101
|
Tencer AH, Liang Q, Zhuang Z. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes. Biochemistry 2016; 55:4708-19. [PMID: 27501351 DOI: 10.1021/acs.biochem.6b00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deubiquitinating enzymes (DUBs) are responsible for reversing mono- and polyubiquitination of proteins and play essential roles in numerous cellular processes. Close to 100 human DUBs have been identified and are classified into five families, with the ubiquitin-specific protease (USP) family being the largest (>50 members). The binding of ubiquitin (Ub) to USP is strikingly different from that observed for the DUBs in the ubiquitin C-terminal hydrolase (UCH) and ovarian tumor domain protease (OTU) families. We generated a panel of mutant ubiquitins and used them to probe the ubiquitin's interaction with a number of USPs. Our results revealed a remarkable divergence of USP-Ub interactions among the USP catalytic domains. Our double-mutant cycle analysis targeting the ubiquitin residues located in the tip, the central body, and the tail of ubiquitin also demonstrated different crosstalk among the USP-Ub interactions. This work uncovered intriguing divergence in the ubiquitin-binding mode in the USP family DUBs and raised the possibility of targeting the ubiquitin-binding hot spots on USPs for selective inhibition of USPs by small molecule antagonists.
Collapse
Affiliation(s)
- Adam H Tencer
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Qin Liang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| |
Collapse
|
102
|
Schlicher L, Wissler M, Preiss F, Brauns-Schubert P, Jakob C, Dumit V, Borner C, Dengjel J, Maurer U. SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep 2016; 17:1485-1497. [PMID: 27458237 DOI: 10.15252/embr.201642592] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
K63- and Met1-linked ubiquitylation are crucial posttranslational modifications for TNF receptor signaling. These non-degradative ubiquitylations are counteracted by deubiquitinases (DUBs), such as the enzyme CYLD, resulting in an appropriate signal strength, but the regulation of this process remains incompletely understood. Here, we describe an interaction partner of CYLD, SPATA2, which we identified by a mass spectrometry screen. We find that SPATA2 interacts via its PUB domain with CYLD, while a PUB interaction motif (PIM) of SPATA2 interacts with the PUB domain of the LUBAC component HOIP SPATA2 is required for the recruitment of CYLD to the TNF receptor signaling complex upon TNFR stimulation. Moreover, SPATA2 acts as an allosteric activator for the K63- and M1-deubiquitinase activity of CYLD In consequence, SPATA2 substantially attenuates TNF-induced NF-κB and MAPK signaling. Conversely, SPATA2 is required for TNF-induced complex II formation, caspase activation, and apoptosis. Thus, this study identifies SPATA2 as an important factor in the TNF signaling pathway with a substantial role for the effects mediated by the cytokine.
Collapse
Affiliation(s)
- Lisa Schlicher
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany BIOSS, Centre for Biological Signaling Studies, Freiburg, Germany
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Preiss
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Celia Jakob
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Veronica Dumit
- Core Facility Proteomics, Center for Biological Systems Analysis, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany BIOSS, Centre for Biological Signaling Studies, Freiburg, Germany
| | - Joern Dengjel
- BIOSS, Centre for Biological Signaling Studies, Freiburg, Germany Core Facility Proteomics, Center for Biological Systems Analysis, Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany BIOSS, Centre for Biological Signaling Studies, Freiburg, Germany
| |
Collapse
|
103
|
Liu S, de Boeck M, van Dam H, ten Dijke P. Regulation of the TGF-β pathway by deubiquitinases in cancer. Int J Biochem Cell Biol 2016; 76:135-45. [DOI: 10.1016/j.biocel.2016.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
|
104
|
Abstract
Linear ubiquitination is a post‐translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor‐κB (NF‐κB) and mitogen‐activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types.
Collapse
Affiliation(s)
- Yutaka Shimizu
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
105
|
Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol Cell 2016; 63:146-55. [PMID: 27292798 PMCID: PMC4942677 DOI: 10.1016/j.molcel.2016.05.009] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.
Collapse
Affiliation(s)
- Syed Arif Abdul Rehman
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yosua Adi Kristariyanto
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Soo-Youn Choi
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pedro Junior Nkosi
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
106
|
Yang Y, Zhou J. CYLD - a deubiquitylase that acts to fine-tune microtubule properties and functions. J Cell Sci 2016; 129:2289-95. [PMID: 27173491 DOI: 10.1242/jcs.183319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microtubules are dynamic structures that are crucially involved in a variety of cellular activities. The dynamic properties and functions of microtubules are regulated by various factors, such as tubulin isotype composition and microtubule-binding proteins. Initially identified as a deubiquitylase with tumor-suppressing functions, the protein cylindromatosis (CYLD) has recently been revealed to interact with microtubules, modulate microtubule dynamics, and participate in the regulation of cell migration, cell cycle progression, chemotherapeutic drug sensitivity and ciliogenesis. These findings have greatly enriched our understanding of the roles of CYLD in physiological and pathological conditions. Here, we focus on recent literature that shows how CYLD impacts on microtubule properties and functions in various biological processes, and discuss the challenges we face when interpreting results obtained from different experimental systems.
Collapse
Affiliation(s)
- Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
107
|
Abstract
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families.
Collapse
Affiliation(s)
- Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
108
|
Alfano C, Faggiano S, Pastore A. The Ball and Chain of Polyubiquitin Structures. Trends Biochem Sci 2016; 41:371-385. [PMID: 26899455 DOI: 10.1016/j.tibs.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Ubiquitylation is a post-translational modification implicated in several different cellular pathways. The possibility of forming chains through covalent crosslinking between any of the seven lysines, or the initial methionine, and the C terminus of another moiety provides ubiquitin (Ub) with special flexibility in its function in signalling. Here, we review the knowledge accumulated over the past several years about the functions and structural features of polyUb chains. This analysis reveals the need to understand further the functional role of some of the linkages and the structural code that determines recognition of polyUbs by protein partners.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Clinical and Basic Neuroscience, King's College London, London, UK
| | | | - Annalisa Pastore
- Department of Clinical and Basic Neuroscience, King's College London, London, UK.
| |
Collapse
|
109
|
Masoumi KC, Marfany G, Wu Y, Massoumi R. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Future Oncol 2016; 12:565-74. [PMID: 26777062 DOI: 10.2217/fon.15.320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are specialized proteins that can recognize ubiquitinated proteins, and after direct interaction, deconjugate monomeric or polymeric ubiquitin chains, thus changing the fate of the substrates. This process is instrumental in mediating or changing downstream signaling pathways. Beside mutations and alterations in their expression levels, the activity and stability of deubiquitinating enzymes is vital for their function. SUMOylations consist of the conjugation of the small peptide SUMO to protein substrates which is very similar to ubiquitination in the mechanistic and machinery required. In this review, we will focus on how SUMOylation can regulate DUB enzymatic activity, stability or DUB interaction with partners and substrates, in cancer. Furthermore, we will discuss the impact of these recent findings in the identification of new potential tools for efficient anticancer treatment strategies.
Collapse
Affiliation(s)
- Katarzyna C Masoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona, 08007 Barcelona, Spain.,CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Yingli Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| |
Collapse
|
110
|
Hellerbrand C, Massoumi R. Cylindromatosis-A Protective Molecule against Liver Diseases. Med Res Rev 2016; 36:342-59. [DOI: 10.1002/med.21381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Claus Hellerbrand
- Department of Internal Medicine I; University Hospital Regensburg; 93053 Regensburg Germany
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village; Lund University; 22381 Lund Sweden
| |
Collapse
|
111
|
Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. CYLD-mediated signaling and diseases. Curr Drug Targets 2016; 16:284-94. [PMID: 25342597 DOI: 10.2174/1389450115666141024152421] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
The conserved cylindromatosis (CYLD) codes for a deubiquitinating enzyme and is a crucial regulator of diverse cellular processes such as immune responses, inflammation, death, and proliferation. It directly regulates multiple key signaling cascades, such as the Nuclear Factor kappa B [NFkB] and the Mitogen-Activated Protein Kinase (MAPK) pathways, by its catalytic activity on polyubiquitinated key intermediates. Several lines of emerging evidence have linked CYLD to the pathogenesis of various maladies, including cancer, poor infection control, lung fibrosis, neural development, and now cardiovascular dysfunction. While CYLD-mediated signaling is cell type and stimuli specific, the activity of CYLD is tightly controlled by phosphorylation and other regulators such as Snail. This review explores a broad selection of current and past literature regarding CYLD's expression, function and regulation with emerging reports on its role in cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
112
|
Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes. Cell Rep 2015; 13:2258-72. [PMID: 26670046 PMCID: PMC4688036 DOI: 10.1016/j.celrep.2015.11.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023] Open
Abstract
Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors. LUBAC directly recruits CYLD to the TNFR1 complex where it antagonizes M1 linkages M1-ubiquitin chains recruit A20, which, in turn, protects them from degradation CYLD and A20 inhibit gene activation but oppose each other in regulating cell death OTULIN controls LUBAC activity prior to stimulation but not in signaling complexes
Collapse
Affiliation(s)
- Peter Draber
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Helena Draberova
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Elodie Lafont
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Lisanne Spilgies
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Silvia Surinova
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Luigi Martino
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Katrin Rittinger
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
113
|
Elliott PR, Komander D. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J 2015; 283:39-53. [PMID: 26503766 PMCID: PMC4765238 DOI: 10.1111/febs.13547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Abstract
Modification of proteins with Met1‐linked ‘linear’ ubiquitin chains has emerged as a key regulatory signal to control inflammatory signalling via the master regulator, the transcription factor nuclear factor κB (NF‐κB). While the assembly machinery, the linear ubiquitin chain assembly complex (LUBAC), and receptors for this ubiquitin chain type have been known for years, it was less clear which deubiquitinating enzymes (DUBs) hydrolyse Met1 linkages specifically. In 2013, two labs reported the previously unannotated protein FAM105B/OTULIN to be this missing Met1 linkage‐specific DUB. Structural studies have revealed how OTULIN achieves its remarkable specificity, employing a mechanism of ubiquitin‐assisted catalysis in which a glutamate residue on the substrate complements the active site of the enzyme. The specificity of OTULIN enables it to regulate global levels of Met1‐linked polyubiquitin in cells. This ability led to investigations of NF‐κB activation from new angles, and also revealed involvement of Met1‐polyubiquitin in Wnt signalling. Interestingly, OTULIN directly interacts with LUBAC, and this interaction is dynamic and can be regulated by OTULIN phosphorylation. This provides a new paradigm for how individual linkage types can be regulated by dedicated enzyme complexes mediating assembly and removal. Here we review what has been learned about OTULIN's mechanism, regulation and function, discuss the open questions in the field, and discuss how DUBs regulate the NF‐κB response.
Collapse
Affiliation(s)
- Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
114
|
Faggiano S, Alfano C, Pastore A. The missing links to link ubiquitin: Methods for the enzymatic production of polyubiquitin chains. Anal Biochem 2015; 492:82-90. [PMID: 26470940 DOI: 10.1016/j.ab.2015.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 02/08/2023]
Abstract
Attachment of ubiquitin (Ub) as monoUb and polyUb chains of different lengths and linkages to proteins plays a dominant role in very different regulatory mechanisms. Therefore, the study of polyUb chains has assumed a central interest in biochemistry and structural biology. An essential step necessary to allow in vitro biochemical and structural studies of polyUbs is the production of their chains in high quantities and purity. This is not always an easy task and can be achieved both enzymatically and chemically. Previous reviews have covered chemical cross-linking exhaustively. In this review, we concentrate on the different approaches developed so far for the enzymatic production of different Ub chains. These strategies permit a certain flexibility in the production of chains with various linkages and lengths. We critically describe the available methods and comment on advantages and limitations. It is clear that the field is mature to study most of the possible links, but some more work needs to be done to complete the picture and to exploit the current methodologies for understanding in full the Ub code.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Pharmacy, University of Parma, 43124 Parma, Italy
| | - Caterina Alfano
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RX, United Kingdom
| | - Annalisa Pastore
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RX, United Kingdom.
| |
Collapse
|
115
|
Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Biophys J 2015; 109:1214-26. [PMID: 26276688 PMCID: PMC4576153 DOI: 10.1016/j.bpj.2015.06.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey; Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
116
|
Abstract
Cell death and inflammation are ancient processes of fundamental biological importance in both normal physiology and human disease pathologies. The recent observation that apoptosis regulatory components have dual roles in cell death and inflammation suggests that these proteins function, not primarily to kill, but to coordinate tissue repair and remodeling. This perspective unifies cell death components as positive regulators of tissue repair that replaces malfunctioning or damaged tissues and enhances the resilience of epithelia to insult. It is now recognized that cells that die by apoptosis do not do so silently, but release a variety of paracrine signals to communicate with their cellular environment to ensure tissue regeneration, and wound healing. Moreover, inflammatory signaling pathways, such as those emanating from the TNF receptor or Toll-related receptors, take part in cell competition to eliminate developmentally aberrant clones. Ubiquitylation has emerged as crucial mediator of signal transduction in cell death and inflammation. Here, we focus on recent advances on ubiquitin-mediated regulation of cell death and inflammation, and how this is used to regulate the defense of homeostasis.
Collapse
|
117
|
Inherited cylindromas: lessons from a rare tumour. Lancet Oncol 2015; 16:e460-e469. [DOI: 10.1016/s1470-2045(15)00245-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/23/2022]
|
118
|
Nguyen LK. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies. Brief Bioinform 2015. [DOI: 10.1093/bib/bbv052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
119
|
Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci 2015; 40:456-67. [PMID: 26073511 DOI: 10.1016/j.tibs.2015.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
Proteolytic enzymes, such as (iso-)peptidases, are potentially hazardous for cells. To neutralize their potential danger, tight control of their activities has evolved. Deubiquitylating enzymes (DUBs) are isopeptidases involved in eukaryotic ubiquitylation. They reverse ubiquitin signals by hydrolyzing ubiquitin adducts, giving them control over all aspects of ubiquitin biology. The importance of DUB function is underscored by their frequent deregulation in human disease, making these enzymes potential drug targets. Here, we review the different layers of DUB enzyme regulation. We discuss how post-translational modification (PTM), regulatory domains within DUBs, and incorporation of DUBs into macromolecular complexes contribute to their activity. We conclude that most DUBs are likely to use a combination of these basic regulatory mechanisms.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
120
|
Nguyen LK, Zhao Q, Varusai TM, Kholodenko BN. Ubiquitin chain specific auto-ubiquitination triggers sustained oscillation, bistable switches and excitable firing. IET Syst Biol 2015; 8:282-92. [PMID: 25478702 PMCID: PMC8687287 DOI: 10.1049/iet-syb.2014.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin modification of cellular proteins commonly targets them for proteosomal degradation, but can also convey non‐proteolytic functions. Over the past years, advances in experimental approaches have helped uncover the extensive involvement of ubiquitination in protein regulation. However, our understanding of the dynamics of the ubiquitination‐related networks have lagged behind. A common regulatory theme for many E3 ligases is the ability to self‐catalyse their own ubiquitination without involving external E3 ligating enzymes. Here, the authors have explored computational models of both proteolytic and non‐proteolytic auto‐ubiquitination of E3 ligases and characterised the dynamic properties of these regulatory motifs. Remarkably, in both cases auto‐ubiquitination coupled with multi‐step de‐ubiquitination process can bring about sustained oscillatory behaviour. In addition, the same basic wiring structures can trigger bistable switches of activity and excitable firing of the dynamic responses of the ubiquitinated E3 ligase. Bifurcation analysis allows one to derive parametric conditions that govern these dynamics. They also show that these complex non‐linear behaviours persist for a more detailed mechanistic description that involves the E1 and E2 enzymes. Their work therefore provides new insights into the dynamic features of auto‐ubiquitination in different cellular contexts.
Collapse
Affiliation(s)
- Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Qi Zhao
- Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Thawfeek M Varusai
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
121
|
Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Nat Commun 2015; 6:6718. [PMID: 25907794 PMCID: PMC4423210 DOI: 10.1038/ncomms7718] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
Abstract
Dishevelled relays Wnt signals from the plasma membrane to different cytoplasmic effectors. Its signalling activity depends on its DIX domain, which undergoes head-to-tail polymerization to assemble signalosomes. The DIX domain is ubiquitinated in vivo at multiple lysines, which can be antagonized by various deubiquitinases (DUBs) including the CYLD tumour suppressor that attenuates Wnt signalling. Here, we generate milligram quantities of pure human Dvl2 DIX domain mono-ubiquitinated at two lysines (K54 and K58) by genetically encoded orthogonal protection with activated ligation (GOPAL), to investigate their effect on DIX polymerization. We show that the ubiquitination of DIX at K54 blocks its polymerization in solution, whereas DIX58-Ub remains oligomerization-competent. DUB profiling identified 28 DUBs that cleave DIX-ubiquitin conjugates, half of which prefer, or are specific for, DIX54-Ub, including Cezanne and CYLD. These DUBs thus have the potential to promote Dvl polymerization and signalosome formation, rather than antagonize it as previously thought for CYLD.
Collapse
|
122
|
A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 2015; 42:55-67. [PMID: 25607459 DOI: 10.1016/j.immuni.2014.12.031] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022]
Abstract
Inappropriate inflammasome activation contributes to multiple human diseases, but the mechanisms by which inflammasomes are suppressed are poorly understood. The NF-κB inhibitor A20 is a ubiquitin-modifying enzyme that might be critical in preventing human inflammatory diseases. Here, we report that A20-deficient macrophages, unlike normal cells, exhibit spontaneous NLRP3 inflammasome activity to LPS alone. The kinase RIPK3, but not the adaptor MyD88, is required for this response. In normal cells, A20 constitutively associates with caspase-1 and pro-IL-1β, and NLRP3 activation further promotes A20 recruitment to the inflammasome. Pro-IL-1β also co-immunoprecipitates with RIPK1, RIPK3, caspase-1, and caspase-8 in a complex that is modified with K63-linked and unanchored polyubiquitin. In A20-deficient macrophages, this pro-IL-1β-associated ubiquitination is markedly increased in a RIPK3-dependent manner. Mass spectrometric and mutational analyses reveal that K133 of pro-IL-1β is a physiological ubiquitination site that supports processing. Our study reveals a mechanism by which A20 prevents inflammatory diseases.
Collapse
|
123
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
124
|
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. ACTA ACUST UNITED AC 2015; 212:525-38. [PMID: 25824820 PMCID: PMC4387289 DOI: 10.1084/jem.20141438] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Tesio at al. identify a novel pathway controlled by the tumor suppressor and deubiquitinase cylindromatosis (CYLD), which is involved in the regulation of hematopoietic stem cell quiescence and repopulation potential. The status of long-term quiescence and dormancy guarantees the integrity of hematopoietic stem cells (HSCs) during adult homeostasis. However the molecular mechanisms regulating HSC dormancy remain poorly understood. Here we show that cylindromatosis (CYLD), a tumor suppressor gene and negative regulator of NF-κB signaling with deubiquitinase activity, is highly expressed in label-retaining dormant HSCs (dHSCs). Moreover, Cre-mediated conditional elimination of the catalytic domain of CYLD induced dHSCs to exit quiescence and abrogated their repopulation and self-renewal potential. This phenotype is dependent on the interactions between CYLD and its substrate TRAF2 (tumor necrosis factor–associated factor 2). HSCs expressing a mutant CYLD with an intact catalytic domain, but unable to bind TRAF2, showed the same HSC phenotype. Unexpectedly, the robust cycling of HSCs lacking functional CYLD–TRAF2 interactions was not elicited by increased NF-κB signaling, but instead by increased activation of the p38MAPK pathway. Pharmacological inhibition of p38MAPK rescued the phenotype of CYLD loss, identifying the CYLD–TRAF2–p38MAPK pathway as a novel important regulator of HSC function restricting HSC cycling and promoting dormancy.
Collapse
Affiliation(s)
- Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Katja Müdder
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elizabeth Macintyre
- Institut Necker-Enfants Malades (INEM) and Université Paris Sorbonne Cité at Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1151, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany The German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
125
|
Nagy N, Farkas K, Kemény L, Széll M. Phenotype-genotype correlations for clinical variants caused by CYLD mutations. Eur J Med Genet 2015; 58:271-8. [PMID: 25782638 DOI: 10.1016/j.ejmg.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Brooke-Spiegler syndrome (BSS; OMIM 605041) is an autosomal dominant condition characterized by skin appendageal neoplasms including cylindromas, trichoepitheliomas, and/or spiradenomas. In 1996, the gene locus for BSS was mapped to 16q12-13, and, in 2000, mutations in the cylindromatosis (CYLD) gene were determined to cause BSS, familial cylindromatosis (FC; OMIM 132700) and multiple familial trichoepithelioma type 1 (MFT1; OMIM 601606). The CYLD gene encodes an enzyme with deubiquitinase activity. To date, a total of 95 different diseases-causing mutations have been published for the CYLD gene. A summary of mutations identified in Hungarian patients and a review of previously published mutations are presented in this update. The majority of the sequence changes are frameshift (48%), nonsense (27%), missense (12%) and splice-site (11%) mutations; however, two in-frame deletions have also been reported. Most mutations are located in exons 9-20. Analysis of the identified CYLD gene mutations and the observed BSS, FC and MFT1 clinical phenotypes of the patients revealed significant genotype-phenotype correlations. Elucidation of these genotype-phenotype correlations is critical for the diagnosis of these rare monogenic skin diseases. In addition, characterizing these correlations may promote the understanding of their mechanisms and may hopefully contribute to the development of future therapeutic modalities.
Collapse
Affiliation(s)
- Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary; Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.
| | - Katalin Farkas
- Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
126
|
Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 2015; 22:222-9. [PMID: 25686088 DOI: 10.1038/nsmb.2970] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
Abstract
The tumor suppressor CYLD belongs to a ubiquitin (Ub)-specific protease (USP) family and specifically cleaves Met1- and Lys63-linked polyubiquitin chains to suppress inflammatory signaling pathways. Here, we report crystal structures representing the catalytic states of zebrafish CYLD for Met1- and Lys63-linked Ub chains and two distinct precatalytic states for Met1-linked chains. In both catalytic states, the distal Ub is bound to CYLD in a similar manner, and the scissile bond is located close to the catalytic residue, whereas the proximal Ub is bound in a manner specific to Met1- or Lys63-linked chains. Further structure-based mutagenesis experiments support the mechanism by which CYLD specifically cleaves both Met1- and Lys63-linked chains and provide insight into tumor-associated mutations of CYLD. This study provides new structural insight into the mechanisms by which USP family deubiquitinating enzymes recognize and cleave Ub chains with specific linkage types.
Collapse
|
127
|
Nagy N, Farkas K, Kemény L, Széll M. Knowledge explosion for monogenic skin diseases. World J Dermatol 2015; 4:44-49. [DOI: 10.5314/wjd.v4.i1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
During the past few decades, the investigative tech-nologies of molecular biology - especially sequencing - underwent huge advances, leading to the sequencing of the entire human genome, as well as the identification of several candidate genes and the causative genetic variations that are responsible for monogenic skin diseases. These advances provided a solid basis for subsequent studies elucidating mechanisms of monogenic skin diseases and improving our understanding of common skin diseases. Furthermore, these discoveries also contributed to the development of novel therapeutic modalities for monogenic skin diseases. In this review, we have used the disease spectrum caused by mutations in the CYLD gene - Brooke-Spiegler syndrome, familial cylindromatosis and multiple familial trichoepithelioma type 1 - as a model for demonstrating the knowledge explosion for this group of diseases.
Collapse
|
128
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|
129
|
Rajan N, Elliott RJ, Smith A, Sinclair N, Swift S, Lord CJ, Ashworth A. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling. Oncotarget 2014; 5:12126-40. [PMID: 25565632 PMCID: PMC4322962 DOI: 10.18632/oncotarget.2573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 02/03/2023] Open
Abstract
CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach to identify CYLD interacting proteins and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 protein levels and was associated with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, gene silencing of CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling. We investigated Notch pathway activity in skin tumours from patients with germline mutations in CYLD and found that JAG2 protein levels and Notch target genes were upregulated. In particular, RUNX1 was overexpressed in CYLD defective tumour cells. Finally, primary cell cultures of CYLD defective tumours demonstrated reduced viability when exposed to γ-secretase inhibitors that pharmacologically target Notch signalling. Taken together these data indicate an oncogenic dependency on Notch signalling and suggest potential novel therapeutic approaches for patients with CYLD defective tumours.
Collapse
Affiliation(s)
- Neil Rajan
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Richard J.R. Elliott
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alice Smith
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Sinclair
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sally Swift
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
130
|
The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 2014; 5:5399. [PMID: 25404403 PMCID: PMC4243247 DOI: 10.1038/ncomms6399] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 01/02/2023] Open
Abstract
Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. Ubiquitin-specific protease USP4 regulates several cellular signalling pathways. Here, Clerici et al. show that the DUSP–Ubl domain of USP4 is required for full catalytic activity, by enhancing the release of ubiquitin from the catalytic site after substrate hydrolysis.
Collapse
|
131
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
132
|
Zhen Y, Knobel PA, Stracker TH, Reverter D. Regulation of USP28 deubiquitinating activity by SUMO conjugation. J Biol Chem 2014; 289:34838-50. [PMID: 25359778 DOI: 10.1074/jbc.m114.601849] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
USP28 (ubiquitin-specific protease 28) is a deubiquitinating enzyme that has been implicated in the DNA damage response, the regulation of Myc signaling, and cancer progression. The half-life stability of major regulators of critical cellular pathways depends on the activities of specific ubiquitin E3 ligases that target them for proteosomal degradation and deubiquitinating enzymes that promote their stabilization. One function of the post-translational small ubiquitin modifier (SUMO) is the regulation of enzymatic activity of protein targets. In this work, we demonstrate that the SUMO modification of the N-terminal domain of USP28 negatively regulates its deubiquitinating activity, revealing a role for the N-terminal region as a regulatory module in the control of USP28 activity. Despite the presence of ubiquitin-binding domains in the N-terminal domain, its truncation does not impair deubiquitinating activity on diubiquitin or polyubiquitin chain substrates. In contrast to other characterized USP deubiquitinases, our results indicate that USP28 has a chain preference activity for Lys(11), Lys(48), and Lys(63) diubiquitin linkages.
Collapse
Affiliation(s)
- Yang Zhen
- From the Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain and
| | - Philip A Knobel
- the Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | | | - David Reverter
- From the Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain and
| |
Collapse
|
133
|
Mode of substrate recognition by the Josephin domain of ataxin-3, which has an endo-type deubiquitinase activity. FEBS Lett 2014; 588:4422-30. [DOI: 10.1016/j.febslet.2014.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022]
|
134
|
Welte S, Urbanik T, Elßner C, Kautz N, Koehler BC, Waldburger N, Bermejo JL, Pinna F, Weiss KH, Schemmer P, Jaeger D, Longerich T, Breuhahn K, Schulze-Bergkamen H. Nuclear expression of the deubiquitinase CYLD is associated with improved survival in human hepatocellular carcinoma. PLoS One 2014; 9:e110591. [PMID: 25329885 PMCID: PMC4199737 DOI: 10.1371/journal.pone.0110591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND & AIMS The deubiquitinase CYLD removes (K-63)-linked polyubiquitin chains from proteins involved in NF-κB, Wnt/ß-catenin and Bcl-3 signaling. Reduced CYLD expression has been reported in different tumor entities, including hepatocellular carcinoma (HCC). Furthermore, loss of CYLD has been shown to contribute to HCC development in knockout animal models. This study aimed to assess subcellular CYLD expression in tumor tissues and its prognostic significance in HCC patients undergoing liver resection or liver transplantation. METHODS Subcellular localization of CYLD was assessed by immunohistochemistry in tumor tissues of 95 HCC patients undergoing liver resection or transplantation. Positive nuclear CYLD staining was defined as an immunohistochemical (IHC) score ≥ 3. Positive cytoplasmic CYLD staining was defined as an IHC score ≥ 6. The relationship with clinicopathological parameters was investigated. Cell culture experiments were performed to analyze subcellular CYLD expression in vitro. RESULTS Cytoplasmic CYLD expression was observed in 57 out of 95 (60%) HCC specimens (cyt°CYLD+). Nuclear CYLD staining was positive in 52 out of 95 specimens (55%, nucCYLD+). 13 out of 52 nucCYLD+ patients (25%) showed a lack of cytoplasmic CYLD expression. nucCYLD+ was associated with prolonged overall survival in patients after resection or liver transplantation (P = 0.007). 5-year overall survival rates were 63% in nucCYLD+ vs. 26% in nucCYLD- patients. Nuclear CYLD staining strongly correlated with tumor grading (P<0.001) and Ki67 positivity (P = 0.005). nucCYLD+ did not prove to be an independent prognostic parameter. In vitro, Huh7, Hep3B and HepG2 showed reduced CYLD levels compared to the non-malignant liver cell line THLE-2. Induction of CYLD expression by doxorubicin treatment led to increased cytoplasmic and nuclear expression of CYLD. CONCLUSIONS Expression of nuclear CYLD is a novel prognostic factor for improved survival in patients with HCC undergoing liver resection or transplantation.
Collapse
Affiliation(s)
- Stefan Welte
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Toni Urbanik
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Christin Elßner
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicole Kautz
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno Christian Koehler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Waldburger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl-Heinz Weiss
- Department of Gastroenterology, Toxicology, and Infectious Diseases, Heidelberg University Hospital, Internal Medicine IV, Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jaeger
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Diabetology and Rheumatology, Internal Medicine II, Marien-Hospital, Wesel, Germany
| |
Collapse
|
135
|
Herhaus L, Sapkota GP. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cell Signal 2014; 26:2186-92. [PMID: 25007997 PMCID: PMC4443431 DOI: 10.1016/j.cellsig.2014.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
The members of the transforming growth factor beta (TGFβ) family of cytokines, including bone morphogenetic proteins (BMP), play fundamental roles in development and tissue homeostasis. Hence, aberrant TGFβ/BMP signalling is associated with several human diseases such as fibrosis, bone and immune disorders, cancer progression and metastasis. Consequently, targeting TGFβ signalling for intervention potentially offers therapeutic opportunities against these diseases. Many investigations have focussed on understanding the molecular mechanisms underpinning the regulation of TGFβ signalling. One of the key areas has been to investigate the regulation of the protein components of the TGFβ/BMP signal transduction pathways by ubiquitylation and deubiquitylation. In the last 15years, extensive research has led to the discovery and characterisation of several E3 ubiquitin ligases that influence the TGFβ pathway. However, the research on DUBs regulating the TGFβ pathway has received prominence only recently and is still an emerging field. This review will provide a concise summary of our current understanding of how DUBs regulate TGFβ signalling.
Collapse
Affiliation(s)
- Lina Herhaus
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, United Kingdom
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland, United Kingdom.
| |
Collapse
|
136
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
137
|
Eguether T, Ermolaeva MA, Zhao Y, Bonnet MC, Jain A, Pasparakis M, Courtois G, Tassin AM. The deubiquitinating enzyme CYLD controls apical docking of basal bodies in ciliated epithelial cells. Nat Commun 2014; 5:4585. [PMID: 25134987 DOI: 10.1038/ncomms5585] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways. Here we show that CYLD localizes at centrosomes and basal bodies via interaction with the centrosomal protein CAP350 and demonstrate that CYLD must be both at the centrosome and catalytically active to promote ciliogenesis independently of NF-κB. In transgenic mice engineered to mimic the smallest truncation found in cylindromatosis patients, CYLD interaction with CAP350 is lost disrupting CYLD centrosome localization, which results in cilia formation defects due to impairment of basal body migration and docking. These results point to an undiscovered regulation of ciliogenesis by Lys63 ubiquitination and provide new perspectives regarding CYLD function that should be considered in the context of cylindromatosis.
Collapse
Affiliation(s)
- Thibaut Eguether
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] Université Pierre et Marie Curie, 75005 Paris, France [3]
| | - Maria A Ermolaeva
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Yongge Zhao
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marion C Bonnet
- 1] Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany [2] Excellence Research Chair, Université Européenne de Bretagne, IRSET/INSERM UMR1085, Faculté de Pharmacie, Université de Rennes 1, 35000 Rennes, France
| | - Ashish Jain
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Gilles Courtois
- 1] Université Grenoble Alpes, 38000 Grenoble, France [2] INSERM U1038/BGE/Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, 38054 Grenoble, France
| | - Anne-Marie Tassin
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] CNRS, Centre de Génétique Moléculaire, UPR3404, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
138
|
Corn JE, Vucic D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol 2014; 21:297-300. [PMID: 24699077 DOI: 10.1038/nsmb.2808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jacob E Corn
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| |
Collapse
|
139
|
Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 2014; 34:2251-60. [PMID: 24909169 DOI: 10.1038/onc.2014.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
CYLD is a deubiquitinating (DUB) enzyme that has a pivotal role in modulating nuclear factor kappa B (NF-κB) signaling pathways by removing the lysine 63- and linear-linked ubiquitin chain from substrates such as tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Loss of CYLD activity is associated with tumorigenicity, and levels of CYLD are lost or downregulated in different types of human tumors. In the present study, we found that high CYLD expression was associated with better overall survival and relapse-free neuroblastoma patient outcome, as well as inversely correlated with the stage of neuroblastoma. Retinoic acid-mediated differentiation of neuroblastoma restored CYLD expression and promoted SUMOylation of CYLD. This posttranslational modification inhibited deubiquitinase activity of CYLD against TRAF2 and TRAF6 and facilitated NF-κB signaling. Overexpression of non-SUMOylatable mutant CYLD in neuroblastoma cells reduced retinoic acid-induced NF-κB activation and differentiation of cells, but instead promoted cell death.
Collapse
|
140
|
Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar A. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog 2014; 10:e1004113. [PMID: 24854014 PMCID: PMC4031219 DOI: 10.1371/journal.ppat.1004113] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/28/2014] [Indexed: 01/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response.
Collapse
Affiliation(s)
- Kiira Ratia
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois, United States of America
| | - Andrew Kilianski
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Yahira M. Baez-Santos
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Andrew Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
141
|
Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 2014; 19:254-72. [PMID: 24461064 DOI: 10.1111/gtc.12128] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
Abstract
Linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC) play an important role in NF-κB activation. However, the regulation of linear ubiquitin chain generation by LUBAC is not well characterized. Here, we identified two deubiquitinating enzymes (DUBs), ovarian tumor DUB with linear linkage specificity (OTULIN/Gumby/FAM105B) and cylindromatosis (CYLD) that can cleave linear polyubiquitin chains and interact with LUBAC via the N-terminal PNGase/UBA or UBX (PUB) domain of HOIP, a catalytic subunit of LUBAC. HOIP interacts with both CYLD and OTULIN even in unstimulated cells. The interaction of CYLD and OTULIN with HOIP synergistically suppresses LUBAC-mediated linear polyubiquitination and NF-κB activation. Moreover, introduction of a HOIP mutant unable to bind either deubiquitinase into HOIP-null cells augments the activation of NF-κB by TNF-α stimulation. Thus, the interactions between these two deubiquitinases and the LUBAC ubiquitin ligase are involved in controlling the extent of TNF-α-induced NF-κB activation in cells by fine-tuning the generation of linear ubiquitin chains by LUBAC. The interaction of HOIP with OTULIN is also involved in OTULIN suppressing the canonical Wnt signaling pathway activation by LUBAC. Our observations provide molecular insights into the roles of ligase-deubiquitinase interactions in regulating molecular events resulting from linear ubiquitin conjugation.
Collapse
Affiliation(s)
- Tsuyoshi Takiuchi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y, Shui W, Zhou J, Liu M. CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 2014; 13:974-83. [PMID: 24552808 DOI: 10.4161/cc.27838] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD-EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.
Collapse
Affiliation(s)
- Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jinmin Gao
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Lei Sun
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| | - Shaojun Suo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| |
Collapse
|
143
|
Tanno H, Shigematsu T, Nishikawa S, Hayakawa A, Denda K, Tanaka T, Komada M. Ubiquitin-interacting motifs confer full catalytic activity, but not ubiquitin chain substrate specificity, to deubiquitinating enzyme USP37. J Biol Chem 2013; 289:2415-23. [PMID: 24324262 DOI: 10.1074/jbc.m113.528372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) consist of a family of deubiquitinating enzymes with more than 50 members in humans. Three of them, including USP37, contain ubiquitin-interacting motifs (UIMs), an ∼20-amino acid α-helical stretch that binds to ubiquitin. However, the roles of the UIMs in these USP enzymes remain unknown. USP37 has three UIMs, designated here as UIMs 1, 2, and 3 from the N-terminal side, between the Cys and His boxes comprising the catalytic core. Here, we examined the role of the UIMs in USP37 using its mutants that harbor mutations in the UIMs. The nuclear localization of USP37 was not affected by the UIM mutations. However, mutations in UIM2 or UIM3, but not UIM1, resulted in a significant decrease in USP37 binding to ubiquitinated proteins in the cell. In vitro, a region of USP37 harboring the three UIMs also bound to both Lys(48)-linked and Lys(63)-linked ubiquitin chains in a UIM2- and UIM3-dependent manner. The level of USP37 ubiquitination was also reduced by mutations in UIM2 or UIM3, suggesting their role in ubiquitination of USP37 itself. Finally, mutants lacking functional UIM2 or UIM3 exhibited a reduced isopeptidase activity toward ubiquitinated proteins in the cell and both Lys(48)-linked and Lys(63)-linked ubiquitin chains. These results suggested that the UIMs in USP37 contribute to the full enzymatic activity, but not ubiquitin chain substrate specificity, of USP37 possibly by holding the ubiquitin chain substrate in the proximity of the catalytic core.
Collapse
Affiliation(s)
- Hidetaka Tanno
- From the Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Wu ZH, Shi Y. When ubiquitin meets NF-κB: a trove for anti-cancer drug development. Curr Pharm Des 2013; 19:3263-75. [PMID: 23151140 DOI: 10.2174/1381612811319180010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023]
Abstract
During the last two decades, the studies on ubiquitination in regulating transcription factor NF-κB activation have elucidated the expanding role of ubiquitination in modulating cellular events by non-proteolytic mechanisms, as well as by proteasomal degradation. The significance of ubiquitination has also been recognized in regulating gene transcription, epigenetic modifications, kinase activation, DNA repair and subcellular translocation. This progress has been translated into novel strategies for developing anti-cancer therapeutics, exemplified by the success of the first FDA-approved proteasome inhibitor drug Bortezomib. Here we discuss the current understanding of the ubiquitin-proteasome system and how it is involved in regulating NF-κB signaling pathways in response to a variety of stimuli. We also focus on the recent progress of anti-cancer drug development targeting various steps of ubiquitination process, and the potential of these drugs in cancer treatment as related to their impact on NF-κB activation.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | | |
Collapse
|
145
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
146
|
Ngadjeua F, Chiaravalli J, Traincard F, Raynal B, Fontan E, Agou F. Two-sided ubiquitin binding of NF-κB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome. J Biol Chem 2013; 288:33722-33737. [PMID: 24100029 DOI: 10.1074/jbc.m113.483305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypomorphic mutations in the X-linked human NEMO gene result in various forms of anhidrotic ectodermal dysplasia with immunodeficiency. NEMO function is mediated by two distal ubiquitin binding domains located in the regulatory C-terminal domain of the protein: the coiled-coil 2-leucine zipper (CC2-LZ) domain and the zinc finger (ZF) domain. Here, we investigated the effect of the D406V mutation found in the NEMO ZF of an ectodermal dysplasia with immunodeficiency patients. This point mutation does not impair the folding of NEMO ZF or mono-ubiquitin binding but is sufficient to alter NEMO function, as NEMO-deficient fibroblasts and Jurkat T lymphocytes reconstituted with full-length D406V NEMO lead to partial and strong defects in NF-κB activation, respectively. To further characterize the ubiquitin binding properties of NEMO ZF, we employed di-ubiquitin (di-Ub) chains composed of several different linkages (Lys-48, Lys-63, and linear (Met-1-linked)). We showed that the pathogenic mutation preferentially impairs the interaction with Lys-63 and Met-1-linked di-Ub, which correlates with its ubiquitin binding defect in vivo. Furthermore, sedimentation velocity and gel filtration showed that NEMO ZF, like other NEMO related-ZFs, binds mono-Ub and di-Ub with distinct stoichiometries, indicating the presence of a new Ub site within the NEMO ZF. Extensive mutagenesis was then performed on NEMO ZF and characterization of mutants allowed the proposal of a structural model of NEMO ZF in interaction with a Lys-63 di-Ub chain.
Collapse
Affiliation(s)
- Flora Ngadjeua
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr. Roux 75015 Paris, France
| | - Jeanne Chiaravalli
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - François Traincard
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Bertrand Raynal
- Plateforme de Biophysique des Macromolécules et de leurs Interactions, Institut Pasteur, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Elisabeth Fontan
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Fabrice Agou
- Institut Pasteur, Unité de Biochimie Structurale et Cellulaire, Department of Structural Biology and Chemistry, CNRS, UMR 3528, 25/28 rue du Dr. Roux 75724 Paris cedex 15, France.
| |
Collapse
|
147
|
Yeh HM, Yu CY, Yang HC, Ko SH, Liao CL, Lin YL. Ubiquitin-specific protease 13 regulates IFN signaling by stabilizing STAT1. THE JOURNAL OF IMMUNOLOGY 2013; 191:3328-36. [PMID: 23940278 DOI: 10.4049/jimmunol.1300225] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The IFN immune system comprises type I, II, and III IFNs, signals through the JAK-STAT pathway, and plays central roles in host defense against viral infection. Posttranslational modifications such as ubiquitination regulate diverse molecules in the IFN pathway. To search for the deubiquitinating enzymes (DUBs) involved in the antiviral activity of IFN, we used RNA interference screening to identify a human DUB, ubiquitin-specific protease (USP) 13, whose expression modulates the antiviral activity of IFN-α against dengue virus serotype 2 (DEN-2). The signaling events and anti-DEN-2 activities of IFN-α and IFN-γ were reduced in cells with USP13 knockdown but enhanced with USP13 overexpression. USP13 may regulate STAT1 protein because the protein level and stability of STAT1 were increased with USP13 overexpression. Furthermore, STAT1 ubiquitination was reduced in cells with USP13 overexpression and increased with USP13 knockdown regardless of with or without IFN-α treatment. Thus, USP13 positively regulates type I and type II IFN signaling by deubiquitinating and stabilizing STAT1 protein. Overall, to our knowledge, USP13 is the first DUB identified to modulate STAT1 and play a role in the antiviral activity of IFN against DEN-2 replication.
Collapse
Affiliation(s)
- Hom-Ming Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | | | | | | | | | | |
Collapse
|
148
|
Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013; 9:e1003322. [PMID: 23633953 PMCID: PMC3636029 DOI: 10.1371/journal.ppat.1003322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Ubc13 is an important ubiquitin-conjugating (E2) enzyme in the NF-κB signaling pathway. The Shigella effector OspI targets Ubc13 and deamidates Gln100 of Ubc13 to a glutamic acid residue, leading to the inhibition of host inflammatory responses. Here we report the crystal structure of the OspI-Ubc13 complex at 2.3 Å resolution. The structure reveals that OspI uses two differently charged regions to extensively interact with the α1 helix, L1 loop and L2 loop of Ubc13. The Gln100 residue is bound within the hydrophilic catalytic pocket of OspI. A comparison between Ubc13-bound and wild-type free OspI structures revealed that Ubc13 binding induces notable structural reassembly of the catalytic pocket, suggesting that substrate binding might be involved in the catalysis of OspI. The OspI-binding sites in Ubc13 largely overlap with the binding residues for host ubiquitin E3 ligases and a deubiquitinating enzyme, which suggests that the bacterial effector and host proteins exploit the same surface on Ubc13 for specific recognition. Biochemical results indicate that both of the differently charged regions in OspI are important for the interaction with Ubc13, and the specificity determinants in Ubc13 for OspI recognition reside in the distinct residues in the α1 helix and L2 region. Our study reveals the molecular basis of Ubc13 deamidation by OspI, as well as a convergence of E2 recognition by bacterial and host proteins. The Gram-negative pathogenic bacterium Shigella infects human intestinal epithelium cells and causes severe inflammatory colitis (bacillary dysentery). Shigella harbors an approximately 220-kb virulence plasmid that encodes a type III secretion system (T3SS) protein secretion apparatus and many effector proteins. Using the T3SS, Shigella delivers the effector proteins into the host cells, targeting key signal molecules and manipulating the host physiological processes and thereby promoting infection and multiplication. OspI, a newly identified Shigella effector, targets the host Ubc13 protein, a critical ubiquitin-conjugating enzyme in the NF-κB signaling pathway. OspI deamidates Gln100 of Ubc13 to a glutamic acid residue, thereby disrupting TRAF6-catalyzed polyubiquitination and dampening host inflammatory responses. However, the structural mechanism of this specific deamidation is unclear. Through crystallography, we have determined the structure of the OspI-Ubc13 complex. The structure illustrates how OspI interacts with Ubc13 and how Ubc13 induces conformational changes in OspI. Combining structural analysis and biochemical assays, we revealed how OspI distinguishes Ubc13 from other ubiquitin conjugating enzymes and found that OspI binds to the same surface region on Ubc13 as host TRAF6, CHIP and OTUB1. Our study sheds light on the molecular mechanism of Ubc13 deamidation by OspI and provides new insights into E2 recognition by bacterial and host proteins.
Collapse
Affiliation(s)
- Panhan Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
149
|
Hospenthal MK, Freund SMV, Komander D. Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 2013; 20:555-65. [PMID: 23563141 PMCID: PMC4176834 DOI: 10.1038/nsmb.2547] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
Abstract
Ubiquitin (Ub) chains regulate many cellular processes, but several chain types including Lys6-linkages have remained unstudied. Here we analyse the bacterial effector E3 ligase NleL (Non-Lee-encoded effector ligase) from enterohaemorrhagic Escherichia coli (EHEC) O157:H7, which assembles Lys6- and Lys48-linked Ub polymers. Linkage-specific human deubiquitinases (DUBs) are used to show that NleL generates heterotypic Ub chains, and branched chains are efficiently hydrolysed by DUBs. USP DUBs cleave Lys6-linked polymers exclusively from the distal end, while OTUD3, a DUB with Lys6-preference, can cleave Lys6 polymers at any position within the chain. NleL is utilised to generate large quantities of Lys6-linked polyUb. Crystallographic and NMR spectroscopy analysis reveals that an asymmetric interface between Ile44 and Ile36 hydrophobic patches of neighbouring Ub moieties is propagated in longer Lys6-linked Ub chains. Interactions via the Ile36 patch can displace Leu8 from the Ile44 patch, leading to marked structural perturbations of Ub.
Collapse
|
150
|
Abstract
NF-κB (nuclear factor kappa B) family transcription factors are master regulators of immune and inflammatory processes in response to both injury and infection. In the latent state, NF-κBs are sequestered in the cytosol by their inhibitor IκB (inhibitor of NF-κB) proteins. Upon stimulations of innate immune receptors such as Toll-like receptors and cytokine receptors such as those in the TNF (tumor necrosis factor) receptor superfamily, a series of membrane proximal events lead to the activation of the IKK (IκB kinase). Phosphorylation of IκBs results in their proteasomal degradation and the release of NF-κB for nuclear translocation and activation of gene transcription. Here, we review the plethora of structural studies in these NF-κB activation pathways, including the TRAF (TNF receptor-associated factor) proteins, IKK, NF-κB, ubiquitin ligases, and deubiquitinating enzymes. Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coalesce into large oligomeric signaling complexes, or signalosomes, for signal propagation.
Collapse
Affiliation(s)
- Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA
| | | |
Collapse
|