101
|
Liu Q, Zhang H, Huang X. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. FEBS J 2020; 287:626-644. [PMID: 31730297 DOI: 10.1111/febs.15139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune defense systems, which are widely distributed in bacteria and Archaea, can provide sequence-specific protection against foreign DNA or RNA in some cases. However, the evolution of defense systems in bacterial hosts did not lead to the elimination of phages, and some phages carry anti-CRISPR genes that encode products that bind to the components mediating the defense mechanism and thus antagonize CRISPR-Cas immune systems of bacteria. Given the extensive application of CRISPR-Cas9 technologies in gene editing, in this review, we focus on the anti-CRISPR proteins (Acrs) that inhibit CRISPR-Cas systems for gene editing. We describe the discovery of Acrs in immune systems involving type I, II, and V CRISPR-Cas immunity, discuss the potential function of Acrs in inactivating type II and V CRISPR-Cas systems for gene editing and gene modulation, and provide an outlook on the development of important biotechnology tools for genetic engineering using Acrs.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Hongxia Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, China
| |
Collapse
|
102
|
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22:143-150. [PMID: 32015437 PMCID: PMC8008746 DOI: 10.1038/s41556-019-0454-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.
Collapse
Affiliation(s)
- Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yilan J Shi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
103
|
Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat Commun 2020; 11:500. [PMID: 31980625 PMCID: PMC6981274 DOI: 10.1038/s41467-019-14222-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes. On binding invading RNA species, Type III CRISPR systems generate cyclic oligoadenylate (cOA) signalling molecules, potentiating a powerful immune response by activating downstream effector proteins, leading to viral clearance, cell dormancy or death. Here we describe the structure and mechanism of a cOA-activated CRISPR defence DNA endonuclease, CRISPR ancillary nuclease 1 (Can1). Can1 has a unique monomeric structure with two CRISPR associated Rossman fold (CARF) domains and two DNA nuclease-like domains. The crystal structure of the enzyme has been captured in the activated state, with a cyclic tetra-adenylate (cA4) molecule bound at the core of the protein. cA4 binding reorganises the structure to license a metal-dependent DNA nuclease activity specific for nicking of supercoiled DNA. DNA nicking by Can1 is predicted to slow down viral replication kinetics by leading to the collapse of DNA replication forks. Antiviral defence type III CRISPR systems produce cyclic oligoadenylates (cOA) as second messengers that activate downstream effectors. Here the authors present the crystal structure of the type III CRISPR defence DNA nuclease Can1 in complex with cyclic tetra-adenylate (cA4) and show that Can1 nicks supercoiled DNA.
Collapse
|
104
|
Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, Pu Q, Wang Y, Cheng G, Wu M, Dai M. CRISPR- cas3 of Salmonella Upregulates Bacterial Biofilm Formation and Virulence to Host Cells by Targeting Quorum-Sensing Systems. Pathogens 2020; 9:pathogens9010053. [PMID: 31936769 PMCID: PMC7168661 DOI: 10.3390/pathogens9010053] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is recognized as one of the most common microbial pathogens worldwide. The bacterium contains the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems, providing adaptive immunity against invading foreign nucleic acids. Previous studies suggested that certain bacteria employ the Cas proteins of CRISPR-Cas systems to target their own genes, which also alters the virulence during invasion of mammals. However, whether CRISPR-Cas systems in Salmonella have similar functions during bacterial invasion of host cells remains unknown. Here, we systematically analyzed the genes that are regulated by Cas3 in a type I-E CRISPR-Cas system and the virulence changes due to the deletion of cas3 in Salmonella enterica serovar Enteritidis. Compared to the cas3 gene wild-type (cas3 WT) Salmonella strain, cas3 deletion upregulated the lsrFGBE genes in lsr (luxS regulated) operon related to quorum sensing (QS) and downregulated biofilm-forming-related genes and Salmonella pathogenicity island 1 (SPI-1) genes related to the type three secretion system (T3SS). Consistently, the biofilm formation ability was downregulated in the cas3 deletion mutant (Δcas3). The bacterial invasive and intracellular capacity of Δcas3 to host cells was also reduced, thereby increasing the survival of infected host cells and live chickens. By the transcriptome-wide screen (RNA-Seq), we found that the cas3 gene impacts a series of genes related to QS, the flagellum, and SPI-1-T3SS system, thereby altering the virulence phenotypes. As QS SPI-1-T3SS and CRISPR-Cas systems are widely distributed in the bacteria kingdom, our findings extend our understanding of virulence regulation and pathogenicity in mammalian hosts for Salmonella and potentially other bacteria.
Collapse
Affiliation(s)
- Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Deyu Huang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Yue Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Jiawei Feng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Qirong Lu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Yulian Wang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Guyue Cheng
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| |
Collapse
|
105
|
Grüschow S, Athukoralage JS, Graham S, Hoogeboom T, White MF. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence. Nucleic Acids Res 2019; 47:9259-9270. [PMID: 31392987 PMCID: PMC6755085 DOI: 10.1093/nar/gkz676] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.
Collapse
Affiliation(s)
- Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Tess Hoogeboom
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
106
|
Pei Y, Lu M. Programmable RNA manipulation in living cells. Cell Mol Life Sci 2019; 76:4861-4867. [PMID: 31367845 PMCID: PMC11105762 DOI: 10.1007/s00018-019-03252-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
RNAs are responsible for mediating genetic information flow within the cell. RNA splicing, modification, trafficking, translation, and stability are all controlled at the transcript level. However, biological tools to study and manipulate them in a programmable fashion are currently limited. In this review, we summarize recent advances regarding available RNA-targeting systems discovered so far, including CRISPR-based technologies-Cas9 and Cas13, and programmable RNA-binding proteins-PUF and PPR. These tools allow transcript-specific manipulation in gene expression.
Collapse
Affiliation(s)
- Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mingxing Lu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| |
Collapse
|
107
|
Toro N, Mestre MR, Martínez-Abarca F, González-Delgado A. Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems. Front Microbiol 2019; 10:2160. [PMID: 31572350 PMCID: PMC6753606 DOI: 10.3389/fmicb.2019.02160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 12/04/2022] Open
Abstract
Type VI CRISPR-Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. We identified two different type VI-A systems with adaptation modules including an RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that these adaptation modules were recruited by different effector Cas13a proteins, possibly from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA molecules, paving the way for future studies investigating their role in bacterial adaptive immunity and biotechnological applications.
Collapse
Affiliation(s)
- Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
108
|
Nasef M, Muffly MC, Beckman AB, Rowe SJ, Walker FC, Hatoum-Aslan A, Dunkle JA. Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex. RNA (NEW YORK, N.Y.) 2019; 25:948-962. [PMID: 31076459 PMCID: PMC6633199 DOI: 10.1261/rna.070417.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
CRISPR-Cas systems are a class of adaptive immune systems in prokaryotes that use small CRISPR RNAs (crRNAs) in conjunction with CRISPR-associated (Cas) nucleases to recognize and degrade foreign nucleic acids. Recent studies have revealed that Type III CRISPR-Cas systems synthesize second messenger molecules previously unknown to exist in prokaryotes, cyclic oligoadenylates (cOA). These molecules activate the Csm6 nuclease to promote RNA degradation and may also coordinate additional cellular responses to foreign nucleic acids. Although cOA production has been reconstituted and characterized for a few bacterial and archaeal Type III systems, cOA generation and its regulation have not been explored for the Staphylococcus epidermidis Type III-A CRISPR-Cas system, a longstanding model for CRISPR-Cas function. Here, we demonstrate that this system performs Mg2+-dependent synthesis of 3-6 nt cOA. We show that activation of cOA synthesis is perturbed by single nucleotide mismatches between the crRNA and target RNA at discrete positions, and that synthesis is antagonized by Csm3-mediated target RNA cleavage. Altogether, our results establish the requirements for cOA production in a model Type III CRISPR-Cas system and suggest a natural mechanism to dampen immunity once the foreign RNA is destroyed.
Collapse
Affiliation(s)
- Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Mary C Muffly
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Andrew B Beckman
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Sebastian J Rowe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Forrest C Walker
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
109
|
Han W, Stella S, Zhang Y, Guo T, Sulek K, Peng-Lundgren L, Montoya G, She Q. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Res 2019; 46:10319-10330. [PMID: 30239876 PMCID: PMC6212834 DOI: 10.1093/nar/gky844] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recently, Type III-A CRISPR-Cas systems were found to catalyze the synthesis of cyclic oligoadenylates (cOAs), a second messenger that specifically activates Csm6, a Cas accessory RNase and confers antiviral defense in bacteria. To test if III-B CRISPR-Cas systems could mediate a similar CRISPR signaling pathway, the Sulfolobus islandicus Cmr-α ribonucleoprotein complex (Cmr-α-RNP) was purified from the native host and tested for cOA synthesis. We found that the system showed a robust production of cyclic tetra-adenylate (c-A4), and that c-A4 functions as a second messenger to activate the III-B-associated RNase Csx1 by binding to its CRISPR-associated Rossmann Fold domain. Investigation of the kinetics of cOA synthesis revealed that Cmr-α-RNP displayed positively cooperative binding to the adenosine triphosphate (ATP) substrate. Furthermore, mutagenesis of conserved domains in Cmr2α confirmed that, while Palm 2 hosts the active site of cOA synthesis, Palm 1 domain serves as the primary site in the enzyme-substrate interaction. Together, our data suggest that the two Palm domains cooperatively interact with ATP molecules to achieve a robust cOA synthesis by the III-B CRISPR-Cas system.
Collapse
Affiliation(s)
- Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Stefano Stella
- Structural Molecular Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Yan Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Guo
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Karolina Sulek
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Li Peng-Lundgren
- Protein Production and Characterization Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| |
Collapse
|
110
|
Bidve P, Prajapati N, Kalia K, Tekade R, Tiwari V. Emerging role of nanomedicine in the treatment of neuropathic pain. J Drug Target 2019; 28:11-22. [PMID: 30798636 DOI: 10.1080/1061186x.2019.1587444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropathic pain (NeP) is a complex chronic pain condition associated with nerve injury. Approximately, 7-10% of the general population across the globe is suffering from this traumatic condition, but the existing treatment strategies are inadequate to deliver pain relief and are associated with severe adverse effects. To overcome these limitations, lot of research is focussed on developing new molecules with high potency and fewer side effects, novel cell and gene-based therapies and modification of the previously approved drugs by different formulation aspects. Nanomedicine has attracted a lot of attention in the treatment of many diverse pathological conditions because of their unique physiochemical and biological properties. In this manuscript, we highlighted the emerging role of nanomedicine in different therapies (drug, cell and gene), also we emphasised on the challenges associated with nanomedicine such as development of well-characterised nanoformulation, scaling of batches with reproducible results and toxicity along with this we discussed about the future of nanomedicine in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Pankaj Bidve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Namrata Prajapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rakesh Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
111
|
Jia N, Jones R, Yang G, Ouerfelli O, Patel DJ. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA 4 Cleavage with ApA>p Formation Terminating RNase Activity. Mol Cell 2019; 75:944-956.e6. [PMID: 31326273 DOI: 10.1016/j.molcel.2019.06.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
Abstract
Type III-A CRISPR-Cas surveillance complexes containing multi-subunit Csm effector, guide, and target RNAs exhibit multiple activities, including formation of cyclic-oligoadenylates (cAn) from ATP and subsequent cAn-mediated cleavage of single-strand RNA (ssRNA) by the trans-acting Csm6 RNase. Our structure-function studies have focused on Thermococcus onnurineus Csm6 to deduce mechanistic insights into how cA4 binding to the Csm6 CARF domain triggers the RNase activity of the Csm6 HEPN domain and what factors contribute to regulation of RNA cleavage activity. We demonstrate that the Csm6 CARF domain is a ring nuclease, whereby bound cA4 is stepwise cleaved initially to ApApApA>p and subsequently to ApA>p in its CARF domain-binding pocket, with such cleavage bursts using a timer mechanism to regulate the RNase activity of the Csm6 HEPN domain. In addition, we establish T. onnurineus Csm6 as an adenosine-specific RNase and identify a histidine in the cA4 CARF-binding pocket involved in autoinhibitory regulation of RNase activity.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Roger Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guangli Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
112
|
Second Messenger cA 4 Formation within the Composite Csm1 Palm Pocket of Type III-A CRISPR-Cas Csm Complex and Its Release Path. Mol Cell 2019; 75:933-943.e6. [PMID: 31326272 DOI: 10.1016/j.molcel.2019.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
Abstract
Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.
Collapse
|
113
|
Toro N, Martínez-Abarca F, Mestre MR, González-Delgado A. Multiple origins of reverse transcriptases linked to CRISPR-Cas systems. RNA Biol 2019; 16:1486-1493. [PMID: 31276437 DOI: 10.1080/15476286.2019.1639310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prokaryotic genomes harbour a plethora of uncharacterized reverse transcriptases (RTs). RTs phylogenetically related to those encoded by group-II introns have been found associated with type III CRISPR-Cas systems, adjacent or fused at the C-terminus to Cas1. It is thought that these RTs may have a relevant function in the CRISPR immune response mediating spacer acquisition from RNA molecules. The origin and relationships of these RTs and the ways in which the various protein domains evolved remain matters of debate. We carried out a large survey of annotated RTs in databases (198,760 sequences) and constructed a large dataset of unique representative sequences (9,141). The combined phylogenetic reconstruction and identification of the RTs and their various protein domains in the vicinity of CRISPR adaptation and effector modules revealed three different origins for these RTs, consistent with their emergence on multiple occasions: a larger group that have evolved from group-II intron RTs, and two minor lineages that may have arisen more recently from Retron/retron-like sequences and Abi-P2 RTs, the latter associated with type I-C systems. We also identified a particular group of RTs associated with CRISPR-cas loci in clade 12, fused C-terminally to an archaeo-eukaryotic primase (AEP), a protein domain (AE-Prim_S_like) forming a particular family within the AEP proper clade. Together, these data provide new insight into the evolution of CRISPR-Cas/RT systems.
Collapse
Affiliation(s)
- Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Francisco Martínez-Abarca
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Mario Rodríguez Mestre
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| | - Alejandro González-Delgado
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , Granada , Spain
| |
Collapse
|
114
|
Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nat Commun 2019; 10:3001. [PMID: 31278272 PMCID: PMC6611850 DOI: 10.1038/s41467-019-10780-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
Type III-A CRISPR-Cas systems are prokaryotic RNA-guided adaptive immune systems that use a protein-RNA complex, Csm, for transcription-dependent immunity against foreign DNA. Csm can cleave RNA and single-stranded DNA (ssDNA), but whether it targets one or both nucleic acids during transcription elongation is unknown. Here, we show that binding of a Thermus thermophilus (T. thermophilus) Csm (TthCsm) to a nascent transcript in a transcription elongation complex (TEC) promotes tethering but not direct contact of TthCsm with RNA polymerase (RNAP). Biochemical experiments show that both TthCsm and Staphylococcus epidermidis (S. epidermidis) Csm (SepCsm) cleave RNA transcripts, but not ssDNA, at the transcription bubble. Taken together, these results suggest that Type III systems primarily target transcripts, instead of unwound ssDNA in TECs, for immunity against double-stranded DNA (dsDNA) phages and plasmids. This reveals similarities between Csm and eukaryotic RNA interference, which also uses RNA-guided RNA targeting to silence actively transcribed genes.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Bacteriophages/immunology
- CRISPR-Cas Systems/genetics
- CRISPR-Cas Systems/immunology
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/immunology
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/immunology
- DNA, Single-Stranded/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Plasmids/immunology
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/immunology
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Staphylococcus epidermidis/genetics
- Staphylococcus epidermidis/immunology
- Thermus thermophilus/genetics
- Thermus thermophilus/immunology
- Transcription Elongation, Genetic/immunology
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, Berkeley, CA, 94720, USA
| | - Jun-Jie Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, Berkeley, CA, 94720, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abhishek J Aditham
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, Berkeley, CA, 94720, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences, Berkeley, CA, 94720, USA.
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA.
- Gladstone Institutes, San Francisco, CA, 94158, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
115
|
Varble A, Marraffini LA. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Trends Genet 2019; 35:446-456. [PMID: 31036344 PMCID: PMC6525018 DOI: 10.1016/j.tig.2019.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated (cas) genes provide protection against invading phages and plasmids in prokaryotes. Typically, short sequences are captured from the genome of the invader, integrated into the CRISPR locus, and transcribed into short RNAs that direct RNA-guided Cas nucleases to the nucleic acids of the invader for their degradation. Recent work in the field has revealed unexpected features of the CRISPR-Cas mechanism: (i) collateral, nonspecific, cleavage of host nucleic acids; (ii) secondary messengers that amplify the immune response; and (iii) immunosuppression of CRISPR targeting by phage-encoded inhibitors. Here, we review these new and exciting findings.
Collapse
Affiliation(s)
- Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
116
|
Pan S, Li Q, Deng L, Jiang S, Jin X, Peng N, Liang Y, She Q, Li Y. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol 2019; 16:1166-1178. [PMID: 31096876 DOI: 10.1080/15476286.2019.1618693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide an adaptive defence against foreign nucleic acids guided by small RNAs (crRNAs) in archaea and bacteria. The Type III CRISPR systems are reported to carry RNase, RNA-activated DNase and cyclic oligoadenylate (cOA) synthetase activity, and are significantly different from other CRISPR systems. However, detailed features of target recognition, which are essential for enhancing target specificity remain unknown in Type III CRISPR systems. Here, we show that the Type III-B Cmr-α system in S. islandicus generates two constant lengths of crRNA independent of the length of the spacer. Either mutation at the 3'-end of crRNA or target truncation greatly influences the target capture and cleavage by the Cmr-α effector complex. Furthermore, we found that cleavage at the tag-proximal site on the target RNA by the Cmr-α RNP complex is delayed relative to the other sites, which probably provides Cas10 more time to function as a guard against invaders. Using a mutagenesis assay in vivo, we discovered that a seed motif located at the tag-distal region of the crRNA is required by Cmr1α for target RNA capture by the Cmr-α system thereby enhancing target specificity and efficiency. These findings further refine the model for immune defence of Type III-B CRISPR-Cas system, commencing on capture, cleavage and regulation.
Collapse
Affiliation(s)
- Saifu Pan
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Qi Li
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Ling Deng
- b Archaea Centre, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Suping Jiang
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Xuexia Jin
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Nan Peng
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Yunxiang Liang
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Qunxin She
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China.,b Archaea Centre, Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Yingjun Li
- a State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
117
|
Johnson K, Learn BA, Estrella MA, Bailey S. Target sequence requirements of a type III-B CRISPR-Cas immune system. J Biol Chem 2019; 294:10290-10299. [PMID: 31110048 DOI: 10.1074/jbc.ra119.008728] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are RNA-based immune systems that protect many prokaryotes from invasion by viruses and plasmids. Type III CRISPR systems are unique, as their targeting mechanism requires target transcription. Upon transcript binding, DNA cleavage by type III effector complexes is activated. Type III systems must differentiate between invader and native transcripts to prevent autoimmunity. Transcript origin is dictated by the sequence that flanks the 3' end of the RNA target site (called the PFS). However, how the PFS is recognized may vary among different type III systems. Here, using purified proteins and in vitro assays, we define how the type III-B effector from the hyperthermophilic bacterium Thermotoga maritima discriminates between native and invader transcripts. We show that native transcripts are recognized by base pairing at positions -2 to -5 of the PFS and by a guanine at position -1, which is not recognized by base pairing. We also show that mismatches with the RNA target are highly tolerated in this system, except for those nucleotides adjacent to the PFS. These findings define the target requirement for the type III-B system from T. maritima and provide a framework for understanding the target requirements of type III systems as a whole.
Collapse
Affiliation(s)
- Kaitlin Johnson
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Brian A Learn
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Michael A Estrella
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and
| | - Scott Bailey
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health and .,Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
118
|
A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator. J Mol Biol 2019; 431:2894-2899. [PMID: 31071326 PMCID: PMC6599890 DOI: 10.1016/j.jmb.2019.04.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
Cyclic oligoadenylate (cOA) secondary messengers are generated by type III CRISPR systems in response to viral infection. cOA allosterically activates the CRISPR ancillary ribonucleases Csx1/Csm6, which degrade RNA non-specifically using a HEPN (Higher Eukaryotes and Prokaryotes, Nucleotide binding) active site. This provides effective immunity but can also lead to growth arrest in infected cells, necessitating a means to deactivate the ribonuclease once viral infection has been cleared. In the crenarchaea, dedicated ring nucleases degrade cA4 (cOA consisting of 4 AMP units), but the equivalent enzyme has not been identified in bacteria. We demonstrate that, in Thermus thermophilus HB8, the uncharacterized protein TTHB144 is a cA4-activated HEPN ribonuclease that also degrades its activator. TTHB144 binds and degrades cA4 at an N-terminal CARF (CRISPR-associated Rossman fold) domain. The two activities can be separated by site-directed mutagenesis. TTHB144 is thus the first example of a self-limiting CRISPR ribonuclease. TTHB144 is a cyclic tetra-adenylate activated ribonuclease. TTHB144 degrades cyclic tetra-adenylate at its CARF domain. Self-limiting enzymes like TTHB144 may regulate anti-viral signaling in bacteria.
Collapse
|
119
|
Dorsey BW, Huang L, Mondragón A. Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM. Nucleic Acids Res 2019; 47:3765-3783. [PMID: 30759237 PMCID: PMC6468305 DOI: 10.1093/nar/gkz079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas proteins provide an immune-like response in many prokaryotes against extraneous nucleic acids. CRISPR-Cas systems are classified into different classes and types. Class 1 CRISPR-Cas systems form multi-protein effector complexes that includes a guide RNA (crRNA) used to identify the target for destruction. Here we present crystal structures of Staphylococcus epidermidis Type III-A CRISPR subunits Csm2 and Csm3 and a 5.2 Å resolution single-particle cryo-electron microscopy (cryo-EM) reconstruction of an in vivo assembled effector subcomplex including the crRNA. The structures help to clarify the quaternary architecture of Type III-A effector complexes, and provide details on crRNA binding, target RNA binding and cleavage, and intermolecular interactions essential for effector complex assembly. The structures allow a better understanding of the organization of Type III-A CRISPR effector complexes as well as highlighting the overall similarities and differences with other Class 1 effector complexes.
Collapse
Affiliation(s)
- Bryan W Dorsey
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lei Huang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
120
|
Chou-Zheng L, Hatoum-Aslan A. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity. eLife 2019; 8:e45393. [PMID: 30942690 PMCID: PMC6447361 DOI: 10.7554/elife.45393] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
CRISPR-Cas systems provide sequence-specific immunity against phages and mobile genetic elements using CRISPR-associated nucleases guided by short CRISPR RNAs (crRNAs). Type III systems exhibit a robust immune response that can lead to the extinction of a phage population, a feat coordinated by a multi-subunit effector complex that destroys invading DNA and RNA. Here, we demonstrate that a model type III system in Staphylococcus epidermidis relies upon the activities of two degradosome-associated nucleases, PNPase and RNase J2, to mount a successful defense. Genetic, molecular, and biochemical analyses reveal that PNPase promotes crRNA maturation, and both nucleases are required for efficient clearance of phage-derived nucleic acids. Furthermore, functional assays show that RNase J2 is essential for immunity against diverse mobile genetic elements originating from plasmid and phage. Altogether, our observations reveal the evolution of a critical collaboration between two nucleic acid degrading machines which ensures cell survival when faced with phage attack.
Collapse
Affiliation(s)
- Lucy Chou-Zheng
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| | - Asma Hatoum-Aslan
- Department of Biological SciencesThe University of AlabamaTuscaloosaUnited States
| |
Collapse
|
121
|
Abstract
Infectious diseases remain a global threat contributing to excess morbidity and death annually, with the persistent potential for destabilizing pandemics. Improved understanding of the pathogenesis of bacteria, viruses, fungi, and parasites, along with rapid diagnosis and treatment of human infections, is essential for improving infectious disease outcomes worldwide. Genomic loci in bacteria and archaea, termed clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, function as an adaptive immune system for prokaryotes, protecting them against foreign invaders. CRISPR-Cas9 technology is now routinely applied for efficient gene editing, contributing to advances in biomedical science. In the past decade, improved understanding of other diverse CRISPR-Cas systems has expanded CRISPR applications, including in the field of infectious diseases. In this review, we summarize the biology of CRISPR-Cas systems and discuss existing and emerging applications to evaluate mechanisms of host-pathogen interactions, to develop accurate and portable diagnostic tests, and to advance the prevention and treatment of infectious diseases.
Collapse
|
122
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
123
|
Guo M, Zhang K, Zhu Y, Pintilie GD, Guan X, Li S, Schmid MF, Ma Z, Chiu W, Huang Z. Coupling of ssRNA cleavage with DNase activity in type III-A CRISPR-Csm revealed by cryo-EM and biochemistry. Cell Res 2019; 29:305-312. [PMID: 30814678 PMCID: PMC6461802 DOI: 10.1038/s41422-019-0151-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
The type III CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated genes) systems are bacterially encoded adaptive immune systems for defense against invading nucleic acids. They accomplish this task through the coordinated cleavage of invading substrates of single-stranded RNA and DNA (ssDNA and ssRNA) by the Csm (type III-A) or Cmr (type III-B) effector complexes. The ssRNA is complementarily bound to the CRISPR RNA (crRNA). However, the structural basis for the DNase and RNase activation of the Csm nucleoprotein complex is largely unknown. Here we report cryo-EM structures of the Csm-crRNA complex, with or without target ssRNA, at near-atomic resolution. Our cryo-EM maps allow us to build atomic models of the key macromolecular components, including Cas10, Csm2, Csm3, Csm4, crRNA and the invading ssRNA. Our structure resolves unambiguously the stoichiometry and tertiary structures of the Csm protein complex and the interactions between protein components and the crRNA/ssRNA. Interestingly, the new atomic structures of the Csm proteins presented here are similar to those of previously known Csm proteins in other species despite their low sequence similarity. Our combined structural and biochemical data suggest that ssRNA cleavage is preferentially carried out near its 5’-end, that the extent of interactions among the ssRNA, crRNA and the protein components regulates the DNase activity of the Csm complex, and that the 3’ flanking sequence of ssRNA activates the Cas10 DNase activity allosterically.
Collapse
Affiliation(s)
- Minghui Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Kaiming Zhang
- Departments of Bioengineering, and of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Grigore D Pintilie
- Departments of Bioengineering, and of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoyu Guan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Shanshan Li
- Departments of Bioengineering, and of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Michael F Schmid
- CryoEM and Bioimaging Division, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Zhuo Ma
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China
| | - Wah Chiu
- Departments of Bioengineering, and of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA. .,CryoEM and Bioimaging Division, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, China.
| |
Collapse
|
124
|
Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR–Cas Effector Complex. J Mol Biol 2019; 431:748-763. [DOI: 10.1016/j.jmb.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
|
125
|
Park KH, An Y, Woo EJ. In vitro assembly of thermostable Csm complex in CRISPR-Cas type III/A system. Methods Enzymol 2019; 616:173-189. [PMID: 30691642 DOI: 10.1016/bs.mie.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The CRISPR-Cas system is the prokaryotic immune response that destroys invading foreign nucleic acids. Based on the architecture and distinct mechanism of targeting, the CRISPR-Cas system is classified into six types (I-VI). The Csm complex belongs to the type III system and consists of five subunits (Cas10 and Csm2-5) and a crRNA. The Csm complex targets RNA and RNA-dependent single-strand DNA. Here, we present a protocol for in vitro reconstitution of a Csm complex from a hyperthermophilic archaeon Thermococcus onnurineus NA1 (ToCsm complex). The method consists of coexpression and copurification of the subunits, in vitro synthesis of the crRNA and assembly of the ToCsm complex. Purification with heat treatment and affinity and size exclusion chromatography resulted in homogeneous Cas10/Csm4 and Csm2/Csm5 binary complexes, while in vitro transcription with the T7 promoter enabled synthesis of the crRNA. Addition of each component in the presence of the crRNA with a molar ratio of Cas10/Csm4:Csm3:Csm2/Csm5:crRNA=1:3:2:1 yielded an assembled functional Csm complex. This protocol for reconstitution of the Csm complex is presumably applicable to other thermostable effector complexes, which would allow biochemical, structural, or functional studies of the CRISPR-Cas type III/A system in vitro.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Yan An
- Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Eui-Jeon Woo
- Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea; Department of Bioanalytical Science, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
126
|
Rostøl JT, Marraffini LA. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat Microbiol 2019; 4:656-662. [PMID: 30692669 PMCID: PMC6430669 DOI: 10.1038/s41564-018-0353-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Type III-A CRISPR-Cas systems employ the Cas10-Csm complex to destroy bacteriophages and plasmids, using a guide RNA to locate complementary RNA molecules from the invader and trigger an immune response that eliminates the infecting DNA. In addition, these systems possess the non-specific RNase Csm6 which provides further protection for the host. While the role of Csm6 in immunity during phage infection was previously determined, how this RNase is used against plasmids is unclear. Here we show that S. epidermidis Csm6 is required for immunity when transcription across the plasmid target is infrequent, leading to impaired target recognition and inefficient DNA degradation by the Cas10-Csm complex. In these conditions Csm6 causes a growth arrest in the host and prevents further plasmid replication through the indiscriminate degradation of host and plasmid transcripts. In contrast, when plasmid target sequences are efficiently transcribed, Csm6 is dispensable and DNA degradation by Cas10 is sufficient for anti-plasmid immunity. Csm6 therefore provides robustness to the type III-A CRISPR-Cas immune response against difficult targets for the Cas10-Csm complex.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
127
|
Turkowyd B, Müller-Esparza H, Climenti V, Steube N, Endesfelder U, Randau L. Live-cell single-particle tracking photoactivated localization microscopy of Cascade-mediated DNA surveillance. Methods Enzymol 2019; 616:133-171. [PMID: 30691641 DOI: 10.1016/bs.mie.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type I CRISPR-Cas systems utilize small CRISPR RNA (crRNA) molecules to scan DNA strands for target regions. Different crRNAs are bound by several CRISPR-associated (Cas) protein subunits that form the stable ribonucleoprotein complex Cascade. The Cascade-mediated DNA surveillance process requires a sufficient degree of base-complementarity between crRNA and target sequences and relies on the recognition of small DNA motifs, termed protospacer adjacent motifs. Recently, super-resolution microscopy and single-particle tracking methods have been developed to follow individual protein complexes in live cells. Here, we described how this technology can be adapted to visualize the DNA scanning process of Cascade assemblies in Escherichia coli cells. The activity of recombinant Type I-Fv Cascade complexes of Shewanella putrefaciens CN-32 serves as a model system that facilitates comparative studies for many of the diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Hanna Müller-Esparza
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vanessa Climenti
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Niklas Steube
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | - Lennart Randau
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany; Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
128
|
Rouillon C, Athukoralage JS, Graham S, Grüschow S, White MF. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Methods Enzymol 2019; 616:191-218. [PMID: 30691643 DOI: 10.1016/bs.mie.2018.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type III CRISPR effector complexes utilize a bound CRISPR RNA (crRNA) to detect the presence of RNA from invading mobile genetic elements in the cell. This RNA binding results in the activation of two enzymatic domains of the Cas10 subunit-the HD nuclease domain, which degrades DNA, and PALM/cyclase domain. The latter synthesizes cyclic oligoadenylate (cOA) molecules by polymerizing ATP, and cOA acts as a second messenger in the cell, switching on the antiviral response by activating host ribonucleases and other proteins. In this chapter, we focus on the methods required to study the biochemistry of this recently discovered cOA signaling pathway. We cover protein expression and purification, synthesis of cOA and its linear analogues, kinetic analysis of cOA synthesis and cOA-stimulated ribonuclease activity, and small molecule detection and identification with thin-layer chromatography and mass spectrometry. The methods described are based on our recent studies of the type III CRISPR system in Sulfolobus solfataricus, but are widely applicable to other type III systems.
Collapse
Affiliation(s)
- Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom.
| |
Collapse
|
129
|
You L, Ma J, Wang J, Artamonova D, Wang M, Liu L, Xiang H, Severinov K, Zhang X, Wang Y. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference. Cell 2019; 176:239-253.e16. [PMID: 30503210 PMCID: PMC6935017 DOI: 10.1016/j.cell.2018.10.052] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Csm, a type III-A CRISPR-Cas interference complex, is a CRISPR RNA (crRNA)-guided RNase that also possesses target RNA-dependent DNase and cyclic oligoadenylate (cOA) synthetase activities. However, the structural features allowing target RNA-binding-dependent activation of DNA cleavage and cOA generation remain unknown. Here, we report the structure of Csm in complex with crRNA together with structures of cognate or non-cognate target RNA bound Csm complexes. We show that depending on complementarity with the 5' tag of crRNA, the 3' anti-tag region of target RNA binds at two distinct sites of the Csm complex. Importantly, the interaction between the non-complementary anti-tag region of cognate target RNA and Csm1 induces a conformational change at the Csm1 subunit that allosterically activates DNA cleavage and cOA generation. Together, our structural studies provide crucial insights into the mechanistic processes required for crRNA-meditated sequence-specific RNA cleavage, RNA target-dependent non-specific DNA cleavage, and cOA generation.
Collapse
Affiliation(s)
- Lilan You
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Daria Artamonova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Xinzheng Zhang
- University of Chinese Academy of Sciences, 100049 Beijing, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China.
| |
Collapse
|
130
|
O'Connell MR. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. J Mol Biol 2019; 431:66-87. [PMID: 29940185 DOI: 10.1016/j.jmb.2018.06.029] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR-Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.
Collapse
Affiliation(s)
- Mitchell R O'Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
131
|
Patterson A, Tokmina-Lukaszewska M, Bothner B. Probing Cascade complex composition and stability using native mass spectrometry techniques. Methods Enzymol 2018; 616:87-116. [PMID: 30691656 DOI: 10.1016/bs.mie.2018.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adaptive prokaryotic immune systems rely on clustered regularly interspaced short palindromic repeats and their associated genes to provide the components necessary to clear infection by foreign genetic elements. These immune systems are based on highly specific nucleases that bind DNA or RNA and, upon sequence recognition, degrade the bound nucleic acid. Because of their specificity, CRISPR-Cas systems are being co-opted to edit genes in eukaryotic cells. While the general function of these systems is well understood, an understanding of mechanistic details to facilitate engineering and application to this new arena remains a topic of intense study. Here, we present two methods that have been successfully used to study the structure and mechanism of the Type IE CRISPR system, Cascade, from Escherichia coli. We provide the protocol for a typical native mass spectrometry experiment which, because it allows for analysis of a protein complex without disruption of the noncovalent interactions within the complex, can be used to determine complex composition, architecture, and relative affinity between subunits. We, also, provide the protocol for intact protein hydrogen-deuterium exchange mass spectrometry, which provides insight into the overall conformational stability of the complex and changes in complex stability based on conditions such as substrate binding. Investigating the solution-phase structure, stability, and dynamics of these complexes improves the overall understanding of the mechanism facilitating engineered adjustments to function or utility.
Collapse
Affiliation(s)
- Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
132
|
Huo Y, Li T, Wang N, Dong Q, Wang X, Jiang T. Cryo-EM structure of Type III-A CRISPR effector complex. Cell Res 2018; 28:1195-1197. [PMID: 30459428 PMCID: PMC6274645 DOI: 10.1038/s41422-018-0115-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yangao Huo
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Engineering, Foshan University, Guangdong, China.
| | - Tao Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Dong
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Tao Jiang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
133
|
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Mol Cell 2018; 73:278-290.e4. [PMID: 30503774 DOI: 10.1016/j.molcel.2018.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
134
|
Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Mol Cell 2018; 73:264-277.e5. [PMID: 30503773 DOI: 10.1016/j.molcel.2018.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | | | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
135
|
Terns MP. CRISPR-Based Technologies: Impact of RNA-Targeting Systems. Mol Cell 2018; 72:404-412. [PMID: 30388409 PMCID: PMC6239212 DOI: 10.1016/j.molcel.2018.09.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
DNA-targeting CRISPR-Cas systems, such as those employing the RNA-guided Cas9 or Cas12 endonucleases, have revolutionized our ability to predictably edit genomes and control gene expression. Here, I summarize information on RNA-targeting CRISPR-Cas systems and describe recent advances in converting them into powerful and programmable RNA-binding and cleavage tools with a wide range of novel and important biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
136
|
Zhou L, Peng R, Zhang R, Li J. The applications of CRISPR/Cas system in molecular detection. J Cell Mol Med 2018; 22:5807-5815. [PMID: 30338908 PMCID: PMC6237584 DOI: 10.1111/jcmm.13925] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/21/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
The Streptococcus pyogenes CRISPR/Cas system has found widespread applications as a gene-editing and regulatory tool for the simultaneous delivery of the Cas9 protein and guide RNAs into the cell, thus making the recognition of specific DNA sequences possible. The recent study that shows that Cas9 can also bind to and cleave RNA in an RNA-programmable manner is suggestive of potential utility of this system as a universal nucleic-acid recognition tool. To increase the signal intensity of the CRISPR/Cas system, a signal amplification technique has to be exploited appropriately; this requirement is also a challenge for the detection of DNA or RNA. Furthermore, the CRISPR/Cas system may be used to detect point mutations or single-nucleotide variants because of the specificity of the recognition between the target sequence and the CRISPR/Cas system. These lines of evidence make this technique capable of detecting pathogens during infection via analysis of their DNA or RNA. Thus, here we summarize applications of the CRISPR/Cas system to the recognition and detection of DNA and RNA molecules as well as the signal amplification. We also describe its potential ability to detect mutations and single-nucleotide variants. Finally, we sum up its applications to testing for pathogens and potential barriers for its implementation.
Collapse
Affiliation(s)
- Li Zhou
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rongxue Peng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
137
|
Molecular mechanisms of III-B CRISPR–Cas systems in archaea. Emerg Top Life Sci 2018; 2:483-491. [DOI: 10.1042/etls20180023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems provide the adaptive antiviral immunity against invasive genetic elements in archaea and bacteria. These immune systems are divided into at least six different types, among which Type III CRISPR–Cas systems show several distinct antiviral activities as demonstrated from the investigation of bacterial III-A and archaeal III-B systems in the past decade. First, although initial experiments suggested that III-A systems provided DNA interference activity, whereas III-B system was active only in RNA interference, these immune systems were subsequently found to mediate the transcription-dependent DNA interference and the dual DNA/RNA interference. Second, their ribonucleoprotein (RNP) complexes show target RNA (tgRNA) cleavage by a ruler mechanism and RNA-activated indiscriminate single-stranded DNA cleavage, the latter of which is subjected to spatiotemporal regulation such that the DNase activity occurs only at the right place in the right time. Third, RNPs of Type III systems catalyse the synthesis of cyclic oligoadenylates (cOAs) that function as second messengers to activate Csm6 and Csx1, both of which are potent Cas accessory RNases after activation. To date, Type III CRISPR systems are the only known antiviral immunity that utilizes multiple interference mechanisms for antiviral defence.
Collapse
|
138
|
Majumdar S, Terns MP. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Extremophiles 2018; 23:19-33. [PMID: 30284045 DOI: 10.1007/s00792-018-1057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Diverse CRISPR-Cas immune systems protect archaea and bacteria from viruses and other mobile genetic elements. All CRISPR-Cas systems ultimately function by sequence-specific destruction of invading complementary nucleic acids. However, each CRISPR system uses compositionally distinct crRNP [CRISPR (cr) RNA/Cas protein] immune effector complexes to recognize and destroy invasive nucleic acids by unique molecular mechanisms. Previously, we found that Type I-A (Csa) effector crRNPs from Pyrococcus furiosus function in vivo to eliminate invader DNA. Here, we reconstituted functional Type I-A effector crRNPs in vitro with recombinant Csa proteins and synthetic crRNA and characterized properties of crRNP assembly, target DNA recognition and cleavage. Six proteins (Csa 4-1, Cas3″, Cas3', Cas5a, Csa2, Csa5) are essential for selective target DNA binding and cleavage. Native gel shift analysis and UV-induced RNA-protein crosslinking demonstrate that Cas5a and Csa2 directly interact with crRNA 5' tag and guide sequences, respectively. Mutational analysis revealed that Cas3″ is the effector nuclease of the complex. Together, our results indicate that DNA cleavage by Type I-A crRNPs requires crRNA-guided and protospacer adjacent motif-dependent target DNA binding to unwind double-stranded DNA and expose single strands for progressive ATP-dependent 3'-5' cleavage catalyzed by integral Cas3' helicase and Cas3″ nuclease crRNP components.
Collapse
Affiliation(s)
- Sonali Majumdar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA. .,Department of Genetics, University of Georgia, Athens, GA, 30602, USA. .,Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
139
|
Millen AM, Samson JE, Tremblay DM, Magadán AH, Rousseau GM, Moineau S, Romero DA. Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA. RNA Biol 2018; 16:461-468. [PMID: 30081743 DOI: 10.1080/15476286.2018.1502589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas defends microbial cells against invading nucleic acids including viral genomes. Recent studies have shown that type III-A CRISPR-Cas systems target both RNA and DNA in a transcription-dependent manner. We previously found a type III-A system on a conjugative plasmid in Lactococcus lactis which provided resistance against virulent phages of the Siphoviridae family. Its naturally occurring spacers are oriented to generate crRNAs complementary to target phage mRNA, suggesting transcription-dependent targeting. Here, we show that only constructs whose spacers produce crRNAs complementary to the phage mRNA confer phage resistance in L. lactis. In vivo nucleic acid cleavage assays showed that cleavage of phage dsDNA genome was not detected within phage-infected L. lactis cells. On the other hand, Northern blots indicated that the lactococcal CRISPR-Cas cleaves phage mRNA in vivo. These results cannot exclude that single-stranded phage DNA is not being targeted, but phage DNA replication has been shown to be impaired.
Collapse
Affiliation(s)
- Anne M Millen
- a Technology & Innovation , DuPont Nutrition and Health , Madison , WI , USA
| | - Julie E Samson
- b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada
| | - Denise M Tremblay
- b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada.,c Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada
| | - Alfonso H Magadán
- b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada
| | - Geneviève M Rousseau
- b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada
| | - Sylvain Moineau
- b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada.,c Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada
| | - Dennis A Romero
- a Technology & Innovation , DuPont Nutrition and Health , Madison , WI , USA
| |
Collapse
|
140
|
Makarova KS, Wolf YI, Koonin EV. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J 2018; 1:325-336. [PMID: 31021272 DOI: 10.1089/crispr.2018.0033] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As befits an immune mechanism, CRISPR-Cas systems are highly variable with respect to Cas protein sequences, gene composition, and organization of the genomic loci. Optimal classification of CRISPR-Cas systems and rational nomenclature for CRISPR-associated genes are essential for further progress of CRISPR research. These are highly challenging tasks because of the complexity of CRISPR-Cas and their fast evolution, including frequent module shuffling, as well as the lack of universal markers for a consistent evolutionary classification. The complexity and variability of CRISPR-Cas systems necessitate a multipronged approach to classification and nomenclature. We present a brief summary of the current state of the art and discuss further directions in this area.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information , National Library of Medicine, Bethesda, Maryland
| | - Yuri I Wolf
- National Center for Biotechnology Information , National Library of Medicine, Bethesda, Maryland
| | - Eugene V Koonin
- National Center for Biotechnology Information , National Library of Medicine, Bethesda, Maryland
| |
Collapse
|
141
|
Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res 2018; 45:2112-2123. [PMID: 28204542 PMCID: PMC5389561 DOI: 10.1093/nar/gkw891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023] Open
Abstract
CRISPR–Cas (Clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) is a prokaryotic immune system that destroys foreign nucleic acids in a sequence-specific manner using Cas nucleases guided by short RNAs (crRNAs). Staphylococcus epidermidis harbours a Type III-A CRISPR–Cas system that encodes the Cas10–Csm interference complex and crRNAs that are subjected to multiple processing steps. The final step, called maturation, involves a concerted effort between Csm3, a ruler protein in Cas10–Csm that measures six-nucleotide increments, and the activity of a nuclease(s) that remains unknown. Here, we elucidate the contributions of the Cas10–Csm complex toward maturation and explore roles of non-Cas nucleases in this process. Using genetic and biochemical approaches, we show that charged residues in Csm3 facilitate its self-assembly and dictate the extent of maturation cleavage. Additionally, acidic residues in Csm5 are required for efficient maturation, but recombinant Csm5 fails to cleave crRNAs in vitro. However, we detected cellular nucleases that co-purify with Cas10–Csm, and show that Csm5 regulates their activities through distinct mechanisms. Altogether, our results support roles for non-Cas nuclease(s) during crRNA maturation and establish a link between Type III-A CRISPR–Cas immunity and central nucleic acid metabolism.
Collapse
Affiliation(s)
- Forrest C Walker
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lucy Chou-Zheng
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jack A Dunkle
- Department of Chemistry, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Asma Hatoum-Aslan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
142
|
Foster K, Kalter J, Woodside W, Terns RM, Terns MP. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol 2018; 16:449-460. [PMID: 29995577 DOI: 10.1080/15476286.2018.1493334] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with RNA-based adaptive immunity against viruses and plasmids. A unique feature of Type III CRISPR-Cas systems is that they selectively target transcriptionally-active invader DNA, and can cleave both the expressed RNA transcripts and source DNA. The Type III-A effector crRNP (CRISPR RNA-Cas protein complex), which contains Cas proteins Csm1-5, recognizes and degrades invader RNA and DNA in a crRNA-guided, manner. Interestingly, Type III-A systems also employ Csm6, an HEPN family ribonuclease that does not stably associate with the Type III-A effector crRNP, but nevertheless contributes to defense via mechanistic details that are still being determined. Here, we investigated the mechanism of action of Csm6 in Type III-A CRISPR-Cas systems from Lactococcus lactis, Staphylococcus epidermidis, and Streptococcus thermophilus expressed in Escherichia coli. We found that L. lactis and S. epidermidis Csm6 cleave RNA specifically after purines in vitro, similar to the activity reported for S. thermophilus Csm6. Moreover, L. lactis Csm6 functions as a divalent metal-independent, single strand-specific endoribonuclease that depends on the conserved HEPN domain. In vivo, we show that deletion of csm6 or expression of an RNase-defective form of Csm6 disrupts crRNA-dependent loss of plasmid DNA in all three systems expressed in E. coli. Mutations in the Csm1 palm domain, which are known to deactivate Csm6 ribonuclease activity, also prevent plasmid loss in the three systems. The results indicate that Csm6 ribonuclease activity rather than Csm1-mediated DNase activity effects anti-plasmid immunity by the three Type III-A systems investigated.
Collapse
Affiliation(s)
- Kawanda Foster
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Joshua Kalter
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Walter Woodside
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Rebecca M Terns
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Michael P Terns
- a Department of Microbiology , University of Georgia , Athens , GA , USA.,b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA.,c Department of Genetics , University of Georgia , Athens , GA , USA
| |
Collapse
|
143
|
Tarasava K, Oh EJ, Eckert CA, Gill RT. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnol J 2018; 13:e1700586. [DOI: 10.1002/biot.201700586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Katia Tarasava
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Eun Joong Oh
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
- Biosciences Center, National Renewable Energy Laboratory; Golden CO USA
| | - Ryan T. Gill
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| |
Collapse
|
144
|
Rouillon C, Athukoralage JS, Graham S, Grüschow S, White MF. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 2018; 7:36734. [PMID: 29963983 PMCID: PMC6053304 DOI: 10.7554/elife.36734] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022] Open
Abstract
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
Collapse
Affiliation(s)
- Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
145
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
146
|
Zhu Y, Klompe SE, Vlot M, van der Oost J, Staals RHJ. Shooting the messenger: RNA-targetting CRISPR-Cas systems. Biosci Rep 2018; 38:BSR20170788. [PMID: 29748239 PMCID: PMC6013697 DOI: 10.1042/bsr20170788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-associated genes) immune systems, astonishing progress has been made on revealing their mechanistic foundations. Due to the immense potential as genome engineering tools, research has mainly focussed on a subset of Cas nucleases that target DNA. In addition, however, distinct types of RNA-targetting CRISPR-Cas systems have been identified. The focus of this review will be on the interference mechanisms of the RNA targetting type III and type VI CRISPR-Cas systems, their biological relevance and their potential for applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Sanne E Klompe
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
147
|
Zhao Y, Wang J, Sun Q, Dou C, Gu Y, Nie C, Zhu X, Wei Y, Cheng W. Structural insights into the CRISPR-Cas-associated ribonuclease activity of Staphylococcus epidermidis Csm3 and Csm6. Sci Bull (Beijing) 2018; 63:691-699. [PMID: 36658818 DOI: 10.1016/j.scib.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is an adaptive immune system in bacteria and archaea that resists exogenous invasion through nucleic acid-mediated cleavage. In the type III-A system, the Csm complex contains five effectors and a CRISPR RNA, which edits both single stranded RNA and double stranded DNA. It has recently been demonstrated that cyclic oligoadenylates (cOAs), which are synthesized by the Csm complex, act as second messengers that bind and activate Csm6. Here, we report the crystal structures of Staphylococcus epidermidis Csm3 (SeCsm3) and an N-terminally truncated Csm6 (SeCsm6ΔN) at 2.26 and 2.0 Å, respectively. The structure of SeCsm3 highly resembled previously reported Csm3 structures from other species; however, it provided novel observations allowing further enzyme characterization. The homodimeric SeCsm6ΔN folds into a compact structure. The dimerization of the HEPN domain leads to the formation of the ribonuclease active site, which is consistent with the reported Csm6 structures. Altogether, our studies provide a structural view of the ribonuclease activity mediated by Csm3 and Csm6 of the type III-A CRISPR-Cas system.
Collapse
Affiliation(s)
- Yanqun Zhao
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jinjing Wang
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiu Sun
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chao Dou
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yijun Gu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai 201203, China
| | - Chunlai Nie
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiaofeng Zhu
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
148
|
Anton T, Karg E, Bultmann S. Applications of the CRISPR/Cas system beyond gene editing. Biol Methods Protoc 2018; 3:bpy002. [PMID: 32161796 PMCID: PMC6994046 DOI: 10.1093/biomethods/bpy002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) as a tool for gene editing a plethora of locus-specific as well as genome-wide approaches have been developed that allow efficient and reproducible manipulation of genomic sequences. However, the seemingly unbound potential of CRISPR/Cas does not stop with its utilization as a site-directed nuclease. Mutations in its catalytic centers render Cas9 (dCas9) a universal recruitment platform that can be utilized to control transcription, visualize DNA sequences, investigate in situ proteome compositions and manipulate epigenetic modifications at user-defined genomic loci. In this review, we give a comprehensive introduction and overview of the development, improvement and application of recent dCas9-based approaches.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Elisabeth Karg
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
149
|
Kitada T, DiAndreth B, Teague B, Weiss R. Programming gene and engineered-cell therapies with synthetic biology. Science 2018; 359:359/6376/eaad1067. [PMID: 29439214 DOI: 10.1126/science.aad1067] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene and engineered-cell therapies promise to treat diseases by genetically modifying cells to carry out therapeutic tasks. Although the field has had some success in treating monogenic disorders and hematological malignancies, current approaches are limited to overexpression of one or a few transgenes, constraining the diseases that can be treated with this approach and leading to potential concerns over safety and efficacy. Synthetic gene networks can regulate the dosage, timing, and localization of gene expression and therapeutic activity in response to small molecules and disease biomarkers. Such "programmable" gene and engineered-cell therapies will provide new interventions for incurable or difficult-to-treat diseases.
Collapse
Affiliation(s)
- Tasuku Kitada
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Breanna DiAndreth
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian Teague
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
150
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|