101
|
Liu X, Zheng W, Zhang L, Cao Z, Cong X, Hu Q, Hou J, Jin X, Yuan Q, Lin L, Tan J, Lu J, Zhang Y, Zhang N. Arginine methylation-dependent cGAS stability promotes non-small cell lung cancer cell proliferation. Cancer Lett 2024; 586:216707. [PMID: 38331088 DOI: 10.1016/j.canlet.2024.216707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Cyclic GMP-AMP synthase (cGAS), promotes non-small cell lung cancer (NSCLC) cell proliferation. However, the specific mechanisms of cGAS-mediated NSCLC cell proliferation are largely unknown. In this study, we found asymmetric dimethylation by protein arginine methyltransferase 1 (PRMT1) at R127 of cGAS. This facilitated the binding of deubiquitinase USP7 and contributed to deubiquitination and stabilization of cGAS. PRMT1-and USP7-dependent cGAS stability, which also played a pivotal role in accelerating NSCLC cell proliferation through activating AKT pathway. We validated that the expression of cGAS and PRMT1 were positive correlated in human non-small cell lung cancer samples. Our study demonstrates a unique mechanism for managing cGAS stability by arginine methylation and indicates that PRMT1-cGAS-USP7 axis is a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Weiguang Zheng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Lian Zhang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Ziyi Cao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qianying Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jingyao Hou
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xin Jin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Qingxia Yuan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Luyao Lin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Na Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
102
|
Shen L, Ma X, Wang Y, Wang Z, Zhang Y, Pham HQH, Tao X, Cui Y, Wei J, Lin D, Abeywanada T, Hardikar S, Halabelian L, Smith N, Chen T, Barsyte-Lovejoy D, Qiu S, Xing Y, Yang Y. Loss-of-function mutation in PRMT9 causes abnormal synapse development by dysregulation of RNA alternative splicing. Nat Commun 2024; 15:2809. [PMID: 38561334 PMCID: PMC10984984 DOI: 10.1038/s41467-024-47107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.
Collapse
Affiliation(s)
- Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA, 90095, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zhihao Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Yi Zhang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Hoang Quoc Hai Pham
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiaoqun Tao
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Dimitri Lin
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Tharindumala Abeywanada
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Noah Smith
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
103
|
Qiu C, Wang T, Wang H, Tao Z, Wang C, Ma J, Li S, Zhao Y, Liu J, Li P. SISTER OF FCA physically associates with SKB1 to regulate flowering time in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:188. [PMID: 38486139 PMCID: PMC10941358 DOI: 10.1186/s12870-024-04887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.
Collapse
Affiliation(s)
- Chunhong Qiu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jifang Liu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
104
|
Wang YJ, Cao JB, Yang J, Liu T, Yu HL, He ZX, Bao SL, He XX, Zhu XJ. PRMT5-mediated homologous recombination repair is essential to maintain genomic integrity of neural progenitor cells. Cell Mol Life Sci 2024; 81:123. [PMID: 38459149 PMCID: PMC10923982 DOI: 10.1007/s00018-024-05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jian-Bo Cao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Tong Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Shi-Lai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
105
|
Lu L, Ye Z, Zhang R, Olsen JV, Yuan Y, Mao Y. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J Proteome Res 2024; 23:1014-1027. [PMID: 38272855 DOI: 10.1021/acs.jproteome.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Protein arginine methylations are important post-translational modifications (PTMs) in eukaryotes, regulating many biological processes. However, traditional collision-based mass spectrometry methods inevitably cause neutral losses of methylarginines, preventing the deep mining of biologically important sites. Herein we developed an optimized mass spectrometry workflow based on electron-transfer dissociation (ETD) with supplemental activation for proteomic profiling of arginine methylation in human cells. Using symmetric dimethylarginine (sDMA) as an example, we show that the ETD-based optimized workflow significantly improved the identification and site localization of sDMA. Quantitative proteomics identified 138 novel sDMA sites as potential PRMT5 substrates in HeLa cells. Further biochemical studies on SERBP1, a newly identified PRMT5 substrate, confirmed the coexistence of sDMA and asymmetric dimethylarginine in the central RGG/RG motif, and loss of either methylation caused increased the recruitment of SERBP1 to stress granules under oxidative stress. Overall, our optimized workflow not only enabled the identification and localization of extensive, nonoverlapping sDMA sites in human cells but also revealed novel PRMT5 substrates whose sDMA may play potentially important biological functions.
Collapse
Affiliation(s)
- Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rou Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
106
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
107
|
Inoue F, Sone K, Kumegawa K, Hachijo R, Suzuki E, Tanimoto S, Tsuboyama N, Kato K, Toyohara Y, Takahashi Y, Kusakabe M, Kukita A, Honjoh H, Nishijima A, Taguchi A, Miyamoto Y, Tanikawa M, Iriyama T, Mori M, Wada-Hiraike O, Oda K, Suzuki H, Maruyama R, Osuga Y. Inhibition of protein arginine methyltransferase 6 activates interferon signaling and induces the apoptosis of endometrial cancer cells via histone modification. Int J Oncol 2024; 64:32. [PMID: 38299254 PMCID: PMC10836505 DOI: 10.3892/ijo.2024.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/10/2023] [Indexed: 02/02/2024] Open
Abstract
Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multi‑omics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIP‑seq) and RNA sequencing (RNA‑seq). The expression of PRMT6 in EC was analyzed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6‑knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIP‑seq of H3K27ac antibodies and RNA‑seq. Finally, the downstream targets identified by multi‑omics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6‑KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIP‑seq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNA‑seq data demonstrated altered interferon‑related pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide‑3‑kinase regulatory subunit 1, following PRMT6‑KD. RT‑qPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6‑KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.
Collapse
Affiliation(s)
- Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryuta Hachijo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Natsumi Tsuboyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kosuke Kato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
108
|
Taniguchi R, Moriya Y, Dohmae N, Suzuki T, Nakahara K, Kubota S, Takasugi N, Uehara T. Attenuation of protein arginine dimethylation via S-nitrosylation of protein arginine methyltransferase 1. J Pharmacol Sci 2024; 154:209-217. [PMID: 38395522 DOI: 10.1016/j.jphs.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to S-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein S-nitrosylation.
Collapse
Affiliation(s)
- Rikako Taniguchi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuto Moriya
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kengo Nakahara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
109
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
110
|
Bhandari K, Kong JS, Morris K, Xu C, Ding WQ. Protein Arginine Methylation Patterns in Plasma Small Extracellular Vesicles Are Altered in Patients with Early-Stage Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:654. [PMID: 38339405 PMCID: PMC10854811 DOI: 10.3390/cancers16030654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Small extracellular vesicles (sEVs) contain lipids, proteins and nucleic acids, which often resemble their cells of origin. Therefore, plasma sEVs are considered valuable resources for cancer biomarker development. However, previous efforts have been largely focused on the level of proteins and miRNAs in plasma sEVs, and the post-translational modifications of sEV proteins, such as arginine methylation, have not been explored. Protein arginine methylation, a relatively stable post-translational modification, is a newly described molecular feature of PDAC. The present study examined arginine methylation patterns in plasma sEVs derived from patients with early-stage PDAC (n = 23) and matched controls. By utilizing the arginine methylation-specific antibodies for western blotting, we found that protein arginine methylation patterns in plasma sEVs are altered in patients with early-stage PDAC. Specifically, we observed a reduction in the level of symmetric dimethyl arginine (SDMA) in plasma sEV proteins derived from patients with early- and late-stage PDAC. Importantly, immunoprecipitation followed by proteomics analysis identified a number of arginine-methylated proteins exclusively present in plasma sEVs derived from patients with early-stage PDAC. These results indicate that arginine methylation patterns in plasma sEVs are potential indicators of PDAC, a new concept meriting further investigation.
Collapse
Affiliation(s)
- Kritisha Bhandari
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| | - Jeng Shi Kong
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| | - Katherine Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| |
Collapse
|
111
|
Park MJ, Lee J, Bagon BB, Matienzo ME, Lim S, Kim K, Lee CM, Wu J, Kim DI. N G ,N G -Dimethylarginine Dimethylaminohydrolase 1 Expression Is Dispensable for Cold- or Diet-Induced Thermogenesis. Adv Biol (Weinh) 2024; 8:e2300192. [PMID: 38164809 DOI: 10.1002/adbi.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Sangyi Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
112
|
Shi J, Wang Z, Wang Z, Shao G, Li X. Epigenetic regulation in adult neural stem cells. Front Cell Dev Biol 2024; 12:1331074. [PMID: 38357000 PMCID: PMC10864612 DOI: 10.3389/fcell.2024.1331074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Neural stem cells (NSCs) exhibit self-renewing and multipotential properties. Adult NSCs are located in two neurogenic regions of adult brain: the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Maintenance and differentiation of adult NSCs are regulated by both intrinsic and extrinsic signals that may be integrated through expression of some key factors in the adult NSCs. A number of transcription factors have been shown to play essential roles in transcriptional regulation of NSC cell fate transitions in the adult brain. Epigenetic regulators have also emerged as key players in regulation of NSCs, neural progenitor cells and their differentiated progeny via epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling and RNA-mediated transcriptional regulation. This minireview is primarily focused on epigenetic regulations of adult NSCs during adult neurogenesis, in conjunction with transcriptional regulation in these processes.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijun Wang
- Zhenhai Lianhua Hospital, Ningbo City, Zhejiang, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
113
|
Smoniewski CM, Mirzavand Borujeni P, Hampton M, Petersen A, Faacks SP, Salavati R, Zimmer SL. Manipulation of mitochondrial poly(A) polymerase family proteins in Trypanosoma brucei impacts mRNA termini processing. FRONTIERS IN PARASITOLOGY 2024; 2:1298561. [PMID: 39816830 PMCID: PMC11732105 DOI: 10.3389/fpara.2023.1298561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2025]
Abstract
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3' end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3' tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous. Here, we elucidate the effects of manipulations of KPAP1 and KPAP2 on the 5' and 3' termini of transcripts and their 3' tails. Using glycerol gradients followed by immunoblotting, we present evidence that KPAP2 is found in protein complexes of up to about 1600 kDa. High-throughput sequencing of mRNA termini showed that KPAP2 overexpression subtly changes an edited transcript's 3' tails, though not in a way consistent with general PAP activity. Next, to identify possible roles of posttranslational modifications on KPAP1 regulation, we mutated two KPAP1 arginine methylation sites to either mimic methylation or hypomethylation. We assessed their effect on 3' mRNA tail characteristics and found that the two mutants generally had opposing effects, though some of these were transcript-specific. We present results suggesting that while methylation increases KPAP1 substrate binding and/or initial nucleotide additions, unmethylated KPAP1is more processive. We also present a comprehensive review of UTR termini, and evidence that tail addition activity may change as mRNA editing is initiated. Together, this work furthers our understanding of the role of KPAP1 and KPAP2 on trypanosome mitochondrial mRNA 3' tail addition, as well as provides more information on mRNA termini processing in general.
Collapse
Affiliation(s)
- Clara M. Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | | | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, United States
| | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Sean P. Faacks
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
114
|
Song C, Kim MY, Cho JY. The Role of Protein Methyltransferases in Immunity. Molecules 2024; 29:360. [PMID: 38257273 PMCID: PMC10819338 DOI: 10.3390/molecules29020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
115
|
Jadon N, Shanthalingam S, Tew GN, Minter LM. PRMT5 regulates epigenetic changes in suppressive Th1-like iTregs in response to IL-12 treatment. Front Immunol 2024; 14:1292049. [PMID: 38259494 PMCID: PMC10800960 DOI: 10.3389/fimmu.2023.1292049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.
Collapse
Affiliation(s)
- Nidhi Jadon
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Graduate Program in Animal Biotechnology and Biomedical Sciences, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
116
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
117
|
Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, Xiao H, Liu L. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat 2024; 72:101016. [PMID: 37980859 DOI: 10.1016/j.drup.2023.101016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Drug resistance remains a major challenge in cancer treatment, necessitating the development of novel strategies to overcome it. Protein arginine methyltransferases (PRMTs) are enzymes responsible for epigenetic arginine methylation, which regulates various biological and pathological processes, as a result, they are attractive therapeutic targets for overcoming anti-cancer drug resistance. The ongoing development of small molecules targeting PRMTs has resulted in the generation of chemical probes for modulating most PRMTs and facilitated clinical treatment for the most advanced oncology targets, including PRMT1 and PRMT5. In this review, we summarize various mechanisms underlying protein arginine methylation and the roles of specific PRMTs in driving cancer drug resistance. Furthermore, we highlight the potential clinical implications of PRMT inhibitors in decreasing cancer drug resistance. PRMTs promote the formation and maintenance of drug-tolerant cells via several mechanisms, including altered drug efflux transporters, autophagy, DNA damage repair, cancer stem cell-related function, epithelial-mesenchymal transition, and disordered tumor microenvironment. Multiple preclinical and ongoing clinical trials have demonstrated that PRMT inhibitors, particularly PRMT5 inhibitors, can sensitize cancer cells to various anti-cancer drugs, including chemotherapeutic, targeted therapeutic, and immunotherapeutic agents. Combining PRMT inhibitors with existing anti-cancer strategies will be a promising approach for overcoming anti-cancer drug resistance. Furthermore, enhanced knowledge of the complex functions of arginine methylation and PRMTs in drug resistance will guide the future development of PRMT inhibitors and may help identify new clinical indications.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Da-Qian Chen
- Department of Medicine Oncology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lihong Shi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yueqi Zuo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
118
|
Holtz AG, Lowe TL, Aoki Y, Kubota Y, Hoffman RM, Clarke SG. Asymmetric and symmetric protein arginine methylation in methionine-addicted human cancer cells. PLoS One 2023; 18:e0296291. [PMID: 38134182 PMCID: PMC10745221 DOI: 10.1371/journal.pone.0296291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The methionine addiction of cancer cells is known as the Hoffman effect. While non-cancer cells in culture can utilize homocysteine in place of methionine for cellular growth, most cancer cells require exogenous methionine for proliferation. It has been suggested that a biochemical basis of this effect is the increased utilization of methionine for S-adenosylmethionine, the major methyl donor for a variety of cellular methyltransferases. Recent studies have pointed to the role of S-adenosylmethionine-dependent protein arginine methyltransferases (PRMTs) in cell proliferation and cancer. To further understand the biochemical basis of the methionine addiction of cancer cells, we compared protein arginine methylation in two previously described isogenic cell lines, a methionine-addicted 143B human osteosarcoma cell line and its less methionine-dependent revertant. Previous work showed that the revertant cells were significantly less malignant than the parental cells. In the present study, we utilized antibodies to detect the asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) products of PRMTs in polypeptides from cellular extracts and purified histone preparations of these cell lines fractionated by SDS-PAGE. Importantly, we observed little to no differences in the banding patterns of ADMA- and SDMA-containing species between the osteosarcoma parental and revertant cell lines. Furthermore, enzymatic activity assays using S-adenosyl-ʟ-[methyl-3H] methionine, recombinantly purified PRMT enzymes, cell lysates, and specific PRMT inhibitors revealed no major differences in radiolabeled polypeptides on SDS-PAGE gels. Taken together, these results suggest that changes in protein arginine methylation may not be major contributors to the Hoffman effect and that other consequences of methionine addiction may be more important in the metastasis and malignancy of osteosarcoma and potentially other cancers.
Collapse
Affiliation(s)
- Ashley G Holtz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Yusuke Aoki
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yutaro Kubota
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
119
|
Li Y, Dobrolecki LE, Sallas C, Zhang X, Kerr TD, Bisht D, Wang Y, Awasthi S, Kaundal B, Wu S, Peng W, Mendillo ML, Lu Y, Jeter CR, Peng G, Liu J, Westin SN, Sood AK, Lewis MT, Das J, Yi SS, Bedford MT, McGrail DJ, Sahni N. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition. Cell Rep Med 2023; 4:101326. [PMID: 38118413 PMCID: PMC10772459 DOI: 10.1016/j.xcrm.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.
Collapse
Affiliation(s)
- Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis D Kerr
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqi Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
120
|
Liu R, Yang Z, Yang T, Wang Z, Chen X, Zhu J, Ren A, Shi L, Yu H, Zhao M. PRMT5 regulates the polysaccharide content by controlling the splicing of thaumatin-like protein in Ganoderma lucidum. Microbiol Spectr 2023; 11:e0290623. [PMID: 37882562 PMCID: PMC10715077 DOI: 10.1128/spectrum.02906-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE PRMT5 contributes to secondary metabolite biosynthesis in Ganoderma lucidum. However, the mechanism through which PRMT5 regulates the biosynthesis of secondary metabolites remains unclear. In the current study, PRMT5 silencing led to a significant decrease in the biosynthesis of polysaccharides from G. lucidum through the action of the alternative splicing of TLP. A shorter TLP2 isoform can directly bind to PGI and regulated polysaccharide biosynthesis. These results suggest that PRMT5 enhances PGI activity by regulating TLP binding to PGI. The results of the current study reveal a novel target gene for PRMT5-mediated alternative splicing and provide a reference for the identification of PRMT5 regulatory target genes.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhengyan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hanshou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
121
|
Jiang C, Liu J, He S, Xu W, Huang R, Pan W, Li X, Dai X, Guo J, Zhang T, Inuzuka H, Wang P, Asara JM, Xiao J, Wei W. PRMT1 orchestrates with SAMTOR to govern mTORC1 methionine sensing via Arg-methylation of NPRL2. Cell Metab 2023; 35:2183-2199.e7. [PMID: 38006878 PMCID: PMC11192564 DOI: 10.1016/j.cmet.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Methionine is an essential branch of diverse nutrient inputs that dictate mTORC1 activation. In the absence of methionine, SAMTOR binds to GATOR1 and inhibits mTORC1 signaling. However, how mTORC1 is activated upon methionine stimulation remains largely elusive. Here, we report that PRMT1 senses methionine/SAM by utilizing SAM as a cofactor for an enzymatic activity-based regulation of mTORC1 signaling. Under methionine-sufficient conditions, elevated cytosolic SAM releases SAMTOR from GATOR1, which confers the association of PRMT1 with GATOR1. Subsequently, SAM-loaded PRMT1 methylates NPRL2, the catalytic subunit of GATOR1, thereby suppressing its GAP activity and leading to mTORC1 activation. Notably, genetic or pharmacological inhibition of PRMT1 impedes hepatic methionine sensing by mTORC1 and improves insulin sensitivity in aged mice, establishing the role of PRMT1-mediated methionine sensing at physiological levels. Thus, PRMT1 coordinates with SAMTOR to form the methionine-sensing apparatus of mTORC1 signaling.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Wei Xu
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Runzhi Huang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - John M Asara
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jianru Xiao
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Deng Y, Song X, Iyamu ID, Dong A, Min J, Huang R. A unique binding pocket induced by a noncanonical SAH mimic to develop potent and selective PRMT inhibitors. Acta Pharm Sin B 2023; 13:4893-4905. [PMID: 38045046 PMCID: PMC10692381 DOI: 10.1016/j.apsb.2023.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 12/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are attractive targets for developing therapeutic agents, but selective PRMT inhibitors targeting the cofactor SAM binding site are limited. Herein, we report the discovery of a noncanonical but less polar SAH surrogate YD1113 by replacing the benzyl guanidine of a pan-PRMT inhibitor with a benzyl urea, potently and selectively inhibiting PRMT3/4/5. Importantly, crystal structures reveal that the benzyl urea moiety of YD1113 induces a unique and novel hydrophobic binding pocket in PRMT3/4, providing a structural basis for the selectivity. In addition, YD1113 can be modified by introducing a substrate mimic to form a "T-shaped" bisubstrate analogue YD1290 to engage both the SAM and substrate binding pockets, exhibiting potent and selective inhibition to type I PRMTs (IC50 < 5 nmol/L). In summary, we demonstrated the promise of YD1113 as a general SAH mimic to build potent and selective PRMT inhibitors.
Collapse
Affiliation(s)
- Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaosheng Song
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Iredia D. Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Aiping Dong
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
123
|
Wang Y, Wang C, Guan X, Ma Y, Zhang S, Li F, Yin Y, Sun Z, Chen X, Yin H. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303812. [PMID: 37973560 PMCID: PMC10754120 DOI: 10.1002/advs.202303812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Protein arginine methyltransferase (PRMT) plays essential roles in tumor initiation and progression, but its underlying mechanisms in the treatment sensitivity of endometrial cancer (EC) remain unclear and warrant further investigation. Here, a comprehensive analysis of the Cancer Genome Atlas database and Clinical Proteomic Tumor Analysis Consortium database identifies that PRMT3 plays an important role in EC. Specifically, further experiments show that PRMT3 inhibition enhances the susceptibility of EC cells to ferroptosis. Mechanistically, PRMT3 interacts with Methyltransferase 14 (METTL14) and is involved in its arginine methylation. In addition, PRMT3 inhibition-mediated METTL14 overexpression promotes methylation modification via an m6 A-YTHDF2-dependent mechanism, reducing Glutathione peroxidase 4 (GPX4) mRNA stability, increasing lipid peroxidation levels, and accelerating ferroptosis. Notably, combined PRMT3 blockade and anti-PD-1 therapy display more potent antitumor effects by accelerating ferroptosis in cell-derived xenograft models. The specific PRMT3 inhibitor SGC707 exerts the same immunotherapeutic sensitizing effect in a patient-derived xenograft model. Notably, blocking PRMT3 improves tumor suppression in response to cisplatin and radiation therapy. Altogether, this work demonstrates that PRMT3 depletion is a promising target for EC.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Can Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xue Guan
- Animal Laboratory CenterThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Ying Ma
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Shijie Zhang
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Fei Li
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Yue Yin
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Zhenxing Sun
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xiuwei Chen
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Hang Yin
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and TherapyHarbin Medical UniversityHarbinHeilongjiang150000China
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHung HomKowloonHong Kong27665111China
| |
Collapse
|
124
|
Rowley MJ, Prout-Holm RA, Liu RW, Hendrickson-Rebizant T, Ige OO, Lakowski TM, Frankel A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J Biol Chem 2023; 299:105360. [PMID: 37863263 PMCID: PMC10692916 DOI: 10.1016/j.jbc.2023.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.
Collapse
Affiliation(s)
- Michael J Rowley
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley A Prout-Holm
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Wen Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Olufola O Ige
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
125
|
Sun Y, Jin X, Meng J, Guo F, Chen T, Zhao X, Wu H, Ren D. MST2 methylation by PRMT5 inhibits Hippo signaling and promotes pancreatic cancer progression. EMBO J 2023; 42:e114558. [PMID: 37905571 PMCID: PMC10690468 DOI: 10.15252/embj.2023114558] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
The Hippo signaling axis is a tumor suppressor pathway that is activated by various extra-pathway factors to regulate cell differentiation and organ development. Recent studies have reported that autophosphorylation of the core kinase cassette stimulates activation of the Hippo signaling cascade. Here, we demonstrate that protein arginine methyltransferase 5 (PRMT5) contributes to inactivation of the Hippo signaling pathway in pancreatic cancer. We show that the Hippo pathway initiator serine/threonine kinase 3 (STK3, also known as MST2) of Hippo signaling pathway can be symmetrically di-methylated by PRMT5 at arginine-461 (R461) and arginine-467 (R467) in its SARAH domain. Methylation suppresses MST2 autophosphorylation and kinase activity by blocking its homodimerization, thereby inactivating Hippo signaling pathway in pancreatic cancer. Moreover, we also show that the specific PRMT5 inhibitor GSK3326595 re-activates the dysregulated Hippo signaling pathway and inhibits the growth of human pancreatic cancer xenografts in immunodeficient mice, thus suggesting potential clinical application of PRMT5 inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Jin
- Department of Urology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Uro‐Oncology Institute of Central South UniversityChangshaChina
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of General SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
126
|
Song J, Mo X, Liu X, Hu B, Zhang Z, Yu Z. Arginine Methylation Regulates Self-Assembly of Peptides. Macromol Rapid Commun 2023; 44:e2300308. [PMID: 37462116 DOI: 10.1002/marc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired design of peptides represents one facile strategy for development of supramolecular monomers for self-assembly into well-defined nanostructures. Inspired by methylation of arginine during post-translational modification for manipulating protein functions, herein, the controllable self-assembly of peptides via rational incorporation of methylated arginine residues into bola-amphiphilic peptides is reported. A series of bola-amphiphilic peptides are designed and synthesized either containing natural arginine or methylated arginine and investigate the influence of arginine methylation on peptide assembly. This study finds that incorporation of symmetrically di-methylated arginine into oppositely charged hexapeptide hex-SDMAE leads to distinct assembling performance compare to natural peptide hex-RE. The findings demonstrate that the methylation of rationally designed peptide sequences allows for regulation of self-assembly of peptides, thus implying the great potential of arginine methylation in establishing controllable peptide assembling systems and creating in situ formulation of biomedical materials in the future.
Collapse
Affiliation(s)
- Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
127
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
128
|
Wright T, Wang Y, Stratton SA, Sebastian M, Liu B, Johnson DG, Bedford MT. Loss of the methylarginine reader function of SND1 confers resistance to hepatocellular carcinoma. Biochem J 2023; 480:1805-1816. [PMID: 37905668 PMCID: PMC10860161 DOI: 10.1042/bcj20230384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.
Collapse
Affiliation(s)
- Tanner Wright
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- MD Anderson UTHealth Houston, Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, U.S.A
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Sabrina A. Stratton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Manu Sebastian
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
129
|
Li WJ, Huang Y, Lin YA, Zhang BD, Li MY, Zou YQ, Hu GS, He YH, Yang JJ, Xie BL, Huang HH, Deng X, Liu W. Targeting PRMT1-mediated SRSF1 methylation to suppress oncogenic exon inclusion events and breast tumorigenesis. Cell Rep 2023; 42:113385. [PMID: 37938975 DOI: 10.1016/j.celrep.2023.113385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bao-Ding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Mei-Yan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Qin Zou
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
130
|
Ali W, Xiao W, Hoang H, Cali V, Kajdacsy-Balla A. Carcinogenesis and Prognostic Utility of Arginine Methylation-Related Genes in Hepatocellular Cancer. Curr Issues Mol Biol 2023; 45:9422-9430. [PMID: 38132437 PMCID: PMC10742294 DOI: 10.3390/cimb45120591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Protein arginine methylation is among the most important post-translational modifications and has been studied in cancers such as those of the lung and breast. However, comparatively less has been investigated regarding hepatocellular carcinoma, with an annual incidence of almost one million cases. Through using in silico methods, this study examined arginine methylation-related gene expression and methylation levels, and alongside network and enrichment analysis attempted to find how said genes can drive tumorigenesis and offer possible therapeutic targets. We found a robust relationship among the selected methylation genes, with ⅞ showing prognostic value regarding overall survival, and a medley of non-arginine methylation pathways also being highlighted through the aforementioned analysis. This study furthers our knowledge of the methylation and expression patterns of arginine histone methylation-related genes, offering jumping points for further wet-lab studies.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Henry Hoang
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Vincent Cali
- Albert Einstein College of Medicine, The Bronx, NY 10461, USA; (W.A.); (W.X.); (H.H.); (V.C.)
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
131
|
Bhattacharya D, Shi Ming Li A, Paul B, Ghosh Dastidar U, Santhakumar V, Sarkar D, Chau I, Li F, Ghosh T, Vedadi M, Talukdar A. Development of selective class I protein arginine methyltransferase inhibitors through fragment-based drug design approach. Eur J Med Chem 2023; 260:115713. [PMID: 37597437 DOI: 10.1016/j.ejmech.2023.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methylation of the terminal nitrogen atoms of the guanidino group of arginine of protein substrates. The aberrant expression of these methyltransferases is linked to various diseases, making them promising therapeutic targets. Currently, PRMT inhibitors are at different stages of clinical development, which validated their significance as drug targets. Structural Genomics Consortium (SGC) has reported several small fragment inhibitors as Class I PRMT inhibitors, which can be the starting point for rational drug development. Herein, we report the successful application of a fragment-based approach toward the discovery of selective Class I PRMT inhibitors. Structure-based ligand optimization was performed by strategic incorporation of fragment hits on the drug-like quinazoline core and subsequent fragment growth in the desired orientation towards identified hydrophobic shelf. A clear SAR was established, and the lead compounds 55 and 56 displayed potent inhibition of Class I PRMTs with IC50 values of 92 nM and 37 nM against PRMT4. We report the systematic development of potent Class I PRMT inhibitors with good potency and about 100-fold selectivity when tested against a panel of 31 human DNA, RNA, and protein lysine and arginine methyltransferases. These improved small molecules will provide new options for the development of novel potent and selective PRMT4 inhibitors.
Collapse
Affiliation(s)
- Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Alice Shi Ming Li
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | - Dipika Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Irene Chau
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada
| | - Trisha Ghosh
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Masoud Vedadi
- Structural Genomics Consortium, MaRS South Tower, College Street, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology (IICB), 4 Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
132
|
Wang F, Chen S, Peng S, Zhou X, Tang H, Liang H, Zhong X, Yang H, Ke X, Lü M, Cui H. PRMT1 promotes the proliferation and metastasis of gastric cancer cells by recruiting MLXIP for the transcriptional activation of the β-catenin pathway. Genes Dis 2023; 10:2622-2638. [PMID: 37554218 PMCID: PMC10404965 DOI: 10.1016/j.gendis.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a type I PRMT, is overexpressed in gastric cancer (GC) cells. To elucidate the function of PRMT1 in GC, PRMT1 expression in HGC-27 and MKN-45 cells was knocked down by short hairpin RNA (shRNA) or inhibited by PRMT1 inhibitors (AMI-1 or DCLX069), which resulted in inhibition of GC cell proliferation, migration, invasion, and tumorigenesis in vitro and in vivo. MLX-interacting protein (MLXIP) and Kinectin 1 (KTN1) were identified as PRMT1-binding proteins. PRMT1 recruited MLXIP to the promoter of β-catenin, which induced β-catenin transcription and activated the β-catenin signaling pathway, promoting GC cell migration and metastasis. Furthermore, KTN1 inhibited the K48-linked ubiquitination of PRMT1 by decreasing the interaction between TRIM48 and PRMT1. Collectively, our findings reveal a mechanism by which PRMT1 promotes cell proliferation and metastasis mediated by the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xujun Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - MuHan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
133
|
Zhao X, Sun Y, Xu Z, Cai L, Hu Y, Wang H. Targeting PRMT1 prevents acute and chronic graft-versus-host disease. Mol Ther 2023; 31:3259-3276. [PMID: 37735873 PMCID: PMC10638063 DOI: 10.1016/j.ymthe.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation. Recent studies have reported that protein arginine methyltransferase 1 (PRMT1) is essential for the differentiation and proliferation of T and B cells. Therefore, it is possible that PRMT1 may play a critical role in GVHD. In this study, we observed that PRMT1 expression was upregulated in CD4+ T and B cells from chronic GVHD (cGVHD) patients and mice. However, the prophylactic use of a PRMT1 inhibitor significantly prevented cGVHD in mice by reducing the percentage of T helper (Th)17 cells, germinal center B cells, and plasma cells. The PRMT1 inhibitor also controlled acute GVHD (aGVHD) in mice by decreasing the percentage of Th17 cells. Moreover, inhibiting PRMT1 also weakened Th17 cell differentiation, B cell proliferation, and antibody production in cells from cGVHD patients. Additionally, further studies revealed that PRMT1 regulated B cell proliferation and antibody secretion by methylating isocitrate dehydrogenase 2 (IDH2). We observed asymmetric di-methylation of IDH2 by PRMT1 at arginine 353 promoted IDH2 homodimerization, which enhanced IDH2 activity, further increasing B cell proliferation and antibody production. Collectively, this study provides a rationale for the application of PRMT1 inhibitors in the prevention of aGVHD and cGVHD.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ziwei Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Cai
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huafang Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
134
|
Ma Z, Lyu X, Qin N, Liu H, Zhang M, Lai Y, Dong B, Lu P. Coactivator-associated arginine methyltransferase 1: A versatile player in cell differentiation and development. Genes Dis 2023; 10:2383-2392. [PMID: 37554200 PMCID: PMC10404874 DOI: 10.1016/j.gendis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in the regulation of various cellular functions. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that asymmetrically dimethylates histone H3 and non-histone proteins to regulate gene transcription. CARM1 has been found to play important roles in cell differentiation and development, cell cycle progression, autophagy, metabolism, pre-mRNA splicing and transportation, and DNA replication. In this review, we describe the molecular characteristics of CARM1 and summarize its roles in the regulation of cell differentiation and development in mammals.
Collapse
Affiliation(s)
- Zhongrui Ma
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinxing Lyu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haoyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Mengrui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongchao Lai
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peiyuan Lu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
135
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
136
|
Azhar M, Xu C, Jiang X, Li W, Cao Y, Zhu X, Xing X, Wu L, Zou J, Meng L, Cheng Y, Han W, Bao J. The arginine methyltransferase Prmt1 coordinates the germline arginine methylome essential for spermatogonial homeostasis and male fertility. Nucleic Acids Res 2023; 51:10428-10450. [PMID: 37739418 PMCID: PMC10602896 DOI: 10.1093/nar/gkad769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Arginine methylation, catalyzed by the protein arginine methyltransferases (PRMTs), is a common post-translational protein modification (PTM) that is engaged in a plethora of biological events. However, little is known about how the methylarginine-directed signaling functions in germline development. In this study, we discover that Prmt1 is predominantly distributed in the nuclei of spermatogonia but weakly in the spermatocytes throughout mouse spermatogenesis. By exploiting a combination of three Cre-mediated Prmt1 knockout mouse lines, we unravel that Prmt1 is essential for spermatogonial establishment and maintenance, and that Prmt1-catalyzed asymmetric methylarginine coordinates inherent transcriptional homeostasis within spermatogonial cells. In conjunction with high-throughput CUT&Tag profiling and modified mini-bulk Smart-seq2 analyses, we unveil that the Prmt1-deposited H4R3me2a mark is permissively enriched at promoter and exon/intron regions, and sculpts a distinctive transcriptomic landscape as well as the alternative splicing pattern, in the mouse spermatogonia. Collectively, our study provides the genetic and mechanistic evidence that connects the Prmt1-deposited methylarginine signaling to the establishment and maintenance of a high-fidelity transcriptomic identity in orchestrating spermatogonial development in the mammalian germline.
Collapse
Affiliation(s)
- Muhammad Azhar
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Caoling Xu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenqing Li
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xiaoli Zhu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xuemei Xing
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiaqi Zou
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Lan Meng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yu Cheng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenjie Han
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| |
Collapse
|
137
|
Cao MT, Feng Y, Zheng YG. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. World J Biol Chem 2023; 14:84-98. [PMID: 37901302 PMCID: PMC10600687 DOI: 10.4331/wjbc.v14.i5.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes. AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6. METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites. RESULTS In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation. CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Collapse
Affiliation(s)
- Meng-Tong Cao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - You Feng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
138
|
Feoli A, Iannelli G, Cipriano A, Milite C, Shen L, Wang Z, Hadjikyriacou A, Lowe TL, Safaeipour C, Viviano M, Sarno G, Morretta E, Monti MC, Yang Y, Clarke SG, Cosconati S, Castellano S, Sbardella G. Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. J Med Chem 2023; 66:13665-13683. [PMID: 37560786 PMCID: PMC10578352 DOI: 10.1021/acs.jmedchem.3c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giulia Iannelli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Lei Shen
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Zhihao Wang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Andrea Hadjikyriacou
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Troy L. Lowe
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Cyrus Safaeipour
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Elva Morretta
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Yanzhong Yang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Steven G. Clarke
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| |
Collapse
|
139
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, El Zarif T, Kale N, Rakaee M, Mouhieddine TH, Alaiwi SA, Gusev A, Rogers T, Gao J, Georgiou G, Kwiatkowski DJ, Stone E. Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell 2023; 41:1774-1787.e9. [PMID: 37774699 PMCID: PMC10591910 DOI: 10.1016/j.ccell.2023.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.
Collapse
Affiliation(s)
- Donjeta Gjuka
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Elio Adib
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kendra Garrison
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjiao Li
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Boutz
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Amin Nassar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Talal El Zarif
- Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil Kale
- Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA
| | - Sarah Abou Alaiwi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA.
| |
Collapse
|
140
|
Azevedo-Pouly A, Hale MA, Swift GH, Hoang CQ, Deering TG, Xue J, Wilkie TM, Murtaugh LC, MacDonald RJ. Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation. PLoS One 2023; 18:e0291512. [PMID: 37796967 PMCID: PMC10553828 DOI: 10.1371/journal.pone.0291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Collapse
Affiliation(s)
- Ana Azevedo-Pouly
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Hale
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Galvin H. Swift
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinh Q. Hoang
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tye G. Deering
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jumin Xue
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas M. Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - L. Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Raymond J. MacDonald
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
141
|
Kalliokoski T, Kettunen H, Kumpulainen E, Kettunen E, Thieulin-Pardo G, Neumann L, Thomsen M, Paul R, Malyutina A, Georgiadou M. Discovery of novel methionine adenosyltransferase 2A (MAT2A) allosteric inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 2023; 94:129450. [PMID: 37591318 DOI: 10.1016/j.bmcl.2023.129450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Methionine adenosyltransferase 2A (MAT2A) has been indicated as a drug target for oncology indications. Clinical trials with MAT2A inhibitors are currently on-going. Here, a structure-based virtual screening campaign was performed on the commercially available chemical space which yielded two novel MAT2A-inhibitor chemical series. The binding modes of the compounds were confirmed with X-ray crystallography. Both series have acceptable physicochemical properties and show nanomolar activity in the biochemical MAT2A inhibition assay and single-digit micromolar activity in the proliferation assay (MTAP -/- cell line). The identified compounds and the relating structural data could be helpful in related drug discovery projects.
Collapse
Affiliation(s)
| | | | | | | | | | - Lars Neumann
- Proteros Biostructures GmbH, Bunsenstraβe 7a, D - 82152 Martinsried, Germany
| | - Maren Thomsen
- Proteros Biostructures GmbH, Bunsenstraβe 7a, D - 82152 Martinsried, Germany
| | - Ralf Paul
- Orion Pharma, Tengströminkatu 8, 20380 Turku, Finland
| | | | | |
Collapse
|
142
|
Sun H, Tu S, Luo D, Dai C, Jin M, Chen H, Zou J, Zhou H. Protein arginine methyltransferase 5 mediates arginine symmetric dimethylation of influenza A virus PB2 and supports viral replication. J Med Virol 2023; 95:e29171. [PMID: 37830751 DOI: 10.1002/jmv.29171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.
Collapse
Affiliation(s)
- Huimin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Didan Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiahui Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
143
|
Li JY, Wang TT, Ma L, Zheng LL. CARM1 deficiency inhibits osteoblastic differentiation of bone marrow mesenchymal stem cells and delays osteogenesis in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119544. [PMID: 37468072 DOI: 10.1016/j.bbamcr.2023.119544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Bone repair remains a clinical challenge due to low osteogenic capacity. Coactivator associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that mediates arginine methylation and endochondral ossification. However, the roles of CARM1 in osteoblastic differentiation and bone remodeling have not been explored. In our study, heterozygous CARM1-knockout (KO) mice were generated using the CRISPR-Cas9 system and a model of femoral defect was created. At day 7 postsurgery, CARM1-KO mice exhibited obvious bone loss compared with wild type (WT) mice, as evidenced by reduced bone mineral density (BMD), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Deletion of CARM1 in mice lowered synthesis and accumulation of collagen at the injury sites. The alkaline phosphatase (ALP) activity and osteogenic-related gene expression were declined in CARM1-KO mice. To further understand the role of CARM1 in osteoblastic differentiation, bone marrow mesenchymal stem cells (BMSCs) were isolated from the tibia and femur of WT or CARM1-KO mice. CARM1 deletion decreased histone arginine methylation and inhibited osteoblastic differentiation and mineralization. The mRNA sequencing of CARM1-KO BMSCs revealed the possible regulatory molecules by CARM1, which could deepen our understanding of CARM1 regulatory mechanisms. These data could be of interest to basic researchers and provide the direction for future research into bone-related disorders.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Medical Cosmetology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Ting-Ting Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Li Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
144
|
Liu Y, Liu H, Ye M, Jiang M, Chen X, Song G, Ji H, Wang ZW, Zhu X. Methylation of BRD4 by PRMT1 regulates BRD4 phosphorylation and promotes ovarian cancer invasion. Cell Death Dis 2023; 14:624. [PMID: 37737256 PMCID: PMC10517134 DOI: 10.1038/s41419-023-06149-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), the major component of bromodomain and extra-terminal domain (BET) protein family, has important functions in early embryonic development and cancer development. However, the posttranslational modification of BRD4 is not well understood. Multiple approaches were used to explore the mechanism of PRMT1-mediated BRD4 methylation and to determine the biological functions of BRD4 and PRMT1 in ovarian cancer. Here we report that BRD4 is asymmetrically methylated at R179/181/183 by PRMT1, which is antagonized by the Jumonji-family demethylase, JMJD6. PRMT1 is overexpressed in ovarian cancer tissue and is a potential marker for poor prognosis in ovarian cancer patients. Silencing of PRMT1 inhibited ovarian cancer proliferation, migration, and invasion in vivo and in vitro. PRMT1-mediated BRD4 methylation was found to promote BRD4 phosphorylation. Compared to BRD4 wild-type (WT) cells, BRD4 R179/181/183K mutant-expressing cells showed reduced ovarian cancer metastasis. BRD4 arginine methylation is also associated with TGF-β signaling. Our results indicate that arginine methylation of BRD4 by PRMT1 is involved in ovarian cancer tumorigenesis. Targeting PRMT1-mediated arginine methylation may provide a novel diagnostic target and an effective therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Miaomiao Ye
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Mengying Jiang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xin Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gendi Song
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Zhi-Wei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
145
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
146
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
147
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
148
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
149
|
Franco CN, Seabrook LJ, Nguyen ST, Yang Y, Campos M, Fan Q, Cicchetto AC, Kong M, Christofk HR, Albrecht LV. Vitamin B 6 is governed by the local compartmentalization of metabolic enzymes during growth. SCIENCE ADVANCES 2023; 9:eadi2232. [PMID: 37682999 PMCID: PMC10491294 DOI: 10.1126/sciadv.adi2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Vitamin B6 is a vital micronutrient across cell types and tissues, and dysregulated B6 levels contribute to human disease. Despite its importance, how B6 vitamer levels are regulated is not well understood. Here, we provide evidence that B6 dynamics are rapidly tuned by precise compartmentation of pyridoxal kinase (PDXK), the rate-limiting B6 enzyme. We show that canonical Wnt rapidly led to the accumulation of inactive B6 by shunting cytosolic PDXK into lysosomes. PDXK was modified with methyl-arginine Degron (MrDegron), a protein tag for lysosomes, which enabled delivery via microautophagy. Hyperactive lysosomes resulted in the continuous degradation of PDXK and B6 deficiency that promoted proliferation in Wnt-driven colorectal cancer (CRC) cells. Pharmacological or genetic disruption of the coordinated MrDegron proteolytic pathway was sufficient to reduce CRC survival in cells and organoid models. In sum, this work contributes to the repertoire of micronutrient-regulated processes that enable cancer cell growth and provides insight into the functional impact of B6 deficiencies for survival.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Laurence J. Seabrook
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T. Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Andrew C. Cicchetto
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
150
|
Liu H, Dong X, Jia K, Yuan B, Ren Z, Pan X, Wu J, Li J, Zhou J, Wang RX, Qu L, Sun J, Pan LL. Protein arginine methyltransferase 5-mediated arginine methylation stabilizes Kruppel-like factor 4 to accelerate neointimal formation. Cardiovasc Res 2023; 119:2142-2156. [PMID: 37201513 DOI: 10.1093/cvr/cvad080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/28/2023] [Accepted: 03/01/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS Accumulating evidence supports the indispensable role of protein arginine methyltransferase 5 (PRMT5) in the pathological progression of several human cancers. As an important enzyme-regulating protein methylation, how PRMT5 participates in vascular remodelling remains unknown. The aim of this study was to investigate the role and underlying mechanism of PRMT5 in neointimal formation and to evaluate its potential as an effective therapeutic target for the condition. METHODS AND RESULTS Aberrant PRMT5 overexpression was positively correlated with clinical carotid arterial stenosis. Vascular smooth muscle cell (SMC)-specific PRMT5 knockout inhibited intimal hyperplasia with an enhanced expression of contractile markers in mice. Conversely, PRMT5 overexpression inhibited SMC contractile markers and promoted intimal hyperplasia. Furthermore, we showed that PRMT5 promoted SMC phenotypic switching by stabilizing Kruppel-like factor 4 (KLF4). Mechanistically, PRMT5-mediated KLF4 methylation inhibited ubiquitin-dependent proteolysis of KLF4, leading to a disruption of myocardin (MYOCD)-serum response factor (SRF) interaction and MYOCD-SRF-mediated the transcription of SMC contractile markers. CONCLUSION Our data demonstrated that PRMT5 critically mediated vascular remodelling by promoting KLF4-mediated SMC phenotypic conversion and consequently the progression of intimal hyperplasia. Therefore, PRMT5 may represent a potential therapeutic target for intimal hyperplasia-associated vascular diseases.
Collapse
Affiliation(s)
- He Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaoliang Dong
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Kunpeng Jia
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Baohui Yuan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jiahong Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, P. R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai 200003, P. R. China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| |
Collapse
|