulted in reduced K63-linked polyubiquitination and increased phosphorylation of RIPK1, RIPK1/RIPK3 necrosome formation, MLKL-phosphorylation and hepatocyte death. Additionally, OTUB1-deficiency induced RIPK1-dependent extracellular-signal-regulated kinase (ERK) activation and TNF production in Lm-infected hepatocytes. Collectively, these findings identify OTUB1 as a novel regulator of hepatocyte-intrinsic necroptosis and a critical factor for survival of bacterial hepatitis and TNF challenge.
Collapse
Affiliation(s)
- Josephin Koschel
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Sissy Just
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Innate Immunity and Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martina Deckert
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
120
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
121
|
Tu H, Tang Y, Zhang J, Cheng L, Joo D, Zhao X, Lin X. Linear Ubiquitination of RIPK1 on Lys 612 Regulates Systemic Inflammation via Preventing Cell Death. THE JOURNAL OF IMMUNOLOGY 2021; 207:602-612. [PMID: 34162724 DOI: 10.4049/jimmunol.2100299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
Receptor-interacting protein kinase-1 (RIPK1) is a master regulator of the TNF-α-induced cell death program. The function of RIPK1 is tightly controlled by posttranslational modifications, including linear ubiquitin chain assembly complex-mediated linear ubiquitination. However, the physiological function and molecular mechanism by which linear ubiquitination of RIPK1 regulates TNF-α-induced intracellular signaling remain unclear. In this article, we identified Lys627 residue as a major linear ubiquitination site in human RIPK1 (or Lys612 in murine RIPK1) and generated Ripk1K612R/K612R mice, which spontaneously develop systemic inflammation triggered by sustained emergency hematopoiesis. Mechanistically, without affecting NF-κB activation, Ripk1K612R/K612R mutation enhances apoptosis and necroptosis activation and promotes TNF-α-induced cell death. The systemic inflammation and hematopoietic disorders in Ripk1K612R/K612R mice are completely abolished by deleting TNF receptor 1 or both RIPK3 and Caspase-8. These data suggest the critical role of TNF-α-induced cell death in the resulting phenotype in Ripk1K612R/K612R mice. Together, our results demonstrate that linear ubiquitination of RIPK1 on K612 is essential for limiting TNF-α-induced cell death to further prevent systemic inflammation.
Collapse
Affiliation(s)
- Hailin Tu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ; and
| | - Jie Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Liqing Cheng
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Donghyun Joo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xueqiang Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China;
| |
Collapse
|
122
|
Hong JY, Lin SC, Kuo BJ, Lo YC. Structural and Biochemical Basis for Higher-Order Assembly between A20-Binding Inhibitor of NF-κB 1 (ABIN1) and M1-Linked Ubiquitins. J Mol Biol 2021; 433:167116. [PMID: 34161781 DOI: 10.1016/j.jmb.2021.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Polyubiquitination is important in controlling NF-κB signaling. Excessive NF-κB activity has been linked to inflammatory disorders and autoimmune diseases, while ABIN1 could attenuate NF-κB activation to maintain immune homeostasis by utilizing UBAN to recognize linear (M1)-linked polyubiquitinated NF-κB activation mediators, including NEMO, IRAK1 and RIP1. PolyUb-mediated UBAN recruitment remains undetermined, since the recognition studies focused mostly on di-ubiquitin (diUb). Here we report three crystal structures of human ABIN1 UBAN (hABIN1UBAN) in complex with M1-linked diUb, triUb, and tetraUb, respectively. Notably, the hABIN1UBAN:diUb structure reveals that a diUb randomly binds one of the Ub-binding sites of the hABIN1UBAN dimer and leaves the other site vacant. Together with the ITC and gel-filtration analyses, we found that M1-triUb and M1-tetraUb adopt two unique conformations, instead of an elongated one, and they preferentially use the N-terminal two-Ub unit to bind the primary Ub-binding site of a hABIN1UBAN dimer and the C-terminal two-Ub unit to bind the secondary Ub-binding site of another hABIN1UBAN dimer. Especially, our results suggest that two ABIN1UBAN dimers cooperatively bind two UBAN-binding units of a tetraUb or vice versa. Since the UBAN family members share a conserved diUb-binding mode, our results suggest that M1-polyUb modification allows multiple copies of the two-tandem Ub unit to simultaneously coordinate multiple and/or different binding partners to increase their local concentrations and to facilitate the formation of a large signaling complex. Our study provides a structural-functional glimpse of M1-polyUb as a multiple-molecule binding platform to exert its intrinsic structural plasticity in mediating cellular signaling.
Collapse
Affiliation(s)
- Jhen-Yi Hong
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
123
|
Kowalczyk GJ, Cruz JA, Guo Y, Zhang Q, Sauerwald N, Lee REC. dNEMO: a tool for quantification of mRNA and punctate structures in time-lapse images of single cells. Bioinformatics 2021; 37:677-683. [PMID: 33051642 DOI: 10.1093/bioinformatics/btaa874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 09/28/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Many biological processes are regulated by single molecules and molecular assemblies within cells that are visible by microscopy as punctate features, often diffraction limited. Here, we present detecting-NEMO (dNEMO), a computational tool optimized for accurate and rapid measurement of fluorescent puncta in fixed-cell and time-lapse images. RESULTS The spot detection algorithm uses the à trous wavelet transform, a computationally inexpensive method that is robust to imaging noise. By combining automated with manual spot curation in the user interface, fluorescent puncta can be carefully selected and measured against their local background to extract high-quality single-cell data. Integrated into the workflow are segmentation and spot-inspection tools that enable almost real-time interaction with images without time consuming pre-processing steps. Although the software is agnostic to the type of puncta imaged, we demonstrate dNEMO using smFISH to measure transcript numbers in single cells in addition to the transient formation of IKK/NEMO puncta from time-lapse images of cells exposed to inflammatory stimuli. We conclude that dNEMO is an ideal user interface for rapid and accurate measurement of fluorescent molecular assemblies in biological imaging data. AVAILABILITY AND IMPLEMENTATION The data and software are freely available online at https://github.com/recleelab. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gabriel J Kowalczyk
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh, PA 15213, USA
| | - J Agustin Cruz
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yue Guo
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh, PA 15213, USA.,Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qiuhong Zhang
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh, PA 15213, USA
| | - Natalie Sauerwald
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robin E C Lee
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
124
|
Kehrer T, García-Sastre A, Miorin L. Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. J Interferon Cytokine Res 2021; 41:205-219. [PMID: 34161170 PMCID: PMC8336211 DOI: 10.1089/jir.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of unprecedented proportions. After the emergence of SARS-CoV-1 in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, this is the third outbreak of a highly pathogenic zoonotic coronavirus (CoV) that the world has witnessed in the last 2 decades. Infection with highly pathogenic human CoVs often results in a severe respiratory disease characterized by a delayed and blunted interferon (IFN) response, accompanied by an excessive production of proinflammatory cytokines. This indicates that CoVs developed effective mechanisms to overcome the host innate immune response and promote viral replication and pathogenesis. In this review, we describe the key innate immune signaling pathways that are activated during infection with SARS-CoV-2 and other well studied pathogenic CoVs. In addition, we summarize the main strategies that these viruses employ to modulate the host immune responses through the antagonism of IFN induction and effector pathways.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
125
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
126
|
Brown A, Török M. Functional amyloids in the human body. Bioorg Med Chem Lett 2021; 40:127914. [PMID: 33691165 DOI: 10.1016/j.bmcl.2021.127914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
Amyloids have long been associated with a variety of human degenerative diseases. Discoveries indicate, however, that there are several amyloids that serve functional roles in the human body. These amyloids are involved in a variety of biological processes ranging from storage of peptide hormones to necroptosis of cells. Additionally, there are distinct differences between toxic amyloids and their functional counterparts including kinetics of assembly/disassembly and structural features. This digest article surveys the biological roles of functional amyloids found in the human body, key differences between functional and toxic amyloids, and potential therapeutic applications.
Collapse
Affiliation(s)
- Amy Brown
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Marianna Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
127
|
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, Seggewiß S, Peter C, Kasof G, Stefanski A, Stühler K, Tschapek A, Gödecke A, Stork B. The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death. Cell Rep 2021; 31:107547. [PMID: 32320653 DOI: 10.1016/j.celrep.2020.107547] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaojing Wang
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Nora Wallot-Hieke
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Philip Böhler
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Cox
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schmitz
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Seggewiß
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Astrid Tschapek
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
128
|
Zhao J, Wang X, Mi Z, Jiang X, Sun L, Zheng B, Wang J, Meng M, Zhang L, Wang Z, Song J, Yuan Z, Wu Z. STAT3/miR-135b/NF-κB axis confers aggressiveness and unfavorable prognosis in non-small-cell lung cancer. Cell Death Dis 2021; 12:493. [PMID: 33990540 PMCID: PMC8121828 DOI: 10.1038/s41419-021-03773-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most commonly diagnosed cancers worldwide but has limited effective therapies. Uncovering the underlying pathological and molecular changes, as well as mechanisms, will improve the treatment. Dysregulated microRNAs (miRNAs) have been proven to play important roles in the initiation and progression of various cancers, including NSCLC. In this manuscript, we identified microRNA-135b (miR-135b) as a tumor-promoting miRNA in NSCLC. We found that miR-135b was significantly upregulated and that its upregulation was associated with poor prognosis in NSCLC patients. miR-135b was an independent prognostic factor in NSCLC. Overexpressing miR-135b significantly promoted the aggressiveness of NSCLC, as evidenced by enhanced cell proliferation, migration, invasion, anti-apoptosis, and angiogenesis in vitro and in vivo, and knockdown of miR-135b had the opposite effects. Mechanistically, our results reveal that miR-135b directly targets the 3'-untranslated region (UTR) of the deubiquitinase CYLD, thereby modulating ubiquitination and activation of NF-κB signaling. Moreover, we found that interleukin-6 (IL-6)/STAT3 could elevate miR-135b levels and that STAT3 directly bound the promoter of miR-135b; thus, these findings highlight a new positive feedback loop of the IL-6/STAT3/miR-135b/NF-κB signaling in NSCLC and suggest that miR-135b could be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jinlin Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zeyun Mi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
| | - Xiangli Jiang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China
| | - Boyu Zheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jing Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Maobin Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Lu Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Junwei Song
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, 518060, Shenzhen, Guangdong, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
129
|
Xiao T, Wan J, Qu H, Li Y. Tripartite-motif protein 21 knockdown extenuates LPS-triggered neurotoxicity by inhibiting microglial M1 polarization via suppressing NF-κB-mediated NLRP3 inflammasome activation. Arch Biochem Biophys 2021; 706:108918. [PMID: 33992596 DOI: 10.1016/j.abb.2021.108918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 12/21/2022]
Abstract
Tripartite motif-containing 21 (TRIM21) has been confirmed to mediate the production of inflammatory mediators via NF-κB signaling. However, the function of TRIM21 in microglia-mediated neuroinflammation remains unclear. This study aimed to explore the effect of TRIM21 on LPS-activated BV2 microglia and its underlying mechanism. BV2 cells exposed to lipopolysaccharide (LPS) were used to simulated neuroinflammation in vitro. Loss-of-function and gain-of-function of TRIM21 in BV2 cells were used to assess the effect of TRIM21 on LPS-induced neuroinflammation. BV2 microglia and HT22 cells co-culture system were used to investigate whether TRIM21 regulated neuronal inflammation-mediated neuronal death. TRIM21 knockdown triggered the polarization of BV2 cells from M1 to M2 phenotype. Knockdown of TRIM21 reduced the secretion of TNF-α, IL-6, and IL-1β, while increased the content of IL-4 in LPS-treated cells. Knockdown of TRIM21 inhibited the expression of p65 and the binding activity of NF-κB-DNA. Additionally, TRIM21 siRNA eliminated the increase in NLRP3 and cleaved caspase-1 proteins expression and caspase-1 activity induced by LPS. TRIM21 knockdown could resist cytotoxicity induced by activated microglia, including increasing the viability of co-cultured HT22 cells and reducing the emancipation of LDH. Moreover, the increased apoptosis and caspase-3 activity of HT22 neurons induced by activated BV2 cells were blocked by TRIM21 siRNA. Blocking of NF-κB abolished the effect of TRIM21 in promoting the expression of M1 phenotype marker genes. Similarly, the blockade of NF-κB pathway eliminated the promotion of TRIM21 on neurotoxicity induced by neuroinflammation. TRIM21 knockdown suppressed the M1 phenotype polarization of microglia and neuroinflammation-mediated neuronal damage via NF-κB/NLRP3 inflammasome pathway, which suggested that TRIM21 might be a potential therapeutic target for the therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital Of University Of South China, Hunan Province, China.
| | - Hongtao Qu
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| | - Yiming Li
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| |
Collapse
|
130
|
Çopuroğlu FE, Hapil FZ, Yoldaş ŞB, Özeş ON. Positive regulation of TNFR1 signaling via SH3 recognition motif. ACTA ACUST UNITED AC 2021; 45:171-179. [PMID: 33907493 PMCID: PMC8068768 DOI: 10.3906/biy-2010-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 12/03/2022]
Abstract
TNF is a pleiotropic cytokine and shows its biological function by binding to its receptors called TNFR1 and TNFR2. While TNFR1 induces apoptosis by activation of caspase-8 via the “death domain”, it also activates IKKα/β, MKK3/6, MKK4/7 by activation of TAK1. Although the TNFR1 signaling pathway is known by in large, it is not known how AKT and MAPKs p38, ERK1/2, and JNK1/2 are activated. The presence of a proline-rich PPAP region, (P448PAP451, a binding site for the SH3 domain-containing proteins) very close to the C-terminus promoted us to determine whether this region has any role in the TNFR1 signal transduction. To test this, the codons of P448 and P451 were changed to that of Alanin, GCG, via site-directed mutagenesis, and this plasmid was named as TNFR1-SH3-P/A. Subsequently, ectopically expressed the wild type TNFR1 and TNFR1-SH3-P/A in 293T cells and determined the levels of TNF-α-mediated phosphorylations of ERK, p38, JNK and AKT, NF-kB, and caspase-8 activation. While ectopic expression of our mutant diminished TNFα-mediated phosphorylations of p38, JNK, ERK and AKT, it increased NF-kB, and caspase-8 activations. In conclusion, TNFα-mediated ERK, AKT, JNK, p38 activations are affected by TNFR1 SH3 domain modifications.
Collapse
Affiliation(s)
- Fatma Ece Çopuroğlu
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | - Fatma Zehra Hapil
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | - Şükran Burçak Yoldaş
- Department of Medical Biology and Genetics, Institute of Health Sciences, Akdeniz University, Antalya Turkey2
| | | |
Collapse
|
131
|
Jin J, Jung IH, Moon SH, Jeon S, Jeong SJ, Sonn SK, Seo S, Lee MN, Song EJ, Kweon HY, Kim S, Kim TK, Kim J, Cho HR, Choi JH, Kwon B, Oh GT. CD137 Signaling Regulates Acute Colitis via RALDH2-Expressing CD11b -CD103 + DCs. Cell Rep 2021; 30:4124-4136.e5. [PMID: 32209473 DOI: 10.1016/j.celrep.2020.02.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/21/2019] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137, a potent costimulatory receptor for CD8+ T cells, is expressed in various non-T cells, but little is known about its regulatory functions in these cells. In this study, we show that CD137 signaling, specifically in intestinal CD11b-CD103+ dendritic cells (DCs), restricts acute colitis progression. Mechanistically, CD137 engagement activates TAK1 and subsequently stimulates the AMPK-PGC-1α axis to enhance expression of the Aldh1a2 gene encoding the retinoic acid (RA) metabolizing enzyme RALDH2. RA can act on CD11b+CD103- DCs and induce SOCS3 expression, which, in turn, suppresses p38MAPK activation and interleukin-23 (IL-23) production. Administration of RA in DC-specific CD137-/- mice represses IL-23-producing CD11b+CD103- DCs and TH17 cells, indicating that RA is a major inhibitory effector molecule against intestinal CD11b+CD103- DCs. Additionally, the therapeutic effect of the anti-CD137 antibody is abrogated in DC-specific CD137-/- mice. Taken together, our results define a mechanism of paracrine immunoregulation operating between adjacent DC subsets in the intestine.
Collapse
Affiliation(s)
- Jing Jin
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin Hye Moon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seong-Keun Sonn
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Seungwoon Seo
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Ju Song
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Tae Kyeong Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Juyang Kim
- School of Biological Sciences and Biomedical Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Hong Rae Cho
- Department of Surgery and Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan 44610, South Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Byungsuk Kwon
- School of Biological Sciences and Biomedical Research Center, University of Ulsan, Ulsan 44610, South Korea.
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
132
|
Khan I, Yousif A, Chesnokov M, Hong L, Chefetz II. A decade of cell death studies: Breathing new life into necroptosis. Pharmacol Ther 2021; 220:107717. [DOI: 10.1016/j.pharmthera.2020.107717] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
|
133
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
134
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
135
|
Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD, Vucic D. Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ 2021; 28:985-1000. [PMID: 32999468 PMCID: PMC7937686 DOI: 10.1038/s41418-020-00629-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Receptor-interacting protein 1 (RIP1; RIPK1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. TNF-TNFR1 triggered signaling complex formation, subsequent NF-κB and MAPK activation and induction of cell death involve RIPK1 ubiquitination at several lysine residues including Lys376 and Lys115. Here we show that mutating the ubiquitination site K376 of RIPK1 (K376R) in mice activates cell death resulting in embryonic lethality. In contrast to Ripk1K376R/K376R mice, Ripk1K115R/K115R mice reached adulthood and showed slightly higher responsiveness to TNF-induced death. Cell death observed in Ripk1K376R/K376R embryos relied on RIPK1 kinase activity as administration of RIPK1 inhibitor GNE684 to pregnant heterozygous mice effectively blocked cell death and prolonged survival. Embryonic lethality of Ripk1K376R/K376R mice was prevented by the loss of TNFR1, or by simultaneous deletion of caspase-8 and RIPK3. Interestingly, elimination of the wild-type allele from adult Ripk1K376R/cko mice was tolerated. However, adult Ripk1K376R/cko mice were exquisitely sensitive to TNF-induced hypothermia and associated lethality. Absence of the K376 ubiquitination site diminished K11-linked, K63-linked, and linear ubiquitination of RIPK1, and promoted the assembly of death-inducing cellular complexes, suggesting that multiple ubiquitin linkages contribute to the stability of the RIPK1 signaling complex that stimulates NF-κB and MAPK activation. In contrast, mutating K115 did not affect RIPK1 ubiquitination or TNF stimulated NF-κB and MAPK signaling. Overall, our data indicate that selective impairment of RIPK1 ubiquitination can lower the threshold for RIPK1 activation by TNF resulting in cell death and embryonic lethality.
Collapse
Affiliation(s)
- Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - László G Kőműves
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tatiana Goncharov
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Charles Yu
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
136
|
Samson AL, Garnish SE, Hildebrand JM, Murphy JM. Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Sci Signal 2021; 14:14/668/eabc6178. [PMID: 33531383 DOI: 10.1126/scisignal.abc6178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Necroptosis is a lytic, proinflammatory cell death pathway, which has been implicated in host defense and, when dysregulated, the pathology of many human diseases. The central mediators of this pathway are the receptor-interacting serine/threonine protein kinases RIPK1 and RIPK3 and the terminal executioner, the pseudokinase mixed lineage kinase domain-like (MLKL). Here, we review the chronology of signaling along the RIPK1-RIPK3-MLKL axis and highlight how the subcellular compartmentalization of signaling events controls the initiation and execution of necroptosis. We propose that a network of modulators surrounds the necroptotic signaling core and that this network, rather than acting universally, tunes necroptosis in a context-, cell type-, and species-dependent manner. Such a high degree of mechanistic flexibility is likely an important property that helps necroptosis operate as a robust, emergency form of cell death.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
137
|
Ji Y, Ward LA, Hawkins CJ. Reconstitution of Human Necrosome Interactions in Saccharomyces cerevisiae. Biomolecules 2021; 11:biom11020153. [PMID: 33503908 PMCID: PMC7911209 DOI: 10.3390/biom11020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
The necrosome is a large-molecular-weight complex in which the terminal effector of the necroptotic pathway, Mixed Lineage Kinase Domain-Like protein (MLKL), is activated to induce necroptotic cell death. The precise mechanism of MLKL activation by the upstream kinase, Receptor Interacting Serine/Threonine Protein Kinase 3 (RIPK3) and the role of Receptor Interacting Serine/Threonine Protein Kinase 1 (RIPK1) in mediating MLKL activation remain incompletely understood. Here, we reconstituted human necrosome interactions in yeast by inducible expression of these necrosome effectors. Functional interactions were reflected by the detection of phosphorylated MLKL, plasma membrane permeabilization, and reduced proliferative potential. Following overexpression of human necrosome effectors in yeast, MLKL aggregated in the periphery of the cell, permeabilized the plasma membrane and compromised clonogenic potential. RIPK1 had little impact on RIPK3/MLKL-mediated yeast lethality; however, it exacerbated the toxicity provoked by co-expression of MLKL with a RIPK3 variant bearing a mutated RHIM-domain. Small molecule necroptotic inhibitors necrostatin-1 and TC13172, and viral inhibitors M45 (residues 1–90) and BAV_Rmil, abated the yeast toxicity triggered by the reconstituted necrosome. This yeast model provides a convenient tool to study necrosome protein interactions and to screen for and characterize potential necroptotic inhibitors.
Collapse
|
138
|
MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIP L. Commun Biol 2021; 4:80. [PMID: 33469115 PMCID: PMC7815719 DOI: 10.1038/s42003-020-01603-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mind bomb 2 (MIB2) is an E3 ligase involved in Notch signalling and attenuates TNF-induced apoptosis through ubiquitylation of receptor-interacting protein kinase 1 (RIPK1) and cylindromatosis. Here we show that MIB2 bound and conjugated K48– and K63–linked polyubiquitin chains to a long-form of cellular FLICE-inhibitory protein (cFLIPL), a catalytically inactive homologue of caspase 8. Deletion of MIB2 did not impair the TNF-induced complex I formation that mediates NF-κB activation but significantly enhanced formation of cytosolic death-inducing signalling complex II. TNF-induced RIPK1 Ser166 phosphorylation, a hallmark of RIPK1 death-inducing activity, was enhanced in MIB2 knockout cells, as was RIPK1 kinase activity-dependent and -independent apoptosis. Moreover, RIPK1 kinase activity-independent apoptosis was induced in cells expressing cFLIPL mutants lacking MIB2-dependent ubiquitylation. Together, these results suggest that MIB2 suppresses both RIPK1 kinase activity-dependent and -independent apoptosis, through suppression of RIPK1 kinase activity and ubiquitylation of cFLIPL, respectively. Nakabayashi et al find that the E3 ligase MIB2 ubiquitylates the apoptosis-inhibitor cFLIP and that deletion of MIB2 enhances both RIPK1 kinase-dependent and -independent apoptosis through an increase in RIPK1 kinase activity and impairment of ubiquitylation of cFLIPL, respectively.
Collapse
|
139
|
Koren E, Fuchs Y. Modes of Regulated Cell Death in Cancer. Cancer Discov 2021; 11:245-265. [PMID: 33462123 DOI: 10.1158/2159-8290.cd-20-0789] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Cell suicide pathways, termed regulated cell death (RCD), play a critical role in organismal development, homeostasis, and pathogenesis. Here, we provide an overview of key RCD modalities, namely apoptosis, entosis, necroptosis, pyroptosis, and ferroptosis. We explore how various RCD modules serve as a defense mechanism against the emergence of cancer as well as the manner in which they can be exploited to drive oncogenesis. Furthermore, we outline current therapeutic agents that activate RCD and consider novel RCD-based strategies for tumor elimination. SIGNIFICANCE: A variety of antitumor therapeutics eliminate cancer cells by harnessing the devastating potential of cellular suicide pathways, emphasizing the critical importance of RCD in battling cancer. This review supplies a mechanistic perspective of distinct RCD modalities and explores the important role they play in tumorigenesis. We discuss how RCD modules serve as a double-edged sword as well as novel approaches aimed at selectively manipulating RCD for tumor eradication.
Collapse
Affiliation(s)
- Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel. Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel. Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
140
|
Rosenbaum SR, Wilski NA, Aplin AE. Fueling the Fire: Inflammatory Forms of Cell Death and Implications for Cancer Immunotherapy. Cancer Discov 2021; 11:266-281. [PMID: 33451983 DOI: 10.1158/2159-8290.cd-20-0805] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Unleashing the immune system with immune checkpoint inhibitors (ICI) has significantly improved overall survival for subsets of patients with stage III/IV cancer. However, many tumors are nonresponsive to ICIs, in part due to a lack of tumor-infiltrating lymphocytes (TIL). Converting these immune "cold" tumors to "hot" tumors that are thus more likely to respond to ICIs is a major obstacle for cancer treatment. Triggering inflammatory forms of cell death, such as necroptosis and pyroptosis, may alter the tumor immune microenvironment and the influx of TILs. We present an emerging view that promoting tumor-localized necroptosis and pyroptosis may ultimately enhance responses to ICI. SIGNIFICANCE: Many tumor types respond poorly to ICIs or respond but subsequently acquire resistance. Effective therapies for ICI-nonresponsive tumors are lacking and should be guided by evidence from preclinical studies. Promoting inflammatory cell death mechanisms within the tumor may alter the local immune microenvironment toward an ICI-responsive state.
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole A Wilski
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
141
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
142
|
Song K, Cai X, Dong Y, Wu H, Wei Y, Shankavaram UT, Cui K, Lee Y, Zhu B, Bhattacharjee S, Wang B, Zhang K, Wen A, Wong S, Yu L, Xia L, Welm AL, Bielenberg DR, Camphausen KA, Kang Y, Chen H. Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. J Clin Invest 2021; 131:129374. [PMID: 32960814 PMCID: PMC7773373 DOI: 10.1172/jci129374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.
Collapse
Affiliation(s)
- Kai Song
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Cai
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Uma T. Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alana L. Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin A. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
143
|
Engin A. Protein Kinase-Mediated Decision Between the Life and Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:1-33. [PMID: 33539010 DOI: 10.1007/978-3-030-49844-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinases are intracellular signaling enzymes that catalyze the phosphorylation of specific residues in their target substrate proteins. They play important role for regulation of life and death decisions. The complexity of the relationship between death receptors and protein kinases' cell death decision-making mechanisms create many difficulties in the treatment of various diseases. The most of fifteen different cell death pathways, which are reported by Nomenclature Committee on Cell Death (NCCD) are protein kinase signal transduction-mediated negative or positive selections. Tumor necrosis factor (TNF) as a main player of death pathways is a dual-functioning molecule in that it can promote both cell survival or cell death. All apoptotic and necrotic signal transductions are conveyed through death domain-containing death receptors, which are expressed on the surface of nearly all human cells. In humans, eight members of the death receptor family have been identified. While the interaction of TNF with TNF Receptor 1 (TNFR1) activates various signal transduction pathways, different death receptors activate three main signal transduction pathways: nuclear factor kappa B (NF-ĸB)-mediated differentiation or pro-inflammatory cytokine synthesis, mitogen-activated protein kinase (MAPK)-mediated stress response and caspase-mediated apoptosis. The link between the NF-ĸB and the c-Jun NH2-terminal kinase (JNK) pathways comprise another check-point to regulate cell death. TNF-α also promotes the "receptor-interacting serine/threonine protein kinase 1" (RIPK1)/RIPK3/ mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necrosis. Thus, necrosome is mainly comprised of MLKL, RIPK3 and, in some cases, RIPK1. In fact, RIPK1 is at the crossroad between life and death, downstream of various receptors as a regulator of endoplasmic reticulum stress-induced death. TNFR1 signaling complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of transforming growth factor β-activated kinase 1 (TAK1), inhibitor of nuclear transcription factor κB (IκB) kinase (IKK) α/IKKβ, IκBα, and NF-κB. IKKs affect cell-survival pathways in NF-κB-independent manner. Toll-like receptor (TLR) stimulation triggers various signaling pathways dependent on myeloid differentiation factor-88 (MyD88), Interleukin-1 receptor (IL-1R)-associated kinase (IRAK1), IRAK2 and IRAK4, lead to post-translational activation of nucleotide and oligomerization domain (NLRP3). Thereby, cell fate decisions following TLR signaling is parallel with death receptor signaling. Inhibition of IKKα/IKKβ or its upstream activators sensitize cells to death by inducing RIPK1-dependent apoptosis or necroptosis. During apoptosis, several kinases of the NF-κB pathway, including IKK1 and NF-κB essential modulator (NEMO), are cleaved by cellular caspases. This event can terminate the NF-κB-derived survival signals. In both canonical and non-canonical pathways, IKK is key to NF-κB activation. Whereas, the activation process of IKK, the functions of NEMO ubiquitination, IKK-related non-canonical pathway and the nuclear transportation of NEMO and functions of IKKα are still debated in cell death. In addition, cluster of differentiation 95 (CD95)-mediated non-apoptotic signaling and CD95- death-inducing signaling complex (DISC) interactions are waiting for clarification.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| |
Collapse
|
144
|
Kolitz E, Chamseddin B, Son R, Vandergriff T, Hsu AP, Holland S, Wang RC. A novel NEMO/ IKBKG mutation identified in a primary immunodeficiency disorder with recurrent atypical mycobacterial infections. JAAD Case Rep 2020; 7:33-35. [PMID: 33318999 PMCID: PMC7727292 DOI: 10.1016/j.jdcr.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elysha Kolitz
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bahir Chamseddin
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rosemary Son
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Travis Vandergriff
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy P Hsu
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Steven Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Richard C Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
145
|
Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun 2020; 11:6364. [PMID: 33311474 PMCID: PMC7733462 DOI: 10.1038/s41467-020-19935-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
RIPK1 is a death-domain (DD) containing kinase involved in regulating apoptosis, necroptosis and inflammation. RIPK1 activation is known to be regulated by its DD-mediated interaction and ubiquitination, though underlying mechanisms remain incompletely understood. Here we show that K627 in human RIPK1-DD and its equivalent K612 in murine RIPK1-DD is a key ubiquitination site that regulates the overall ubiquitination pattern of RIPK1 and its DD-mediated interactions with other DD-containing proteins. K627R/K612R mutation inhibits the activation of RIPK1 and blocks both apoptosis and necroptosis mediated by TNFR1 signaling. However, Ripk1K612R/K612R mutation sensitizes cells to necroptosis and caspase-1 activation in response to TLRs signaling. Ripk1K612R/K612R mice are viable, but develop age-dependent reduction of RIPK1 expression, spontaneous intestinal inflammation and splenomegaly, which can be rescued by antibiotic treatment and partially by Ripk3 deficiency. Furthermore, we show that the interaction of RIPK1 with FADD contributes to suppressing the activation of RIPK3 mediated by TLRs signaling. Our study demonstrates the distinct roles of K612 ubiquitination in mRIPK1/K627 ubiquitination in hRIPK1 in regulating its pro-death kinase activity in response to TNFα and pro-survival activity in response to TLRs signaling.
Collapse
|
146
|
Wu J, Chen X, Zhang J, Chen J, Wang Y, Wei T, Ma J, Li Y, Mo T, He Z, Zhang H. Tachyplesin induces apoptosis in non-small cell lung cancer cells and enhances the chemosensitivity of A549/DDP cells to cisplatin by activating Fas and necroptosis pathway. Chem Biol Drug Des 2020; 97:809-820. [PMID: 33245189 DOI: 10.1111/cbdd.13810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Cisplatin has strong broad-spectrum anticancer activity and is one of the most effective anticancer drugs currently used. The clinical application of cisplatin has led to the resistance of cancer cells to cisplatin. Tachyplesin is an active, natural marine peptide with antitumour activity. In the present study, we investigated whether tachyplesin can be used in non-small cell lung cancer (NSCLC) A549 and H460 cells as well as the cisplatin-resistant human A549/DDP NSCLC cell line. The results revealed that tachyplesin treatment significantly inhibited proliferation and induced apoptosis in A549 and H460 cells and the combination of tachyplesin and cisplatin significantly suppressed migration and improved sensitivity to cisplatin in A549/DDP cells. Further mechanistic examination revealed that tachyplesin induced apoptosis in A549/DDP cells by increasing Fas, FasL and p-RIPK1 levels. These results indicated that tachyplesin induces lung cancer death by activating the Fas, mitochondrial and necroptosis pathways. Tachyplesin could be developed as a candidate drug for cisplatin-resistant NSCLC.
Collapse
Affiliation(s)
- Jun Wu
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Jiaxi Zhang
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jianming Chen
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Ting Wei
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Jinyao Ma
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanqi Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Mo
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Zhan He
- Respiratory and critical care medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China.,The Fourth People's Hospital of Foshan, Foshan, China
| |
Collapse
|
147
|
Gough P, Myles IA. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front Immunol 2020; 11:585880. [PMID: 33324405 PMCID: PMC7723893 DOI: 10.3389/fimmu.2020.585880] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.
Collapse
Affiliation(s)
- Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
148
|
Acetylharpagide Protects Mice from Staphylococcus Aureus-Induced Acute Lung Injury by Inhibiting NF-κB Signaling Pathway. Molecules 2020; 25:molecules25235523. [PMID: 33255656 PMCID: PMC7728067 DOI: 10.3390/molecules25235523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.
Collapse
|
149
|
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2020; 163:105297. [PMID: 33181319 PMCID: PMC7962892 DOI: 10.1016/j.phrs.2020.105297] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed cell death discovered and investigated in recent years. There are already many studies demonstrating the essential role of necroptosis in various diseases, including inflammatory diseases, cardiovascular diseases and neurological diseases. However, the potential of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis signaling pathway and thus ameliorate necroptotic cell death in disease development. Recent research findings indicate that Nec-1 could be applied in several types of diseases to alleviate disease development or improve prognosis. Moreover, we predict that Nec-1 has the potential to protect against the complications of coronavirus disease 2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and the underlying molecular mechanism, providing research evidence for its future application.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
150
|
Malireddi RKS, Gurung P, Kesavardhana S, Samir P, Burton A, Mummareddy H, Vogel P, Pelletier S, Burgula S, Kanneganti TD. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J Exp Med 2020; 217:133533. [PMID: 31869420 PMCID: PMC7062518 DOI: 10.1084/jem.20191644] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
In this issue, Malireddi et al. use a model of pathogen-induced priming and inhibition of TAK1 to demonstrate RIPK1 kinase activity–independent inflammasome activation and pyroptosis, apoptosis, and necroptosis that drive myeloid proliferation and sepsis in TAK1-deficient animals. RIPK1 kinase activity has been shown to be essential to driving pyroptosis, apoptosis, and necroptosis. However, here we show a kinase activity–independent role for RIPK1 in these processes using a model of TLR priming in a TAK1-deficient setting to mimic pathogen-induced priming and inhibition. TLR priming of TAK1-deficient macrophages triggered inflammasome activation, including the activation of caspase-8 and gasdermin D, and the recruitment of NLRP3 and ASC into a novel RIPK1 kinase activity–independent cell death complex to drive pyroptosis and apoptosis. Furthermore, we found fully functional RIPK1 kinase activity–independent necroptosis driven by the RIPK3–MLKL pathway in TAK1-deficient macrophages. In vivo, TAK1 inactivation resulted in RIPK3–caspase-8 signaling axis–driven myeloid proliferation and a severe sepsis-like syndrome. Overall, our study highlights a previously unknown mechanism for RIPK1 kinase activity–independent inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) that could be targeted for treatment of TAK1-associated myeloid proliferation and sepsis.
Collapse
Affiliation(s)
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN.,Inflammation Program, Infectious Diseases Division, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sandeepta Burgula
- Department of Microbiology, Osmania University, Hyderabad, Telangana, India
| | | |
Collapse
|