101
|
Ho WM, Akyol O, Reis H, Reis C, McBride D, Thome C, Zhang J. Autophagy after Subarachnoid Hemorrhage: Can Cell Death be Good? Curr Neuropharmacol 2018; 16:1314-1319. [PMID: 29173174 PMCID: PMC6251054 DOI: 10.2174/1570159x15666171123200646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/30/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autophagy is a prosurvival, reparative process that maintainsww cellular homeostasis through lysosomal degradation of selected cytoplasmic components and programmed death of old, dysfunctional, or unnecessary cytoplasmic entities. According to growing evidence, autophagy shows beneficial effects following subarachnoid hemorrhage (SAH). SAH is considered one of the most devastating forms of stroke. METHODS In this review lies in revealing the pathophysiological pathways and the effects of autophagy. Current results from animal studies will be discussed focusing on the effects of inhibitors and inducers of autophagy. In addition, this review discusses the clinical translation of potential neuropharmacological targets that can help prevent early brain injury (EBI) following SAH by incorporating programmed cell death into clinical management. RESULTS Published data showed that autophagy mechanisms have a prosurvival effect to reduce apoptotic cell death after SAH. However, if SAH exceeds a certain stress threshold, autophagy mechanisms lead to increased apoptotic cell death, more brain injury, and worse outcome. CONCLUSION Future investigation on the differences and molecular switches between protective mechanisms of autophagy and excessive "self-eating" autophagy leading to cell death is needed to achieve more insight into the complex pathophysiology of brain injury after SAH. If autophagy after SAH can be controlled to lead to beneficial effects only, as the physiological self-control mechanism, this could be an important target for treatment.
Collapse
Affiliation(s)
- Wing-Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Haley Reis
- Loma Linda University School of Medicine, Loma Linda, United States
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, United States
| | - Devin McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Claudius Thome
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| |
Collapse
|
102
|
Shinohara H, Minami Y, Naoe T, Akao Y. Autophagic degradation determines the fate of T315I-mutated BCR-ABL protein. Haematologica 2018; 104:e191-e194. [PMID: 30467207 DOI: 10.3324/haematol.2018.194431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Chiba.,Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Naka-ku, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido
| |
Collapse
|
103
|
Akkoç Y, Gözüaçık D. Autophagy and liver cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 29:270-282. [PMID: 29755011 DOI: 10.5152/tjg.2018.150318] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a key biological phenomenon conserved from yeast to mammals. Under basal conditions, activation of autophagy leads to the protein degradation as well as damaged organelles for maintaining cellular homeostasis. Deregulation of autophagy has been identified as a key mechanism contributing to the pathogenesis and progression of several liver diseases, including hepatocellular carcinoma (HCC), one of the most common and mortal types of cancer. Currently used treatment strategies in patients with HCC result in variable success rates. Therefore, novel early diagnosis and treatment techniques should be developed. Manipulation of autophagy may improve responses of cancer cell to treatments and provide novel targeted therapy options for HCC. In this review, we summarized how our understanding of autophagy-cell death connection may have an impact on HCC therapy.
Collapse
Affiliation(s)
- Yunus Akkoç
- Department of Molecular Biology, Genetics and Bioengineering, Sabancı University School of Engineering and Natural Sciences, İstanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, İstanbul, Turkey
| | - Devrim Gözüaçık
- Department of Molecular Biology, Genetics and Bioengineering, Sabancı University School of Engineering and Natural Sciences, İstanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, İstanbul, Turkey
| |
Collapse
|
104
|
Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:175-189. [PMID: 30389373 DOI: 10.1016/j.bbamcr.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
Abstract
Overcoming apoptosis resistance is one major issue in glioblastoma (GB) therapies. Accumulating evidence indicates that resistance to apoptosis in GB is mediated via upregulation of pro-survival BCL2-family members. The synthetic BH3-mimetic ABT-737 effectively targets BCL2, BCL2 like 1 and BCL2 like 2 but still barely affects cell survival which is presumably due to its inability to inhibit myeloid cell leukemia 1 (MCL1). The constitutively active serine/threonine kinase proviral integration site for moloney murine leukemia virus 1 (PIM1) was recently found to be overexpressed in GB patient samples and to maintain cell survival in these tumors. For different GB cell lines, Western Blot, mitochondrial fractionation, fluorescence microscopy, effector caspase assays, flow cytometry, and an adult organotypic brain slice transplantation model were used to investigate the putative PIM1/MCL1 signaling axis regarding potential synergistic effects with ABT-737. We demonstrate that combination of the PIM1 inhibitor SGI-1776 or the pan-PIM kinase inhibitor AZD1208 with ABT-737 strongly sensitizes GB cells to apoptosis. Unexpectedly, this effect was found to be MCL1-independent, but could be partially blocked by caspase 8 (CASP8) inhibition. Remarkably, the analysis of autophagy markers in combination with the observation of massive accumulation and hampered degradation of autophagosomes suggests a completely novel function of PIM1 as a late stage autophagy regulator, maintaining the autophagic flux at the level of autophagosome/lysosome fusion. Our data indicate that PIM1 inhibition and ABT-737 synergistically induce apoptosis in an MCL1-independent but CASP8-dependent manner in GB. They also identify PIM1 as a suitable target for overcoming apoptosis resistance in GB.
Collapse
|
105
|
Dendo K, Yugawa T, Nakahara T, Ohno SI, Goshima N, Arakawa H, Kiyono T. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression. Carcinogenesis 2018; 39:202-213. [PMID: 29106503 PMCID: PMC5862353 DOI: 10.1093/carcin/bgx124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers.
Collapse
Affiliation(s)
- Kasumi Dendo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyou-ku, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shin-Ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo, Japan
| | - Hirofumi Arakawa
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyou-ku, Tokyo, Japan.,Division of Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
106
|
Liang L, Weng J, You Y, He Q, Fan Y, Liao G. Role of Noxa in proliferation, apoptosis, and autophagy in human adenoid cystic carcinoma. J Oral Pathol Med 2018; 48:52-59. [PMID: 30290043 DOI: 10.1111/jop.12787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Lizhong Liang
- Department of ENT, head and neck, Oral and Maxillofacial Surgery; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
- Department of Stomatology; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
| | - Junquan Weng
- Department of Stomatology; Shenzhen People's Hospital; Second Clinical Medical School of Jinan University; Shenzhen Guangdong China
| | - Yingying You
- Department of Stomatology; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
| | - Qifen He
- Department of Stomatology; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
| | - Yunping Fan
- Department of ENT, head and neck, Oral and Maxillofacial Surgery; Fifth Affiliated Hospital of Sun Yat-sen University; Zhuhai China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery; Guanghua School of Stomatology; Sun Yat-Sen University; Guangzhou Guangdong China
| |
Collapse
|
107
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
108
|
Abstract
Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.
Collapse
|
109
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
110
|
Jiang S, Zhou H, Liang J, Gerdt C, Wang C, Ke L, Schmidt SCS, Narita Y, Ma Y, Wang S, Colson T, Gewurz B, Li G, Kieff E, Zhao B. The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host Microbe 2018; 22:561-573.e4. [PMID: 29024646 DOI: 10.1016/j.chom.2017.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) transforms B cells to continuously proliferating lymphoblastoid cell lines (LCLs), which represent an experimental model for EBV-associated cancers. EBV nuclear antigens (EBNAs) and LMP1 are EBV transcriptional regulators that are essential for LCL establishment, proliferation, and survival. Starting with the 3D genome organization map of LCL, we constructed a comprehensive EBV regulome encompassing 1,992 viral/cellular genes and enhancers. Approximately 30% of genes essential for LCL growth were linked to EBV enhancers. Deleting EBNA2 sites significantly reduced their target gene expression. Additional EBV super-enhancer (ESE) targets included MCL1, IRF4, and EBF. MYC ESE looping to the transcriptional stat site of MYC was dependent on EBNAs. Deleting MYC ESEs greatly reduced MYC expression and LCL growth. EBNA3A/3C altered CDKN2A/B spatial organization to suppress senescence. EZH2 inhibition decreased the looping at the CDKN2A/B loci and reduced LCL growth. This study provides a comprehensive view of the spatial organization of chromatin during EBV-driven cellular transformation.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Gerdt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Liangru Ke
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Stefanie C S Schmidt
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Narita
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yijie Ma
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tyler Colson
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Gewurz
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annu Rev Cell Dev Biol 2018; 34:311-332. [PMID: 30089222 DOI: 10.1146/annurev-cellbio-100616-060748] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Balancing cell death and survival is essential for normal development and homeostasis and for preventing diseases, especially cancer. Conventional cell death pathways include apoptosis, a form of programmed cell death controlled by a well-defined biochemical pathway, and necrosis, the lysis of acutely injured cells. New types of regulated cell death include necroptosis, pyroptosis, ferroptosis, phagoptosis, and entosis. Autophagy can promote survival or can cause death. Newly described processes of anastasis and resuscitation show that, remarkably, cells can recover from the brink of apoptosis or necroptosis. Important new work shows that epithelia achieve homeostasis by extruding excess cells, which then die by anoikis due to loss of survival signals. This mechanically regulated process both maintains barrier function as cells die and matches rates of proliferation and death. In this review, we describe these unconventional ways in which cells have evolved to die or survive, as well as the contributions that these processes make to homeostasis and cancer.
Collapse
Affiliation(s)
- Swapna A Gudipaty
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Christopher M Conner
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| | - Jody Rosenblatt
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
112
|
Wang J, Cui D, Gu S, Chen X, Bi Y, Xiong X, Zhao Y. Autophagy regulates apoptosis by targeting NOXA for degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1105-1113. [DOI: 10.1016/j.bbamcr.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
|
113
|
Zhang F, Yan T, Guo W, Sun K, Wang S, Bao X, Liu K, Zheng B, Zhang H, Ren T. Novel oncogene COPS3 interacts with Beclin1 and Raf-1 to regulate metastasis of osteosarcoma through autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:135. [PMID: 29970115 PMCID: PMC6029018 DOI: 10.1186/s13046-018-0791-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Background Expression of COP9 signalosome subunit 3 (COPS3), an oncogene overexpressed in osteosarcoma, has been demonstrated to be significantly correlated with tumor metastasis. However, the underlying mechanism by which COPS3 promotes metastasis of osteosarcoma and its role in autophagy remain unknown. Methods The expression of COPS3 was detected in primary osteosarcoma tissues and matching lung metastasis tissues by immunohistochemistry (IHC). The effect of COPS3 on the metastasis of osteosarcoma cells was investigated by transwell, wound healing assays and animal studies. Indicated proteins was analyzed by western blotting when COPS3 was knockdown or overexpressed. The COPS3 Interacting protein was determined by immunoprecipitation assay. The relationship between COPS3 and autophagy was detected by western blotting and immunofluorescence. Results We found that knockdown of COPS3 significantly reduced the lung metastasis of osteosarcoma cells in a mouse model, coinciding with downregulation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) signaling. The silencing of COPS3 also inhibited the epithelial–mesenchymal transition (EMT) through the 90 kDa ribosomal S6 kinases (RSK), a family of signal transduction proteins downstream of MEK/ERK. Reciprocal immunoprecipitation assays revealed that COPS3 directly interacts with Raf-1, an upstream regulator of MEK/ERK. Surprisingly, Beclin1, an important autophagic protein, appeared in the COPS3-immunoprecipitates, along with the autophagic markers LC3-I and LC3-II. Loss of COPS3 completely inhibited H2O2-induced autophagic flux and reduced Beclin1 expression. Additionally, autophagy inhibitor or silencing of Beclin1 both decreased cell metastasis. Conclusions Taken together, these data reveal a novel function of COPS3 in the regulation of autophagy and highlight the relationship between autophagy and metastasis in osteosarcoma cells. Electronic supplementary material The online version of this article (10.1186/s13046-018-0791-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| |
Collapse
|
114
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
115
|
Chen Y, Li M, Zhang Y, Di M, Chen W, Liu X, Yu F, Wang H, Zhen X, Zhang M. Traditional Chinese medication Tongxinluo attenuates apoptosis in ox-LDL-stimulated macrophages by enhancing Beclin-1-induced autophagy. Biochem Biophys Res Commun 2018; 501:336-342. [PMID: 29550482 DOI: 10.1016/j.bbrc.2018.03.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
In advanced atherosclerosis, a large number of necrotic core increases plaque vulnerability, which leads to the occurrence of acute atherothrombotic cardiovascular events. Macrophage apoptosis plays an important role in secondary necrosis. The present study aimed to examine and describe the effect of the traditional Chinese medication Tongxinluo (TXL) on macrophage apoptosis in advanced atherosclerotic plaques and to explore its mechanism. By observing the effect of TXL on ox-LDL-stimulated macrophage apoptosis, it was shown that TXL significantly inhibited ox-LDL-induced apoptosis of macrophages by enhancing autophagy. Therapeutic mechanism of TXL included increasing the expression of Beclin-1 and improving the dissociation of Bcl-2-Beclin-1 Complex. Apolipoprotein E knockout (apoE-/-) mice with a high fat diet were divided into four groups: saline group (Saline gavage), low dose TXL group (0.38 g/kg/d, gavage), medium dose TXL group (0.75 g/kg/day, gavage), and high dose TXL group (1.5 g/kg/day, gavage). 4 weeks after carotid-artery surgery, lentiviral of Beclin-1 silencing was injected through the tail vein. TXL treatment significantly reduced macrophage apoptosis dose-dependently and the result was blocked by Beclin-1 silencing. In addition, the increased Lc3b dots by TXL almost localized to macrophages in advanced atherosclerotic plaque. Compared with the same dose of TXL shBeclin-1 group, plaque area and vulnerability index of TXL groups decreased. The anti-apoptosis effects of TXL on atherosclerosis was related to the improvement of autophagy via Beclin-1.
Collapse
Affiliation(s)
- Yifei Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Mengmeng Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Mingxue Di
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Weijia Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Xiaolin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Fangpu Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Han Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Xi Zhen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, and the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
116
|
Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0704-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
117
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
118
|
Sooro MA, Zhang N, Zhang P. Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. Int J Cancer 2018; 143:2116-2125. [DOI: 10.1002/ijc.31398] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Mopa Alina Sooro
- Jiangsu Key Laboratory of New Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| | - Ni Zhang
- Jiangsu Key Laboratory of New Drug Screening; China Pharmaceutical University; Nanjing 210009 China
| | - Pinghu Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University; Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Medical College, Yangzhou University; Yangzhou 225001 China
| |
Collapse
|
119
|
Lin P, He RQ, Dang YW, Wen DY, Ma J, He Y, Chen G, Yang H. An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients. Oncotarget 2018; 9:17368-17395. [PMID: 29707114 PMCID: PMC5915122 DOI: 10.18632/oncotarget.24089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Prognostic signatures have been proposed as clinical tools to estimate prognosis in hepatocellular carcinoma (HCC), which is the second most common contributor to cancer-related death at present globally. Autophagy-related genes play a dynamic and fundamental role in HCC, but knowledge of their utility as prognostic markers is limited. Here, we facilitated univariate and multivariate Cox proportional hazards regression analyses to reveal that 3 autophagy-related genes (BIRC5, FOXO1 and SQSTM1) were closely related to the survival of HCC. Then, we generated a prognosis index (PI) for predicting overall survival (OS) based on the three genes, which was an independent prognostic indicator for the OS of HCC (HR = 1.930, 95% CI: 1.200-3.104, P = 0.007). The PI showed moderate performance for predicting the survival of HCC patients and its efficacy was validated by data from three microarrays (GSE10143, GSE10186 and GSE17856). Furthermore, we deeply mined the integrated large-scale datasets from public microarrays and immunohistochemistry to validate the overexpression of BIRC5 and SQSTM1 while down-regulated FOXO1 expression in HCC. Bioinformatic analysis offered the hypothesis that proliferative signals in high-risk HCC patients were disturbing and thereby facilitated inferior clinical outcomes. Collectively, the prognostic signature we proposed is a promising biomarker for monitoring outcome of HCC. Nevertheless, prospective experimental studies are needed to validate the clinical utility.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
120
|
Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, Huang Y, Feng X, Liu X, Li X, Zhu X, Zhang H, Wu J, Zeng M, Song E, He Y, Yin Y, Li J, Li M. CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat Cell Biol 2018; 20:465-478. [PMID: 29593330 DOI: 10.1038/s41556-018-0065-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
The contribution of autophagy to cancer development remains controversial, largely owing to the fact that autophagy can be tumour suppressive or oncogenic in different biological contexts. Here, we show that in non-small-cell lung cancer (NSCLC), casein kinase 1 alpha 1 (CK1α) suppresses tumour growth by functioning as an autophagy inducer to activate an autophagy-regulating, tumour-suppressive PTEN/AKT/FOXO3a/Atg7 axis. Specifically, CK1α bound the C-terminal tail of PTEN and enhanced both PTEN stability and activity by competitively antagonizing NEDD4-1-induced PTEN polyubiquitination and abrogating PTEN phosphorylation, thereby inhibiting AKT activity and activating FOXO3a-induced transcription of Atg7. Notably, blocking CK1α-induced Atg7-dependent autophagy cooperates with oncogenic HRasV12 to initiate tumorigenesis of lung epithelial cells. An association of a CK1α-modulated autophagic program with the anti-neoplastic activities of the CK1α/PTEN/FOXO3a/Atg7 axis was demonstrated in xenografted tumour models and human NSCLC specimens. This provides insights into the biological and potentially clinical significance of autophagy in NSCLC.
Collapse
MESH Headings
- A549 Cells
- Animals
- Autophagy
- Autophagy-Related Protein 7/genetics
- Autophagy-Related Protein 7/metabolism
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Casein Kinase Ialpha/genetics
- Casein Kinase Ialpha/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Enzyme Stability
- Female
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, ras
- HCT116 Cells
- HEK293 Cells
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Nedd4 Ubiquitin Protein Ligases/metabolism
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphorylation
- Protein Binding
- Protein Interaction Domains and Motifs
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Tumor Burden
- Ubiquitination
Collapse
Affiliation(s)
- Junchao Cai
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Xu
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Le Zhang
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Rong Lian
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lishan Fang
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianming Feng
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ximeng Liu
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xu Li
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xun Zhu
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Heng Zhang
- Neurosurgery Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Musheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Erwei Song
- Department of Breast Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yukai He
- Department of Medicine and Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Yuxin Yin
- Department of Pathology, Institute of Systems Biomedicine, School of Basic Medicine, Peking University Health Science Center, Beijing, China
| | - Jun Li
- Department of Biochemistry, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Mengfeng Li
- Department of Microbiology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
121
|
Huang YH, Lei J, Yi GH, Huang FY, Li YN, Wang CC, Sun Y, Dai HF, Tan GH. Coroglaucigenin induces senescence and autophagy in colorectal cancer cells. Cell Prolif 2018; 51:e12451. [PMID: 29484762 DOI: 10.1111/cpr.12451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti-cancer agent. However, the molecular mechanisms involved remain poorly understood. MATERIALS AND METHODS Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA-β-gal assay, western blotting and immunofluorescence were performed to determine CGN-induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN-induced senescence and autophagy. The anti-tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models. RESULTS We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell-cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN-mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti-tumour effects in vivo. CONCLUSIONS Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN-mediated anti-cancer therapy.
Collapse
Affiliation(s)
- Yong-Hao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Jing Lei
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Guo-Hui Yi
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China.,Public Research Laboratory, Hainan Medical College, Haikou, China
| | - Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Yue-Nan Li
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Cai-Chun Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Yan Sun
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guang-Hong Tan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| |
Collapse
|
122
|
Zheng Z, Fan S, Zheng J, Huang W, Gasparetto C, Chao NJ, Hu J, Kang Y. Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol 2018; 11:29. [PMID: 29482577 PMCID: PMC5828316 DOI: 10.1186/s13045-018-0575-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022] Open
Abstract
Background Although current chemotherapy using bortezomib (Velcade) against multiple myeloma in adults has achieved significant responses and even remission, a majority of patients will develop acquired resistance to bortezomib. Increased thioredoxin level has been reported to be associated with carcinogenesis; however, the role of thioredoxin in bortezomib drug resistance of myeloma remains unclear. Methods We generated several bortezomib-resistant myeloma cell lines by serially passaging with increased concentrations of bortezomib over a period of 1.5 years. Thioredoxin expression was measured by real-time PCR and western blot. Results The role of thioredoxin in the survival of bortezomib-resistant myeloma cells was determined by specific shRNA knockdown in vitro and in vivo. Thioredoxin inhibitor (PX12) was used to determine the effectiveness of thioredoxin inhibition in the treatment of bortezomib-resistant myeloma cells. The effect of thioredoxin inhibition on mitophagy induction was examined. The correlation of thioredoxin expression with patient overall survival was interrogated. Thioredoxin expression was significantly upregulated in bortezomib-resistant myeloma cells and the change correlated with the increase of bortezomib concentration. Thioredoxin gene knockdown using specific shRNA sensitized bortezomib-resistant myeloma cells to bortezomib efficiency in vitro and in vivo. Similarly, pharmacological inhibition with PX12 inhibited the growth of bortezomib-resistant myeloma cells and overcame bortezomib resistance in vitro and in vivo. Furthermore, inhibition of thioredoxin resulted in the activation of mitophagy and blockage of mitophagy prevented the effects of PX12 on bortezomib-resistant myeloma cells, indicating that mitophagy is the important molecular mechanism for the induction of cell death in bortezomib-resistant myeloma cells by PX12. Moreover, inhibition of thioredoxin resulted in downregulation of phosphorylated mTOR and ERK1/2. Finally, thioredoxin was overexpressed in primary myeloma cells isolated from bortezomib-resistant myeloma patients and overexpression of thioredoxin correlated with poor overall survival in patients with multiple myeloma. Conclusions Our findings demonstrated that increased thioredoxin plays a critical role in bortezomib resistance in multiple myeloma through mitophagy inactivation and increased mTOR and ERK1/2 phosphorylation. Thioredoxin provides a potential target for clinical therapeutics against multiple myeloma, particularly for bortezomib-resistant/refractory myeloma patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jing Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA.
| |
Collapse
|
123
|
The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018; 7:cells7020014. [PMID: 29463063 PMCID: PMC5850102 DOI: 10.3390/cells7020014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.
Collapse
|
124
|
Ding GB, Sun J, Wu G, Li B, Yang P, Li Z, Nie G. Robust Anticancer Efficacy of a Biologically Synthesized Tumor Acidity-Responsive and Autophagy-Inducing Functional Beclin 1. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5227-5239. [PMID: 29359549 DOI: 10.1021/acsami.7b17454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a potent autophagy inducer, Beclin 1 is essential for the initiation of autophagic cell death, and triggering extensive autophagy by targeted delivery of Beclin 1 to tumors has enormous potential to inhibit tumor growth. Yet, the therapeutic application of Beclin 1 is hampered by its inability to internalize into cells and nonselective biodistribution in vivo. To tackle this challenge, we employed a novel Beclin 1 delivery manner by constructing a functional protein (Trx-pHLIP-Beclin 1, TpB) composed of a thioredoxin (Trx) tag, a pH low insertion peptide (pHLIP), and an evolutionarily conserved motif of Beclin 1. This protein could effectively transport Beclin 1 to breast and ovarian cancer cell lines under weakly acidic conditions (pH 6.5), markedly inhibit tumor cell growth and proliferation, and induce obvious autophagy. Furthermore, the in vivo antitumor efficacy of the functional Beclin 1 against an SKOV3 xenograft tumor mouse model was tested via intravenous injection. TpB preferentially accumulated in tumors and exhibited a significantly higher tumor growth inhibition than the nontargeted Beclin 1 control, whereas no overt side effects were observed. Taken together, this study sheds light on the potential application of TpB as a highly efficient yet safe antitumor agent for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|
125
|
Nishida K, Tamura A, Yui N. ER stress-mediated autophagic cell death induction through methylated β-cyclodextrins-threaded acid-labile polyrotaxanes. J Control Release 2018; 275:20-31. [PMID: 29428200 DOI: 10.1016/j.jconrel.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Autophagy plays a pivotal role in the development and prevention of numerous diseases, and the induction of autophagy is regarded as a potential therapeutic approach for intractable diseases. In this study, the induction of autophagy by methylated β-cyclodextrins (Me-β-CDs)-threaded acid-labile polyrotaxane (Me-PRX) that can release the threaded Me-β-CDs in response to acidic pH in lysosomes was investigated. We hypothesized that the Me-β-CDs released from the Me-PRX interact with the membrane of organelles and cause autophagy. The Me-PRX preferentially accumulated in endoplasmic reticulum (ER) and caused ER stress, which was confirmed by gene expression analysis and the expression of an ER stress-marker protein. Accompanying the ER stress, cells treated with Me-PRX showed autophagy, which was not observed in cells treated with non-labile Me-PRX, other chemically modified PRXs, or free Me-β-CD. Furthermore, the Me-PRX treatment induced autophagic cell death and caused cell death even in apoptosis-resistant cells. Overall, this study demonstrates that the acid-labile Me-PRX induces ER stress-mediated autophagic cell death, and the Me-PRX would be a promising candidate to induce effective cell death in apoptosis-resistant malignant tumors.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
126
|
Liao C, Zheng K, Li Y, Xu H, Kang Q, Fan L, Hu X, Jin Z, Zeng Y, Kong X, Zhang J, Wu X, Wu H, Liu L, Xiao X, Wang Y, He Z. Gypenoside L inhibits autophagic flux and induces cell death in human esophageal cancer cells through endoplasm reticulum stress-mediated Ca2+ release. Oncotarget 2018; 7:47387-47402. [PMID: 27329722 PMCID: PMC5216949 DOI: 10.18632/oncotarget.10159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is one of the leading cause of cancer mortality in the world. Due to the increased drug and radiation tolerance, it is urgent to develop novel anticancer agent that triggers nonapoptotic cell death to compensate for apoptosis resistance. In this study, we show that treatment with gypenoside L (Gyp-L), a saponin isolated from Gynostemma pentaphyllum, induced nonapoptotic, lysosome-associated cell death in human esophageal cancer cells. Gyp-L-induced cell death was associated with lysosomal swelling and autophagic flux inhibition. Mechanistic investigations revealed that through increasing the levels of intracellular reactive oxygen species (ROS), Gyp-L triggered protein ubiquitination and endoplasm reticulum (ER) stress response, leading to Ca2+ release from ER inositol trisphosphate receptor (IP3R)-operated stores and finally cell death. Interestingly, there existed a reciprocal positive-regulatory loop between Ca2+ release and ER stress in response to Gyp-L. In addition, protein synthesis was critical for Gyp-L-mediated ER stress and cell death. Taken together, this work suggested a novel therapeutic option by Gyp-L through the induction of an unconventional ROS-ER-Ca2+-mediated cell death in human esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Liao
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Kai Zheng
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Xu
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Qiangrong Kang
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Long Fan
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiaopeng Hu
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Zhe Jin
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Yong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoli Kong
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xuli Wu
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Lizhong Liu
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| | - Xiaohua Xiao
- The First Affiliated Hospital of School of Medicine, Shenzhen University, Shenzhen, China
| | - Yifei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University, Shenzhen, China
| |
Collapse
|
127
|
Glutamine synthetase mediates sorafenib sensitivity in β-catenin-active hepatocellular carcinoma cells. Exp Mol Med 2018; 50:e421. [PMID: 29303508 PMCID: PMC5992988 DOI: 10.1038/emm.2017.174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
The gene encoding β-catenin is frequently mutated in hepatocellular carcinoma cells. While the oncogenicity of β-catenin has been extensively studied, β-catenin’s role in hepatocellular carcinoma tumor metabolism is currently less well understood. In this study, we found that β-catenin regulates the expression of glutamine synthetase and triggers a series of metabolic changes leading to induction of autophagy in hepatocellular carcinoma cells. β-Catenin-active Hep3B and HepG2 cells exhibited higher basal levels of autophagic activity than did β-catenin wild-type cells. We also found that autophagy in β-catenin-active cells was mediated by glutamine synthetase, as silencing of glutamine synthetase significantly reduced autophagic activity. We also showed that β-catenin-active hepatocellular carcinoma cells were more sensitive to sorafenib than were β-catenin wild-type cells. Our results demonstrated that glutamine synthetase-mediated autophagy explains the high sensitivity of β-catenin-active hepatocellular carcinoma cells to sorafenib. Our results highlight the importance of glutamine metabolism in the regulation of autophagy in hepatocellular carcinoma cells. More importantly, our study unravels the molecular mechanisms leading to sorafenib sensitivity in hepatocellular carcinoma.
Collapse
|
128
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
129
|
Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:13-24. [PMID: 28703311 PMCID: PMC5760354 DOI: 10.1111/phpp.12329] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer and its incidence is rising, creating a costly and significant clinical problem. Exposure to ultraviolet (UV) radiation, namely UVA (315-400 nm) and UVB (280-315 nm), is a major risk factor for melanoma development. Cumulative UV radiation exposure from sunlight or tanning beds contributes to UV-induced DNA damage, oxidative stress, and inflammation in the skin. A number of factors, including hair color, skin type, genetic background, location, and history of tanning, determine the skin's response to UV radiation. In melanocytes, dysregulation of this UV radiation response can lead to melanoma. Given the complex origins of melanoma, it is difficult to develop curative therapies and universally effective preventative strategies. Here, we describe and discuss the mechanisms of UV-induced skin damage responsible for inducing melanomagenesis, and explore options for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
130
|
Bhat P, Kriel J, Shubha Priya B, Basappa, Shivananju NS, Loos B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem Pharmacol 2017; 147:170-182. [PMID: 29203368 DOI: 10.1016/j.bcp.2017.11.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
Autophagy is a major protein degradation pathway capable of upholding cellular metabolism under nutrient limiting conditions, making it a valuable resource to highly proliferating tumour cells. Although the regulatory machinery of the autophagic pathway has been well characterized, accurate modulation of this pathway remains complex in the context of clinical translatability for improved cancer therapies. In particular, the dynamic relationship between the rate of protein degradation through autophagy, i.e. autophagic flux, and the susceptibility of tumours to undergo apoptosis remains largely unclear. Adding to inefficient clinical translation is the lack of measurement techniques that accurately depict autophagic flux. Paradoxically, both increased autophagic flux as well as autophagy inhibition have been shown to sensitize cancer cells to undergo cell death, indicating the highly context dependent nature of this pathway. In this article, we aim to disentangle the role of autophagy modulation in tumour suppression by assessing existing literature in the context of autophagic flux and cellular metabolism at the interface of mitochondrial function. We highlight the urgency to not only assess autophagic flux more accurately, but also to center autophagy manipulation within the unique and inherent metabolic properties of cancer cells. Lastly, we discuss the challenges faced when targeting autophagy in the clinical setting. In doing so, it is hoped that a better understanding of autophagy in cancer therapy is revealed in order to overcome tumour chemoresistance through more controlled autophagy modulation in the future.
Collapse
Affiliation(s)
- Punya Bhat
- DOS in Chemistry, University of Mysore, Manasgangotri, Mysuru 570006, Karnataka, India
| | - Jurgen Kriel
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Babu Shubha Priya
- DOS in Chemistry, University of Mysore, Manasgangotri, Mysuru 570006, Karnataka, India
| | - Basappa
- Laboratory of Chemical Biology, Department of studies in Organic Chemistry, Manasagangotri, University of Mysore, Mysore 570006, India
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India.
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch 7600, South Africa.
| |
Collapse
|
131
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
132
|
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J 2017; 284:4177-4195. [PMID: 28548464 PMCID: PMC6193418 DOI: 10.1111/febs.14122] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
The ERK1/2 signalling pathway is best known for its role in connecting activated growth factor receptors to changes in gene expression due to activated ERK1/2 entering the nucleus and phosphorylating transcription factors. However, active ERK1/2 also translocate to a variety of other organelles including the endoplasmic reticulum, endosomes, golgi and mitochondria to access specific substrates and influence cell physiology. In this article, we review two aspects of ERK1/2 signalling at the mitochondria that are involved in regulating cell fate decisions. First, we describe the prominent role of ERK1/2 in controlling the BCL2-regulated, cell-intrinsic apoptotic pathway. In most cases ERK1/2 signalling promotes cell survival by activating prosurvival BCL2 proteins (BCL2, BCL-xL and MCL1) and repressing prodeath proteins (BAD, BIM, BMF and PUMA). This prosurvival signalling is co-opted by oncogenes to confer cancer cell-specific survival advantages and we describe how this information has been used to develop new drug combinations. However, ERK1/2 can also drive the expression of the prodeath protein NOXA to control 'autophagy or apoptosis' decisions during nutrient starvation. We also describe recent studies demonstrating a link between ERK1/2 signalling, DRP1 and the mitochondrial fission machinery and how this may influence metabolic reprogramming during tumorigenesis and stem cell reprogramming. With advances in subcellular proteomics it is likely that new roles for ERK1/2, and new substrates, remain to be discovered at the mitochondria and other organelles.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | - Kate Stuart
- Signalling ProgrammeThe Babraham InstituteCambridgeUK
| | | | | |
Collapse
|
133
|
Regulation of the Tumor-Suppressor BECLIN 1 by Distinct Ubiquitination Cascades. Int J Mol Sci 2017; 18:ijms18122541. [PMID: 29186924 PMCID: PMC5751144 DOI: 10.3390/ijms18122541] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue “Ubiquitin System”.
Collapse
|
134
|
Wei H, Cui R, Bahr J, Zanesi N, Luo Z, Meng W, Liang G, Croce CM. miR-130a Deregulates PTEN and Stimulates Tumor Growth. Cancer Res 2017; 77:6168-6178. [PMID: 28935812 PMCID: PMC7081380 DOI: 10.1158/0008-5472.can-17-0530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
H-RasV12 oncogene has been shown to promote autophagic cell death. Here, we provide evidence of a contextual role for H-RasV12 in cell death that is varied by its effects on miR-130a. In E1A-immortalized murine embryo fibroblasts, acute expression of H-RasV12 promoted apoptosis, but not autophagic cell death. miRNA screens in this system showed that miR-130a was strongly downregulated by H-RasV12 in this model system. Enforced expression of miR-130a increased cell proliferation in part via repression of PTEN. Consistent with this effect, miR-130a overexpression in human breast cancer cells promoted Akt phosphorylation, cell survival, and tumor growth. In clinical specimens of multiple human cancers, expression of miR-130 family members correlated inversely with PTEN expression. Overall, our results defined miR-130a as an oncogenic miRNA that targets PTEN to drive malignant cell survival and tumor growth. Cancer Res; 77(22); 6168-78. ©2017 AACR.
Collapse
Affiliation(s)
- Huijun Wei
- University of Michigan Life Sciences Institute, Ann Arbor, Michigan.
- Department of Cancer Biology and Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ri Cui
- Department of Cancer Biology and Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Affiliated Yueqing Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Julian Bahr
- University of Michigan Life Sciences Institute, Ann Arbor, Michigan
| | - Nicola Zanesi
- Department of Cancer Biology and Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Zhenghua Luo
- Department of Cancer Biology and Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Meng
- Department of Radiation Oncology, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Guang Liang
- Affiliated Yueqing Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
135
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
136
|
Tago K, Ohta S, Kashiwada M, Funakoshi-Tago M, Matsugi J, Tominaga SI, Yanagisawa K. ST2 gene products critically contribute to cellular transformation caused by an oncogenic Ras mutant. Heliyon 2017; 3:e00436. [PMID: 29226265 PMCID: PMC5714553 DOI: 10.1016/j.heliyon.2017.e00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022] Open
Abstract
The ST2 gene was originally identified as a primary responsive gene, and the expressions of its gene products are induced by stimulation with growth factors and by oncogenic stresses. In this study, we observed that oncogenic Ras mutant induced the expression of ST2 and ST2L proteins. Interestingly, the enforced expression of ST2 gene products in NIH-3T3 murine fibroblasts remarkably enhanced Ras (G12V)-induced cellular transformation. Furthermore, when the expression of ST2 gene products was silenced by RNA-interference technique, Ras (G12V)-induced cellular transformation was drastically suppressed. According to these observations, it was indicated that the oncogenic Ras-induced expression of ST2 gene products is required for the acceleration of cellular transformation, and this seems to be independent of the stimulation with IL-33, a ligand for ST2/ST2L. Interestingly, knockdown of ST2 gene products caused a reduction in Rb phosphorylation in transformed murine fibroblasts, suggesting the functional involvement of ST2 gene products in cell cycle progression during cellular transformation. Our current study strongly suggests the importance of ST2 gene products in cellular transformation, and the presence of novel mechanism how ST2 gene products affect the cellular transformation and cell proliferation.
Collapse
Affiliation(s)
- Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Masaki Kashiwada
- Medical Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Megumi Funakoshi-Tago
- Department of hygienic chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Shin-Ichi Tominaga
- Medical Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Ken Yanagisawa
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
137
|
Zhou H, Luo W, Zeng C, Zhang Y, Wang L, Yao W, Nie C. PP2A mediates apoptosis or autophagic cell death in multiple myeloma cell lines. Oncotarget 2017; 8:80770-80789. [PMID: 29113343 PMCID: PMC5655238 DOI: 10.18632/oncotarget.20415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
The crosstalk between apoptosis and autophagy contributes to tumorigenesis and cancer therapy. The process by which BetA (betulinic acid), a naturally occurring triterpenoid, regulates apoptosis and autophagy as a cancer therapy is unclear. In this study, we show for the first time that protein phosphatase 2A (PP2A) acts as a switch to regulate apoptosis and autophagic cell death mediated by BetA. Under normal conditions, caspase-3 is activated by the mitochondrial pathway upon BetA treatment. Activated caspase-3 cleaves the A subunit of PP2A (PP2A/A), resulting in the association of PP2A and Akt. This association inactivates Akt to initiate apoptosis. Overexpression of Bcl-2 attenuates the mitochondrial apoptosis pathway, resulting in caspase-3 inactivation and the dissociation of PP2A and Akt. PP2A isolated from Akt binds with DAPK to induce autophagic cell death. Meanwhile, in vivo tumor experiments have demonstrated that BetA initiates different types of cell death in a myeloma xenograft model. Thus, PP2A can shift myeloma cells from apoptosis to autophagic cell death. These findings have important implications for the therapeutic application of BetA, particularly against apoptosis-resistant cancers.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Luo
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Zeng
- Department of Gastroenterology, the Third People's Hospital of Chengdu, Chengdu, China
| | - Yu Zhang
- Department of Oncology, Guizhou People's Hospital, Guizhou, China
| | - Liyang Wang
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxiu Yao
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunlai Nie
- Department of Chemotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
138
|
Guikema JE, Amiot M, Eldering E. Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 2017; 21:767-779. [PMID: 28670929 DOI: 10.1080/14728222.2017.1349754] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen E Guikema
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| |
Collapse
|
139
|
Shen H, Xing C, Cui K, Li Y, Zhang J, Du R, Zhang X, Li Y. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ 2017; 24:1253-1262. [PMID: 28475173 DOI: 10.1038/cdd.2017.63] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Frequent KRAS mutations contribute to multiple cancers including ~40% of human colorectal cancers (CRCs). Systematic screening of 1255 microRNAs (miRNAs) identified miR-30a as a synthetic lethal in KRAS-mutant CRC cells. miR-30a was downregulated in CRCs and repressed by P65. miR-30a directly targeted malic enzyme 1 (ME1) and KRAS, and inhibited anchorage-independent growth and in vivo tumorigenesis by KRAS-mutant CRC cells. ME1 was significantly upregulated in KRAS-mutant CRCs. Eliminating ME1 by short hairpin RNA (shRNA) resulted in obviously decreased NADPH production, levels of triglyceride and fatty acid, and an inhibition of tumorigenicity of KRAS-mutant CRCs. miR-30a overexpression and ME1 suppression attenuated AOM/DSS-induced colorectal tumorigenesis. The critical roles of miR-30a and ME1 in the development of KRAS-mutant CRCs indicate therapy potentials for this subtype of cancer.
Collapse
Affiliation(s)
- Hongxing Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Chuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yunxiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Runlei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
140
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
141
|
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017; 7:65. [PMID: 28459042 PMCID: PMC5394422 DOI: 10.3389/fonc.2017.00065] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Yunus Akkoc
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Muhammed Kocak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
142
|
Li H, You L, Xie J, Pan H, Han W. The roles of subcellularly located EGFR in autophagy. Cell Signal 2017; 35:223-230. [PMID: 28428083 DOI: 10.1016/j.cellsig.2017.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a well-studied receptor-tyrosine kinase that serves vital roles in regulation of organ development and cancer progression. EGFR not only exists on the plasma membrane, but also widely expressed in the nucleus, endosomes, and mitochondria. Most recently, several lines of evidences indicated that autophagy is regulated by EGFR in kinase-active and -independent manners. In this review, we summarized recent advances in our understanding of the functions of different subcellularly located EGFR on autophagy. Specifically, plasma membrane- and cytoplasm-located EGFR (pcEGFR) acts as a tyrosine kinase to regulate autophagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3, and STAT3 signaling pathways. The kinase-independent function of pcEGFR inhibits autophagy by maintaining SLC5A1-regulated intracellular glucose level. Endosome-located EGFR phosphorylates and inhibits Beclin1 to suppress autophagy, while kinase-independent endosome-located EGFR releases Beclin1 from the Rubicon-Beclin1 complex to increase autophagy. Additionally, the nuclear EGFR activates PRKDC/PNPase/MYC signaling to inhibit autophagy. Although the role of mitochondria-located EGFR in autophagy is largely unexplored, the production of ATP and reactive oxygen species mediated by mitochondrial dynamics is most likely to influence autophagy.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
143
|
Liu L, Liao JZ, He XX, Li PY. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget 2017; 8:57707-57722. [PMID: 28915706 PMCID: PMC5593678 DOI: 10.18632/oncotarget.17202] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent catabolic process which degrades cell’s components in order to recycle substrates to exert optimally and adapt to tough circumstances. It is a critical cellular homeostatic mechanism with stress resistance, immunity, antiaging, and pro-tumor or anti-tumor effects. Among these, the role of autophagy in cancer is the most eye-catching that is not immutable but dynamic and highly complex. Basal autophagy acts as a tumor suppressor by maintaining genomic stability in normal cells. However, once a tumor is established, unbalanced autophagy will contribute to carcinoma cell survival under tumor microenvironment and in turn promote tumor growth and development. The dynamic role of autophagy can also apply on hepatocellular carcinoma (HCC). HCC is a highly malignant cancer with high morbidity and poor survival rate. Decline or overexpression of autophagic essential genes such as ATG7, ATG5 or Beclin 1 plays a key role in the occurrence and development of HCC but the exact mechanisms are still highly controversial. Signaling pathways or molecules involving in autophagy, for example PI3K/AKT/mTOR pathway, ERK/MAPK pathway, PERK pathway, p53, LncRNA PTENP1 (Long non-coding RNA PTENP1), microRNA-375 and so on, occupy an important position in the complex role of autophagy in HCC. Here, we discuss the dynamic role, the signaling pathways and the potential prognostic and therapy value of autophagy in HCC.
Collapse
Affiliation(s)
- Lian Liu
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhi Liao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
144
|
Huang YH, Sun Y, Huang FY, Li YN, Wang CC, Mei WL, Dai HF, Tan GH, Huang C. Toxicarioside O induces protective autophagy in a sirtuin-1-dependent manner in colorectal cancer cells. Oncotarget 2017; 8:52783-52791. [PMID: 28881770 PMCID: PMC5581069 DOI: 10.18632/oncotarget.17189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer is the most common cancer. It has high morbidity and mortality worldwide, and more effective treatment strategies need to be developed. Toxicarioside O (TCO), a natural product derived from Antiaris toxicaria, has been shown to be a potential anticancer agent. However, the molecular mechanisms involved remain poorly understood. In this study, our results demonstrated that TCO can induce both apoptosis and autophagy in colorectal cancer cells. Moreover, TCO-induced autophagy was due to the increase of the expression and activity of the enzyme sirtuin-1 (SIRT1), and subsequent inhibition of the Akt/mTOR pathway. Inhibition of SIRT1 activity by its inhibitor, EX-527, attenuated TCO-induced autophagy. Of interest, inhibition of autophagy by chloroguine, an autophagy inhibitor, enhanced TCO-induced apoptotic cell death, suggesting that autophagy plays a protective role in TCO-induced apoptosis. Together, these findings suggest that combination of TCO and autophagy inhibitor may be a novel strategy suitable for potentiating the anticancer activity of TCO for treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yong-Hao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Yan Sun
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Yue-Nan Li
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Cai-Chun Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Wen-Li Mei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571199, China
| | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571199, China
| | - Guang-Hong Tan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Canhua Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
145
|
Wang F, Jia J, Rodrigues B. Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. Can J Cardiol 2017; 33:850-859. [PMID: 28389131 DOI: 10.1016/j.cjca.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
In normal physiology, autophagy is recognized as a protective housekeeping mechanism that enables elimination of unhealthy organelles, protein aggregates, and invading pathogens, as well as recycling cell components and producing new building blocks and energy for cellular renovation and homeostasis. However, overactive or depressed autophagy is often associated with the pathogenesis of multiple disorders, including cardiac disease. During metabolic disorders, such as diabetes and obesity, dysregulation of autophagy frequently leads to cell death, cardiomyopathy, and cardiac dysfunction. In this article, we summarize the current understanding of autophagy-its classification, progression, and regulation; its roles in both physiological and pathophysiological conditions; and the balance between autophagy and apoptosis. We also explore how dysregulation of autophagy leads to cell death in models of metabolic disease and its contributing factors-including nutrient state, hyperglycemia, dyslipidemia, insulin inefficiency, and oxidative stress-and outline some recent efforts to restore normal autophagy in pathophysiological states. This information could provide potential targets for the prevention of, or intervention in, cardiac failure in metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
146
|
Ichikawa N, Alves M, Pfeiffer S, Langa E, Hernández-Santana YE, Suzuki H, Prehn JH, Engel T, Henshall DC. Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death Dis 2017; 8:e2556. [PMID: 28079889 PMCID: PMC5457684 DOI: 10.1038/cddis.2016.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Several members of the Bcl-2 gene family are dysregulated in human temporal lobe epilepsy and animal studies show that genetic deletion of some of these proteins influence electrographic seizure responses to chemoconvulsants and associated brain damage. The BH3-only proteins form a subgroup comprising direct activators of Bax–Bak that are potently proapoptotic and a number of weaker proapoptotic BH3-only proteins that act as sensitizers by neutralization of antiapoptotic Bcl-2 family members. Noxa was originally characterized as a weaker proapoptotic, ‘sensitizer' BH3-only protein, although recent evidence suggests it too may be potently proapoptotic. Expression of Noxa is under p53 control, a known seizure-activated pathway, although Noxa has been linked to energetic stress and autophagy. Here we characterized the response of Noxa to prolonged seizures and the phenotype of mice lacking Noxa. Status epilepticus induced by intra-amygdala kainic acid caused a rapid increase in expression of noxa in the damaged CA3 subfield of the hippocampus but not undamaged CA1 region. In vivo upregulation of noxa was reduced by pifithrin-α, suggesting transcription may be partly p53-dependent. Mice lacking noxa developed less severe electrographic seizures during status epilepticus in the model but, surprisingly, displayed equivalent hippocampal damage to wild-type animals. The present findings indicate Noxa does not serve as a proapoptotic BH3-only protein during seizure-induced neuronal death in vivo. This study extends the comprehensive phenotyping of seizure and damage responses in mice lacking specific Bcl-2 gene family members and provides further evidence that these proteins may serve roles beyond control of cell death in the brain.
Collapse
Affiliation(s)
- Naoki Ichikawa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Shona Pfeiffer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Yasmina E Hernández-Santana
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
147
|
Elgendy M, Abdel-Aziz AK, Renne SL, Bornaghi V, Procopio G, Colecchia M, Kanesvaran R, Toh CK, Bossi D, Pallavicini I, Perez-Gracia JL, Lozano MD, Giandomenico V, Mercurio C, Lanfrancone L, Fazio N, Nole F, Teh BT, Renne G, Minucci S. Dual modulation of MCL-1 and mTOR determines the response to sunitinib. J Clin Invest 2017; 127:153-168. [PMID: 27893461 PMCID: PMC5199697 DOI: 10.1172/jci84386] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Most patients who initially respond to treatment with the multi-tyrosine kinase inhibitor sunitinib eventually relapse. Therefore, developing a deeper understanding of the contribution of sunitinib's numerous targets to the clinical response or to resistance is crucial. Here, we have shown that cancer cells respond to clinically relevant doses of sunitinib by enhancing the stability of the antiapoptotic protein MCL-1 and inducing mTORC1 signaling, thus evoking little cytotoxicity. Inhibition of MCL-1 or mTORC1 signaling sensitized cells to clinically relevant doses of sunitinib in vitro and was synergistic with sunitinib in impairing tumor growth in vivo, indicating that these responses are triggered as prosurvival mechanisms that enable cells to tolerate the cytotoxic effects of sunitinib. Furthermore, higher doses of sunitinib were cytotoxic, triggered a decline in MCL-1 levels, and inhibited mTORC1 signaling. Mechanistically, we determined that sunitinib modulates MCL-1 stability by affecting its proteasomal degradation. Dual modulation of MCL-1 stability at different dose ranges of sunitinib was due to differential effects on ERK and GSK3β activity, and the latter also accounted for dual modulation of mTORC1 activity. Finally, comparison of patient samples prior to and following sunitinib treatment suggested that increases in MCL-1 levels and mTORC1 activity correlate with resistance to sunitinib in patients.
Collapse
Affiliation(s)
- Mohamed Elgendy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Amal Kamal Abdel-Aziz
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Salvatore Lorenzo Renne
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Bornaghi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Giuseppe Procopio
- Genitourinary Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Duke-NUS Medical School, Singapore
| | - Chee Keong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | | | - Valeria Giandomenico
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University, Uppsala, Sweden
| | | | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumor, European Institute of Oncology, Milan, Italy
| | - Franco Nole
- Department of Clinical Oncology, IEO, Milan, Italy
| | - Bin Tean Teh
- Duke-NUS Medical School, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer Science Institute, Singapore
- Institute of Molecular and Cell Biology, Singapore
| | | | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- Drug Development Program, IEO, Milan, Italy
| |
Collapse
|
148
|
INOUE H, HANAWA N, KATSUMATA SI, KATSUMATA-TSUBOI R, TAKAHASHI N, UEHARA M. Iron deficiency induces autophagy and activates Nrf2 signal through modulating p62/SQSTM . Biomed Res 2017; 38:343-350. [DOI: 10.2220/biomedres.38.343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hirofumi INOUE
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture
| | - Nobuaki HANAWA
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Shin-Ichi KATSUMATA
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Rie KATSUMATA-TSUBOI
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture
| | - Nobuyuki TAKAHASHI
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture
| | - Mariko UEHARA
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture
| |
Collapse
|
149
|
Graziano S, Gonzalo S. Mechanisms of oncogene-induced genomic instability. Biophys Chem 2016; 225:49-57. [PMID: 28073589 DOI: 10.1016/j.bpc.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Abstract
Activating mutations in oncogenes promote uncontrolled proliferation and malignant transformation. Approximately 30% of human cancers carry mutations in the RAS oncogene. Paradoxically, expression of mutant constitutively active Ras protein in primary human cells results in a premature proliferation arrest known as oncogene-induced senescence (OIS). This is more commonly observed in human pre-neoplasia than in neoplastic lesions, and is considered a tumor suppressor mechanism. Senescent cells are still metabolically active but in a status of cell cycle arrest characterized by specific morphological and physiological features that distinguish them from both proliferating cells, and cells growth-arrested by other means. Although the molecular mechanisms by which OIS is established are not totally understood, the current view is that OIS in human cells is tightly linked to persistent activation of the DNA damage response (DDR) pathway, as a consequence of replication stress. Here we will highlight recent advances in our understanding of molecular mechanisms leading to hyper-replication stress in response to oncogene activation, and of the crosstalk between replication stress and persistent activation of the DDR. We will also discuss new evidence for DNA repair deficiencies during OIS, which might increase the genomic instability that drives senescence bypass and malignant transformation.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
150
|
Autophagy and the invisible line between life and death. Eur J Cell Biol 2016; 95:598-610. [PMID: 28340912 DOI: 10.1016/j.ejcb.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.
Collapse
|