101
|
Interleukin-36: Structure, Signaling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:191-210. [PMID: 32026417 DOI: 10.1007/5584_2020_488] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IL-36 family belongs to a larger IL-1 superfamily and consists of three agonists (IL-36α/β/γ), one antagonist (IL-36Ra), one cognate receptor (IL-36R) and one accessory protein (IL-1RAcP). The receptor activation follows a two-step mechanism in that the agonist first binds to IL-36R and the resulting binary complex recruits IL-1RAcP. Assembled ternary complex brings together intracellular TIR domains of receptors which activate downstream NF-κB and MAPK signaling. Antagonist IL-36Ra inhibits the signaling by binding to IL-36R and preventing recruitment of IL-1RAcP. Members of IL-36 are normally expressed at low levels. Upon stimulation, they are inducted and act on a variety of cells including epithelial and immune cells. Protease mediated N-terminal processing is needed for cytokine activation. In the skin, the functional role of IL-36 is to contribute to host defense through inflammatory response. However, when dysregulated, IL-36 stimulates keratinocyte and immune cells to enhance the Th17/Th23 axis and induces psoriatic-like skin disorder. Genetic mutations of the antagonist IL-36Ra are associated with occurrence of generalized pustular psoriasis, a rare but life-threatening skin disease. Anti-IL-36 antibodies attenuate IMQ or IL-23 induced skin inflammation in mice, illustrating IL-36's involvement in mouse model of psoriasis. Other organs such as the lungs, the intestine, the joints and the brain also express IL-36 family members upon stimulation. The physiological and pathological roles of IL-36 are less well defined in these organs than in the skin. In this chapter, current progress on IL-36 protein and biology is reviewed with a discussion on investigative tools for this novel target.
Collapse
|
102
|
Rohr M, Narasimhulu CA, Keewan E, Hamid S, Parthasarathy S. The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct 2020; 11:9526-9534. [DOI: 10.1039/d0fo02328k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dietary peroxidized lipid, 13-HPODE, stimulates natural killer cell granzyme B production and secretion, with potential implications for intestinal inflammation.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | | | - Esra'a Keewan
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Simran Hamid
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences
- University of Central Florida
- College of Medicine
- Orlando
- USA
| |
Collapse
|
103
|
Menghini P, Corridoni D, Buttó LF, Osme A, Shivaswamy S, Lam M, Bamias G, Pizarro TT, Rodriguez-Palacios A, Dinarello CA, Cominelli F. Neutralization of IL-1α ameliorates Crohn's disease-like ileitis by functional alterations of the gut microbiome. Proc Natl Acad Sci U S A 2019; 116:26717-26726. [PMID: 31843928 PMCID: PMC6936591 DOI: 10.1073/pnas.1915043116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease and ulcerative colitis are chronic and progressive inflammatory bowel diseases (IBDs) that are attributed to dysregulated interactions between the gut microbiome and the intestinal mucosa-associated immune system. There are limited studies investigating the role of either IL-1α or IL-1β in mouse models of colitis, and no clinical trials blocking either IL-1 have yet to be performed. In the present study, we show that neutralization of IL-1α by a specific monoclonal antibody against murine IL-1α was highly effective in reducing inflammation and damage in SAMP mice, mice that spontaneously develop a Crohn's-like ileitis. Anti-mouse IL-1α significantly ameliorated the established, chronic ileitis and also protected mice from developing acute DSS-induced colitis. Both were associated with taxonomic divergence of the fecal gut microbiome, which was treatment-specific and not dependent on inflammation. Anti-IL-1α administration led to a decreased ratio of Proteobacteria to Bacteroidetes, decreased presence of Helicobacter species, and elevated representation of Mucispirillum schaedleri and Lactobacillus salivarius. Such modification in flora was functionally linked to the antiinflammatory effects of IL-1α neutralization, as blockade of IL-1α was not effective in germfree SAMP mice. Furthermore, preemptive dexamethasone treatment of DSS-challenged SAMP mice led to changes in flora composition without preventing the development of colitis. Thus, neutralization of IL-1α changes specific bacterial species of the intestinal microbiome, which is linked to its antiinflammatory effects. These functional findings may be of significant value for patients with IBD, who may benefit from targeted IL-1α-based therapies.
Collapse
Affiliation(s)
- Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Daniele Corridoni
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Ludovica F. Buttó
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abdullah Osme
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | - Minh Lam
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Giorgos Bamias
- Gastrointestinal Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 11527 Athens, Greece
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Alexander Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
104
|
Ikram S, Ahmad J, Durdagi S. Screening of FDA approved drugs for finding potential inhibitors against Granzyme B as a potent drug-repurposing target. J Mol Graph Model 2019; 95:107462. [PMID: 31786094 DOI: 10.1016/j.jmgm.2019.107462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Granzyme B is one of the best-characterized and extensively studied member of cytotoxic lymphocytes (CL) proteases. Initially, it is thought to be involved in eliminating virally infected or cancerous cells by using a specialized mechanism through which they are internalized into target cells. In the last decade, however this dimension has changed as there are several reports show that not only CL but also other immune cells can also synthesize Granzyme B. This leads to the possibility of the presence of these proteases in extracellular environment. Being active protease, it then raises the possibility of damaging host tissues as evident from the available reported literature. In many instances, Granzyme B is directly involved in pathogenicity, however in others, it contributes to the disease severity as their over expression makes the clinical situation quite worse which ultimately leads to the chronic state of the disease. Serine protease inhibitor-9 is a natural known intracellular inhibitor of Granzyme B, however there is less data available about the potential inhibitors that can regulate its activity in an extracellular environment. Current study is an effort to identify potential novel inhibitors of Granzyme B. For this aim, drug repurposing study was performed. Around 7900 FDA approved drugs were screened using both ligand- and target-driven approaches. Initially, all molecules were docked using induced fit docking (IFD) approach and selected 318 high-docking scored molecules were used in short (1-ns) molecular dynamics (MD) simulations. Based on MM/GBSA binding free energy calculations, 6 compounds were selected and used in long (100-ns) MD simulations. These compounds were then used in binary QSAR analysis. Therapeutic activity potentials of studied compounds were investigated by Clarivate Analytics's MetaCore/MetaDrug platform which uses binary QSAR models. It is developed based on manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism and toxicity information. Results of selected compounds were compared with a positive control molecule. Current drug repurposing study is a step ahead in finding potential lead compounds by screening database of FDA approved molecules. We have identified novel inhibitors (Tannic acid, Mupirocin, Phytonadiol sodium diphosphate, Cefpiramide, Xenazoic acid) that have potential to decrease the activity of Granzyme B.
Collapse
Affiliation(s)
- Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
105
|
Clancy DM, Sullivan GP, Moran HBT, Henry CM, Reeves EP, McElvaney NG, Lavelle EC, Martin SJ. Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep 2019. [PMID: 29539422 DOI: 10.1016/j.celrep.2018.02.062] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophil granule proteases are thought to function as anti-microbial effectors, cooperatively hydrolyzing microorganisms within phagosomes, or upon deployment into the extracellular space. However, evidence also suggests that neutrophil proteases play an important role in the coordination and escalation of inflammatory reactions, but how this is achieved has been obscure. IL-1 family cytokines are important initiators of inflammation and are typically released via necrosis but require proteolytic processing for activation. Here, we show that proteases liberated from activated neutrophils can positively or negatively regulate the activity of six IL-1 family cytokines (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, and IL-36γ) with exquisite sensitivity. In contrast, extracellular neutrophil proteases displayed very poor bactericidal activity, exhibiting 100-fold greater potency toward cytokine processing than bacterial killing. Thus, in addition to their classical role as phagocytes, neutrophils play an important immunoregulatory role through deployment of their granule proteases into the extracellular space to process multiple IL-1 family cytokines.
Collapse
Affiliation(s)
- Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Hannah B T Moran
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Conor M Henry
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
106
|
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing. Expert Opin Ther Targets 2019; 23:745-754. [PMID: 31461387 DOI: 10.1080/14728222.2019.1661380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Granzyme B is a serine protease traditionally understood as having a role in immune-mediated cytotoxicity. Over the past decade, this dogma has been challenged, with a new appreciation that granzyme B can exert alternative extracellular roles detrimental to wound closure and remodeling. Granzyme B is elevated in response to tissue injury, chronic inflammation and/or autoimmune skin diseases, resulting in impaired wound healing. Areas covered: This review provides a historical background of granzyme B and a description of how it is regulated. Details are provided on the role of granzyme B in apoptosis as well as newly identified extracellular roles, focusing on those affecting wound healing, including on inflammation, dermal-epidermal junction separation, re-epithelialization, scarring and fibrosis, and autoimmunity. Finally, the use of pharmacological granzyme B inhibitors as potential therapeutic options for wound treatment is discussed. Expert opinion: Endogenous extracellular granzyme B inhibitors have not been identified in human bio-fluids, thus in chronic wound environments granzyme B appears to remain uncontrolled and unregulated. In response, targeted granzyme B inhibitors have been developed for therapeutic applications in wounds. Animal studies trialing inhibitors of granzyme B show improved healing outcomes, and may therefore provide a novel therapeutic approach for wound treatment.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| |
Collapse
|
107
|
Sato S, Chiba T, Nakahara T, Furue M. Upregulation of
IL
‐36 cytokines in folliculitis and eosinophilic pustular folliculitis. Australas J Dermatol 2019; 61:e39-e45. [DOI: 10.1111/ajd.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Seisho Sato
- Department of Dermatology Graduate School of Medical Sciences Kyushu University FukuokaJapan
| | - Takahito Chiba
- Department of Dermatology and Plastic Surgery Akita University Graduate School of Medicine Akita Japan
| | - Takeshi Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University FukuokaJapan
| | - Masutaka Furue
- Department of Dermatology Graduate School of Medical Sciences Kyushu University FukuokaJapan
| |
Collapse
|
108
|
Hernandez-Santana YE, Giannoudaki E, Leon G, Lucitt MB, Walsh PT. Current perspectives on the interleukin-1 family as targets for inflammatory disease. Eur J Immunol 2019; 49:1306-1320. [PMID: 31250428 DOI: 10.1002/eji.201848056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Since the first description of interleukin-1 (IL-1) and the genesis of the field of cytokine biology, the understanding of how IL-1 and related cytokines play central orchestrating roles in the inflammatory response has been an area of intense investigation. As a consequence of these endeavours, specific strategies have been developed to target the function of the IL-1 family in human disease realizing significant impacts for patients. While the most significant advances to date have been associated with inhibition of the prototypical family members IL-1α/β, approaches to target more recently identified family members such as IL-18, IL-33 and the IL-36 subfamily are now beginning to come to fruition. This review summarizes current knowledge surrounding the roles of the IL-1 family in human disease and describes the rationale and strategies which have been developed to target these cytokines to inhibit the pathogenesis of a wide range of diseases in which inflammation plays a centrally important role.
Collapse
Affiliation(s)
- Yasmina E Hernandez-Santana
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Eirini Giannoudaki
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Gemma Leon
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Margaret B Lucitt
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College, Dublin
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| |
Collapse
|
109
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
110
|
Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells. Cancers (Basel) 2019; 11:cancers11060808. [PMID: 31212684 PMCID: PMC6627828 DOI: 10.3390/cancers11060808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
A wide-range of myeloid-derived suppressor cell (MDSC)-mediated immune suppressive functions has previously been described. Nevertheless, potential novel mechanisms by which MDSCs aid tumor progression are, in all likelihood, still unrecognized. Next to its well-known expression in natural killer cells and cytotoxic T lymphocytes (CTLs), granzyme B (GzmB) expression has been found in different cell types. In an MDSC culture model, we demonstrated perforin and GzmB expression. Furthermore, similar observations were made in MDSCs isolated from tumor-bearing mice. Even in MDSCs from humans, GzmB expression was demonstrated. Of note, B16F10 melanoma cells co-cultured with perforin/GzmB knock out mice (KO) MDSCs displayed a remarkable decrease in invasive potential. B16F10 melanoma cells co-injected with KO MDSCs, displayed a significant slower growth curve compared to tumor cells co-injected with wild type (WT) MDSCs. In vivo absence of perforin/GzmB in MDSCs resulted in a higher number of CD8+ T-cells. Despite this change in favor of CD8+ T-cell infiltration, we observed low interferon-γ (IFN-γ) and high programmed death-ligand 1 (PD-L1) expression, suggesting that other immunosuppressive mechanisms render these CD8+ T-cells dysfunctional. Taken together, our results suggest that GzmB expression in MDSCs is another means to promote tumor growth and warrants further investigation to unravel the exact underlying mechanism.
Collapse
|
111
|
McEntee CP, Finlay CM, Lavelle EC. Divergent Roles for the IL-1 Family in Gastrointestinal Homeostasis and Inflammation. Front Immunol 2019; 10:1266. [PMID: 31231388 PMCID: PMC6568214 DOI: 10.3389/fimmu.2019.01266] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory disorders of the gastro-intestinal tract are a major cause of morbidity and significant burden from a health and economic perspective in industrialized countries. While the incidence of such conditions has a strong environmental component, in particular dietary composition, epidemiological studies have identified specific hereditary mutations which result in disequilibrium between pro- and anti-inflammatory factors. The IL-1 super-family of cytokines and receptors is highly pleiotropic and plays a fundamental role in the pathogenesis of several auto-inflammatory conditions including rheumatoid arthritis, multiple sclerosis and psoriasis. However, the role of this super-family in the etiology of inflammatory bowel diseases remains incompletely resolved despite extensive research. Herein, we highlight the currently accepted paradigms as they pertain to specific IL-1 family members and focus on some recently described non-classical roles for these pathways in the gastrointestinal tract. Finally, we address some of the shortcomings and sources of variance in the field which to date have yielded several conflicting results from similar studies and discuss the potential effect of these factors on data interpretation.
Collapse
Affiliation(s)
- Craig P McEntee
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Conor M Finlay
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
112
|
Hu X, Zhong Y, Lambers TT, Jiang W. Anti-inflammatory activity of extensively hydrolyzed casein is mediated by granzyme B. Inflamm Res 2019; 68:715-722. [PMID: 31168680 DOI: 10.1007/s00011-019-01254-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Nutritional factors such as extensively hydrolyzed casein (eHC) have been proposed to exert anti-inflammatory activity and affect clinical outcomes such as tolerance development in cow's milk allergy. Granzyme B (GrB) induces apoptosis in target cells and also controls the inflammatory response. Whether eHC could affect the activity of granzyme B and play a role in GrB-mediated inflammatory responses in vitro was unknown. METHODS The activity of GrB was measured using the substrate Ac-IEPD-pNA. Inflammatory responses were induced with GrB in HCT-8 and THP-1 cells, and pro-inflammatory cytokines were determined at the transcriptional and protein level. RESULTS GrB could induce the expression of IL-1β in HCT-8 cells, and IL-8 and MCP-1 in THP-1 cells, respectively. Interestingly, GrB acted synergistically on LPS-induced inflammation in HCT-8 cells and eHC reduced pro-inflammatory responses in both GrB and LPS-mediated inflammation. Further analyses revealed that eHC could inhibit the biological activities and cytotoxic activities of GrB and then could reduce GrB-mediated inflammatory response. CONCLUSION The results from the current study suggest that anti-inflammatory activity of extensively hydrolyzed casein is, to a certain extent, mediated through modulation of granzyme B activity and responses.
Collapse
Affiliation(s)
- Xuefei Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan Zhong
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Tim T Lambers
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
113
|
Wiggins KA, Parry AJ, Cassidy LD, Humphry M, Webster SJ, Goodall JC, Narita M, Clarke MCH. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype. Aging Cell 2019; 18:e12946. [PMID: 30916891 PMCID: PMC6516163 DOI: 10.1111/acel.12946] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/08/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL-1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL-1α in these contexts is unknown. We show IL-1α is activated by caspase-5 or caspase-11 cleavage at a conserved site. Caspase-5 drives cleaved IL-1α release after human macrophage inflammasome activation, while IL-1α secretion from murine macrophages only requires caspase-11, with IL-1β release needing caspase-11 and caspase-1. Importantly, senescent human cells require caspase-5 for the IL-1α-dependent senescence-associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase-11 for the SASP-driven immune surveillance of senescent cells in vivo. Together, we identify IL-1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL-1α is activated during senescence. Thus, targeting caspase-5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.
Collapse
Affiliation(s)
- Kimberley A. Wiggins
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Aled J. Parry
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Liam D. Cassidy
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Melanie Humphry
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Steve J. Webster
- Division of RheumatologyDepartment of MedicineUniversity of CambridgeCambridgeUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Jane C. Goodall
- Division of RheumatologyDepartment of MedicineUniversity of CambridgeCambridgeUK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Murray C. H. Clarke
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
114
|
Van Gorp H, Lamkanfi M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep 2019; 20:embr.201847575. [PMID: 31101676 DOI: 10.15252/embr.201847575] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/02/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
In addition to the genomic alterations that occur in malignant cells, the immune system is increasingly appreciated as a critical axis that regulates the rise of neoplasms and the development of primary tumours and metastases. The interaction between inflammatory cell infiltrates and stromal cells in the tumour microenvironment is complex, with inflammation playing both pro- and anti-tumorigenic roles. Inflammasomes are intracellular multi-protein complexes that act as key signalling hubs of the innate immune system. They respond to cellular stress and trauma by promoting activation of caspase-1, a protease that induces a pro-inflammatory cell death mode termed pyroptosis along with the maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Here, we will briefly introduce inflammasome biology with a focus on the dual roles of inflammasome-produced cytokines in cancer development. Despite emerging insight that inflammasomes may promote and suppress cancer development according to the tumour stage and the tumour microenvironment, much remains to be uncovered. Further exploration of inflammasome biology in tumorigenesis should enable the development of novel immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Center for Inflammation Research, VIB, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium .,Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| |
Collapse
|
115
|
Spolski R, West EE, Li P, Veenbergen S, Yung S, Kazemian M, Oh J, Yu ZX, Freeman AF, Holland SM, Murphy PM, Leonard WJ. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. eLife 2019; 8:45501. [PMID: 30969166 PMCID: PMC6504231 DOI: 10.7554/elife.45501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNβ induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRSA.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Erin E West
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sunny Yung
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Majid Kazemian
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zu-Xi Yu
- The Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
116
|
Tapia VS, Daniels MJD, Palazón-Riquelme P, Dewhurst M, Luheshi NM, Rivers-Auty J, Green J, Redondo-Castro E, Kaldis P, Lopez-Castejon G, Brough D. The three cytokines IL-1β, IL-18, and IL-1α share related but distinct secretory routes. J Biol Chem 2019; 294:8325-8335. [PMID: 30940725 PMCID: PMC6544845 DOI: 10.1074/jbc.ra119.008009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)-1 family cytokines potently regulate inflammation, with the majority of the IL-1 family proteins being secreted from immune cells via unconventional pathways. In many cases, secretion of IL-1 cytokines appears to be closely coupled to cell death, yet the secretory mechanisms involved remain poorly understood. Here, we studied the secretion of the three best-characterized members of the IL-1 superfamily, IL-1α, IL-1β, and IL-18, in a range of conditions and cell types, including murine bone marrow–derived and peritoneal macrophages, human monocyte–derived macrophages, HeLa cells, and mouse embryonic fibroblasts. We discovered that IL-1β and IL-18 share a common secretory pathway that depends upon membrane permeability and can operate in the absence of complete cell lysis and cell death. We also found that the pathway regulating the trafficking of IL-1α is distinct from the pathway regulating IL-1β and IL-18. Although the release of IL-1α could also be dissociated from cell death, it was independent of the effects of the membrane-stabilizing agent punicalagin, which inhibited both IL-1β and IL-18 release. These results reveal that in addition to their role as danger signals released from dead cells, IL-1 family cytokines can be secreted in the absence of cell death. We propose that models used in the study of IL-1 release should be considered context-dependently.
Collapse
Affiliation(s)
- Victor S Tapia
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Michael J D Daniels
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom; UK Dementia Research Institute, University of Edinburgh, College of Medicine and Veterinary Medicine, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom
| | - Pablo Palazón-Riquelme
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre of Inflammation Research, Manchester Academic Health Science Centre, Core Technology Facility, University of Manchester, Manchester M13 9PT, United Kingdom; International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, 69100 Lyon, France
| | - Matthew Dewhurst
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Department of Biochemistry, National University of Singapore (NUS), Singapore 119007, Singapore
| | - Nadia M Luheshi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom; MedImmune Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jack Rivers-Auty
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jack Green
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Elena Redondo-Castro
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Department of Biochemistry, National University of Singapore (NUS), Singapore 119007, Singapore
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, United Kingdom; Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre of Inflammation Research, Manchester Academic Health Science Centre, Core Technology Facility, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
117
|
The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity 2019; 50:1033-1042.e6. [PMID: 30926232 PMCID: PMC6476404 DOI: 10.1016/j.immuni.2019.03.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/06/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022]
Abstract
Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases. Mammalian IL-1α contains a highly conserved thrombin consensus site Thrombin cleavage leads to IL-1α activation and shedding from the cell surface Thrombin activates IL-1α after epidermal wounding and after acute platelet loss Thrombin-cleaved IL-1α is also detected in humans during sepsis
Collapse
|
118
|
NK Cell-Mediated Processing Of Chlamydia psittaci Drives Potent Anti-Bacterial Th1 Immunity. Sci Rep 2019; 9:4799. [PMID: 30886314 PMCID: PMC6423132 DOI: 10.1038/s41598-019-41264-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 11/08/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells critically involved in the early immune response against various pathogens including chlamydia. Here, we demonstrate that chlamydia-infected NK cells prevent the intracellular establishment and growth of the bacteria. Upon infection, they display functional maturation characterized by enhanced IFN-γ secretion, CD146 induction, PKCϴ activation, and granule secretion. Eventually, chlamydia are released in a non-infectious, highly immunogenic form driving a potent Th1 immune response. Further, anti-chlamydial antibodies generated during immunization neutralize the infection of epithelial cells. The release of chlamydia from NK cells requires PKCϴ function and active degranulation, while granule-associated granzyme B drives the loss of chlamydial infectivity. Cellular infection and bacterial release can be undergone repeatedly and do not affect NK cell function. Strikingly, NK cells passing through such an infection cycle significantly improve their cytotoxicity. Thus, NK cells not only protect themselves against productive chlamydial infections but also actively trigger potent anti-bacterial responses.
Collapse
|
119
|
Van Gorp H, Van Opdenbosch N, Lamkanfi M. Inflammasome-Dependent Cytokines at the Crossroads of Health and Autoinflammatory Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028563. [PMID: 29038114 DOI: 10.1101/cshperspect.a028563] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key regulators of both innate and adaptive immunity, it is unsurprising that the activity of interleukin (IL)-1 cytokine family members is tightly controlled by decoy receptors, antagonists, and a variety of other mechanisms. Additionally, inflammasome-mediated proteolytic maturation is a prominent and distinguishing feature of two important members of this cytokine family, IL-1β and IL-18, because their full-length gene products are biologically inert. Although vital in antimicrobial host defense, deregulated inflammasome signaling is linked with a growing number of autoimmune and autoinflammatory diseases. Here, we focus on introducing the diverse inflammasome types and discussing their causal roles in periodic fever syndromes. Therapies targeting IL-1 or IL-18 show great efficacy in some of these autoinflammatory diseases, although further understanding of the molecular mechanisms leading to unregulated production of these key cytokines is required to benefit more patients.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Nina Van Opdenbosch
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Mohamed Lamkanfi
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
120
|
Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease. Matrix Biol 2019; 75-76:126-140. [DOI: 10.1016/j.matbio.2017.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023]
|
121
|
Merkley SD, Chock CJ, Yang XO, Harris J, Castillo EF. Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Front Immunol 2018; 9:2914. [PMID: 30619278 PMCID: PMC6302218 DOI: 10.3389/fimmu.2018.02914] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a homeostatic and inducible process affecting multiple aspects of the immune system. This intrinsic cellular process is involved in MHC-antigen (Ag) presentation, inflammatory signaling, cytokine regulation, and cellular metabolism. In the context of T cell responses, autophagy has an influential hand in dictating responses to self and non-self by controlling extrinsic factors (e.g., MHC-Ag, cytokine production) in antigen-presenting cells (APC) and intrinsic factors (e.g., cell signaling, survival, cytokine production, and metabolism) in T cells. These attributes make autophagy an attractive therapeutic target to modulate T cell responses. In this review, we examine the impact autophagy has on T cell responses by modulating multiple aspects of APC function; the importance of autophagy in the activation, differentiation and homeostasis of T cells; and discuss how the modulation of autophagy could influence T cell responses.
Collapse
Affiliation(s)
- Seth D Merkley
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Cameron J Chock
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton, VIC, Australia
| | - Eliseo F Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM, United States
| |
Collapse
|
122
|
Lago TS, Silva JA, Lago EL, Carvalho EM, Zanette DL, Castellucci LC. The miRNA 361-3p, a Regulator of GZMB and TNF Is Associated With Therapeutic Failure and Longer Time Healing of Cutaneous Leishmaniasis Caused by L. (viannia) braziliensis. Front Immunol 2018; 9:2621. [PMID: 30487794 PMCID: PMC6247993 DOI: 10.3389/fimmu.2018.02621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
L. (viannia) braziliensis infection causes American Tegumentary Leishmaniasis (ATL), with prolonged time to healing lesions. The potent inflammatory response developed by the host is important to control the parasite burden and infection however an unbalanced immunity may cooperate to the tissue damage observed. The range of mechanisms underlying the pathological responses associated with ATL still needs to be better understood. That includes epigenetic regulation by non-coding MicroRNAs (miRNAs), non-coding sequences around 22 nucleotides that act as post-transcriptional regulators of RNAs encoding proteins. The miRNAs have been associated with diverse parasitic diseases, including leishmaniasis. Here we evaluated miRNAs that targeted genes expressed in cutaneous leishmaniasis lesions (CL) by comparing its expression in both CL and normal skin obtained from the same individual. In addition, we evaluated if the miRNAs expression would be correlated with clinical parameters such as therapeutic failure, healing time as well as lesion size. The miR-361-3p and miR-140-3p were significantly more expressed in CL lesions compared to normal skin samples (p = 0.0001 and p < 0.0001, respectively). In addition, the miR-361-3p was correlated with both, therapeutic failure and healing time of disease (r = 0.6, p = 0.003 and r = 0.5, p = 0.007, respectively). In addition, complementary analysis shown that miR-361-3p is able to identify with good sensitivity (81.2%) and specificity (100%) patients who tend to fail initial treatment with pentavalent antimonial (Sbv). Finally, the survival analysis considering "cure" as the endpoint showed that the higher the expression of miR-361-3p, the longer the healing time of CL. Overall, our data suggest the potential of miR-361-3p as a prognostic biomarker in CL caused by L. braziliensis.
Collapse
Affiliation(s)
- Tainã S. Lago
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Investigação em Genética e Hematologia Tanslacional do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
| | | | - Ednaldo L. Lago
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisa Clínica (LAPEC) do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Dalila L. Zanette
- Laboratório de Investigação em Genética e Hematologia Tanslacional do Instituto Gonçalo Moniz–Fiocruz-Ba, Salvador, Brazil
| | - Léa Cristina Castellucci
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
123
|
New perspectives on IL-33 and IL-1 family cytokines as innate environmental sensors. Biochem Soc Trans 2018; 46:1345-1353. [PMID: 30301844 DOI: 10.1042/bst20170567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-1 family cytokines are important initiators of innate immunity and host defence; however, their uncontrolled activities can cause tissue-damaging inflammation. Consequently, IL-1 family cytokines have sophisticated regulatory mechanisms to control their activities including proteolytic processing for their activation and the deployment of soluble receptors and receptor antagonists to limit their activities. IL-33 is a promoter of type 2 immunity and allergic inflammation through its alarmin activity that can rapidly initiate local immune responses by stimulating innate immune cells following exposure to environmental insults, pathogens, or sterile injury. Recent publications have provided new insights into how the range and duration of IL-33 activity is regulated by direct sensing of host-derived and exogenous proteolytic activities as well as oxidative changes during tissue damage. Here, we discuss how this impacts our understanding of the roles of IL-33 in initiating immune responses and the evidence that these sensing mechanisms might regulate the activities of other IL-1 family cytokines and their biological functions. Finally, we discuss translational challenges these discoveries pose for the accurate detection of different forms of these cytokines.
Collapse
|
124
|
Belizário JE, Neyra JM, Setúbal Destro Rodrigues MF. When and how NK cell-induced programmed cell death benefits immunological protection against intracellular pathogen infection. Innate Immun 2018; 24:452-465. [PMID: 30236030 PMCID: PMC6830868 DOI: 10.1177/1753425918800200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NK cells are innate lymphoid cells that exert a key role in immune surveillance
through the recognition and elimination of transformed cells and viral,
bacterial, and protozoan pathogen-infected cells without prior sensitization.
Elucidating when and how NK cell-induced intracellular microbial cell death
functions in the resolution of infection and host inflammation has been an
important topic of investigation. NK cell activation requires the engagement of
specific activating, co-stimulatory, and inhibitory receptors which control
positively and negatively their differentiation, memory, and exhaustion. NK
cells secrete diverse cytokines, including IFN-γ, TNF-α/β, CD95/FasL, and TRAIL,
as well as cytoplasmic cytotoxic granules containing perforin, granulysin, and
granzymes A and B. Paradoxically, NK cells also kill other immune cells like
macrophages, dendritic cells, and hyper-activated T cells, thus turning off
self-immune reactions. Here we first provide an overview of NK cell biology, and
then we describe and discuss the life–death signals that connect the microbial
pathogen sensors to the inflammasomes and finally to cell death signaling
pathways. We focus on caspase-mediated cell death by apoptosis and
pro-inflammatory and non-caspase-mediated cell death by necroptosis, as well as
inflammasome- and caspase-mediated pyroptosis.
Collapse
|
125
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
126
|
Abstract
The extracellular forms of the IL-1 cytokines are active through binding to specific receptors on the surface of target cells. IL-1 ligands bind to the extracellular portion of their ligand-binding receptor chain. For signaling to take place, a non-binding accessory chain is recruited into a heterotrimeric complex. The intracellular approximation of the Toll-IL-1-receptor (TIR) domains of the 2 receptor chains is the event that initiates signaling. The family of IL-1 receptors (IL-1R) includes 10 structurally related members, and the distantly related soluble protein IL-18BP that acts as inhibitor of the cytokine IL-18. Over the years the receptors of the IL-1 family have been known with many different names, with significant confusion. Thus, we will use here a recently proposed unifying nomenclature. The family includes several ligand-binding chains (IL-1R1, IL-1R2, IL-1R4, IL-1R5, and IL-1R6), 2 types of accessory chains (IL-1R3, IL-1R7), molecules that act as inhibitors of signaling (IL-1R2, IL-1R8, IL-18BP), and 2 orphan receptors (IL-1R9, IL-1R10). In this review, we will examine how the receptors of the IL-1 family regulate the inflammatory and anti-inflammatory functions of the IL-1 cytokines and are, more at large, involved in modulating defensive and pathological innate immunity and inflammation. Regulation of the IL-1/IL-1R system in the brain will be also described, as an example of the peculiarities of organ-specific modulation of inflammation.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Sabrina Weil
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Michael U Martin
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| |
Collapse
|
127
|
Bassoy EY, Towne JE, Gabay C. Regulation and function of interleukin-36 cytokines. Immunol Rev 2018; 281:169-178. [PMID: 29247994 DOI: 10.1111/imr.12610] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interleukin (IL)-36 cytokines include 3 agonists, IL-36α, IL-36β, and IL-36γ that bind to a common receptor composed of IL-36R and IL-1RAcP to stimulate inflammatory responses. IL-36Ra is a natural antagonist that binds to IL-36R, but does not recruit the co-receptor IL-1RAcP and does not stimulate any intracellular responses. The IL-36 cytokines are expressed predominantly by epithelial cells and act on a number of cells including immune cells, epithelial cells, and fibroblasts. Processing of the N-terminus is required for full agonist or antagonist activity for all IL-36 members. The role of IL-36 has been extensively demonstrated in the skin where it can act on keratinocytes and immune cells to induce a robust inflammatory response that has been implicated in psoriatic disorders. Emerging data also suggest a role for this cytokine family in pulmonary and intestinal physiology and pathology.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Division of Rheumatology, Department of Internal Medicine Specialties & Department of Pathology-Immunology, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Jennifer E Towne
- Immunology Discovery, Janssen Research and Development, San Diego, CA, USA
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties & Department of Pathology-Immunology, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| |
Collapse
|
128
|
Human Granzyme B Based Targeted Cytolytic Fusion Proteins. Biomedicines 2018; 6:biomedicines6020072. [PMID: 29925790 PMCID: PMC6027395 DOI: 10.3390/biomedicines6020072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer immunotherapy aims to selectively target and kill tumor cells whilst limiting the damage to healthy tissues. Controlled delivery of plant, bacterial and human toxins or enzymes has been shown to promote the induction of apoptosis in cancerous cells. The 4th generation of targeted effectors are being designed to be as humanized as possible—a solution to the problem of immunogenicity encountered with existing generations. Granzymes are serine proteases which naturally function in humans as integral cytolytic effectors during the programmed cell death of cancerous and pathogen-infected cells. Secreted predominantly by cytotoxic T lymphocytes and natural killer cells, granzymes function mechanistically by caspase-dependent or caspase-independent pathways. These natural characteristics make granzymes one of the most promising human enzymes for use in the development of fusion protein-based targeted therapeutic strategies for various cancers. In this review, we explore research involving the use of granzymes as cytolytic effectors fused to antibody fragments as selective binding domains.
Collapse
|
129
|
Wang L, Jiang S, Xiao L, Chen L, Zhang Y, Tong J. Inhibition of granzyme B activity blocks inflammation induced by lipopolysaccharide through regulation of endoplasmic reticulum stress signaling in NK92 cells. Mol Med Rep 2018; 18:580-586. [PMID: 29749522 DOI: 10.3892/mmr.2018.8995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/08/2017] [Indexed: 11/06/2022] Open
Abstract
Granzyme B (GrB) is a serine protease that is expressed in the lytic granules of natural killer (NK) cells and cytotoxic T lymphocytes (CTL), and which has been widely reported to serve a crucial role for target cell apoptosis. GrB may serve a non‑cytotoxic role in inflammation, but the evidence remains unclear. The present study aimed to establish an inflammatory cell model by using NK92 cells stimulated with lipopolysaccharide (LPS) to investigate whether GrB was involved in the development of inflammation. The extracellular levels of tumor necrosis factor‑α (TNF‑α), interleukin‑1β (IL‑1β) and GrB were examined by ELISA, and it was demonstrated that LPS treatment increased the extracellular levels of TNF‑α, IL‑1β and GrB, and these increased expression levels were inhibited by pretreatment with the GrB inhibitor serpin A3N (SA3N). The protein expression levels of glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), nuclear factor‑κB (NF‑κB), inhibitor of NF‑κB (IκBα) and GrB were examined by western blot analysis. The results demonstrated that LPS stimulation increased the expression levels of GRP78, CHOP, NF‑κB and GrB, and decreased the expression of IκBα, and these changes were inhibited by SA3N, which indicated that inhibition of GrB activity may suppress endoplasmic reticulum (ER) stress signaling. Therefore, it was suggested that GrB may be a potential pro‑inflammatory factor, and inhibition of GrB activity may aid the prevention of the development of inflammation by suppressing ER stress signaling.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shaowei Jiang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ling Xiao
- Department of Clinical Immunology, Institute of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lin Chen
- Department of Clinical Immunology, Institute of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yanyan Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jing Tong
- Aristogenesis Genetic Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
130
|
Muñoz-Wolf N, Lavelle EC. A Guide to IL-1 family cytokines in adjuvanticity. FEBS J 2018; 285:2377-2401. [PMID: 29656546 DOI: 10.1111/febs.14467] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Growing awareness of the multiplicity of roles for the IL-1 family in immune regulation has prompted research exploring these cytokines in the context of vaccine-induced immunity. While tightly regulated, cytokines of the IL-1 family are normally released in response to cellular stress and in combination with other danger-/damage-associated molecular patterns (DAMPs), triggering potent local and systemic immune responses. In the context of infection or autoimmunity, engagement of IL-1 family receptors links robust innate responses to adaptive immunity. Clinical and experimental evidence has revealed that many vaccine adjuvants induce the release of one or multiple IL-1 family cytokines. The coordinated release of IL-1 family members in response to adjuvant-induced damage or cell death may be a determining factor in the transition from local inflammation to the induction of an adaptive response. Here, we analyse the effects of IL-1 family cytokines on innate and adaptive immunity with a particular emphasis on activation of antigen-presenting cells and induction of T cell-mediated immunity, and we address in detail the contribution of these cytokines to the modes of action of vaccine adjuvants including those currently approved for human use.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Ireland
| |
Collapse
|
131
|
Sullivan GP, Davidovich PB, Sura-Trueba S, Belotcerkovskaya E, Henry CM, Clancy DM, Zinoveva A, Mametnabiev T, Garabadzhiu AV, Martin SJ. Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. FEBS Open Bio 2018; 8:751-763. [PMID: 29744290 PMCID: PMC5929933 DOI: 10.1002/2211-5463.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
IL‐1 family cytokines act as apical initiators of inflammation in many settings and can promote the production of a battery of inflammatory cytokines, chemokines and other inflammatory mediators in diverse cell types. IL‐36α, IL‐36β and IL‐36γ, which belong to the extended IL‐1 family, have been implicated as key initiators of skin inflammation in psoriasis. IL‐36γ is highly upregulated in lesional skin from psoriatic individuals, and heritable mutations in the natural IL‐36 receptor antagonist result in a severe form of psoriasis. IL‐36 family cytokines are initially expressed as inactive precursors that require proteolytic processing for activation. The neutrophil granule‐derived protease elastase proteolytically processes and activates IL‐36α and IL‐36γ, increasing their biological activity ~ 500‐fold, and also robustly activates IL‐1α and IL‐33 through limited proteolytic processing. Consequently, inhibitors of elastase activity may have potential as anti‐inflammatory agents through antagonizing the activation of multiple IL‐1 family cytokines. Using in silico screening approaches, we have identified small‐molecule inhibitors of elastase that can antagonize activation of IL‐36γ by the latter protease. The compounds reported herein may have utility as lead compounds for the development of inhibitors of elastase‐mediated activation of IL‐36 and other IL‐1 family cytokines in inflammatory conditions, such as psoriasis.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Pavel B Davidovich
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | - Sylvia Sura-Trueba
- Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | | | - Conor M Henry
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Anna Zinoveva
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | - Tazhir Mametnabiev
- Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | | | - Seamus J Martin
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| |
Collapse
|
132
|
Redefining the ancestral origins of the interleukin-1 superfamily. Nat Commun 2018; 9:1156. [PMID: 29559685 PMCID: PMC5861070 DOI: 10.1038/s41467-018-03362-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
The interleukin-1 (IL-1) receptor and ligand families are components of the immune system. Knowledge of their evolutionary history is essential to understand their function. Using chromosomal anatomy and sequence similarity, we show that IL-1 receptor family members are related and nine members are likely formed from duplication and modification of a proto-IL-1R1 receptor. The IL-1 ligands have a different evolutionary history. The first proto-IL-1β gene coincided with proto-IL-1R1 and duplication events resulted in the majority of IL-1 ligand family members. However, large evolutionary distances are observed for IL-1α, IL-18 and IL-33 proteins. Further analysis show that IL-33 and IL-18 have poor sequence similarity and no chromosomal evidence of common ancestry with the IL-1β cluster and therefore should not be included in the IL-1 ligand ancestral family. IL-1α formed from the duplication of IL-1β, and moonlighting functions of pro-IL-1α acted as divergent selection pressures for the observed sequence dissimilarity.
Collapse
|
133
|
Sullivan GP, Henry CM, Clancy DM, Mametnabiev T, Belotcerkovskaya E, Davidovich P, Sura-Trueba S, Garabadzhiu AV, Martin SJ. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. Cell Death Dis 2018. [PMID: 29515113 PMCID: PMC5841435 DOI: 10.1038/s41419-018-0385-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sterile inflammation is initiated by molecules released from necrotic cells, called damage-associated molecular patterns (DAMPs). Members of the extended IL-1 cytokine family are important DAMPs, are typically only released through necrosis, and require limited proteolytic processing for activation. The IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, are expressed as inactive precursors and have been implicated as key initiators of psoriatic-type skin inflammation. We have recently found that IL-36 family cytokines are proteolytically processed and activated by the neutrophil granule-derived proteases, elastase, and cathepsin G. Inhibitors of IL-36 processing may therefore have utility as anti-inflammatory agents through suppressing activation of the latter cytokines. We have identified peptide-based pseudosubstrates for cathepsin G and elastase, based on optimal substrate cleavage motifs, which can antagonize activation of all three IL-36 family cytokines by the latter proteases. Human psoriatic skin plaques displayed elevated IL-36β processing activity that could be antagonized by peptide pseudosubstrates specific for cathepsin G. Thus, antagonists of neutrophil-derived proteases may have therapeutic potential for blocking activation of IL-36 family cytokines in inflammatory conditions such as psoriasis.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Conor M Henry
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Tazhir Mametnabiev
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Ekaterina Belotcerkovskaya
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Pavel Davidovich
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Sylvia Sura-Trueba
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Alexander V Garabadzhiu
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland. .,Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia.
| |
Collapse
|
134
|
Abstract
The interleukin (IL)-1 family of cytokines is currently comprised of 11 members that have pleiotropic functions in inflammation and cancer. IL-1α and IL-1β were the first members of the IL-1 family to be described, and both signal via the same receptor, IL-1R. Over the last decade, much progress has been made in our understanding of biogenesis of IL-1β and its functions in human diseases. Studies from our laboratory and others have highlighted the critical role of nod-like receptors (NLRs) and multi-protein complexes known as inflammasomes in the regulation of IL-1β maturation. Recent studies have increased our appreciation of the role played by IL-1α in inflammatory diseases and cancer. However, the mechanisms that regulate the production of IL-1α and its bioavailability are relatively understudied. In this review, we summarize the distinctive roles played by IL-1α in inflammatory diseases and cancer. We also discuss our current knowledge about the mechanisms that control IL-1α biogenesis and activity, and the major unanswered questions in its biology.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Immunology St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
135
|
Khazim K, Azulay EE, Kristal B, Cohen I. Interleukin 1 gene polymorphism and susceptibility to disease. Immunol Rev 2017; 281:40-56. [DOI: 10.1111/imr.12620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khaled Khazim
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Etti Ester Azulay
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| | - Batya Kristal
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Idan Cohen
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| |
Collapse
|
136
|
Campos TM, Costa R, Passos S, Carvalho LP. Cytotoxic activity in cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 2017; 112:733-740. [PMID: 29091132 PMCID: PMC5661895 DOI: 10.1590/0074-02760170109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a chronic disease caused by species of the protozoan Leishmania and characterised by the presence of ulcerated skin lesions. Both parasite and host factors affect the clinical presentation of the disease. The development of skin ulcers in CL is associated with an inflammatory response mediated by cells that control parasite growth but also contribute to pathogenesis. CD8+ T cells contribute to deleterious inflammatory responses in patients with CL through cytotoxic mechanisms. In addition, natural killer cells also limit Leishmania infections by production of interferon-γ and cytotoxicity. In this review, we focus on studies of cytotoxicity in CL and its contribution to the pathogenesis of this disease.
Collapse
Affiliation(s)
- Taís M Campos
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Rúbia Costa
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Sara Passos
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, United States
| | - Lucas P Carvalho
- Universidade Federal da Bahia, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, BA, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Laboratório Avançado de Saúde Pública, Salvador, BA, Brasil
| |
Collapse
|
137
|
Olivier E, Dutot M, Regazzetti A, Laprévote O, Rat P. 25-Hydroxycholesterol induces both P2X7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: New insights into degenerative pathways. Chem Phys Lipids 2017; 207:171-178. [DOI: 10.1016/j.chemphyslip.2017.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
|
138
|
Merani S, Kuchel GA, Kleppinger A, McElhaney JE. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage. Exp Gerontol 2017; 107:116-125. [PMID: 28958701 DOI: 10.1016/j.exger.2017.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022]
Abstract
Age-related changes in T-cell function are associated with a loss of influenza vaccine efficacy in older adults. Both antibody and cell-mediated immunity plays a prominent role in protecting older adults, particularly against the serious complications of influenza. High dose (HD) influenza vaccines induce higher antibody titers in older adults compared to standard dose (SD) vaccines, yet its impact on T-cell memory is not clear. The aim of this study was to compare the antibody and T-cell responses in older adults randomized to receive HD or SD influenza vaccine as well as determine whether cytomegalovirus (CMV) serostatus affects the response to vaccination, and identify differences in the response to vaccination in those older adults who subsequently have an influenza infection. Older adults (≥65years) were enrolled (n=106) and randomized to receive SD or HD influenza vaccine. Blood was collected pre-vaccination, followed by 4, 10 and 20weeks post-vaccination. Serum antibody titers, as well as levels of inducible granzyme B (iGrB) and cytokines were measured in PBMCs challenged ex vivo with live influenza virus. Surveillance conducted during the influenza season identified those with laboratory confirmed influenza illness or infection. HD influenza vaccination induced a high antibody titer and IL-10 response, and a short-lived increase in Th1 responses (IFN-γ and iGrB) compared to SD vaccination in PBMCs challenged ex vivo with live influenza virus. Of the older adults who became infected with influenza, a high IL-10 and iGrB response in virus-challenged cells was observed post-infection (week 10 to 20), as well as IFN-γ and TNF-α at week 20. Additionally, CMV seropositive older adults had an impaired iGrB response to influenza virus-challenge, regardless of vaccine dose. This study illustrates that HD influenza vaccines have little impact on the development of functional T-cell memory in older adults. Furthermore, poor outcomes of influenza infection in older adults may be due to a strong IL-10 response to influenza following vaccination, and persistent CMV infection.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada
| | - George A Kuchel
- University of Connecticut Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, 06030-5215, CT, USA
| | | | - Janet E McElhaney
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, P3E 5J1, ON, Canada.
| |
Collapse
|
139
|
Haq K, Fulop T, Tedder G, Gentleman B, Garneau H, Meneilly GS, Kleppinger A, Pawelec G, McElhaney JE. Cytomegalovirus Seropositivity Predicts a Decline in the T Cell But Not the Antibody Response to Influenza in Vaccinated Older Adults Independent of Type 2 Diabetes Status. J Gerontol A Biol Sci Med Sci 2017; 72:1163-1170. [PMID: 27789617 PMCID: PMC5861868 DOI: 10.1093/gerona/glw216] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and persistent cytomegalovirus (CMV) infection are postulated contributors to inflammatory processes that impact on the age-related decline in T-cell responses to influenza vaccination. Older subjects with T2DM (n = 30) and healthy aged controls (n = 40) were enrolled and received influenza vaccination in this study. Serum inflammatory markers and CMV serostatus were measured. Pre- to post-vaccination changes in serum antibody titers to the A/H3N2 strain, and levels of granzyme B (GrB, cytotoxic T lymphocytes) in lysates and cytokines in supernatants from influenza A/H3N2-challenged peripheral blood mononuclear cells were measured. We found no difference between the T2DM and healthy groups in the immune responses measured. However, CMV serostatus was a key determinant of the GrB response to influenza challenge; CMV+ subjects had low levels of inducible GrB (iGrB) activity in response to influenza challenge. In contrast, the serum antibody response to the A/H3N2 vaccine strain did not differ with CMV serostatus, and serum levels of the inflammatory marker, β2-microglobulin, were positively correlated with age, T2DM, and serum IL-10 levels. In conclusion, CMV seropositivity associated with a decline in GrB responses to influenza may predict increased susceptibility to influenza in older adults.
Collapse
Affiliation(s)
- Kamran Haq
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Tamas Fulop
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gale Tedder
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Beth Gentleman
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Hugo Garneau
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Graydon S Meneilly
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Graham Pawelec
- Second Department of Internal Medicine, University of Tübingen Medical School, Tübingen, Germany.,School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK
| | - Janet E McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada.,University of Connecticut Center on Aging, Farmington
| |
Collapse
|
140
|
Sanad EF, Hamdy NM, El-Etriby AK, Sebak SA, El-Mesallamy HO. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis. Diabetes Res Clin Pract 2017; 131:132-141. [PMID: 28743062 DOI: 10.1016/j.diabres.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
AIM The imbalance between proapoptotic granzyme B (GZB)/perforin (PRF) system and proteinase inhibitor-9 (PI-9; serpinB9); the only known inhibitor of human GZB, has been demonstrated in atherosclerosis. However, their role in atherosclerosis with the impact of type 2 diabetes mellitus (DM) as well as their contribution to hallmarks of atherosclerosis is not clear. SUBJECTS AND METHODS ELISA for serum insulin, high sensitivity C-reactive protein (hsCRP) and GZB levels in atherosclerotic coronary artery diseases (CAD) patients were estimated in comparison to apparently healthy controls, while GZB, PRF and PI-9 mRNA expression levels were quantified by Taqman RT-PCR in both peripheral leucocytes and atherosclerotic tissues. RESULTS Atherosclerotic patients showed significantly higher insulin, hsCRP and GZB levels than controls. There was a significant increase in GZB mRNA expression and significant reduction in PI-9 mRNA in both patient peripheral leucocytes and atherosclerotic lesions, while PRF mRNA increased significantly only in atherosclerotic tissues. PI-9 mRNA levels were significantly lower in patients with diabetes than patients without diabetes. In contrast to positive modulating effect of GZB, regression analysis revealed negative modulating effect of PI-9 on inflammation and insulin resistance. Circulating PI-9 mRNA was inversely contributed to CAD severity. CONCLUSIONS GZB and PI-9 could be effective modulators for inflammation and insulin resistance in atherosclerosis.
Collapse
Affiliation(s)
- Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Adel K El-Etriby
- Cardiology Department, Faculty of Medicine, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Samer A Sebak
- Cardiothoracic Surgery Department, Kobry El-Kobba Military Hospital, Abassia, 11566 Cairo, Egypt
| | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
141
|
Pneumolysin-Dependent Calpain Activation and Interleukin-1α Secretion in Macrophages Infected with Streptococcus pneumoniae. Infect Immun 2017. [PMID: 28630064 DOI: 10.1128/iai.00201-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, is a pore-forming cytolysin that modulates host innate responses contributing to host defense against and pathogenesis of pneumococcal infections. Interleukin-1α (IL-1α) has been shown to be involved in tissue damage in a pneumococcal pneumonia model; however, the mechanism by which this cytokine is produced during S. pneumoniae infection remains unclear. In this study, we examined the role of PLY in IL-1α production. Although the strains induced similar levels of pro-IL-1α expression, wild-type S. pneumoniae D39, but not a deletion mutant of the ply gene (Δply), induced the secretion of mature IL-1α from host macrophages, suggesting that PLY is critical for the maturation and secretion of IL-1α during S. pneumoniae infection. Further experiments with calcium chelators and calpain inhibitors indicated that extracellular calcium ions and calpains (calcium-dependent proteases) facilitated the maturation and secretion of IL-1α from D39-infected macrophages. Moreover, we found that PLY plays a critical role in calcium influx and calpain activation, as elevated intracellular calcium levels and the degradation of the calpain substrate α-fodrin were detected in macrophages infected with D39 but not the Δply strain. These results suggested that PLY induces the influx of calcium in S. pneumoniae-infected macrophages, followed by calpain activation and subsequent IL-1α maturation and secretion.
Collapse
|
142
|
Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. mBio 2017; 8:mBio.00670-17. [PMID: 28765216 PMCID: PMC5539421 DOI: 10.1128/mbio.00670-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo. The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors.
Collapse
|
143
|
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol 2017; 8:784. [PMID: 28769922 PMCID: PMC5512344 DOI: 10.3389/fimmu.2017.00784] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Second Department of Internal Medicine, University of Tübingen Medical Center, Tübingen, Germany
| | - George A Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | | |
Collapse
|
144
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
145
|
Weigt SS, Palchevskiy V, Belperio JA. Inflammasomes and IL-1 biology in the pathogenesis of allograft dysfunction. J Clin Invest 2017; 127:2022-2029. [PMID: 28569730 DOI: 10.1172/jci93537] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammasomes are high-molecular-weight cytosolic complexes that mediate the activation of caspases. There are many inflammasomes, and each is influenced by a unique pattern-recognition receptor response. Two signals are typically involved in the inflammasome pathways. Signal one involves recognition of pathogen-associated molecular patterns (PAMPs), such as LPS or other colonizing/invading microbes, that interact with TLRs, which induce the downstream production of pro-IL-1β. This is followed by signal two, which involves recognition of PAMPs or damage-associated molecular patterns (DAMPs), such as uric acid or ATP, via NLRP3, which leads to caspase-1-dependent cleavage of pro-IL-1β to active IL-1β and pyroptosis. Ultimately, these two signals cause the release of multiple proinflammatory cytokines. Both PAMPs and DAMPs can be liberated by early insults to the allograft, including ischemia/reperfusion injury, infections, and rejection. The consequence of inflammasome activation and IL-1 expression is the upregulation of adhesion molecules and chemokines, which leads to allograft neutrophil sequestration, mononuclear phagocyte recruitment, and T cell activation, all of which are key steps in the continuum from allograft insult to chronic allograft dysfunction.
Collapse
|
146
|
Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, Fu YX, Hou B, Tang H. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 2017; 15:973-982. [PMID: 28504245 DOI: 10.1038/cmi.2017.22] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023] Open
Abstract
The metabolic intermediate of acetaminophen (APAP) can cause severe hepatocyte necrosis, which triggers aberrant immune activation of liver non-parenchymal cells (NPC). Overzealous hepatic inflammation determines the morbidity and mortality of APAP-induced liver injury (AILI). Interleukin-1 receptor (IL-1R) signaling has been shown to play a critical role in various inflammatory conditions, but its precise role and underlying mechanism in AILI remain debatable. Herein, we show that NLRP3 inflammasome activation of IL-1β is dispensable to AILI, whereas IL-1α, the other ligand of IL-1R1, accounts for hepatic injury by a lethal dose of APAP. Furthermore, Kupffer cells function as a major source of activated IL-1α in the liver, which is activated by damaged hepatocytes through TLR4/MyD88 signaling. Finally, IL-1α is able to chemoattract and activate CD11b+Gr-1+ myeloid cells, mostly neutrophils and inflammatory monocytes, to amplify deteriorated inflammation in the lesion. Therefore, this work identifies that MyD88-dependent activation of IL-1α in Kupffer cells plays a central role in the immunopathogenesis of AILI and implicates that IL-1α is a promising therapeutic target for AILI treatment.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jin Feng
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Du
- The Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Zhiyong Zhuo
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuo Yang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Weihong Zhang
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Weihong Wang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shengyuan Zhang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 278-0022, Chiba, Japan
| | - Guangxun Meng
- The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yang-Xin Fu
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Pathology, The University of Chicago, 60637, Chicago, USA, IL
| | - Baidong Hou
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hong Tang
- The Key Laboratory of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,The Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
147
|
Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain Behav Immun 2017; 62:1-8. [PMID: 27432634 DOI: 10.1016/j.bbi.2016.07.146] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects hundreds of thousands of people worldwide. Given the autoimmune nature of the disease, a large part of the research has focused on autoreactive T and B cells. However, research on the involvement of myeloid cells in the pathophysiology of MS has received a strong and renewed attention over the recent years. Despite the multitude of inflammatory mediators involved in innate immunity, only a select group of cytokines are absolutely critical to the development of CNS autoimmunity, among which is interleukin (IL)-1. While the importance of the IL-1 system in experimental autoimmune encephalomyelitis (EAE) and MS has been recognized for about 20years, it is only recently that we have begun to understand that IL-1 plays multifaceted roles in disease initiation, development, amplification and chronicity. Here, we review the recent findings showing an implication of the IL-1 system in EAE and MS, and introduce a model that highlights how IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF) are interacting together to create a vicious feedback cycle of CNS inflammation that ultimately leads to myelin and neuronal damage.
Collapse
|
148
|
Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J 2017; 284:1712-1725. [PMID: 28374518 DOI: 10.1111/febs.14075] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Activated neutrophils can undergo a mode of regulated cell death, called NETosis, that results in the extrusion of chromatin into the extracellular space, thereby acting as extracellular traps for microorganisms. Neutrophil-derived extracellular traps (NETs) are comprised of DNA decorated with histones, antimicrobial proteins and neutrophil granule proteases, such as elastase and cathepsin G (Cat G). NET-associated factors are thought to enhance the antimicrobial properties of these structures and localisation of antimicrobial molecules on NETs may serve to increase their local concentration. Because neutrophil-derived proteases have been implicated in the processing and activation of several members of the extended interleukin (IL)-1 family, we wondered whether neutrophil NETs could also serve as platforms for the activation of proinflammatory cytokines. Here, we show that neutrophil NETs potently processed and activated IL-1α as well as IL-36 subfamily cytokines through NET-associated Cat G and elastase. Thus, in addition to their role as antimicrobial traps, NETs can also act as local sites of cytokine processing and activation.
Collapse
Affiliation(s)
- Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Conor M Henry
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
149
|
Chandrasekaran A, Idelchik MDPS, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11:91-102. [PMID: 27889642 PMCID: PMC5126126 DOI: 10.1016/j.redox.2016.11.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA
| | | | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
150
|
Dagenais M, Dupaul-Chicoine J, Douglas T, Champagne C, Morizot A, Saleh M. The Interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-mediated mammary tumorigenesis and pulmonary metastasis. Oncoimmunology 2017; 6:e1287247. [PMID: 28405519 DOI: 10.1080/2162402x.2017.1287247] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer in women and the second leading cause of female cancer-related deaths worldwide. Inflammation is an established hallmark of tumorigenesis and an important determinant of tumor outcome and response to therapy. With advances in cancer immunotherapy, there is an urgent need to dissect the contribution of specific immune effectors in cancer development. Here, we genetically investigated the role of the Interleukin-1 (IL-1) receptor 1 (IL-1R1) pathway in breast cancer tumorigenesis and metastasis using the MMTV-PyMT mouse model. Our results indicate that IL-1R1 signaling suppresses mammary tumor cell proliferation early in tumorigenesis and curbs breast cancer outgrowth and pulmonary metastasis. We show that PyMT/Il1r1-/- mice had a higher primary tumor burden and increased mortality rate compared with IL-1R1-sufficient PyMT control mice. This phenotype was independent of the inflammatory caspases-1/-11 but driven by IL-1α, as PyMT/Il1a-/- mice phenocopied PyMT/Il1r1-/- mice. Collectively, our results suggest that IL-1α-mediated IL-1R1 signaling is tumor-suppressive in PyMT-driven breast cancer.
Collapse
Affiliation(s)
- Maryse Dagenais
- Department of Biochemistry, McGill University , Montréal, Québec, Canada
| | | | - Todd Douglas
- Department of Microbiology and Immunology, McGill University , Montréal, Québec, Canada
| | - Claudia Champagne
- Department of Medicine, McGill University , Montréal, Québec, Canada
| | - Alexandre Morizot
- Department of Medicine, McGill University , Montréal, Québec, Canada
| | - Maya Saleh
- Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|