101
|
de Lima AO, Afonso J, Edson J, Marcellin E, Palfreyman R, Porto-Neto LR, Reverter A, Fortes MRS. Network Analyses Predict Small RNAs That Might Modulate Gene Expression in the Testis and Epididymis of Bos indicus Bulls. Front Genet 2021; 12:610116. [PMID: 33995471 PMCID: PMC8120238 DOI: 10.3389/fgene.2021.610116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Spermatogenesis relies on complex molecular mechanisms, essential for the genesis and differentiation of the male gamete. Germ cell differentiation starts at the testicular parenchyma and finishes in the epididymis, which has three main regions: head, body, and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis (HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were subjected to differential expression analyses, functional enrichment analyses, and co-expression analyses. The aim was to investigate the co-expression and infer possible regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls. Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts were identified, of which 384 are small RNAs. Functional enrichment analysis pointed to gene ontology (GO) terms related to ion channel activity, detoxification of copper, neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF) algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts considering all pairwise comparisons among tissues. The pattern of small RNA co-expression suggested that these elements are involved in spermatogenesis regulation. The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-expression analyses using the partial correlation and information theory (PCIT) algorithm for network prediction. Significant correlations underpinned the co-expression network, which had 2,216 transcripts connected by 158,807 predicted interactions. The larger network cluster was enriched for male gamete generation and had 15 miRNAs with significant RIF. The miRNA bta-mir-2886 showed the highest number of connections (601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative co-expression correlations and confirmed with TargetScan). In short, we suggest that bta-mir-2886 and other small RNAs might modulate gene expression in the testis and epididymis, in Bos indicus cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliana Afonso
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, Brazil
| | - Janette Edson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Laercio R Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
102
|
Xu T, Xu Z, Lu L, Zeng T, Gu L, Huang Y, Zhang S, Yang P, Wen Y, Lin D, Xing M, Huang L, Liu G, Chao Z, Sun W. Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose (Anser cygnoides orientalis). BMC Genomics 2021; 22:270. [PMID: 33853538 PMCID: PMC8048326 DOI: 10.1186/s12864-021-07556-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The number of myofiber is determined during the embryonic stage and does not increase during the postnatal period for birds, including goose. Thus, muscle production of adult goose is pre-determined during embryogenesis. Previous studies show N6-methyladenosine (m6A) is an important regulator for skeletal muscle development of birds and miRNAs play as a co-regulator for the skeletal muscle development in birds. Herein, we sequenced m6A and miRNA transcriptomes to investigate the profiles of m6A and their potential mechanism of regulating breast muscle development in Dingan Goose. RESULTS We selected embryonic 21th day (E21) and embryonic 30th day (E30) to investigate the roles of transcriptome-wide m6A modification combining with mRNAs and miRNAs in goose breast muscle development. In this study, m6A peaks were mainly enriched in coding sequence (CDS) and start codon and397 genes were identified as differentially methylated genes (DMGs). GO and KEGG analysis showed that DMGs were highly related to cellular and metabolic process and that most DMGs were enriched in muscle-related pathways including Wnt signaling pathway, mTOR signaling and FoxO signaling pathway. Interestingly, a negative correlation between m6A methylation level and mRNA abundance was found through the analysis of m6A-RNA and RNA-seq data. Besides, we found 26 muscle-related genes in 397 DMGs. We also detected 228 differentially expressed miRNAs (DEMs), and further found 329 genes shared by the target genes of DEMs and DMGs (m6A-miRNA-genes), suggesting a tightly relationship between DEMs and DMGs. Among the m6A-miRNA-genes, we found 10 genes are related to breast muscle development. We further picked out an m6A-miRNA-gene, PDK3, from the 10 genes to visualize it and the result showed differentially methylated peaks on the mRNA transcript consistent with our m6A-seq results. CONCLUSION GO and KEGG of DMGs between E21 and E30 showed most DMGs were muscle-related. In total, 228 DEMs were found, and the majority of DMGs were overlapped with the targets of DEGs. The differentially methylated peaks along with an m6A-miRNA-gene, PDK3, showed the similar results with m6A-seq results. Taken together, the results presented here provide a reference for further investigation of embryonic skeletal muscle development mechanism in goose.
Collapse
Affiliation(s)
- Tieshan Xu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 People’s Republic of China
| | - Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, People’s Republic of China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Shunjin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Dajie Lin
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
| | - Manping Xing
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, 571100 People’s Republic of China
| | - Lili Huang
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, 571100 People’s Republic of China
| | - Guojun Liu
- Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Haerbin, Heilongjiang 150086 People’s Republic of China
| | - Zhe Chao
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, No. 14 Xingdan Road, Haikou, 571100 People’s Republic of China
| | - Weiping Sun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 People’s Republic of China
| |
Collapse
|
103
|
Long non-coding RNA NEAT1 functions as a competing endogenous RNA to regulate S100A9 expression by sponging miR-196a-5p in rosacea. J Dermatol Sci 2021; 102:58-67. [PMID: 33678493 DOI: 10.1016/j.jdermsci.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rosacea is a complex, chronic, and recurrent dermatologic condition that adversely affects quality of life and self-esteem. However, clinical relevance and molecular mechanisms underlying NEAT1 influence in rosacea remain unclear. OBJECTIVE The present study aims to investigate the dynamics and influences of lncRNAs, miRNAs, and mRNAs in rosacea patients, and to explore the impacts of NEAT1 treatments on miR-196a-5p and S100A9 expression in LL37-treated HaCaT cells. METHODS RNA-sequencing of skin tissues from rosacea patients and integrative analyses facilitated comprehensive exploration of lncRNA, mRNA, and miRNA networks. We identified differentially expressed lncRNAs in paired rosacea afflicted and non-lesioned tissues by hub lncRNAs in the ceRNA network. The role of NEAT1 in LL37-treated HaCaT cells was identified by in vitro experiments. RESULTS There were 237 lncRNAs, 38 miRNAs, and 1784 mRNAs in lesioned skin compared to non-lesioned skin in six rosacea patients. NEAT1 was upregulated in rosacea skin and in LL37-treated HaCaT cells. Moreover, inflammatory damage was able to be reduced in vitro after knockdown of NEAT1. Finally, NEAT1 was able to directly interact with miR-196a-5p, and downregulating miR-196a-5p was efficient in reversing the influence of NEAT1 siRNA on S100A9. CONCLUSION We have completed the first genome-wide lncRNA profiling of paired lesioned and non-lesioned samples from rosacea afflicted patients. The NEAT1/miR-196a-5p/S100A9 axis may have played an important role in the dynamics underlying inflammatory responses of rosacea. NEAT1 may have functioned as a competing endogenous RNA which regulated inflammatory responses in rosacea by sponging miR-196a-5p and upregulating S100A9 expression.
Collapse
|
104
|
Zhang L, Pan J, Wang Z, Yang C, Huang J. Construction of a MicroRNA-Based Nomogram for Prediction of Lung Metastasis in Breast Cancer Patients. Front Genet 2021; 11:580138. [PMID: 33679865 PMCID: PMC7933652 DOI: 10.3389/fgene.2020.580138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The lung is one of the most common sites of distant metastasis in breast cancer (BC). Identifying ideal biomarkers to construct a more accurate prediction model than conventional clinical parameters is crucial. MicroRNAs (miRNAs) data and clinicopathological data were acquired from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database. miR-663, miR-210, miR-17, miR-301a, miR-135b, miR-451, miR-30a, and miR-199a-5p were screened to be highly relevant to lung metastasis (LM) of BC patients. The miRNA-based risk score was developed based on the logistic coefficient of the individual miRNA. Univariate and multivariate logistic regression selected tumor node metastasis (TNM) stage, age at diagnosis, and miRNA-risk score as independent predictive parameters, which were used to construct a nomogram. The Cancer Genome Atlas (TCGA) database was used to validate the signature and nomogram. The predictive performance of the nomogram was compared to that of the TNM stage. The area under the receiver operating characteristics curve (AUC) of the nomogram was higher than that of the TNM stage in all three cohorts (training cohort: 0.774 vs. 0.727; internal validation cohort: 0.763 vs. 0.583; external validation cohort: 0.925 vs. 0.840). The calibration plot of the nomogram showed good agreement between predicted and observed outcomes. The net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision-curve analysis (DCA) of the nomogram showed that its performances were better than that of the TNM classification system. Functional enrichment analyses suggested several terms with a specific focus on LM. Subgroup analysis showed that miR-30a, miR-135b, and miR-17 have unique roles in lung metastasis of BC. Pan-cancer analysis indicated the significant importance of eight predictive miRNAs in lung metastasis. This study is the first to establish and validate a comprehensive lung metastasis predictive nomogram based on the METABRIC and TCGA databases, which provides a reliable assessment tool for clinicians and aids in appropriate treatment selection.
Collapse
Affiliation(s)
- Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
105
|
Abstract
MicroRNA target sites are often conserved during evolution and purifying selection to maintain such sites is expected. On the other hand, comparative analyses identified a paucity of microRNA target sites in coexpressed transcripts, and novel target sites can potentially be deleterious. We proposed that selection against novel target sites pervasive. The analysis of derived allele frequencies revealed that, when the derived allele is a target site, the proportion of nontarget sites is higher than expected, particularly for highly expressed microRNAs. Thus, new alleles generating novel microRNA target sites can be deleterious and selected against. When we analyzed ancestral target sites, the derived (nontarget) allele frequency does not show statistical support for microRNA target allele conservation. We investigated the joint effects of microRNA conservation and expression and found that selection against microRNA target sites depends mostly on the expression level of the microRNA. We identified microRNA target sites with relatively high levels of population differentiation. However, when we analyze separately target sites in which the target allele is ancestral to the population, the proportion of single-nucleotide polymorphisms with high Fst significantly increases. These findings support that population differentiation is more likely in target sites that are lost than in the gain of new target sites. Our results indicate that selection against novel microRNA target sites is prevalent and, although individual sites may have a weak selective pressure, the overall effect across untranslated regions is not negligible and should be accounted when studying the evolution of genomic sequences.
Collapse
Affiliation(s)
- Andrea Hatlen
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Antonio Marco
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
106
|
Cheng J, Song Q, Yang Y, Sun Z, Tian X, Tian X, Feng L. Lipolysis by downregulating miR-92a activates the Wnt/β-catenin signaling pathway in hypoxic rats. Biomed Rep 2020; 13:33. [PMID: 32793347 PMCID: PMC7418506 DOI: 10.3892/br.2020.1340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the role of miR-92a in lipid metabolism in hypoxic rats. Microarray analysis and reverse transcription-quantitative (RT-q)PCR were used to detect changes in the mRNA expression levels of miR-92a in the epididymal fat of hypoxic and normoxic rats. The downstream target mRNA of miR-92a was predicted using bioinformatics analysis and verified using a dual luciferase reporter assay. Changes in the expression of frizzled (Fzd)10 and c-Myc in the epididymal fat were detected using RT-qPCR and western blotting. Microarray analysis and RT-qPCR results showed that the expression of miR-92a was significantly lower in the fat tissues of the hypoxic rats compared with the normoxic rats. The results of the dual luciferase reporter assay showed that the target gene of miR-92a was Fzd10, which is an acceptor in the Wnt pathway. Fzd10 expression was upregulated in the hypoxic rats. The mRNA expression levels of c-Myc, which is located downstream of the Wnt pathway, was increased significantly. The increase in the mRNA and protein expression levels of Fzd10 and c-Myc may be associated with miR-92a downregulation. Downregulation of miR-92a in-turn may result in lipolysis through the regulation of the Wnt/β-catenin signaling pathway, and thus weight loss in the rats.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Qipeng Song
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Yingjie Yang
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Zhiyuan Sun
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Xiaoyi Tian
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China
| | - Xuewen Tian
- Department of Sports and Health, Shandong Sport University, Jinan, Shandong 250102, P.R. China.,Biology Center, China Institute of Sport Science, Beijing 100061, P.R. China
| | - Lianshi Feng
- Biology Center, China Institute of Sport Science, Beijing 100061, P.R. China
| |
Collapse
|
107
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
108
|
Levin M, Zalts H, Mostov N, Hashimshony T, Yanai I. Gene expression dynamics are a proxy for selective pressures on alternatively polyadenylated isoforms. Nucleic Acids Res 2020; 48:5926-5938. [PMID: 32421815 PMCID: PMC7293032 DOI: 10.1093/nar/gkaa359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative polyadenylation (APA) produces isoforms with distinct 3′-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3′-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3′ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3′ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.
Collapse
Affiliation(s)
- Michal Levin
- Quantitative Proteomics, Institute of Molecular Biology, Mainz 55128, Germany
| | - Harel Zalts
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Mostov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York 10016, USA
| |
Collapse
|
109
|
Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, López-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, García L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalán AH, Parra V, Lavandero S. Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 2020; 27:2586-2604. [PMID: 32152556 PMCID: PMC7429871 DOI: 10.1038/s41418-020-0522-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Cristian Sotomayor-Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - César Vásquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hung Ho-Xuan
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for New Drugs for Hypertension (CENDH), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Autophagy Research Center, Universidad de Chile, Santiago, Chile.
- Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.
| |
Collapse
|
110
|
Shulman ED, Elkon R. Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals. PLoS Genet 2020; 16:e1008977. [PMID: 32804959 PMCID: PMC7451987 DOI: 10.1371/journal.pgen.1008977] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3’UTRs. By generating isoforms with different 3’UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3’UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3’UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3’UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3’UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3’UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3’UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs. mRNA molecules that encode for proteins end with a long stretch of adenosines, called poly(A) tail. The poly(A) tail contributes to the stability of the mRNA molecules, their translation to proteins and their import from the nucleus to the cytoplasm. The process of adding this tail to the mRNAs is called polyadenylation, and the termination site on the mRNAs at which the poly(A) tail is added is called the poly(A) site. In recent years it became evident that the vast majority of mRNAs of human genes contain several alternative poly(A) sites and their usage generates different mRNA isoforms that differ in their stability and translation efficiency. Therefore, alternative polyadenylation (APA) is emerging as a novel and important, yet underexplored, mechanism that regulate gene expression. The choice between alternative p(A) sites in an mRNA molecule is regulated by regulatory sequences located within a region in the mRNA called the 3’ untranslated region (3’UTR). A major challenge in present human genetics research is to understand how common genetic variants affect individuals’ health. In our study, we systematically identified dozens of genetic variants that affect the choice between alternative p(A) sites and demonstrated that by that, these variants influence the expression level of the target genes. Our results help to illuminate a novel mechanism by which genetic variants that are common in the population affect different traits including our risk for developing diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
111
|
MicroRNA-dependent inhibition of PFN2 orchestrates ERK activation and pluripotent state transitions by regulating endocytosis. Proc Natl Acad Sci U S A 2020; 117:20625-20635. [PMID: 32788350 DOI: 10.1073/pnas.2002750117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Profilin2 (PFN2) is a target of the embryonic stem cell (ESC)-enriched miR-290 family of microRNAs (miRNAs) and an actin/dynamin-binding protein implicated in endocytosis. Here we show that the miR-290-PFN2 pathway regulates many aspects of ESC biology. In the absence of miRNAs, PFN2 is up-regulated in ESCs, with a resulting decrease in endocytosis. Reintroduction of miR-290, knockout of Pfn2, or disruption of the PFN2-dynamin interaction domain in miRNA-deficient cells reverses the endocytosis defect. The reduced endocytosis is associated with impaired extracellular signal-regulated kinase (ERK) signaling, delayed ESC cell cycle progression, and repressed ESC differentiation. Mutagenesis of the single canonical conserved 3' UTR miR-290-binding site of Pfn2 or overexpression of the Pfn2 open reading frame alone in otherwise wild-type cells largely recapitulates these phenotypes. Taken together, these findings define an axis of posttranscriptional control, endocytosis, and signal transduction that is important for ESC proliferation and differentiation.
Collapse
|
112
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|
113
|
Fadaka AO, Bakare OO, Pretorius A, Klein A. Genomic profiling of microRNA target genes in colorectal cancer. Tumour Biol 2020; 42:1010428320933512. [PMID: 32552466 DOI: 10.1177/1010428320933512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is the second and third most common cancer in men and women, respectively, worldwide. Alterations such as genetic and epigenetic are common in colorectal cancer and are the basis of tumor formation. The exploration of the molecular basis of colorectal cancer can drive a better understanding of the disease as well as guide the prognosis, therapeutics, and disease management. This study is aimed at investigating the genetic mutation profile of five candidate microRNAs (hsa-miR-513b-3p, hsa-miR-500b-3p, hsa-miR-500a-3p, hsa-miR-450b-3p, hsa-miR-193a-5p) targeted by seven genes (APC, KRAS, TCF7L2, EGFR, IGF1R, CASP8, and GNAS)) using in silico approaches. Two datasets (dataset 1 from our previous study and dataset two (The Cancer Genome Atlas, Nature 2012) were considered for this study. Protein-protein interaction, expression analysis, and genetic profiling were carried out using STRING, FireBrowse, and cBioPortal, respectively. Protein-protein interaction network showed that epidermal growth factor receptor has the highest connection among the target genes and this can be considered as the hub gene. Relative to other solid tumors, in colorectal cancer, six of the target genes were downregulated and only CASP8 was upregulated. Genes with protein tyrosine kinases domain were frequently altered in colorectal cancer and the most common alteration in these genes/domain are missense mutation. These results could serve as a lead in the identification of driver genes responsible for colorectal cancer initiation and progression. However, the intense mechanism of these results remains unclear and further experimental validation and molecular approaches are the focal points in the nearest future.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Plant Omics Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
114
|
Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300. Oncogene 2020; 39:5292-5306. [PMID: 32555332 PMCID: PMC7378045 DOI: 10.1038/s41388-020-1360-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
MicroRNAs play an important role in the regulation of mRNA translation and have therapeutic potential in cancer and other diseases. To profile the landscape of microRNAs with significant cytotoxicity in the context of glioblastoma (GBM), we performed a high-throughput screen in adult and pediatric GBM cells using a synthetic oligonucleotide library representing all known human microRNAs. Bioinformatics analysis was used to refine this list and the top seven microRNAs were validated in a larger panel of GBM cells using state-of-the-art in vitro assays. The cytotoxic effect of our most relevant candidate was assessed in a preclinical model. Our screen identified ~100 significantly cytotoxic microRNAs with 70% concordance between cell lines. MicroRNA-1300 (miR-1300) was the most potent and robust candidate. We observed a striking binucleated phenotype in miR-1300 transfected cells due to cytokinesis failure followed by apoptosis. This was also observed in two stem-like patient-derived cultures. We identified the physiological role of miR-1300 as a regulator of endomitosis in megakaryocyte differentiation where blockade of cytokinesis is an essential step. In GBM cells, where miR-1300 is normally not expressed, the oncogene Epithelial Cell Transforming 2 (ECT2) was validated as a direct key target. ECT2 siRNA phenocopied the effects of miR-1300, and ECT2 overexpression led to rescue of miR-1300 induced binucleation. We showed that ectopic expression of miR-1300 led to decreased tumor growth in an orthotopic GBM model. Our screen provides a resource for the neuro-oncology community and identified miR-1300 as a novel regulator of endomitosis with translatable potential for therapeutic application.
Collapse
|
115
|
Donegan JJ, Boley AM, Glenn JP, Carless MA, Lodge DJ. Developmental alterations in the transcriptome of three distinct rodent models of schizophrenia. PLoS One 2020; 15:e0232200. [PMID: 32497066 PMCID: PMC7272013 DOI: 10.1371/journal.pone.0232200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a debilitating disorder affecting just under 1% of the population. While the symptoms of this disorder do not appear until late adolescence, pathological alterations likely occur earlier, during development in utero. While there is an increasing literature examining transcriptome alterations in patients, it is not possible to examine the changes in gene expression that occur during development in humans that will develop schizophrenia. Here we utilize three distinct rodent developmental disruption models of schizophrenia to examine potential overlapping alterations in the transcriptome, with a specific focus on markers of interneuron development. Specifically, we administered either methylazoxymethanol acetate (MAM), Polyinosinic:polycytidylic acid (Poly I:C), or chronic protein malnutrition, on GD 17 and examined mRNA expression in the developing hippocampus of the offspring 18 hours later. Here, we report alterations in gene expression that may contribute to the pathophysiology of schizophrenia, including significant alterations in interneuron development and ribosome function.
Collapse
Affiliation(s)
- Jennifer J. Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States of America
| | - Angela M. Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States of America
| | - Jeremy P. Glenn
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States of America
| |
Collapse
|
116
|
Tavares-Ferreira D, Lawless N, Bird EV, Atkins S, Collier D, Sher E, Malki K, Lambert DW, Boissonade FM. Correlation of miRNA expression with intensity of neuropathic pain in man. Mol Pain 2020; 15:1744806919860323. [PMID: 31218919 PMCID: PMC6620726 DOI: 10.1177/1744806919860323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral nerve injury causes changes in expression of multiple receptors and mediators that participate in pain processing. We investigated the expression of microRNAs (miRNAs) – a class of post-transcriptional regulators involved in many physiological and pathophysiological processes – and their potential role in the development or maintenance of chronic neuropathic pain following lingual nerve injury in human and rat. Methods We profiled miRNA expression in Sprague-Dawley rat and human lingual nerve neuromas using TaqMan® low-density array cards. Expression of miRNAs of interest was validated via specific probes and correlated with nerve injury-related behavioural change in rat (time spent drinking) and clinical pain (visual analogue scale (VAS) score). Target prediction was performed using publicly available algorithms; gene enrichment and pathway analysis were conducted with MetaCore. Networks of miRNAs and putative target genes were created with Cytoscape; interaction of miRNAs and target genomes in rat and human was displayed graphically using CircosPlot. Results rno-miR-138 was upregulated in lingual nerve of injured rats versus sham controls. rno-miR-138 and rno-miR-667 expression correlated with behavioural change at day 3 post-injury (with negative (rno-miR-138) and positive (rno-miR-667) correlations between expression and time spent drinking). In human, hsa-miR-29a was downregulated in lingual nerve neuromas of patients with higher pain VAS scores (painful group) versus patients with lower pain VAS scores (non-painful). A statistically significant negative correlation was observed between expression of both hsa-miR-29a and hsa-miR-500a, and pain VAS score. Conclusions Our results show that following lingual nerve injury, there are highly significant correlations between abundance of specific miRNAs, altered behaviour and pain scores. This study provides the first demonstration of correlations between human miRNA levels and VAS scores for neuropathic pain and suggests a potential contribution of specific miRNAs to the development of chronic pain following lingual nerve injury. Putative targets for candidate miRNAs include genes related to interleukin and chemokine receptors and potassium channels.
Collapse
Affiliation(s)
| | - Nathan Lawless
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emma V Bird
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - Simon Atkins
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - David Collier
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emanuele Sher
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Karim Malki
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | | | | |
Collapse
|
117
|
Bradley T, Moxon S. FilTar: using RNA-Seq data to improve microRNA target prediction accuracy in animals. Bioinformatics 2020; 36:2410-2416. [PMID: 31930382 PMCID: PMC7178423 DOI: 10.1093/bioinformatics/btaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/01/2020] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
MOTIVATION MicroRNA (miRNA) target prediction algorithms do not generally consider biological context and therefore generic target prediction based on seed binding can lead to a high level of false-positive predictions. Here, we present FilTar, a method that incorporates RNA-Seq data to make miRNA target prediction specific to a given cell type or tissue of interest. RESULTS We demonstrate that FilTar can be used to: (i) provide sample specific 3'-UTR reannotation; extending or truncating default annotations based on RNA-Seq read evidence and (ii) filter putative miRNA target predictions by transcript expression level, thus removing putative interactions where the target transcript is not expressed in the tissue or cell line of interest. We test the method on a variety of miRNA transfection datasets and demonstrate increased accuracy versus generic miRNA target prediction methods. AVAILABILITY AND IMPLEMENTATION FilTar is freely available and can be downloaded from https://github.com/TBradley27/FilTar. The tool is implemented using the Python and R programming languages, and is supported on GNU/Linux operating systems. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas Bradley
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
118
|
Jia Y, Wei Y. Modulators of MicroRNA Function in the Immune System. Int J Mol Sci 2020; 21:E2357. [PMID: 32235299 PMCID: PMC7177468 DOI: 10.3390/ijms21072357] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in fine-tuning host immune homeostasis and responses through the negative regulation of mRNA stability and translation. The pathways regulated by miRNAs are well characterized, but the precise mechanisms that control the miRNA-mediated regulation of gene expression during immune cell-development and immune responses to invading pathogens are incompletely understood. Context-specific interactions of miRNAs with other RNA species or proteins may modulate the function of a given miRNA. Dysregulation of miRNA function is associated with various human diseases, such as cardiovascular diseases and cancers. Here, we review the potential modulators of miRNA function in the immune system, including the transcription regulators of miRNA genes, miRNA-processing enzymes, factors affecting miRNA targeting, and intercellular communication.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wei
- Department of Immunology, Shanghai Key laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
119
|
Wittstatt J, Weider M, Wegner M, Reiprich S. MicroRNA miR‐204 regulates proliferation and differentiation of oligodendroglia in culture. Glia 2020; 68:2015-2027. [DOI: 10.1002/glia.23821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Wittstatt
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Matthias Weider
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
120
|
Hiskens MI, Schneiders AG, Angoa-Pérez M, Vella RK, Fenning AS. Blood biomarkers for assessment of mild traumatic brain injury and chronic traumatic encephalopathy. Biomarkers 2020; 25:213-227. [PMID: 32096416 DOI: 10.1080/1354750x.2020.1735521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mild traumatic brain injuries (mTBI) are prevalent and can result in significant debilitation. Current diagnostic methods have implicit limitations, with clinical assessment tools reliant on subjective self-reported symptoms or non-specific clinical observations, and commonly available imaging techniques lacking sufficient sensitivity to detect mTBI. A blood biomarker would provide a readily accessible detector of mTBI to meet the current measurement gap. Suitable options would provide objective and quantifiable information in diagnosing mTBI, in monitoring recovery, and in establishing a prognosis of resultant neurodegenerative disease, such as chronic traumatic encephalopathy (CTE). A biomarker would also assist in progressing research, providing suitable endpoints for testing therapeutic modalities and for further exploring mTBI pathophysiology. This review highlights the most promising blood-based protein candidates that are expressed in the central nervous system (CNS) and released into systemic circulation following mTBI. To date, neurofilament light (NF-L) may be the most suitable candidate for assessing neuronal damage, and glial fibrillary acidic protein (GFAP) for assessing astrocyte activation, although further work is required. Ultimately, the heterogeneity of cells in the brain and each marker's limitations may require a combination of biomarkers, and recent developments in microRNA (miRNA) markers of mTBI show promise and warrant further exploration.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
121
|
Wang G, Guo G, Tian X, Hu S, Du K, Zhang Q, Mao J, Jia X, Chen S, Wang J, Lai S. Screening and identification of MicroRNAs expressed in perirenal adipose tissue during rabbit growth. Lipids Health Dis 2020; 19:35. [PMID: 32145738 PMCID: PMC7060515 DOI: 10.1186/s12944-020-01219-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 03/03/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate adipose tissue development, which are closely related to subcutaneous and intramuscular fat deposition and adipocyte differentiation. As an important economic and agricultural animal, rabbits have low adipose tissue deposition and are an ideal model to study adipose regulation. However, the miRNAs related to fat deposition during the growth and development of rabbits are poorly defined. METHODS In this study, miRNA-sequencing and bioinformatics analyses were used to profile the miRNAs in rabbit perirenal adipose tissue at 35, 85 and 120 days post-birth. Differentially expressed (DE) miRNAs between different stages were identified by DEseq in R. Target genes of DE miRNAs were predicted by TargetScan and miRanda. To explore the functions of identified miRNAs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS Approximately 1.6 GB of data was obtained by miRNA-seq. A total of 987 miRNAs (780 known and 207 newly predicted) and 174 DE miRNAs were identified. The miRNAs ranged from 18 nt to 26 nt. GO enrichment and KEGG pathway analyses revealed that the target genes of the DE miRNAs were mainly involved in zinc ion binding, regulation of cell growth, MAPK signaling pathway, and other adipose hypertrophy-related pathways. Six DE miRNAs were randomly selected, and their expression profiles were validated by q-PCR. CONCLUSIONS This is the first report of the miRNA profiles of adipose tissue during different growth stages of rabbits. Our data provide a theoretical reference for subsequent studies on rabbit genetics, breeding and the regulatory mechanisms of adipose development.
Collapse
Affiliation(s)
- Guoze Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
- Guizhou Medical University, Guiyang, 550025, China
| | - Guo Guo
- Guizhou Medical University, Guiyang, 550025, China
| | - Xueting Tian
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | | | - Jingxin Mao
- Southwest University, Chongqing, 400715, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
122
|
Schäfer M, Ciaudo C. Prediction of the miRNA interactome - Established methods and upcoming perspectives. Comput Struct Biotechnol J 2020; 18:548-557. [PMID: 32211130 PMCID: PMC7082591 DOI: 10.1016/j.csbj.2020.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are well-studied small noncoding RNAs involved in post-transcriptional gene regulation in a wide range of organisms, including mammals. Their function is mediated by base pairing with their target RNAs. Although many features required for miRNA-mediated repression have been described, the identification of functional interactions is still challenging. In the last two decades, numerous Machine Learning (ML) models have been developed to predict their putative targets. In this review, we summarize the biological knowledge and the experimental data used to develop these ML models. Recently, Deep Neural Network-based models have also emerged in miRNA interaction modeling. We thus outline established and emerging models to give a perspective on the future developments needed to improve the identification of genes directly regulated by miRNAs.
Collapse
Affiliation(s)
- Moritz Schäfer
- Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, CH-8093 Zurich, Switzerland
- Life Science Zurich Graduate School, Systems Biology Program, University of Zurich, CH-8047 Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, CH-8093 Zurich, Switzerland
| |
Collapse
|
123
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
124
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
125
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
126
|
McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, Bartel DP. The biochemical basis of microRNA targeting efficacy. Science 2019; 366:eaav1741. [PMID: 31806698 PMCID: PMC7051167 DOI: 10.1126/science.aav1741] [Citation(s) in RCA: 844] [Impact Index Per Article: 140.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) act within Argonaute proteins to guide repression of messenger RNA targets. Although various approaches have provided insight into target recognition, the sparsity of miRNA-target affinity measurements has limited understanding and prediction of targeting efficacy. Here, we adapted RNA bind-n-seq to enable measurement of relative binding affinities between Argonaute-miRNA complexes and all sequences ≤12 nucleotides in length. This approach revealed noncanonical target sites specific to each miRNA, miRNA-specific differences in canonical target-site affinities, and a 100-fold impact of dinucleotides flanking each site. These data enabled construction of a biochemical model of miRNA-mediated repression, which was extended to all miRNA sequences using a convolutional neural network. This model substantially improved prediction of cellular repression, thereby providing a biochemical basis for quantitatively integrating miRNAs into gene-regulatory networks.
Collapse
Affiliation(s)
- Sean E McGeary
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathy S Lin
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlie Y Shi
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thy M Pham
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Namita Bisaria
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gina M Kelley
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
127
|
You BH, Yoon JH, Kang H, Lee EK, Lee SK, Nam JW. HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci U S A 2019; 116:24620-24629. [PMID: 31732666 PMCID: PMC6900598 DOI: 10.1073/pnas.1912126116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wnt signaling through both canonical and noncanonical pathways plays a core role in development. Dysregulation of these pathways often causes cancer development and progression. Although the pathways independently contribute to the core processes, a regulatory molecule that commonly activates both of them has not yet been reported. Here, we describe a long noncoding RNA (lncRNA), HERES, that epigenetically regulates both canonical and noncanonical Wnt signaling pathways in esophageal squamous cell carcinoma (ESCC). For this study, we performed RNA-seq analysis on Korean ESCC patients and validated these results on a larger ESCC cohort to identify lncRNAs commonly dysregulated in ESCCs. Six of the dysregulated lncRNAs were significantly associated with the clinical outcomes of ESCC patients and defined 4 ESCC subclasses with different prognoses. HERES reduction repressed cell proliferation, migration, invasion, and colony formation in ESCC cell lines and tumor growth in xenograft models. HERES appears to be a transacting factor that regulates CACNA2D3, SFRP2, and CXXC4 simultaneously to activate Wnt signaling pathways through an interaction with EZH2 via its G-quadruple structure-like motif. Our results suggest that HERES holds substantial potential as a therapeutic target for ESCC and probably other cancers caused by defects in Wnt signaling pathways.
Collapse
Affiliation(s)
- Bo-Hyun You
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763 Seoul, Republic of Korea
| | - Jung-Ho Yoon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 06591 Seoul, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 06591 Seoul, Republic of Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 03722 Seoul, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763 Seoul, Republic of Korea;
- Research Institute for Convergence of Basic Sciences, Hanyang University, 04763 Seoul, Republic of Korea
| |
Collapse
|
128
|
Narula A, Ellis J, Taliaferro JM, Rissland OS. Coding regions affect mRNA stability in human cells. RNA (NEW YORK, N.Y.) 2019; 25:1751-1764. [PMID: 31527111 PMCID: PMC6859850 DOI: 10.1261/rna.073239.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/05/2023]
Abstract
A new paradigm has emerged that coding regions can regulate mRNA stability in model organisms. Here, due to differences in cognate tRNA abundance, synonymous codons are translated at different speeds, and slow codons then stimulate mRNA decay. To ask if this phenomenon also occurs in humans, we isolated RNA stability effects due to coding regions using the human ORFeome collection. We find that many open reading frame (ORF) characteristics, such as length and secondary structure, fail to provide explanations for how coding regions alter mRNA stability, and, instead, that the ORF relies on translation to impact mRNA stability. Consistent with what has been seen in other organisms, codon use is related to the effects of ORFs on transcript stability. Importantly, we found instability-associated codons have longer A-site dwell times, suggesting for the first time in humans a connection between elongation speed and mRNA decay. Thus, we propose that codon usage alters decoding speeds and so affects human mRNA stability.
Collapse
Affiliation(s)
- Ashrut Narula
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - J Matthew Taliaferro
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Olivia S Rissland
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
129
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
130
|
Bogusławska J, Popławski P, Alseekh S, Koblowska M, Iwanicka-Nowicka R, Rybicka B, Kędzierska H, Głuchowska K, Hanusek K, Tański Z, Fernie AR, Piekiełko-Witkowska A. MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. Cancers (Basel) 2019; 11:cancers11121825. [PMID: 31756931 PMCID: PMC6966432 DOI: 10.3390/cancers11121825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).
Collapse
Affiliation(s)
- Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Saleh Alseekh
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostroleka, 07-410 Ostroleka, Poland;
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
- Correspondence: ; Tel.: +48-22-5693810
| |
Collapse
|
131
|
Fadaka AO, Klein A, Pretorius A. In silico identification of microRNAs as candidate colorectal cancer biomarkers. Tumour Biol 2019; 41:1010428319883721. [PMID: 31718480 DOI: 10.1177/1010428319883721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The involvement of microRNA in cancers plays a significant role in their pathogenesis. Specific expressions of these non-coding RNAs also serve as biomarkers for early colorectal cancer diagnosis, but their laboratory/molecular identification is challenging and expensive. The aim of this study was to identify potential microRNAs for colorectal cancer diagnosis using in silico approach. Sequence similarity search was employed to obtain the candidate microRNA from the datasets, and three target prediction software were employed to determine their target genes. To determine the involvement of these microRNAs in colorectal cancer, the microRNA gene list obtained was used alongside with colorectal cancer expressed genes from gbCRC and CoReCG databases for gene intersection analysis. The involvement of these genes in the cancer subtype was further strengthened with the DAVID database. KEGG and Gene Ontology were used for the pathway and functional analysis, while STRING was employed for the interactions of protein network and further visualized by Cytoscape. The cBioPortal database was used to prioritize the target genes; prognostic and expression analysis were finally performed on the candidate microRNAs and the prioritized targets. This study, therefore, identified five candidate microRNAs, two hub genes (CTNNB1 and epidermal growth factor receptor), and seven significant target genes associated with colorectal cancer. The molecular validation studies are ongoing to ascertain the biological fitness of these findings.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
132
|
Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, Biton I, Perry RBT, Ulitsky I. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun 2019; 10:5092. [PMID: 31704914 PMCID: PMC6841665 DOI: 10.1038/s41467-019-13075-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Chromodomain helicase DNA binding protein 2 (Chd2) is a chromatin remodeller implicated in neurological disease. Here we show that Chaserr, a highly conserved long noncoding RNA transcribed from a region near the transcription start site of Chd2 and on the same strand, acts in concert with the CHD2 protein to maintain proper Chd2 expression levels. Loss of Chaserr in mice leads to early postnatal lethality in homozygous mice, and severe growth retardation in heterozygotes. Mechanistically, loss of Chaserr leads to substantially increased Chd2 mRNA and protein levels, which in turn lead to transcriptional interference by inhibiting promoters found downstream of highly expressed genes. We further show that Chaserr production represses Chd2 expression solely in cis, and that the phenotypic consequences of Chaserr loss are rescued when Chd2 is perturbed as well. Targeting Chaserr is thus a potential strategy for increasing CHD2 levels in haploinsufficient individuals.
Collapse
Affiliation(s)
- Aviv Rom
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liliya Melamed
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Rotem Kadir
- National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Golan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
133
|
Pan P, Weisenberger DJ, Zheng S, Wolf M, Hwang DG, Rose-Nussbaumer JR, Jurkunas UV, Chan MF. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep 2019; 9:16385. [PMID: 31705138 PMCID: PMC6841734 DOI: 10.1038/s41598-019-52727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Homeostatic maintenance of corneal endothelial cells is essential for maintenance of corneal deturgescence and transparency. In Fuchs endothelial corneal dystrophy (FECD), an accelerated loss and dysfunction of endothelial cells leads to progressively severe visual impairment. An abnormal accumulation of extracellular matrix (ECM) is a distinctive hallmark of the disease, however the molecular pathogenic mechanisms underlying this phenomenon are not fully understood. Here, we investigate genome-wide and sequence-specific DNA methylation changes of miRNA genes in corneal endothelial samples from FECD patients. We discover that miRNA gene promoters are frequent targets of aberrant DNA methylation in FECD. More specifically, miR-199B is extensively hypermethylated and its mature transcript miR-199b-5p was previously found to be almost completely silenced in FECD. Furthermore, we find that miR-199b-5p directly and negatively regulates Snai1 and ZEB1, two zinc finger transcription factors that lead to increased ECM deposition in FECD. Taken together, these findings suggest a novel epigenetic regulatory mechanism of matrix protein production by corneal endothelial cells in which miR-199B hypermethylation leads to miR-199b-5p downregulation and thereby the increased expression of its target genes, including Snai1 and ZEB1. Our results support miR-199b-5p as a potential therapeutic target to prevent or slow down the progression of FECD disease.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jennifer R Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Ula V Jurkunas
- Department of Ophthalmology, Harvard Medical School, and Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA. .,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
134
|
Shulman ED, Elkon R. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. Nucleic Acids Res 2019; 47:10027-10039. [PMID: 31501864 PMCID: PMC6821429 DOI: 10.1093/nar/gkz781] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as an important layer of gene regulation because the majority of mammalian protein-coding genes contain multiple polyadenylation (pA) sites in their 3' UTR. By alteration of 3' UTR length, APA can considerably affect post-transcriptional gene regulation. Yet, our understanding of APA remains rudimentary. Novel single-cell RNA sequencing (scRNA-seq) techniques allow molecular characterization of different cell types to an unprecedented degree. Notably, the most popular scRNA-seq protocols specifically sequence the 3' end of transcripts. Building on this property, we implemented a method for analysing patterns of APA regulation from such data. Analyzing multiple datasets from diverse tissues, we identified widespread modulation of APA in different cell types resulting in global 3' UTR shortening/lengthening and enhanced cleavage at intronic pA sites. Our results provide a proof-of-concept demonstration that the huge volume of scRNA-seq data that accumulates in the public domain offers a unique resource for the exploration of APA based on a very broad collection of cell types and biological conditions.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
135
|
Yuan F, Hankey W, Wagner EJ, Li W, Wang Q. Alternative polyadenylation of mRNA and its role in cancer. Genes Dis 2019; 8:61-72. [PMID: 33569514 PMCID: PMC7859462 DOI: 10.1016/j.gendis.2019.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3′ end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3′UTR) and changes the length and content of these non-coding sequences. APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy.
Collapse
Affiliation(s)
- Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
136
|
Abstract
3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are best known to regulate mRNA-based processes, such as mRNA localization, mRNA stability, and translation. In addition, 3' UTRs can establish 3' UTR-mediated protein-protein interactions (PPIs), and thus can transmit genetic information encoded in 3' UTRs to proteins. This function has been shown to regulate diverse protein features, including protein complex formation or posttranslational modifications, but is also expected to alter protein conformations. Therefore, 3' UTR-mediated information transfer can regulate protein features that are not encoded in the amino acid sequence. This review summarizes both 3' UTR functions-the regulation of mRNA and protein-based processes-and highlights how each 3' UTR function was discovered with a focus on experimental approaches used and the concepts that were learned. This review also discusses novel approaches to study 3' UTR functions in the future by taking advantage of recent advances in technology.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
137
|
Li C, Zheng H, Hou W, Bao H, Xiong J, Che W, Gu Y, Sun H, Liang P. Long non-coding RNA linc00645 promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis 2019; 10:717. [PMID: 31558707 PMCID: PMC6763487 DOI: 10.1038/s41419-019-1948-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-β-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-β-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-β. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Hongshan Zheng
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Weiliang Hou
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Wanli Che
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Yifei Gu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, 150001, P.R. China.
- Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, Heilongjiang, 150001, P.R. China.
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China.
| |
Collapse
|
138
|
Park J, Seo JW, Ahn N, Park S, Hwang J, Nam JW. UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat Commun 2019; 10:4181. [PMID: 31519907 PMCID: PMC6744440 DOI: 10.1038/s41467-019-12123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
The stability and quality of metazoan mRNAs are under microRNA (miRNA)-mediated and nonsense-mediated control. Although UPF1, a core mediator of nonsense-mediated mRNA decay (NMD), mediates the decay of target mRNA in a 3′UTR-length-dependent manner, the detailed mechanism remains unclear. Here, we suggest that 3′UTR-length-dependent mRNA decay is not mediated by nonsense mRNAs but rather by miRNAs that downregulate target mRNAs via Ago-associated UPF1/SMG7. Global analyses of mRNAs in response to UPF1 RNA interference in miRNA-deficient cells reveal that 3′UTR-length-dependent mRNA decay by UPF1 requires canonical miRNA targeting. The destabilization of miRNA targets is accomplished by the combination of Ago2 and UPF1/SMG7, which may recruit the CCR4-NOT deadenylase complex. Indeed, loss of the SMG7-deadenylase complex interaction increases the levels of transcripts regulated by UPF1-SMG7. This UPF1/SMG7-dependent miRNA-mediated mRNA decay pathway may enable miRNA targeting to become more predictable and expand the miRNA-mRNA regulatory network. UPF1 mediates the decay of target mRNA in a 3′ untranslated region (UTR)-length-dependent manner. Here the authors reveal that the 3′UTR-length-dependent regulation of UPF1-dependent mRNA decay occurs through EJC-independent but miRNA-dependent regulation.
Collapse
Affiliation(s)
- Jungyun Park
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jwa-Won Seo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Narae Ahn
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokju Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea. .,Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
139
|
Arefeen A, Liu J, Xiao X, Jiang T. TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics 2019; 34:2521-2529. [PMID: 30052912 DOI: 10.1093/bioinformatics/bty110] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Motivation The length of the 3' untranslated region (3' UTR) of an mRNA is essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, correlation between diseases and the shortening (or lengthening) of 3' UTRs has been reported in the literature. This length is largely determined by the polyadenylation cleavage site in the mRNA. As alternative polyadenylation (APA) sites are common in mammalian genes, several tools have been published recently for detecting APA sites from RNA-Seq data or performing shortening/lengthening analysis. These tools consider either up to only two APA sites in a gene or only APA sites that occur in the last exon of a gene, although a gene may generally have more than two APA sites and an APA site may sometimes occur before the last exon. Furthermore, the tools are unable to integrate the analysis of shortening/lengthening events with APA site detection. Results We propose a new tool, called TAPAS, for detecting novel APA sites from RNA-Seq data. It can deal with more than two APA sites in a gene as well as APA sites that occur before the last exon. The tool is based on an existing method for finding change points in time series data, but some filtration techniques are also adopted to remove change points that are likely false APA sites. It is then extended to identify APA sites that are expressed differently between two biological samples and genes that contain 3' UTRs with shortening/lengthening events. Our extensive experiments on simulated and real RNA-Seq data demonstrate that TAPAS outperforms the existing tools for APA site detection or shortening/lengthening analysis significantly. Availability and implementation https://github.com/arefeen/TAPAS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ashraful Arefeen
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Juntao Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.,Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.,MOE Key Lab of Bioinformatics and Bioinformatics Division, TNLIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China
| |
Collapse
|
140
|
Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon ( Columba livia). Br Poult Sci 2019; 60:638-648. [PMID: 31343256 DOI: 10.1080/00071668.2019.1639140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. MicroRNAs are small noncoding RNA molecules that play crucial roles in gene expression. However, the comparative profiling of testicular and ovarian microRNAs in birds are rarely reported, particularly in pigeon.2. In this study, Illumina next-generation sequencing technology was used to sequence miRNA libraries of the gonads from six healthy adult utility pigeons. A total of 344 conserved known miRNAs and 32 novel putative miRNAs candidates were detected. Compared with those of ovaries, 130 differentially expressed (DE) miRNAs were identified in the testes. Among them, 70 miRNAs showed down-regulation in the ovaries, while another 60 miRNAs were up-regulated.3. Combining the results of the expression of target gene measurements and pathway enrichment analyses, it was revealed that some DEmiRNAs from the gonad samples involved in sexual differentiation and development (such as cli-miR-210-3p and cli-miR-214-3p) could down-regulate AR (androgen receptor). Cli-miR-181b-5p, cli-miR-9622-3p and cli-miR-145-5p were highly expressed in both the ovaries and testes, which could co-target HOXC9, and were related to regulation of primary metabolic processes. KEGG enrichment analysis showed that DEmiRNAs may play biological and sex-related roles in pigeon gonads.4. The expression profiles of testicular and ovarian miRNA in adult pigeon gonads are presented for the first time, and the findings may contribute to a better understanding of gonadal expression in poultry.
Collapse
Affiliation(s)
- L Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - D Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - H Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Q Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - P Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - X Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
141
|
Differential Inhibition of Target Gene Expression by Human microRNAs. Cells 2019; 8:cells8080791. [PMID: 31366019 PMCID: PMC6721455 DOI: 10.3390/cells8080791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) exert their functions by repressing the expression of their target genes, but most miRNA target genes are unknown, and the degree to which a miRNA differentially inhibits the expression of its targets is underappreciated. We selected human miR-1, miR-122, and miR-124 as representatives to investigate the reliability of miRNA target predictions and examine how miRNAs suppress their targets. We constructed miRNA target gene reporter libraries based on prediction programs TargetScan, miRanda, and PicTar, and performed large-scale reporter assays to directly evaluate whether and how strongly a predicted target gene is repressed by its miRNA. We then performed statistical analyses to examine parameters that contributed to the miRNA inhibition of target genes. We found that the three programs have approximately 72–85% success rates in predicting genuine targets and that the miRNA inhibition of different targets varies in extent. We also identified parameters that could predict the degrees of miRNA repression, and further showed that differential miR-124 repression might contribute to differential gene expression in vivo. Our studies systematically investigated hundreds of miRNA target genes, shed light on factors influencing miRNA functions, and suggested a new mechanism by which differential target repression by miRNAs regulates endogenous gene expression.
Collapse
|
142
|
Thivierge C, Tseng HW, Mayya VK, Lussier C, Gravel SP, Duchaine TF. Alternative polyadenylation confers Pten mRNAs stability and resistance to microRNAs. Nucleic Acids Res 2019; 46:10340-10352. [PMID: 30053103 PMCID: PMC6212768 DOI: 10.1093/nar/gky666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Fine regulation of the phosphatase and tensin homologue (PTEN) phosphatase dosage is critical for homeostasis and tumour suppression. The 3'-untranslated region (3'-UTR) of Pten mRNA was extensively linked to post-transcriptional regulation by microRNAs (miRNAs). In spite of this critical regulatory role, alternative 3'-UTRs of Pten have not been systematically characterized. Here, we reveal an important diversity of Pten mRNA isoforms generated by alternative polyadenylation sites. Several 3'-UTRs are co-expressed and their relative expression is dynamically regulated. In spite of encoding multiple validated miRNA-binding sites, longer isoforms are largely refractory to miRNA-mediated silencing, are more stable and contribute to the bulk of PTEN protein and signalling functions. Taken together, our results warrant a mechanistic re-interpretation of the post-transcriptional mechanisms involving Pten mRNAs and raise concerns on how miRNA-binding sites are being validated.
Collapse
Affiliation(s)
- Caroline Thivierge
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Hsin-Wei Tseng
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Vinay K Mayya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Carine Lussier
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | | | - Thomas F Duchaine
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| |
Collapse
|
143
|
Integrating microRNA and mRNA expression in rapamycin-treated T-cell acute lymphoblastic leukemia. Pathol Res Pract 2019; 215:152494. [PMID: 31229277 DOI: 10.1016/j.prp.2019.152494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a relatively improved remission rate, but the poor outcomes are primarily due to resistance and relapse. Moreover, organs infiltration trends to occur during remission. Rapamycin was applied to treat malignancies for decades. In this investigation, we aimed to explore the molecular mechanisms and pathway changes during the T-ALL therapeutic process. T-ALL cell line Molt-4 cells were treated with rapamycin and performed microarray analysis to identify the deregulated miRNAs and mRNAs (log2 fold change>2 or <-2). To obtain regulatory miRNA/mRNA network, miRNA target prediction softwares and Cytoscape were used to plot and modularize the rapamycin treatment-related network. Surprisingly, the enriched pathways were not involved in mediating either cell death or apoptosis but were responsible for angiogenesis, cell survival, and anti-apoptosis, which is consistent with the Gene Ontology analysis and PPI network based on all deregulated mRNAs, indicating that these elements likely play a role in promoting Molt-4 cell survival or escaping from rapamycin. The expression of 3 miRNAs (miR-149-3p, miR-361-3p, and miR-944) and their putative targets, which play central roles in their module, were validated by qRT-PCR. These results provide novel insight into potentially relevant biological pathways for T-ALL cells escaping from chemotherapy or developing central nervous system infiltration.
Collapse
|
144
|
Affiliation(s)
- Pengda Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
145
|
Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 2019; 15:193-203. [PMID: 30700824 DOI: 10.1038/s41582-018-0126-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of disability worldwide, and brain injuries devastate patients and their families, but currently no drugs on the market promote neurological recovery. Limited spontaneous recovery of function as a result of brain remodelling after stroke or injury does occur, and cell-based therapies have been used to promote these endogenous processes. Increasing evidence is demonstrating that the positive effects of such cell-based therapy are mediated by exosomes released from the administered cells and that the microRNA cargo in these exosomes is largely responsible for the therapeutic effects. This evidence raises the possibility that isolated exosomes could be used alone as a neurorestorative therapy and that these exosomes could be tailored to maximize clinical benefit. The potential of exosomes as a therapy for brain disorders is therefore being actively investigated. In this Review, we discuss the current knowledge of exosomes and advances in our knowledge of their effects on endogenous neurovascular remodelling events. We also consider the opportunities for exosome-based approaches to therapeutic amplification of brain repair and improvement of recovery after stroke, traumatic brain injury and other diseases in which neurorestoration could be a viable treatment strategy.
Collapse
Affiliation(s)
| | - Benjamin Buller
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
146
|
Lu K, Huang J, Yang Y, Lu D. Predicting the target genes of miRNAs in preterm via targetscore algorithm. Exp Ther Med 2019; 17:2085-2090. [PMID: 30867695 PMCID: PMC6396006 DOI: 10.3892/etm.2019.7179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Compared with normal neonates, preterm infants have an immature immune system which causes them to have a higher morbidity rate and even death. In order to reduce the mortality of newborns, we need to find the target genes which affect the preterm and understand their mechanism. It has been verified that microRNA (miRNA)-200 and miRNA-182 are closely related to the incidence of preterm. Therefore, it is significant to predict the target genes which are regulated by them for further understanding the mechanism of preterm. We chose the targetscore method for calculating the variational Bayesian-Gaussian mixture model (VB-GMM) as the target genes prediction method. It is designed for condition-specific target predictions and not limited to predict conserved genes, so the results are more accurate than previous sequence-based target prediction algorithms. In this study, our major contribution is to predict the target mRNAs of the chosen miRNAs with the gene expression profiles and a new method, which can effectively improve the accuracy of the prediction.
Collapse
Affiliation(s)
- Kexin Lu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Junzhi Huang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yandong Yang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Dongli Lu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
147
|
Atif H, Hicks SD. A Review of MicroRNA Biomarkers in Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519832286. [PMID: 30886525 PMCID: PMC6410383 DOI: 10.1177/1179069519832286] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
There is growing public concern surrounding traumatic brain injury (TBI). TBI can cause significant morbidity, and the long-term sequelae are poorly understood. TBI diagnosis and management rely on patient-reported symptoms and subjective clinical assessment. There are no biologic tools to detect mild TBI or to track brain recovery. Emerging evidence suggests that microRNAs (miRNAs) may provide information about the injured brain. These tiny epigenetic molecules are expressed throughout the body. However, they are particularly important in neurons, can cross the blood-brain barrier, and are securely transported from cell to cell, where they regulate gene expression. miRNA levels may identify patients with TBI and predict symptom duration. This review synthesizes miRNA findings from 14 human studies. We distill more than 291 miRNAs to 17 biomarker candidates that overlap across multiple studies and multiple biofluids. The goal of this review is to establish a collective understanding of miRNA biology in TBI and identify clinical priorities for future investigations of this promising biomarker.
Collapse
Affiliation(s)
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
148
|
Ma XL, Yang X, Fan R. Screening of miRNA target genes in coronary artery disease by variational Bayesian Gaussian mixture model. Exp Ther Med 2019; 17:2129-2136. [PMID: 30867700 PMCID: PMC6395960 DOI: 10.3892/etm.2019.7195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death, and microRNAs (miRNAs) are widely involved in physiological and pathological processes of CAD. We chose the targetscore method calculated via the variational Bayesian Gaussian mixture model (VB-GMM) as the prediction method of target genes. By observing the density overlap, we selected the thresholds of miRNA-1 and miRNA-155. In total, 18 target genes of miRNA-1, and 19 target genes of miRNA-155 were identified. The threshold of miRNA-146a was selected using the |logFC| value, and 16 target genes were screened out. In this study, our major contribution was to predict the target messenger RNAs (mRNAs) of the chosen miRNAs with the gene expression profiles, which can effectively reduce the workload of screening. Although the validated genes constituted only a small part in the final prediction results, it is a good sign for research in the future. It means that we could provide new research aims for future studies focusing on miRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Department of Cardiology, The People's Hospital of Xuancheng City, Xuancheng, Anhui 242000, P.R. China
| | - Xu Yang
- Department of Cardiovascular Disease, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, P.R. China
| | - Rui Fan
- Department of Cardiology, Xinjiang Changjizhou People's Hospital, Changjizhou, Xinjiang Uygur Autonomous Region 831100, P.R. China
| |
Collapse
|
149
|
Abstract
Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.
Collapse
Affiliation(s)
- Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
150
|
Mockly S, Seitz H. Inconsistencies and Limitations of Current MicroRNA Target Identification Methods. Methods Mol Biol 2019; 1970:291-314. [PMID: 30963499 DOI: 10.1007/978-1-4939-9207-2_16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MicroRNAs and their Argonaute protein partners constitute the RISC complex, which can repress specific target mRNAs. The identification of microRNA targets is of central importance, and various experimental and computational methods have been developed over the last 15 years. Most experimental methods are based on the assumption that mRNAs which interact physically with the RISC complex constitute regulatory targets and, similarly, some computational methods only aim at predicting physical interactors for RISC. Besides specific limitations, which we discuss for each method, the mere concept of assuming a functional role for every detected molecular event is likely to identify many deceptive interactions (i.e., interactions that really exist at the molecular scale, but without controlling any biological function at the macroscopic scale).In order to select biologically important interactions, some computational tools interrogate the phylogenetic conservation of microRNA/mRNA interactions, thus theoretically selecting only biologically relevant targets. Yet even comparative genomics can yield false positives.Conceptual and technical limitations for all these techniques tend to be overlooked by the scientific community. This review sums them up, emphasizing on the implications of these issues on our understanding of microRNA biology.
Collapse
Affiliation(s)
- Sophie Mockly
- IGH (CNRS and University of Montpellier), Montpellier, France
| | - Hervé Seitz
- IGH (CNRS and University of Montpellier), Montpellier, France.
| |
Collapse
|