101
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
102
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
103
|
Sun LL, Xiao L, Du XL, Hong L, Li CL, Jiao J, Li WD, Li XQ. MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression. J Cell Mol Med 2019; 23:8493-8504. [PMID: 31633295 PMCID: PMC6850951 DOI: 10.1111/jcmm.14739] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (MiRNAs, MiRs) represent a class of conserved small non-coding RNAs that affect post-transcriptional gene regulation and play a vital role in angiogenesis, proliferation, apoptosis, migration and invasion. They are essential for a wide range of physiological and pathological processes, especially for vascular diseases. However, data concerning miRNAs in endothelial progenitor cells (EPCs) and deep vein thrombosis (DVT) remain incomplete. We explored miRNAs that modulate angiogenesis in EPCs and thrombolysis, and analysed their underlying mechanisms using a DVT model, dual-luciferase reporter assay, qRT-PCR, Western blot, immunofluorescence staining, flow cytometry analysis, CCK-8 assay, angiogenesis assay, wound healing and Transwell assay. We found that miR-205 enhanced the homing ability of EPCs to DVT sites and promoted thrombosis resolution and recanalization, which significantly reduced venous thrombus. Additionally, we demonstrated that miR-205 overexpression significantly enhanced angiogenesis in vivo and in vitro, migration, invasion, F-actin filaments and proliferation in EPCs, and inhibited cell apoptosis. Conversely, down-regulation of miR-205 played the opposite role in EPCs. Importantly, this study demonstrated that miR-205 directly targeted PTEN to modulate the Akt/autophagy pathway and MMP2 expression, subsequently playing a key role in EPC function and DVT recanalization and resolution. These results elucidated the pro-angiogenesis effects of miR-205 in EPCs and established it as a potential target for DVT treatment.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Lei Hong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Long Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Jiao
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
104
|
Hsu HH, Kuo WW, Shih HN, Cheng SF, Yang CK, Chen MC, Tu CC, Viswanadha VP, Liao PH, Huang CY. FOXC1 Regulation of miR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101576. [PMID: 31623173 PMCID: PMC6827018 DOI: 10.3390/cancers11101576] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related illness worldwide and one of the most common malignancies. Therefore, colorectal cancer research and cases have gained increasing attention. Oxaliplatin (OXA) is currently used in first-line chemotherapy to treat stage III and stage IV metastatic CRC. However, patients undergoing chemotherapy often develop resistance to chemo drugs being used. Evidence has confirmed that microRNAs regulate downstream genes in cancer biology and thereby have roles related to tumor growth, proliferation, invasion, angiogenesis, and multi-drug resistance. The aim of our study is to establish whether miR-31-5p is an oncogene in human colorectal cancers that are resistant to OXA and further confirm its malignant phenotype-associated target molecule. From the results of miRNA microarray assay, we establish that miR-31-5p expression was upregulated in oxaliplatin-resistant (OR)-LoVo cells compared with parental LoVo cells. Moreover, through in vitro and in vivo experiments, we demonstrate that miR-31-5p and large tumor suppressor kinase 2 (LATS2) were inversely related and that miR-31-5p and Forkhead box C1 (FOXC1) were positively correlated in the same LoVo or OR-LoVo cells. Importantly, we reveal a novel drug-resistance mechanism in which the transcription factor FOXC1 binds to the miR-31 promoter to increase the expression of miR31-5p and regulate LATS2 expression, resulting in cancer cell resistance to OXA. These results suggest that miR-31-5p may be a novel biomarker involved in drug resistance progression in CRC patients. Moreover, the FOXC1/miR31-5p/LATS2 drug-resistance mechanism provides new treatment strategies for CRC in clinical trials.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 251, Taiwan.
- MacKay Medicine, Nursing and Management College, Taipei 104, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
| | - Hui-Nung Shih
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung 404, Taiwan.
| | - Sue-Fei Cheng
- MacKay Medicine, Nursing and Management College, Taipei 104, Taiwan.
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei 105, Taiwan.
| | - Ching-Kuo Yang
- Division of Colorectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 251, Taiwan.
| | - Ming-Cheng Chen
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung 411, Taiwan.
| | | | - Po-Hsiang Liao
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung 404, Taiwan.
- Graduate Institute of Biomedicine, China Medical University and Hospital, Taichung 404, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Biomedicine, China Medical University and Hospital, Taichung 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
105
|
Aoki H, Corn RM, Matthews B. MicroRNA detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosens Bioelectron 2019; 142:111565. [DOI: 10.1016/j.bios.2019.111565] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
|
106
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
107
|
Landrier JF, Derghal A, Mounien L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019; 8:cells8080859. [PMID: 31404962 PMCID: PMC6721826 DOI: 10.3390/cells8080859] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by the inability to properly use and/or store energy. The burdens of metabolic disease, such as obesity or diabetes, are believed to arise through a complex interplay between genetics and epigenetics predisposition, environment and nutrition. Therefore, understanding the molecular mechanisms for the onset of metabolic disease will provide new insights for prevention and treatment. There is growing concern about the dysregulation of micro-RNAs (miRNAs) in metabolic diseases. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to untranslated regions and coding sequences of the target mRNAs. This review aims to provide recent data about the potential involvement of miRNAs in metabolic diseases, particularly obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Adel Derghal
- Aix Marseille Univ, INSERM, INRA, C2VN, 13005 Marseille, France
| | - Lourdes Mounien
- Aix Marseille Univ, INSERM, INRA, C2VN, 13005 Marseille, France.
| |
Collapse
|
108
|
Xiong X, Sun Y, Wang X. HIF1A/miR‐20a‐5p/TGFβ1 axis modulates adipose‐derived stem cells in a paracrine manner to affect the angiogenesis of human dermal microvascular endothelial cells. J Cell Physiol 2019; 235:2091-2101. [PMID: 31368162 DOI: 10.1002/jcp.29111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Xiong
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Sun
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiancheng Wang
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
109
|
Expression of MicroRNAs miR-145, miR-181c, miR-199a and miR-1183 in the Blood and Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. J Mol Neurosci 2019; 69:580-587. [PMID: 31368064 DOI: 10.1007/s12031-019-01386-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to analyze the expression profiles of the microRNAs (miRNAs) miR-145, miR-181c, miR-199a and miR-1183 in the hippocampus and blood of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and to investigate whether these can be used as diagnosis and prognosis biomarkers for epilepsy. Hippocampus and blood samples were collected from 20 patients with MTLE-HS, ten of whom had a favorable surgical outcome (Engel I) and ten with an unfavorable surgical outcome (Engel III-IV). Hippocampus samples from autopsied individuals with no neurological or psychiatric medical history (necropsy samples) and blood samples from healthy individuals were used as controls. Real-time quantitative PCR (RQ-PCR) was used to analyze miRNA expression. The results showed that the expressions of these miRNAs differed quantitatively in the hippocampus and blood of patients with MTLE-HS in comparison to the respective control. This difference was most pronounced for miR-145, which was hypo-expressed in the hippocampus and hyper-expressed in the blood of MTLE-HS patients. MiRNAs miR-145, miR-181c, miR-199a and miR-1183 were hyper-expressed in the blood of patients with MTLE-HS. No statistical differences in the levels of these miRNAs in the blood or hippocampus were found between Engel I patients and Engel III-IV patients. These results suggest that the analyzed microRNAs are potential circulating biomarkers for epilepsy diagnosis.
Collapse
|
110
|
An Approach to Identify Individual Functional Single Nucleotide Polymorphisms and Isoform MicroRNAs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6193673. [PMID: 31467902 PMCID: PMC6699389 DOI: 10.1155/2019/6193673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) and single nucleotide polymorphisms (SNPs) play important roles in disease risk and development, especially cancer. Importantly, when SNPs are located in pre-miRNAs, they affect their splicing mechanism and change the function of miRNAs. To improve disease risk assessment, we propose an approach and developed a software tool, IsomiR_Find, to identify disease/phenotype-related SNPs and isomiRs in individuals. Our approach is based on the individual's samples, with SNP information extracted from the 1000 Genomes Project. SNPs were mapped to pre-miRNAs based on whole-genome coordinates and then SNP-pre-miRNA sequences were constructed. Moreover, we developed matpred2, a software tool to identify the four splicing sites of mature miRNAs. Using matpred2, we identified isomiRs and then verified them by searching within individual miRNA sequencing data. Our approach yielded biomarkers for biological experiments, mined functions of miRNAs and SNPs, improved disease risk assessment, and provided a way to achieve individualized precision medicine.
Collapse
|
111
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
112
|
Mollashahi B, Aghamaleki FS, Movafagh A. The Roles of miRNAs in Medulloblastoma: A Systematic Review. J Cancer Prev 2019; 24:79-90. [PMID: 31360688 PMCID: PMC6619858 DOI: 10.15430/jcp.2019.24.2.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is considered one of the most threatening malignant brain tumors with an extremely high mortality rate in children. In the medulloblastoma, there are several genes and mutations found to work in an unregulated manner that works together to push the cells into a cancerous state. With the discovery of non-coding RNAs such as microRNAs (miRNAs), it has been shown that a different layer of gene regulations may be disrupted which would cause cancer. This fact led scientists to put their focus on the role of miRNAs in cancer. A mature miRNA contains a seed sequence which gives the miRNA to identify and attach to the interest mRNA; this attachment may lead degradation of mRNA or suppress of translation of the mRNA. The expression of miRNAs in medulloblastoma shows that some of these non-coding RNAs are overexpressed (OncomiRs) which help cells to proliferate and keep their stemness features. On the other hand, there are other forms of these miRNAs which normally inhibit cell proliferation and promote cell differentiation (tumor suppressor). These are down-regulated during cancer progression. In this systematic review, we attempted to gather several important studies on miRNAs’ role in medulloblastoma tumors and the importance of these non-coding RNAs in the future study of cancer.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
114
|
Herrera-Carrillo E, Gao Z, Berkhout B. Influence of a 3' Terminal Ribozyme on AgoshRNA Biogenesis and Activity. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:452-462. [PMID: 31048184 PMCID: PMC6488825 DOI: 10.1016/j.omtn.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
Short hairpin RNAs (shRNAs) can induce gene silencing via the RNA interference (RNAi) mechanism. We designed an alternative shRNA molecule with a relatively short base-paired stem that bypasses Dicer and instead is processed by the Argonaute 2 (Ago2) protein into a single guide RNA strand that effectively induces RNAi. We called these molecules AgoshRNAs. Active anti-HIV AgoshRNAs were developed, but their RNAi activity was generally reduced compared with the matching shRNAs. In an attempt to further optimize the AgoshRNA design, we inserted several self-cleaving ribozymes at the 3′ terminus of the transcribed AgoshRNA and evaluated the impact on AgoshRNA processing and activity. The hepatitis delta virus (HDV) ribozyme is efficiently removed from the transcribed AgoshRNAs and generates a uniform 3′ overhang, which translates into the enhanced antiviral activity of these molecules.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Zongliang Gao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
115
|
Kumar S, Williams D, Sur S, Wang JY, Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 2019; 114:76-92. [PMID: 30300747 PMCID: PMC6905428 DOI: 10.1016/j.vph.2018.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction, ischemic stroke, and peripheral artery disease. The disease preferentially occurs in arterial regions exposed to disturbed blood flow, in part, by altering expression of flow-sensitive coding- and non-coding genes. In this review, we summarize the role of noncoding RNAs, [microRNAs (miRNAs) and long noncoding RNAs(lncRNAs)], as regulators of gene expression and outline their relationship to the pathogenesis of atherosclerosis. While miRNAs are small noncoding genes that post-transcriptionally regulate gene expression by targeting mRNA transcripts, the lncRNAs regulate gene expression by diverse mechanisms, which are still emerging and incompletely understood. We focused on multiple flow-sensitive miRNAs such as, miR-10a, -19a, -23b, -17~92, -21, -663, -92a, -143/145, -101, -126, -712, -205, and -155 that play a critical role in endothelial function and atherosclerosis by targeting inflammation, cell cycle, proliferation, migration, apoptosis, and nitric oxide signaling. Flow-dependent regulation of lncRNAs is just emerging, and their role in vascular dysfunction and atherosclerosis is unknown. Here, we discuss the flow-sensitive lncRNA STEEL along with other lncRNAs studied in the context of vascular pathophysiology and atherosclerosis such as MALAT1, MIAT1, ANRIL, MYOSLID, MEG3, SENCR, SMILR, LISPR1, and H19. Also discussed is the use of these noncoding RNAs as potential biomarkers and therapeutics to reduce and regress atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Darian Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Sanjoli Sur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Jun-Yao Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA; Division of Cardiology, Emory University, Atlanta, USA.
| |
Collapse
|
116
|
Prasad A, Kulkarni R, Shrivastava A, Jiang S, Lawson K, Groopman JE. Methamphetamine functions as a novel CD4 + T-cell activator via the sigma-1 receptor to enhance HIV-1 infection. Sci Rep 2019; 9:958. [PMID: 30700725 PMCID: PMC6353873 DOI: 10.1038/s41598-018-35757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Methamphetamine (Meth) exacerbates HIV-1 pathobiology by increasing virus transmission and replication and accelerating clinical progression to AIDS. Meth has been shown to alter the expression of HIV-1 co-receptors and impair intrinsic resistance mechanisms of immune cells. However, the exact molecular mechanisms involved in augmenting HIV-1 replication in T-cells are still not yet clear. Here, we demonstrate that pretreatment with Meth of CD4+ T-cells enhanced HIV-1 replication. We observed upregulation of CD4+ T-cell activation markers and enhanced expression of miR-34c-5p and miR-155 in these cells. Further, we noted activation of the sigma-1 receptor and enhanced intracellular Ca2+ concentration and cAMP release in CD4+ T-cells upon Meth treatment, which resulted in increased phosphorylation and nuclear translocation of transcription factors NFκB, CREB, and NFAT1. Increased gene expression of IL-4 and IL-10 was also observed in Meth treated CD4+ T-cells. Moreover, proteasomal degradation of Ago1 occurred upon Meth treatment, further substantiating the drug as an activator of T-cells. Taken together, these findings show a previously unreported mechanism whereby Meth functions as a novel T-cell activator via the sigma-1 signaling pathway, enhancing replication of HIV-1 with expression of miR-34c-5p, and transcriptional activation of NFκB, CREB and NFAT1.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kaycie Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
117
|
Pendzialek SM, Knelangen JM, Schindler M, Gürke J, Grybel KJ, Gocza E, Fischer B, Navarrete Santos A. Trophoblastic microRNAs are downregulated in a diabetic pregnancy through an inhibition of Drosha. Mol Cell Endocrinol 2019; 480:167-179. [PMID: 30447248 DOI: 10.1016/j.mce.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/11/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs are promising biological markers for prenatal diagnosis. They regulate placental development and are present in maternal plasma. Maternal metabolic diseases are major risk factors for placental deterioration. We analysed the influence of a maternal insulin-dependent diabetes mellitus on microRNA expression in maternal plasma and in blastocysts employing an in vivo rabbit diabetic pregnancy model and an in vitro embryo culture in hyperglycaemic and hypoinsulinaemic medium. Maternal diabetes led to a marked downregulation of Dicer protein in embryoblast cells and Drosha protein in trophoblast cells. MiR-27b, miR-141 and miR-191 were decreased in trophoblast cells and in maternal plasma of diabetic rabbits. In vitro studies indicate, that maternal hyperglycaemia and hypoinsulinaemia partially contribute to the downregulation of trophoblastic microRNAs. As the altered microRNA expression was detectable in maternal plasma, too, the plasma microRNA signature could serve as an early biological marker for the prediction of trophoblast function during a diabetic pregnancy.
Collapse
Affiliation(s)
- S Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany.
| | - Julia M Knelangen
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Katarzyna J Grybel
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Elen Gocza
- Agricultural Biotechnology Institute (ABC), National Agricultural Research and Innovation Centre (NARIC), Szent-Györgyi Albert u. 4, 2100, Gödöllő, Hungary
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| |
Collapse
|
118
|
Namkung J. Statistical Methods for Identifying Biomarkers from miRNA Profiles of Cancers. Methods Mol Biol 2019; 1882:261-286. [PMID: 30378062 DOI: 10.1007/978-1-4939-8879-2_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomarkers play important roles in early diagnosis and treatment plan for cancer patients and the importance is growing. With advances in high-throughput molecular profiling technology for various types of molecules such as DNA, RNA, proteins, or metabolites, it is now possible to perform massive profiling analysis that allows accelerating discovery of novel biomolecules. Because no single marker is sufficiently accurate for clinical use, the cancer biomarker is developed in the form of multiple biomarker panels. No single marker is sufficiently accurate for clinical use, and thus cancer biomarkers are developed in the form of multiple biomarker panels. Of various types of molecular biomarkers, microRNA (miRNA) has emerged as a class of promising cancer biomarker recently. MiRNAs are small noncoding RNAs that regulate gene expression. The chapter overviews the process of identification of biomarker panels from miRNA profiles focusing on statistical methods. Introduction to molecular cancer biomarkers is touched first. From sample design to miRNA profiling process is reviewed in the method section.Statistical methods for biomarker development are introduced according to three typical purposes of molecular biomarkers: tumor subtype classification, early detection, and prediction of treatment response or prognosis of patients. Example codes for R program are provided as well for selected methods.
Collapse
|
119
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
120
|
Abstract
Noncoding RNAs (ncRNAs) have received much attention due to their central role in gene expression and translational regulation as well as due to their involvement in several biological processes and disease development. Small noncoding RNAs (sncRNAs), such as microRNAs and piwiRNAs, have been thoroughly investigated and functionally characterized. Long noncoding RNAs (lncRNAs), known to play an important role in chromatin-interacting transcription regulation, posttranscriptional regulation, cell-to-cell signaling, and protein regulation, are also being investigated to further elucidate their functional roles.Next-generation sequencing (NGS) technologies have greatly aided in characterizing the ncRNAome. Moreover, the coupling of NGS technology together with bioinformatics tools has been essential to the genome-wide detection of RNA modifications in ncRNAs. RNA editing, a common human co-transcriptional and posttranscriptional modification, is a dynamic biological phenomenon able to alter the sequence and the structure of primary transcripts (both coding and noncoding RNAs) during the maturation process, consequently influencing the biogenesis, as well as the function, of ncRNAs. In particular, the dysregulation of the RNA editing machineries have been associated with the onset of human diseases.In this chapter we discuss the potential functions of ncRNA editing and describe the knowledge base and bioinformatics resources available to investigate such phenomenon.
Collapse
|
121
|
Zhao W, Yin CY, Jiang J, Kong W, Xu H, Zhang H. MicroRNA-153 suppresses cell invasion by targeting SNAI1 and predicts patient prognosis in glioma. Oncol Lett 2018; 17:1189-1195. [PMID: 30655883 PMCID: PMC6313079 DOI: 10.3892/ol.2018.9706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common and rapidly progressive type of malignant primary brain tumor in adults. miR-153 plays a major role in many malignancies; nevertheless, few studies have been conducted on glioma. The aim of the present study was to explore the role of miR-153 and SNAI1 on invasion in glioma. Reverse transcription-quantitative PCR was employed to measure the expression levels of miR-153 and SNAI1 mRNA. Transwell assay was utilized to calculate the capacity of invasion. Luciferase report assay was applied to detect whether SNAI1 was a target of miR-153. miR-153 was downregulated in glioma tissues and cells versus paracancerous tissues and normal immortalized gliocyte HEB cells. Transwell assay was used to measure whether a low expression of miR-153 in glioma indicated inhibition of cell invasion. We verified that SNAI1 was a target of miR-153 and had a negative association with miR-153 detected by luciferase reporter assay. Additionally, miR-153 suppressed cell invasive ability by regulating SNAI1 expression, whose partial function was reversed by SNAI1. miR-153 suppressed cell invasion of glioma by directly targeting SNAI1. Thus, miR-153/SNAI1 axis may be a novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Chang-You Yin
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jing Jiang
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Kong
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Hao Xu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Hongtao Zhang
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
122
|
Polypyrimidine tract-binding protein blocks miRNA-124 biogenesis to enforce its neuronal-specific expression in the mouse. Proc Natl Acad Sci U S A 2018; 115:E11061-E11070. [PMID: 30401736 DOI: 10.1073/pnas.1809609115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miRNA)-124 is expressed in neurons, where it represses genes inhibitory for neuronal differentiation, including the RNA binding protein PTBP1. PTBP1 maintains nonneuronal splicing patterns of mRNAs that switch to neuronal isoforms upon neuronal differentiation. We find that primary (pri)-miR-124-1 is expressed in mouse embryonic stem cells where mature miR-124 is absent. PTBP1 binds to this precursor RNA upstream of the miRNA stem-loop to inhibit mature miR-124 expression in vivo and DROSHA cleavage of pri-miR-124-1 in vitro. This function for PTBP1 in repressing miR-124 biogenesis defines an additional regulatory loop in the already intricate interplay between these two molecules. Applying mathematical modeling to examine the dynamics of this regulation, we find that the pool of pri-miR-124 whose maturation is blocked by PTBP1 creates a robust and self-reinforcing transition in gene expression as PTBP1 is depleted during early neuronal differentiation. While interlocking regulatory loops are often found between miRNAs and transcriptional regulators, our results indicate that miRNA targeting of posttranscriptional regulators also reinforces developmental decisions. Notably, induction of neuronal differentiation observed upon PTBP1 knockdown likely results from direct derepression of miR-124, in addition to indirect effects previously described.
Collapse
|
123
|
MicroRNA expression profiling of dibenzalacetone (DBA) treated intracellular amastigotes of Leishmania donovani. Exp Parasitol 2018; 193:5-19. [DOI: 10.1016/j.exppara.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
|
124
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
125
|
Gupta SK, Maclean PH, Ganesh S, Shu D, Buddle BM, Wedlock DN, Heiser A. Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne's disease. J Dairy Sci 2018; 101:10259-10270. [PMID: 30197143 DOI: 10.3168/jds.2018-14785] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/14/2018] [Indexed: 12/27/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease in ruminants, which is characterized by chronic progressive granulomatous enteritis. The infection leads to wasting and weight loss in the animals and eventually death, causing considerable production losses to the agricultural industry worldwide. Currently available ELISA- and PCR-based diagnostic tests have limited sensitivity and specificity during early MAP infection in cattle, suggesting that there is an urgent demand for alternative diagnostic tests. Circulating microRNA (miRNA) have recently gained attention as potential biomarkers for several diseases in humans. However, knowledge and use of miRNA as biomarkers in diseases of ruminants, including Johne's disease, are very limited. Here we used NanoString nCounter technology (NanoString, Seattle, WA), a digital platform for amplification-free and hybridization-based quantitative measurement of miRNA in the sera of noninfected and naturally MAP-infected cattle with different severity of infection. Using probes developed against human miRNA, 26 miRNA were detected in cattle serum; 13 of these miRNA were previously uncharacterized for cattle. Canonical discrimination analysis using 20 miRNA grouped animals into 4 distinct clusters based on their disease status, suggesting that the levels of these miRNA can reflect disease severity. A model was developed using a combination of 4 miRNA (miR-1976, miR-873-3p, miR-520f-3p, and miR-126-3p), which distinguished moderate and severely infected animals from noninfected animals. Our study demonstrated the ability of the NanoString nCounter technology to detect differential expression of circulating miRNA in cattle and contributes to widely growing evidence that miRNA can be used as biomarkers in infectious diseases in cattle.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Animal Health, AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand.
| | - Paul H Maclean
- Bioinformatics and Statistics, AgResearch, Lincoln Research Centre, Private Bag 4749, Lincoln 7608, New Zealand
| | - Siva Ganesh
- Bioinformatics and Statistics, AgResearch, Lincoln Research Centre, Private Bag 4749, Lincoln 7608, New Zealand
| | - Dairu Shu
- Animal Health, AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Bryce M Buddle
- Animal Health, AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - D Neil Wedlock
- Animal Health, AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Axel Heiser
- Animal Health, AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
126
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
127
|
Pei T, Liu C, Liu T, Xiao L, Luo B, Tan J, Li X, Zhou G, Duan C, Huang W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium From Women With Endometriosis. Endocrinology 2018; 159:2554-2562. [PMID: 29762665 DOI: 10.1210/en.2018-00374] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
Progesterone resistance in the eutopic endometrium (EuE) is suggested to be a critical factor for decreased endometrial receptivity and implantation failure in reproductive-aged women with endometriosis. Altered expression of miRNAs has been reported to play an important role in the pathophysiology of endometriosis-associated infertility. However, the underlying mechanisms of aberrant progesterone receptor (PR) and deficient decidualization regulated by miRNAs in endometriosis have not been thoroughly elucidated. The goal of this study was to explore the regulation and roles of miR-194-3p in aberrant PR expression and impaired decidualization in endometrial stromal cells (ESCs) from the EuE of women with mild or minimal endometriosis. Using a series of studies, we observed decreased PR mRNA expression and an increasing PR-A/PR-B mRNA ratio trend in the midsecretory phase of the EuE of women with minimal or mild endometriosis (n = 19) compared with controls (n = 14); the increased expression of miR-194-3p in the endometriosis group was consistent with previous microarray analysis. We also found that PR protein levels were inhibited by the transfection of ESCs with an miR-194-3p mimic and upregulated by miR-194-3p inhibition. As predicted by the bioinformatic analysis, the 3'-untranslated region luciferase assay indicated the direct regulation of PR expression by miR-194-3p. Furthermore, miR-194-3p overexpression inhibited the in vitro decidualization of ESCs via both cellular morphological changes and prolactin levels. Therefore, our study demonstrated that miR-194-3p contributes to progesterone resistance in endometriosis, which hinders fertility by repressing the levels of PR and decidualization in the EuE. Thus, miR-194-3p regulation is a future therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bin Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xueying Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Guojun Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changling Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
128
|
Splicing factors as regulators of miRNA biogenesis – links to human disease. Semin Cell Dev Biol 2018; 79:113-122. [DOI: 10.1016/j.semcdb.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
129
|
Kalariya N, Brassil K, Calin G. MicroRNAs: Clinical Trials and Potential Applications
. Clin J Oncol Nurs 2018; 21:554-559. [PMID: 28945717 DOI: 10.1188/17.cjon.554-559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs are novel biomolecules with a crucial function in normal cellular physiology and in pathophysiologic conditions, including cancer. Since the first report on the link between microRNAs and cancer was published in 2002, research has revealed the potential clinical implications of microRNAs. Oncology nurses play an important role in educating patients and their families about possible applications of microRNAs in oncology.
.
Collapse
|
130
|
Mex-3B induces apoptosis by inhibiting miR-92a access to the Bim-3'UTR. Oncogene 2018; 37:5233-5247. [PMID: 29849121 DOI: 10.1038/s41388-018-0336-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/12/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Cells respond to a variety of cellular stresses, including DNA damage, by regulating genes whose expression modulates cell cycle arrest, DNA repair, senescence, and/or apoptosis. MicroRNAs (miRNAs) play essential roles in both normal development and disease pathogenesis by destabilizing mRNAs and inhibiting translation. In turn, miRNA biogenesis, turnover, and activity can be regulated by specific RNA-binding proteins. Here we show that Mex-3B, an hnRNP K homology (KH) domain-containing RNA-binding protein, critically modulates DNA stress-induced apoptosis by posttranscriptionally upregulating the pro-apoptotic BH3 (Bcl-2 homology region 3)-only family member Bim. Furthermore, our data indicate that binding of Mex-3B to the 3'-untranslated region (3'UTR) of Bim interferes with the interaction of an Argonaute (Ago)-miR-92a complex with a miR-92a target site present in the Bim RNA. Our results provide novel insights into the posttranscriptional mechanisms that are critical for cellular stress responses.
Collapse
|
131
|
Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IN, Krasnodubets AM, Gal'chinsky NV, Fomochkina II, Zaitsev AS, Bekirova VV, Seidosmanova EE, Dydik KI, Meshcheryakova AO, Nazarov SA, Smagliy NN, Chelengerova EL, Kulanova AA, Deri K, Subbotkin MV, Useinov RZ, Shumskykh MN, Kubyshkin AV. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules 2018; 23:E1302. [PMID: 29844255 PMCID: PMC6099785 DOI: 10.3390/molecules23061302] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products.
Collapse
MESH Headings
- Agriculture/methods
- Animals
- Biological Control Agents/chemical synthesis
- Biological Control Agents/history
- Biological Control Agents/pharmacology
- DNA/antagonists & inhibitors
- DNA/genetics
- DNA/metabolism
- Forestry/methods
- Gene Expression Regulation/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Moths/drug effects
- Moths/genetics
- Moths/growth & development
- Moths/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neuromuscular Agents/chemical synthesis
- Neuromuscular Agents/history
- Neuromuscular Agents/therapeutic use
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 29500 Simferopol, Crimea.
| | - Igor M Kenyo
- Academy of Bioresources and Environmental Management of V.I. Vernadsky Crimean Federal University, 95492 Agrarnoye, Crimea.
| | - Mikhail V Gorlov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia.
| | - Igor N Kasich
- Rostov State Medical University, Nakhchivan Lane 29, 344022 Rostov-on-Don, Russia.
| | - Alisa M Krasnodubets
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Eleonora E Seidosmanova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Ksenia I Dydik
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anna O Meshcheryakova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Sergey A Nazarov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Natalya N Smagliy
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Edie L Chelengerova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Alina A Kulanova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Karim Deri
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Mikhail V Subbotkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Refat Z Useinov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| |
Collapse
|
132
|
Hurtado A, Real FM, Palomino R, Carmona FD, Burgos M, Jiménez R, Barrionuevo FJ. Sertoli cell-specific ablation of miR-17-92 cluster significantly alters whole testis transcriptome without apparent phenotypic effects. PLoS One 2018; 13:e0197685. [PMID: 29795630 PMCID: PMC5967698 DOI: 10.1371/journal.pone.0197685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are frequently organized into polycistronic clusters whose transcription is controlled by a single promoter. The miR-17-92 cluster is expressed in most embryonic and postnatal organs. It is a potent oncogene associated to several types of cancer and it is involved in several important developmental processes. In the testis, expression of the miR-17-92 cluster in the germ cells is necessary to maintain normal spermatogenesis. This cluster is also expressed in Sertoli cells (the somatic cells of the seminiferous tubules), which require miRNAs for correct cell development and survival. To study the possible role of miR-17-92 in Sertoli cell development and function and, in order to overcome the postnatal lethality of miR-17-92-/ mice, we conditionally deleted it in embryonic Sertoli cells shortly after the sex determination stage using an Amh-Cre allele. Mutant mice developed apparently normal testes and were fertile, but their testis transcriptomes contained hundreds of moderately deregulated genes, indicating that testis homeostasis is tightly controlled in mammals and that miR-17-92 expression in Sertoli cells contribute to maintain normal gene expression levels, but is unnecessary for testis development and function. Our results show that significant deregulation of hundreds of genes might have no functional consequences.
Collapse
Affiliation(s)
- Alicia Hurtado
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisca M. Real
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Rogelio Palomino
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Universidad de Granada,Centro de Investigación Biomédica,Armilla, Granada, Spain
| | - Francisco David Carmona
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisco J. Barrionuevo
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| |
Collapse
|
133
|
Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. Eur J Pharmacol 2018; 830:1-8. [PMID: 29678719 DOI: 10.1016/j.ejphar.2018.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Osteoarthritis (OA) is common age-associated disease, and associated with joint pain, mobility limitations and compromised overall quality of life. OA treatment is currently limited to pain management and joint arthroplasty at end stage disease. Oxidative damage to cartilage extracellular matrix and cells is an important mechanism in joint aging and OA pathogenesis. Evidence from in vitro and in vivo models of OA suggests that pharmaceuticals and natural compounds with antioxidant properties reduce expression of mediators of OA pathogenesis and OA severity in animal models. Among the signaling pathways that control cellular protective mechanisms against oxygen radical damage is heme oxygenase-1 (HO-1). We recently report HO-1 reduced OA severity in a mouse model. This led to the hypothesis that compounds that increase HO-1 expression have therapeutic potential in OA. Carnosic acid (CA), a natural diterpene with oxidant activity, is prevents cartilage degeneration though induction of HO-1. CA induced HO-1 and miR-140 expression in human articular chondrocytes, and cartilage degeneration was attenuated by CA treatment. Induced HO-1 by CA was in part associated with downregulation via miR-140 binding to 3'UTR of BTB and CNC homology 1 (BACH1). These findings suggest that CA attenuates cartilage degradation through HO-1 upregulation and has potential as a supplement for OA prevention.
Collapse
|
134
|
Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 2018; 118:225-236. [PMID: 29627294 DOI: 10.1016/j.yjmcc.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize β-adrenergic receptor (βAR) signaling, β-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the β-arrestin-biased βAR ligand carvedilol, we previously showed that β-arrestin1 (not β-arrestin2)-biased β1AR (not β2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes β-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE Here, we investigate whether β-arrestin-mediated βAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a β-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on β2ARs and β1ARs, respectively. Mechanistically, β-arrestin 1 or 2 regulates maturation of three newly identified βAR/β-arrestin-responsive miRs (β-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of β-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, β-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS Our findings indicate a novel role for βAR-mediated β-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Tatsuya Aonuma
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yanyan Xu
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - John A Johnson
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
135
|
Magrì A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem 2018; 6:108. [PMID: 29682501 PMCID: PMC5897536 DOI: 10.3389/fchem.2018.00108] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Collapse
Affiliation(s)
- Andrea Magrì
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| |
Collapse
|
136
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC PLANT BIOLOGY 2018; 18:52. [PMID: 29587648 PMCID: PMC5870505 DOI: 10.1186/s12870-018-1242-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low temperature is a major abiotic stress affecting the production of rapeseed in China by impeding plant growth and development. A comprehensive knowledge of small-RNA expression pattern in Brassica rapa under cold stress could improve our knowledge of microRNA-mediated stress responses. RESULTS A total of 353 cold-responsive miRNAs, 84 putative novel and 269 conserved miRNAs, were identified from the leaves and roots of two winter turnip rape varieties 'Longyou 7' (cold-tolerant) and 'Tianyou 4' (cold-sensitive), which were stressed under - 4 °C for 8 h. Eight conserved (miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d, miR156a-5p, miR396h, miR845a-1, miR166u) and two novel miRNAs (Bra-novel-miR3153-5p and Bra-novel-miR3172-5p) were differentially expressed in leaves of 'Longyou 7' under cold stress. Bra-novel-miR3936-5p was up-regulated in roots of 'Longyou 7' under cold stress. Four and five conserved miRNAs were differentially expressed in leaves and roots of 'Tianyou 4' after cold stress. Besides, we found two conserved miRNAs (miR319e and miR166m-2) were down-regulated in non-stressed roots of 'Longyou 7' compared with 'Tianyou 4'. After cold stress, we found two and eight miRNAs were differentially expressed in leaves and roots of 'Longyou 7' compared with 'Tianyou 4'. The differentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR166 and miR319 families. A total of 211 target genes for 15 known miRNAs and two novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Five differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR, and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR166e, miR319, and Bra-novel-miR3936-5p) may play important roles in plant response to cold stress. CONCLUSIONS Our work indicates that miRNA and putative target genes mediated metabolic processes and stress responses are significant to cold tolerance in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Fenqin Zhang
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Li Ma
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
137
|
Sun Z, Li M, Zhou Y, Guo T, Liu Y, Zhang H, Fang Y. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4. PLoS Genet 2018. [PMID: 29522510 PMCID: PMC5862502 DOI: 10.1371/journal.pgen.1007247] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. External light and internal miRNAs are important for plant development. This study revealed that the miRNA-processing enzyme DCL1 interacts with the red-light-regulated transcription factor PIF4, which modulates the stability of DCL1 during dark-to-red-light or red-light-to-dark transitions and acts as a transcription factor for some miRNA genes. This study revealed that DCL1 and mature miRNAs play roles in the red light signaling pathway to regulate plant photomorphogenesis. These results shed light on the crosstalk between miRNA and red light signaling pathways.
Collapse
Affiliation(s)
- Zhenfei Sun
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Min Li
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Tongtong Guo
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yin Liu
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yuda Fang
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
138
|
Clustering Pattern and Functional Effect of SNPs in Human miRNA Seed Regions. Int J Genomics 2018; 2018:2456076. [PMID: 29693000 PMCID: PMC5859846 DOI: 10.1155/2018/2456076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022] Open
Abstract
miRNAs are a class of noncoding RNAs important in posttranscriptional repressors and involved in the regulation of almost every biological process by base paring with target genes through sequence in their seed regions. Genetic variations in the seed regions have vital effects on gene expression, phenotypic variation, and disease susceptibility in humans. The distribution pattern of genetic variation in miRNA seed regions might be related to miRNA function and is worth paying more attention to. We here employed computational analyses to explore the clustering pattern and functional effect of SNPs in human miRNA seed regions. A total of 1879 SNPs were mapped to 1226 human miRNA seed regions. We found that miRNAs with SNPs in their seed region are significantly enriched in miRNA clusters. We also found that SNPs in clustered miRNA seed regions have a lower functional effect than have SNPs in nonclustered miRNA seed regions. Additionally, we found that clustered miRNAs with SNPs in seed regions are involved in more pathways. Overall, our results demonstrate that SNPs in clustered miRNA seed regions can take part in more intricate and complex gene-regulating networks with lower functional cost by functional complementarity. Moreover, our results also broaden current knowledge on the genetic variation in human miRNA seed regions.
Collapse
|
139
|
Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 2018; 33:1554-1560. [PMID: 28108447 DOI: 10.1093/bioinformatics/btx019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Motivation MicroRNAs (miRNAs) are small non-coding RNAs that are involved in post-transcriptional regulation of gene expression. In this high-throughput sequencing era, a tremendous amount of RNA-seq data is accumulating, and full utilization of publicly available miRNA data is an important challenge. These data are useful to determine expression values for each miRNA, but quantification pipelines are in a primitive stage and still evolving; there are many factors that affect expression values significantly. Results We used 304 high-quality microRNA sequencing (miRNA-seq) datasets from NCBI-SRA and calculated expression profiles for different tissues and cell-lines. In each miRNA-seq dataset, we found an average of more than 500 miRNAs with higher than 5x coverage, and we explored the top five highly expressed miRNAs in each tissue and cell-line. This user-friendly miRmine database has options to retrieve expression profiles of single or multiple miRNAs for a specific tissue or cell-line, either normal or with disease information. Results can be displayed in multiple interactive, graphical and downloadable formats. Availability and Implementation http://guanlab.ccmb.med.umich.edu/mirmine. Contact bharatpa@umich.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
140
|
Abstract
Fibrosis is a common pathological state characterized by the excessive accumulation of extracellular matrix components, but the pathogenesis of the disease is still not clear. Previous studies have shown that microRNA-29 (miR-29) can play pivotal roles in the regulation of a variety of organ fibrosis, including cardiac fibrosis, hepatic fibrosis, lung fibrosis, systemic sclerosis, and keloid. In this review, we outline the structure, expression, and regulation of miR-29 as well as its role in fibrotic diseases.
Collapse
|
141
|
Ding Y, Wang ZC, Zheng Y, Hu Z, Li Y, Luo DF, Wang SY. C-Myc functions as a competing endogenous RNA in acute promyelocytic leukemia. Oncotarget 2018; 7:56422-56430. [PMID: 27486764 PMCID: PMC5302924 DOI: 10.18632/oncotarget.10896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Recent reports have described a new post-transcriptional regulation that RNA transcripts can crosstalk with each other by competing for their common microRNAs. These RNA transcripts termed competing endogenous RNAs (ceRNAs) regulate the distribution of miRNAs on their targets. One corollary from ceRNA interaction is that chromosomal translocation in acute promyelocytic leukemia (APL) would perturb ceRNA regulation due to altered expression of 3'UTRs. In our study, we demonstrate that expression of PML/RARα, the APL-associated fusion oncogene is repressed by c-Myc mRNA transcript independent of protein-coding function but dependent upon microRNA. Attenuation of c-Myc transcript results in PML/RARα-degraded cellular phenotypes in APL cells, but these Myc reduction-associated cell phenotypes are sufficient to abrogate in a microRNA dependent manner. We also show that let-7 microRNA family members promote differentiation of All-Trans-Retinoic Acid (ATRA)-induced NB4 cells and their activities are affected by expression levels of both c-Myc and PML/RARα through altering miRNA targets. These results indicate that c-Myc mRNA represses PML/RARα expression via altering the distribution of let-7 miRNAs on their targets. Our findings reveal a previously unrecognized role of c-Myc as a potential ceRNA for PML/RARα in APL.
Collapse
Affiliation(s)
- Ye Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Ze-Chuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yi Zheng
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Zheng Hu
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Dong-Feng Luo
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Shao-Yuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
142
|
Hsu PC, Chiou BH, Huang CM. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome. PeerJ 2018; 6:e4138. [PMID: 29312814 PMCID: PMC5757418 DOI: 10.7717/peerj.4138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 01/23/2023] Open
Abstract
Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs) in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3′ untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes, and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.
Collapse
Affiliation(s)
- Pei-Chun Hsu
- Department of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Bin-Hao Chiou
- Department of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Chun-Ming Huang
- Department of Medicine, Division of Dermatology, University of California, San Diego, CA, United States of America
| |
Collapse
|
143
|
Abstract
Majority of RNAs expressed in animal cells lack protein-coding ability. Unlike other cellular RNAs, circular (circ)RNAs include a large family of noncoding (nc)RNAs that lack the 5' or 3' ends. The improvements in high-throughput RNA sequencing and novel bioinformatics tools have led to the identification of thousands of circRNAs in various organisms. CircRNAs can regulate gene expression by influencing the transcription, the mRNA turnover, and translation by sponging RNA-binding proteins and microRNAs. Given the broad impact of circRNA on miRNA activity, there is huge interest in understanding the impact of miRNA sponging by circRNA on gene regulation. In this review, we summarize our current knowledge of the miRNA-circRNA interaction and mechanisms that influence gene expression.
Collapse
|
144
|
Abstract
The vital role of microRNAs (miRNAs) involved in gene expression regulation has been confirmed in many biological processes. With the growing power and reducing cost of next-generation sequencing, more and more researchers turn to apply this high-throughput method to solve their biological problems. For miRNAs with known sequences, their expression profiles can be generated from the sequencing data. It also allows us to identify some novel miRNAs and explore the sequence variations under different conditions. Currently, there are a handful of tools available to analyze the miRNA sequencing data with separated or combined features, such as reads preprocessing, mapping and differential expression analysis. However, to our knowledge, a hands-on guideline for miRNA sequencing data analysis covering all steps is not available. Here we will utilize a set of published tools to perform the miRNA analysis with detailed explanation. Particularly, the miRNA target prediction and annotation may provide useful information for further experimental verification.
Collapse
Affiliation(s)
- Xiaonan Fu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.
| | - Daoyuan Dong
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA.
| |
Collapse
|
145
|
Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Natl Acad Sci U S A 2017; 115:E244-E252. [PMID: 29263096 DOI: 10.1073/pnas.1718759114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.
Collapse
|
146
|
Chen G, Wang D, Zhao X, Cao J, Zhao Y, Wang F, Bai J, Luo D, Li L. miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling. Cancer Cell Int 2017; 17:118. [PMID: 29234238 PMCID: PMC5721693 DOI: 10.1186/s12935-017-0469-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/20/2017] [Indexed: 01/28/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC. Methods miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis. Results Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins. Conclusion Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Dongdong Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Xiongqi Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Jun Cao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Yingpeng Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Fan Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Jianhua Bai
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Ding Luo
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| |
Collapse
|
147
|
Eldeib MG, Kandil YI, Abdelghany TM, Mansour OA, El-Zahabi MM. Alterations of microRNAs expression in response to 5-Fluorouracil, Oxaliplatin, and Irinotecan treatment of colorectal cancer cells. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
148
|
Paiva S, Agbulut O. MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Front Cardiovasc Med 2017; 4:73. [PMID: 29209617 PMCID: PMC5701911 DOI: 10.3389/fcvm.2017.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
At present, cardiovascular diseases are depicted to be the leading cause of death worldwide according to the World Health Organization. In the future, projections predict that ischemic heart disease will persist in the top main causes of illness. Within this alarming context, some tiny master regulators of gene expression programs, namely, microRNAs (miRNAs) carry three promising potentials. In fact, miRNAs can prove to be useful not only in terms of biomarkers allowing heart injury detection but also in terms of therapeutics to overcome limitations of past strategies and treat the lesions. In a more creative approach, they can even be used in the area of human engineered cardiac tissues as maturation tools for cardiomyocytes (CMs) derived from pluripotent stem cell. Very promising not only for patient-specific cell-based therapies but also to develop biomimetic microsystems for disease modeling and drug screening, these cells greatly contribute to personalized medicine. To get into the heart of the matter, the focus of this review lies primarily on miRNAs as acute myocardial infarction (AMI) biomarkers. Only large cohort studies comprising over 100 individuals to reach a potent statistical value were considered. Certain miRNAs appeared to possibly complement protein-based biomarkers and classical risk factors. Some were even described to bear potential in the discrimination of similar symptomatic pathologies. However, differences between pre-analytical and analytical approaches substantially influenced miRNA data. Further supported by meta-analysis studies, this problem had to be addressed. A detailed critical analysis of each step to define miRNAs biomarker potential is provided to inspire a future improved universal strategy. Interestingly, a recurrent set of cardiomyocyte-enriched miRNAs was found, namely, miR-1; miR-133; miR-208a/b; and miR-499a. Each member of this myomiRs group displayed promising roles either individually or in combination as AMI diagnostic or prognostic biomarkers. Furthermore, a precise combo was shown to be powerful enough to transdifferentiate human fibroblasts into CMs opening doors in the therapeutics. Following these discoveries, they also emerged as optional tools to transfect in order to mature CMs derived from pluripotent stem cells. Ultimately, the multiple potentials carried by the myomiRs miR-1; miR-133; miR-208a/b; and miR-499a still remain to be fully unveiled.
Collapse
Affiliation(s)
- Solenne Paiva
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Aging, Paris, France
| |
Collapse
|
149
|
Chen G, Huang P, Xie J, Li R. microRNA‑211 suppresses the growth and metastasis of cervical cancer by directly targeting ZEB1. Mol Med Rep 2017; 17:1275-1282. [PMID: 29115509 DOI: 10.3892/mmr.2017.8006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
Of gynecological cancers, cervical cancer has the second highest incidence globally and is a major cause of cancer‑associated mortality in women. An increasing number of studies have reported that microRNAs (miRNAs) have important roles in cervical cancer carcinogenesis and progression through regulation of various critical protein‑coding genes. The aim of the present study was to investigate the expression and biological roles of miRNA‑211 (miR‑211) in cervical cancer and its underlying molecular mechanism. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) demonstrated that the expression levels of miR‑211 in cervical cancer tissues and cell lines were significantly lower compared with adjacent normal tissues and the normal human cervix epithelial cell line, respectively. Furthermore, upregulation of miR‑211 by transfection with miR‑211 mimics inhibited cell proliferation, migration and invasion of cervical cancer, as determined by MTT, Transwell and Matrigel assays, respectively. Bioinformatics analysis and luciferase reporter assay results indicated that zinc finger E‑box binding homeobox 1 (ZEB1) may be a direct target gene of miR‑211. In addition, RT‑qPCR and western blot analysis results demonstrated that miR‑211 overexpression markedly reduced ZEB1 expression at mRNA and protein levels in cervical cancer. Furthermore, the effects of ZEB1 downregulation on the proliferation, migration and invasion of cervical cancer cells were similar to those induced by miR‑211 overexpression. These results indicate that miR‑211 may act as a tumor suppressor in cervical cancer by directly targeting ZEB1. Therefore, miR‑211/ZEB1‑based targeted therapy may represent a potential novel treatment for patients with cervical cancer.
Collapse
Affiliation(s)
- Guangyuan Chen
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Ping Huang
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Jiabin Xie
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| | - Rihong Li
- Department of Gynaecology, Songgang People's Hospital, Shenzhen, Guangdong 518105, P.R. China
| |
Collapse
|
150
|
Herrera-Carrillo E, Harwig A, Berkhout B. Influence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity. RNA Biol 2017; 14:1559-1569. [PMID: 28569591 PMCID: PMC5785215 DOI: 10.1080/15476286.2017.1328349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used for gene silencing by the RNA interference (RNAi) mechanism. The shRNA precursor is processed by the Dicer enzyme into active small interfering RNAs (siRNAs) that subsequently target a complementary mRNA for cleavage by the Argonaute 2 (Ago2) complex. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer and are instead processed by Ago2. We termed these molecules AgoshRNAs as both processing and silencing steps are mediated by Ago2 and proposed rules for the design of effective AgoshRNA molecules. Active and non-cytotoxic AgoshRNAs against HIV-1 RNA were generated, but their silencing activity was generally reduced compared with the matching shRNAs. Thus, further optimization of the AgoshRNA design is needed. In this study, we evaluated the importance of the single-stranded loop, in particular its size and nucleotide sequence, in AgoshRNA-mediated silencing. We document that the pyrimidine/purine content is important for AgoshRNA-mediated silencing activity.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Alex Harwig
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Ben Berkhout
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| |
Collapse
|