101
|
Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood 2021; 138:625-636. [PMID: 34436525 PMCID: PMC8394909 DOI: 10.1182/blood.2019004261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.
Collapse
Affiliation(s)
- Justin C Wheat
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| |
Collapse
|
102
|
Pimmett VL, Dejean M, Fernandez C, Trullo A, Bertrand E, Radulescu O, Lagha M. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nat Commun 2021; 12:4504. [PMID: 34301936 PMCID: PMC8302612 DOI: 10.1038/s41467-021-24461-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Genes are expressed in stochastic transcriptional bursts linked to alternating active and inactive promoter states. A major challenge in transcription is understanding how promoter composition dictates bursting, particularly in multicellular organisms. We investigate two key Drosophila developmental promoter motifs, the TATA box (TATA) and the Initiator (INR). Using live imaging in Drosophila embryos and new computational methods, we demonstrate that bursting occurs on multiple timescales ranging from seconds to minutes. TATA-containing promoters and INR-containing promoters exhibit distinct dynamics, with one or two separate rate-limiting steps respectively. A TATA box is associated with long active states, high rates of polymerase initiation, and short-lived, infrequent inactive states. In contrast, the INR motif leads to two inactive states, one of which relates to promoter-proximal polymerase pausing. Surprisingly, the model suggests pausing is not obligatory, but occurs stochastically for a subset of polymerases. Overall, our results provide a rationale for promoter switching during zygotic genome activation.
Collapse
Affiliation(s)
- Virginia L Pimmett
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Matthieu Dejean
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carola Fernandez
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- Laboratory of Pathogen Host Interactions, Univ Montpellier, CNRS, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
103
|
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription. eLife 2021; 10:e64320. [PMID: 34240703 PMCID: PMC8352591 DOI: 10.7554/elife.64320] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.
Collapse
Affiliation(s)
| | - Antonina Hafner
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| | - Alistair N Boettiger
- Program in Biophysics, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
104
|
Patange S, Ball DA, Karpova TS, Larson DR. Towards a 'Spot On' Understanding of Transcription in the Nucleus. J Mol Biol 2021; 433:167016. [PMID: 33951451 PMCID: PMC8184600 DOI: 10.1016/j.jmb.2021.167016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
Regulation of transcription by RNA Polymerase II (RNAPII) is a rapidly evolving area of research. Technological developments in microscopy have revealed insight into the dynamics, structure, and localization of transcription components within single cells. A frequent observation in many studies is the appearance of 'spots' in cell nuclei associated with the transcription process. In this review we highlight studies that characterize the temporal and spatial characteristics of these spots, examine possible pitfalls in interpreting these kind of imaging data, and outline directions where single-cell imaging may advance in ways to further our understanding of transcription regulation.
Collapse
Affiliation(s)
- Simona Patange
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
105
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
106
|
Monfils K, Barakat TS. Models behind the mystery of establishing enhancer-promoter interactions. Eur J Cell Biol 2021; 100:151170. [PMID: 34246183 DOI: 10.1016/j.ejcb.2021.151170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
Enhancers and promoters are transcriptional regulatory elements whose facilitated interactions increase gene expression. Enhancer DNA sequences can be located far away from the promoter sequences that they regulate. Currently, the mechanism facilitating the establishment of enhancer-promoter interactions remains unclear. However, mutations causing errors in these interactions have been linked to cancer and disease, further conveying the need to understand the full mechanism. This review discusses multiple models that have been proposed to describe how enhancers go the distance to interact with promoters. Evidence supporting loop formation models is reviewed in addition to more complex hypotheses involving aspects of 3D chromatin organization and phase separation.
Collapse
Affiliation(s)
- Kathryn Monfils
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
107
|
Popp AP, Hettich J, Gebhardt J. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res 2021; 49:6249-6266. [PMID: 34060631 PMCID: PMC8216454 DOI: 10.1093/nar/gkab443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Transcription is a vital process activated by transcription factor (TF) binding. The active gene releases a burst of transcripts before turning inactive again. While the basic course of transcription is well understood, it is unclear how binding of a TF affects the frequency, duration and size of a transcriptional burst. We systematically varied the residence time and concentration of a synthetic TF and characterized the transcription of a synthetic reporter gene by combining single molecule imaging, single molecule RNA-FISH, live transcript visualisation and analysis with a novel algorithm, Burst Inference from mRNA Distributions (BIRD). For this well-defined system, we found that TF binding solely affected burst frequency and variations in TF residence time had a stronger influence than variations in concentration. This enabled us to device a model of gene transcription, in which TF binding triggers multiple successive steps before the gene transits to the active state and actual mRNA synthesis is decoupled from TF presence. We quantified all transition times of the TF and the gene, including the TF search time and the delay between TF binding and the onset of transcription. Our quantitative measurements and analysis revealed detailed kinetic insight, which may serve as basis for a bottom-up understanding of gene regulation.
Collapse
Affiliation(s)
- Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
108
|
A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nat Commun 2021; 12:3806. [PMID: 34155213 PMCID: PMC8217497 DOI: 10.1038/s41467-021-23980-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Many single nucleotide variants (SNVs) associated with human traits and genetic diseases are thought to alter the activity of existing regulatory elements. Some SNVs may also create entirely new regulatory elements which change gene expression, but the mechanism by which they do so is largely unknown. Here we show that a single base change in an otherwise unremarkable region of the human α-globin cluster creates an entirely new promoter and an associated unidirectional transcript. This SNV downregulates α-globin expression causing α-thalassaemia. Of note, the new promoter lying between the α-globin genes and their associated super-enhancer disrupts their interaction in an orientation-dependent manner. Together these observations show how both the order and orientation of the fundamental elements of the genome determine patterns of gene expression and support the concept that active genes may act to disrupt enhancer-promoter interactions in mammals as in Drosophila. Finally, these findings should prompt others to fully evaluate SNVs lying outside of known regulatory elements as causing changes in gene expression by creating new regulatory elements. The role of promoters as potential insulator elements has been largely unexplored in mammals. Here the authors show that a single nucleotide variant in the α-globin locus forms a new promoter and acts as an orientation-dependent enhancer-blocking insulator element.
Collapse
|
109
|
Feng Y, Liu X, Pauklin S. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell 2021; 12:440-454. [PMID: 33453053 PMCID: PMC8160035 DOI: 10.1007/s13238-020-00819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022] Open
Abstract
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Xingguo Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
110
|
Fukaya T. Dynamic regulation of anterior-posterior patterning genes in living Drosophila embryos. Curr Biol 2021; 31:2227-2236.e6. [PMID: 33761316 DOI: 10.1016/j.cub.2021.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Expression of the gap and pair-rule genes plays an essential role in body segmentation during Drosophila embryogenesis.1-5 However, it remains unclear how precise expression patterns of these key developmental genes arise from stochastic transcriptional activation at the single-cell level. Here, I employed genome-editing and live-imaging approaches to comprehensively visualize regulation of the gap and pair-rule genes at the endogenous loci. Quantitative image analysis revealed that the total duration of active transcription (transcription period) is a major determinant of spatial patterning of gene expression in early embryos. The length of the transcription period is determined by the continuity of bursting activities in individual nuclei, with the core expression domain producing more bursts than boundary regions. Each gene exhibits a distinct rate of nascent RNA production during transcriptional bursting, which contributes to gene-to-gene variability in the total output. I also provide evidence for "enhancer interference," wherein a distal weak enhancer interferes with transcriptional activation by a strong proximal enhancer to downregulate the length of the transcription period without changing the transcription rate. Analysis of the endogenous hunchback (hb) locus revealed that the removal of the distal shadow enhancer induces strong ectopic transcriptional activation, which suppresses refinement of the initial broad expression domain into narrower stripe patterns at the anterior part of embryos. This study provides key insights into the link between transcriptional bursting, enhancer-promoter interaction, and spatiotemporal patterning of gene expression during animal development.
Collapse
Affiliation(s)
- Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
111
|
Aboelnour E, Bonev B. Decoding the organization, dynamics, and function of the 4D genome. Dev Cell 2021; 56:1562-1573. [PMID: 33984271 DOI: 10.1016/j.devcel.2021.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Understanding how complex cell-fate decisions emerge at the molecular level is a key challenge in developmental biology. Despite remarkable progress in decoding the contribution of the linear epigenome, how spatial genome architecture functionally informs changes in gene expression remains unclear. In this review, we discuss recent insights in elucidating the molecular landscape of genome folding, emphasizing the multilayered nature of the 3D genome, its importance for gene regulation, and its spatiotemporal dynamics. Finally, we discuss how these new concepts and emergent technologies will enable us to address some of the outstanding questions in development and disease.
Collapse
Affiliation(s)
- Erin Aboelnour
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
112
|
Histone acetylation dynamics modulates chromatin conformation and allele-specific interactions at oncogenic loci. Nat Genet 2021; 53:650-662. [PMID: 33972799 DOI: 10.1038/s41588-021-00842-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
In cancer cells, enhancer hijacking mediated by chromosomal alterations and/or increased deposition of acetylated histone H3 lysine 27 (H3K27ac) can support oncogene expression. However, how the chromatin conformation of enhancer-promoter interactions is affected by these events is unclear. In the present study, by comparing chromatin structure and H3K27ac levels in normal and lymphoma B cells, we show that enhancer-promoter-interacting regions assume different conformations according to the local abundance of H3K27ac. Genetic or pharmacological depletion of H3K27ac decreases the frequency and the spreading of these interactions, altering oncogene expression. Moreover, enhancer hijacking mediated by chromosomal translocations influences the epigenetic status of the regions flanking the breakpoint, prompting the formation of distinct intrachromosomal interactions in the two homologous chromosomes. These interactions are accompanied by allele-specific gene expression changes. Overall, our work indicates that H3K27ac dynamics modulates interaction frequency between regulatory regions and can lead to allele-specific chromatin configurations to sustain oncogene expression.
Collapse
|
113
|
Rossmann MP, Zon LI. 'Enhancing' red cell fate through epigenetic mechanisms. Curr Opin Hematol 2021; 28:129-137. [PMID: 33741760 PMCID: PMC8695091 DOI: 10.1097/moh.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Transcription of erythroid-specific genes is regulated by the three-dimensional (3D) structure and composition of chromatin, which dynamically changes during erythroid differentiation. Chromatin organization and dynamics are regulated by several epigenetic mechanisms involving DNA (de-)methylation, posttranslational modifications (PTMs) of histones, chromatin-associated structural proteins, and higher-order structural changes and interactions. This review addresses examples of recent developments in several areas delineating the interface of chromatin regulation and erythroid-specific lineage transcription. RECENT FINDINGS We survey and discuss recent studies that focus on the erythroid chromatin landscape, erythroid enhancer-promotor interactions, super-enhancer functionality, the role of chromatin modifiers and epigenetic crosstalk, as well as the progress in mapping red blood cell (RBC) trait-associated genetic variants within cis-regulatory elements (CREs) identified in genome-wide association study (GWAS) efforts as a step toward determining their impact on erythroid-specific gene expression. SUMMARY As one of the best characterized and accessible cell differentiation systems, erythropoiesis has been at the forefront of studies aiming to conceptualize how chromatin dynamics regulate transcription. New emerging technologies that bring a significantly enhanced spatial and temporal resolution of chromatin structure, and allow investigation of small cell numbers, have advanced our understanding of chromatin dynamics during erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
114
|
Zhang D, Lam J, Blobel GA. Engineering three-dimensional genome folding. Nat Genet 2021; 53:602-611. [PMID: 33958782 DOI: 10.1038/s41588-021-00860-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Animal genomes are partitioned and folded at various scales that contribute distinctly to nuclear processes. While structural features have been disrupted either globally or at select loci in loss-of-function studies, gain-of-function studies that probe the role of genome architecture have lagged behind. Here we examine recent advances in experimentally creating chromatin loops, contact domains, boundaries and compartments. Furthermore, we explore parallels between this emerging theme and natural evolution of mammalian genomes with increasing architectural complexity. Finally, we provide a perspective on how insights arising from recent gain-of-function studies may inform future endeavors toward engineering the three-dimensional genome.
Collapse
Affiliation(s)
- Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
115
|
Abstract
PURPOSE OF REVIEW Small amounts of fetal hemoglobin can be expressed in a subset of adult red blood cells called F-cells. This review examines the potential mechanisms and clinical implications of the heterogeneity of fetal hemoglobin expression. RECENT FINDINGS Although the heterocellular nature of fetal hemoglobin expression in adult red blood cells has been noted for over 70 years, the molecular basis of this phenomenon has been unclear. Recent discoveries of novel regulators of fetal hemoglobin as well as technological advances have shed new light on these cells. SUMMARY Fetal hemoglobin reactivation in adult red blood cells through genetic or pharmacological approaches can involve both increasing the number of F-cells and cellular fetal hemoglobin content. New technologies enable the study and eventually the improvement of these parameters in patients with sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
116
|
Liu J, Hansen D, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput Biol 2021; 17:e1008999. [PMID: 34003867 PMCID: PMC8162642 DOI: 10.1371/journal.pcbi.1008999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
| | - Donald Hansen
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Meghan Turner
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Hernan G. Garcia
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
117
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
118
|
Doerfler PA, Sharma A, Porter JS, Zheng Y, Tisdale JF, Weiss MJ. Genetic therapies for the first molecular disease. J Clin Invest 2021; 131:146394. [PMID: 33855970 PMCID: PMC8262557 DOI: 10.1172/jci146394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder characterized by recurrent episodes of severe bone pain, multi-organ failure, and early mortality. Although medical progress over the past several decades has improved clinical outcomes and offered cures for many affected individuals living in high-income countries, most SCD patients still experience substantial morbidity and premature death. Emerging technologies to manipulate somatic cell genomes and insights into the mechanisms of developmental globin gene regulation are generating potentially transformative approaches to cure SCD by autologous hematopoietic stem cell (HSC) transplantation. Key components of current approaches include ethical informed consent, isolation of patient HSCs, in vitro genetic modification of HSCs to correct the SCD mutation or circumvent its damaging effects, and reinfusion of the modified HSCs following myelotoxic bone marrow conditioning. Successful integration of these components into effective therapies requires interdisciplinary collaborations between laboratory researchers, clinical caregivers, and patients. Here we summarize current knowledge and research challenges for each key component, emphasizing that the best approaches have yet to be developed.
Collapse
Affiliation(s)
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy
| | | | - Yan Zheng
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
119
|
p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell 2021; 81:1666-1681.e6. [PMID: 33823140 DOI: 10.1016/j.molcel.2021.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.
Collapse
|
120
|
Espinola SM, Götz M, Bellec M, Messina O, Fiche JB, Houbron C, Dejean M, Reim I, Cardozo Gizzi AM, Lagha M, Nollmann M. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat Genet 2021; 53:477-486. [PMID: 33795867 DOI: 10.1038/s41588-021-00816-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.
Collapse
Affiliation(s)
- Sergio Martin Espinola
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | - Markus Götz
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | | | - Olivier Messina
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France.,IGMM, CNRS, Univ Montpellier, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | - Christophe Houbron
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | | | - Ingolf Reim
- Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrés M Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Mounia Lagha
- IGMM, CNRS, Univ Montpellier, Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France.
| |
Collapse
|
121
|
Capp J. Interplay between genetic, epigenetic, and gene expression variability: Considering complexity in evolvability. Evol Appl 2021; 14:893-901. [PMID: 33897810 PMCID: PMC8061278 DOI: 10.1111/eva.13204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variability, epigenetic variability, and gene expression variability (noise) are generally considered independently in their relationship with phenotypic variation. However, they appear to be intrinsically interconnected and influence it in combination. The study of the interplay between genetic and epigenetic variability has the longest history. This article rather considers the introduction of gene expression variability in its relationships with the two others and reviews for the first time experimental evidences over the four relationships connected to gene expression noise. They show how introducing this third source of variability complicates the way of thinking evolvability and the emergence of biological novelty. Finally, cancer cells are proposed to be an ideal model to decipher the dynamic interplay between genetic, epigenetic, and gene expression variability when one of them is either experimentally increased or therapeutically targeted. This interplay is also discussed in an evolutionary perspective in the context of cancer cell drug resistance.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSACNRSINRAEUniversity of ToulouseToulouseFrance
| |
Collapse
|
122
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
123
|
Agrawal P, Rao S. Super-Enhancers and CTCF in Early Embryonic Cell Fate Decisions. Front Cell Dev Biol 2021; 9:653669. [PMID: 33842482 PMCID: PMC8027350 DOI: 10.3389/fcell.2021.653669] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell fate decisions are the backbone of many developmental and disease processes. In early mammalian development, precise gene expression changes underly the rapid division of a single cell that leads to the embryo and are critically dependent on autonomous cell changes in gene expression. To understand how these lineage specifications events are mediated, scientists have had to look past protein coding genes to the cis regulatory elements (CREs), including enhancers and insulators, that modulate gene expression. One class of enhancers, termed super-enhancers, is highly active and cell-type specific, implying their critical role in modulating cell-type specific gene expression. Deletion or mutations within these CREs adversely affect gene expression and development and can cause disease. In this mini-review we discuss recent studies describing the potential roles of two CREs, enhancers and binding sites for CTCF, in early mammalian development.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
124
|
Chu JM, Pease NA, Kueh HY. In search of lost time: Enhancers as modulators of timing in lymphocyte development and differentiation. Immunol Rev 2021; 300:134-151. [PMID: 33734444 PMCID: PMC8005465 DOI: 10.1111/imr.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Proper timing of gene expression is central to lymphocyte development and differentiation. Lymphocytes often delay gene activation for hours to days after the onset of signaling components, which act on the order of seconds to minutes. Such delays play a prominent role during the intricate choreography of developmental events and during the execution of an effector response. Though a number of mechanisms are sufficient to explain timing at short timescales, it is not known how timing delays are implemented over long timescales that may span several cell generations. Based on the literature, we propose that a class of cis-regulatory elements, termed "timing enhancers," may explain how timing delays are controlled over these long timescales. By considering chromatin as a kinetic barrier to state switching, the timing enhancer model explains experimentally observed dynamics of gene expression where other models fall short. In this review, we elaborate on features of the timing enhancer model and discuss the evidence for its generality throughout development and differentiation. We then discuss potential molecular mechanisms underlying timing enhancer function. Finally, we explore recent evidence drawing connections between timing enhancers and genetic risk for immunopathology. We argue that the timing enhancer model is a useful framework for understanding how cis-regulatory elements control the central dimension of timing in lymphocyte biology.
Collapse
Affiliation(s)
- Jonathan M Chu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| |
Collapse
|
125
|
Shi C, Rattray M, Barton A, Bowes J, Orozco G. Using functional genomics to advance the understanding of psoriatic arthritis. Rheumatology (Oxford) 2021; 59:3137-3146. [PMID: 32778885 PMCID: PMC7590405 DOI: 10.1093/rheumatology/keaa283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Psoriatic arthritis (PsA) is a complex disease where susceptibility is determined by genetic and environmental risk factors. Clinically, PsA involves inflammation of the joints and the skin, and, if left untreated, results in irreversible joint damage. There is currently no cure and the few treatments available to alleviate symptoms do not work in all patients. Over the past decade, genome-wide association studies (GWAS) have uncovered a large number of disease-associated loci but translating these findings into functional mechanisms and novel targets for therapeutic use is not straightforward. Most variants have been predicted to affect primarily long-range regulatory regions such as enhancers. There is now compelling evidence to support the use of chromatin conformation analysis methods to discover novel genes that can be affected by disease-associated variants. Here, we will review the studies published in the field that have given us a novel understanding of gene regulation in the context of functional genomics and how this relates to the study of PsA and its underlying disease mechanism.
Collapse
Affiliation(s)
- Chenfu Shi
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Centre for Genetics and Genomics Versus Arthritis
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Anne Barton
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Centre for Genetics and Genomics Versus Arthritis.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - John Bowes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Centre for Genetics and Genomics Versus Arthritis.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre
| | - Gisela Orozco
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Centre for Genetics and Genomics Versus Arthritis.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
126
|
Abstract
Cancers and developmental disorders are associated with alterations in the 3D genome architecture in space and time (the fourth dimension). Mammalian 3D genome organization is complex and dynamic and plays an essential role in regulating gene expression and cellular function. To study the causal relationship between genome function and its spatio-temporal organization in the nucleus, new technologies for engineering and manipulating the 3D organization of the genome have been developed. In particular, CRISPR-Cas technologies allow programmable manipulation at specific genomic loci, enabling unparalleled opportunities in this emerging field of 3D genome engineering. We review advances in mammalian 3D genome engineering with a focus on recent manipulative technologies using CRISPR-Cas and related technologies.
Collapse
|
127
|
Cavallaro M, Walsh MD, Jones M, Teahan J, Tiberi S, Finkenstädt B, Hebenstreit D. 3 '-5 ' crosstalk contributes to transcriptional bursting. Genome Biol 2021; 22:56. [PMID: 33541397 PMCID: PMC7860045 DOI: 10.1186/s13059-020-02227-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 ' and 5 ' ends of a gene that enable reinitiation of transcription upon termination. RESULTS Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment. CONCLUSIONS Interactions between the 3 ' and 5 ' ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.
Collapse
Affiliation(s)
- Massimo Cavallaro
- School of Life Sciences, University of Warwick, Coventry, UK.
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK.
- Department of Statistics, University of Warwick, Coventry, UK.
| | - Mark D Walsh
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Matt Jones
- School of Life Sciences, University of Warwick, Coventry, UK
| | - James Teahan
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Simone Tiberi
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
128
|
Mermet J, Yeung J, Naef F. Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. PLoS Genet 2021; 17:e1009350. [PMID: 33524027 PMCID: PMC7877755 DOI: 10.1371/journal.pgen.1009350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/11/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian clock drives extensive temporal gene expression programs controlling daily changes in behavior and physiology. In mouse liver, transcription factors dynamics, chromatin modifications, and RNA Polymerase II (PolII) activity oscillate throughout the 24-hour (24h) day, regulating the rhythmic synthesis of thousands of transcripts. Also, 24h rhythms in gene promoter-enhancer chromatin looping accompany rhythmic mRNA synthesis. However, how chromatin organization impinges on temporal transcription and liver physiology remains unclear. Here, we applied time-resolved chromosome conformation capture (4C-seq) in livers of WT and arrhythmic Bmal1 knockout mice. In WT, we observed 24h oscillations in promoter-enhancer loops at multiple loci including the core-clock genes Period1, Period2 and Bmal1. In addition, we detected rhythmic PolII activity, chromatin modifications and transcription involving stable chromatin loops at clock-output gene promoters representing key liver function such as glucose metabolism and detoxification. Intriguingly, these contacts persisted in clock-impaired mice in which both PolII activity and chromatin marks no longer oscillated. Finally, we observed chromatin interaction hubs connecting neighbouring genes showing coherent transcription regulation across genotypes. Thus, both clock-controlled and clock-independent chromatin topology underlie rhythmic regulation of liver physiology.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Acetylation
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Immunoprecipitation Sequencing/methods
- Circadian Clocks/genetics
- Circadian Rhythm/genetics
- Gene Expression Regulation
- Genome/genetics
- Histones/metabolism
- Liver/metabolism
- Lysine/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA-Seq/methods
- Mice
Collapse
Affiliation(s)
- Jérôme Mermet
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jake Yeung
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
129
|
Cavalheiro GR, Pollex T, Furlong EE. To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr Opin Genet Dev 2021; 67:119-129. [PMID: 33497970 DOI: 10.1016/j.gde.2020.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023]
Abstract
The past decade has seen a huge jump in the resolution and scale at which we can interrogate the three-dimensional properties of the genome. This revealed different types of chromatin structures including topologically associating domains, partitioning genes and their enhancers into interacting domains. While the visualisation of these topologies and their dynamics has dramatically improved, our understanding of their underlying mechanisms and functional roles in gene expression has lagged behind. A suite of recent studies have addressed this using genetic manipulations to perturb topological features and loops at different scales. Here we assess the new biological insights gained on the functional relationship between genome topology and gene expression, with a particular focus on enhancer function.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany; Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany
| | - Eileen Em Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
130
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
131
|
Crump NT, Ballabio E, Godfrey L, Thorne R, Repapi E, Kerry J, Tapia M, Hua P, Lagerholm C, Filippakopoulos P, Davies JOJ, Milne TA. BET inhibition disrupts transcription but retains enhancer-promoter contact. Nat Commun 2021; 12:223. [PMID: 33431820 PMCID: PMC7801379 DOI: 10.1038/s41467-020-20400-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Enhancers are DNA sequences that enable complex temporal and tissue-specific regulation of genes in higher eukaryotes. Although it is not entirely clear how enhancer-promoter interactions can increase gene expression, this proximity has been observed in multiple systems at multiple loci and is thought to be essential for the maintenance of gene expression. Bromodomain and Extra-Terminal domain (BET) and Mediator proteins have been shown capable of forming phase condensates and are thought to be essential for super-enhancer function. Here, we show that targeting of cells with inhibitors of BET proteins or pharmacological degradation of BET protein Bromodomain-containing protein 4 (BRD4) has a strong impact on transcription but very little impact on enhancer-promoter interactions. Dissolving phase condensates reduces BRD4 and Mediator binding at enhancers and can also strongly affect gene transcription, without disrupting enhancer-promoter interactions. These results suggest that activation of transcription and maintenance of enhancer-promoter interactions are separable events. Our findings further indicate that enhancer-promoter interactions are not dependent on high levels of BRD4 and Mediator, and are likely maintained by a complex set of factors including additional activator complexes and, at some sites, CTCF and cohesin.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Marta Tapia
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
132
|
Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, Wakker V, Creemers EE, de Laat W, Boukens BJ, Christoffels VM. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ Res 2021; 128:115-129. [PMID: 33107387 DOI: 10.1161/circresaha.120.317045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Binding Sites
- Binding, Competitive
- CRISPR-Cas Systems
- Cell Line
- Disease Models, Animal
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice, Knockout
- Multigene Family
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Ingeborg B Hooijkaas
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
133
|
Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat Genet 2021; 53:487-499. [PMID: 33795866 PMCID: PMC8035076 DOI: 10.1038/s41588-021-00799-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 02/01/2023]
Abstract
The relationship between chromatin organization and gene regulation remains unclear. While disruption of chromatin domains and domain boundaries can lead to misexpression of developmental genes, acute depletion of regulators of genome organization has a relatively small effect on gene expression. It is therefore uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organization facilitate cell-type-specific activation of gene expression. Here, using the dorsoventral patterning of the Drosophila melanogaster embryo as a model system, we provide evidence for the independence of chromatin organization and dorsoventral gene expression. We define tissue-specific enhancers and link them to expression patterns using single-cell RNA-seq. Surprisingly, despite tissue-specific chromatin states and gene expression, chromatin organization is largely maintained across tissues. Our results indicate that tissue-specific chromatin conformation is not necessary for tissue-specific gene expression but rather acts as a scaffold facilitating gene expression when enhancers become active.
Collapse
|
134
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
135
|
Agrawal P, Blinka S, Pulakanti K, Reimer MH, Stelloh C, Meyer AE, Rao S. Genome editing demonstrates that the -5 kb Nanog enhancer regulates Nanog expression by modulating RNAPII initiation and/or recruitment. J Biol Chem 2020; 296:100189. [PMID: 33334884 PMCID: PMC7948488 DOI: 10.1074/jbc.ra120.015152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Transcriptional enhancers have been defined by their ability to operate independent of distance and orientation in plasmid-based reporter assays of gene expression. At present, histone marks are used to identify and define enhancers but do not consider the endogenous role of an enhancer in the context of native chromatin. We employed a combination of genomic editing, single cell analyses, and sequencing approaches to investigate a Nanog-associated cis-regulatory element, which has been reported by others to be either an alternative promoter or a super-enhancer. We first demonstrate both distance and orientation independence in native chromatin, eliminating the issues raised with plasmid-based approaches. We next demonstrate that the dominant super-enhancer modulates Nanog globally and operates by recruiting and/or initiating RNA Polymerase II. Our studies have important implications to how transcriptional enhancers are defined and how they regulate gene expression.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Steven Blinka
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | | | | | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
136
|
Abstract
Simple biophysical models successfully describe bacterial regulatory code, by predicting gene expression from DNA sequences that bind specialized regulatory proteins. Analogous simple models fail in multicellular organisms, where regulatory proteins bind DNA very transiently, yet, nevertheless, effect precise control over gene expression. To date, the more general, “nonequilibrium” models have proven difficult to analyze and connect to data. Here, we reduce this complexity theoretically, by constructing simple nonequilibrium models which perform optimal gene regulation within known experimental constraints. In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.
Collapse
|
137
|
Berrocal A, Lammers NC, Garcia HG, Eisen MB. Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene. eLife 2020; 9:61635. [PMID: 33300492 PMCID: PMC7864633 DOI: 10.7554/elife.61635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
We used live imaging to visualize the transcriptional dynamics of the Drosophila melanogaster even-skipped gene at single-cell and high-temporal resolution as its seven stripe expression pattern forms, and developed tools to characterize and visualize how transcriptional bursting varies over time and space. We find that despite being created by the independent activity of five enhancers, even-skipped stripes are sculpted by the same kinetic phenomena: a coupled increase of burst frequency and amplitude. By tracking the position and activity of individual nuclei, we show that stripe movement is driven by the exchange of bursting nuclei from the posterior to anterior stripe flanks. Our work provides a conceptual, theoretical and computational framework for dissecting pattern formation in space and time, and reveals how the coordinated transcriptional activity of individual nuclei shapes complex developmental patterns.
Collapse
Affiliation(s)
- Augusto Berrocal
- Department of Molecular & Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, United States
| | - Hernan G Garcia
- Department of Molecular & Cell Biology, University of California at Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California at Berkeley, Berkeley, United States.,Department of Physics, University of California at Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, United States
| | - Michael B Eisen
- Department of Molecular & Cell Biology, University of California at Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California at Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, United States.,Department of Integrative Biology, University of California at Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
138
|
Wotherspoon D, Rogerson C, O’Shaughnessy RF. Perspective: Controlling Epidermal Terminal Differentiation with Transcriptional Bursting and RNA Bodies. J Dev Biol 2020; 8:E29. [PMID: 33291764 PMCID: PMC7768391 DOI: 10.3390/jdb8040029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The outer layer of the skin, the epidermis, is the principal barrier to the external environment: post-mitotic cells terminally differentiate to form a tough outer cornified layer of enucleate and flattened cells that confer the majority of skin barrier function. Nuclear degradation is required for correct cornified envelope formation. This process requires mRNA translation during the process of nuclear destruction. In this review and perspective, we address the biology of transcriptional bursting and the formation of ribonuclear particles in model organisms including mammals, and then examine the evidence that these phenomena occur as part of epidermal terminal differentiation.
Collapse
Affiliation(s)
- Duncan Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | | | - Ryan F.L. O’Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
139
|
Vasdekis AE, Singh A. Microbial metabolic noise. WIREs Mech Dis 2020; 13:e1512. [PMID: 33225608 DOI: 10.1002/wsbm.1512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
From the time a cell was first placed under the microscope, it became apparent that identifying two clonal cells that "look" identical is extremely challenging. Since then, cell-to-cell differences in shape, size, and protein content have been carefully examined, informing us of the ultimate limits that hinder two cells from occupying an identical phenotypic state. Here, we present recent experimental and computational evidence that similar limits emerge also in cellular metabolism. These limits pertain to stochastic metabolic dynamics and, thus, cell-to-cell metabolic variability, including the resulting adapting benefits. We review these phenomena with a focus on microbial metabolism and conclude with a brief outlook on the potential relationship between metabolic noise and adaptive evolution. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
140
|
Johnstone CP, Wang NB, Sevier SA, Galloway KE. Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales. Cell Syst 2020; 11:424-448. [PMID: 33212016 DOI: 10.1016/j.cels.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Connecting the molecular structure and function of chromatin across length and timescales remains a grand challenge to understanding and engineering cellular behaviors. Across five orders of magnitude, dynamic processes constantly reshape chromatin structures, driving spaciotemporal patterns of gene expression and cell fate. Through the interplay of structure and function, the genome operates as a highly dynamic feedback control system. Recent experimental techniques have provided increasingly detailed data that revise and augment the relatively static, hierarchical view of genomic architecture with an understanding of how dynamic processes drive organization. Here, we review how novel technologies from sequencing, imaging, and synthetic biology refine our understanding of chromatin structure and function and enable chromatin engineering. Finally, we discuss opportunities to use these tools to enhance understanding of the dynamic interrelationship of chromatin structure and function.
Collapse
Affiliation(s)
| | - Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Stuart A Sevier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|
141
|
Feng Y, Pauklin S. Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Res 2020; 48:10632-10647. [PMID: 32941624 PMCID: PMC7641747 DOI: 10.1093/nar/gkaa747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer development and progression are demarcated by transcriptional dysregulation, which is largely attributed to aberrant chromatin architecture. Recent transformative technologies have enabled researchers to examine the genome organization at an unprecedented dimension and precision. In particular, increasing evidence supports the essential roles of 3D chromatin architecture in transcriptional homeostasis and proposes its alterations as prominent causes of human cancer. In this article, we will discuss the recent findings on enhancers, enhancer-promoter interaction, chromatin topology, phase separation and explore their potential mechanisms in shaping transcriptional dysregulation in cancer progression. In addition, we will propose our views on how to employ state-of-the-art technologies to decode the unanswered questions in this field. Overall, this article motivates the study of 3D chromatin architecture in cancer, which allows for a better understanding of its pathogenesis and develop novel approaches for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, U.K
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, U.K
| |
Collapse
|
142
|
Signaling Mechanism of Transcriptional Bursting: A Technical Resolution-Independent Study. BIOLOGY 2020; 9:biology9100339. [PMID: 33086528 PMCID: PMC7603168 DOI: 10.3390/biology9100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Simple Summary Following changing cellular signals, various genes adjust their activities and initiate transcripts with the right rates. The precision of such a transcriptional response has a fundamental role in the survival and development of lives. Quite unexpectedly, gene transcription has been uncovered to occur in sporadic bursts, rather than in a continuous manner. This has raised a provoking issue of how the bursting transmits regulatory signals, and it remains controversial whether the burst size, frequency, or both, take the role of signal transmission. Here, this study showed that only the burst frequency was subject to modulation by activators that carry the regulatory signals. A higher activator concentration led to a larger frequency, whereas the size remains unchanged. When very high, the burst cluster emerged, which may be mistaken as a large burst. This work thus supports the conclusion that transcription regulation is in a “digital” way. Abstract Gene transcription has been uncovered to occur in sporadic bursts. However, due to technical difficulties in differentiating individual transcription initiation events, it remains debated as to whether the burst size, frequency, or both are subject to modulation by transcriptional activators. Here, to bypass technical constraints, we addressed this issue by introducing two independent theoretical methods including analytical research based on the classic two-model and information entropy research based on the architecture of transcription apparatus. Both methods connect the signaling mechanism of transcriptional bursting to the characteristics of transcriptional uncertainty (i.e., the differences in transcriptional levels of the same genes that are equally activated). By comparing the theoretical predictions with abundant experimental data collected from published papers, the results exclusively support frequency modulation. To further validate this conclusion, we showed that the data that appeared to support size modulation essentially supported frequency modulation taking into account the existence of burst clusters. This work provides a unified scheme that reconciles the debate on burst signaling.
Collapse
|
143
|
Demirci S, Leonard A, Tisdale JF. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Hum Mol Genet 2020; 29:R100-R106. [PMID: 32406490 PMCID: PMC7673473 DOI: 10.1093/hmg/ddaa088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing to correct a defective β-globin gene or induce fetal globin (HbF) for patients with beta-hemoglobinopathies has the potential to be a curative strategy available to all. HbF reactivation has long been an area of intense interest given the HbF inhibition of sickle hemoglobin (HbS) polymerization. Patients with HbS who also have high HbF tend to have less severe or even minimal clinical manifestations. Approaches to genetically engineer high HbF include de novo generation of naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations, editing of transcriptional HbF repressors or their binding sites and/or regulating epigenetic intermediates controlling HbF expression. Recent preclinical and early clinical trial data show encouraging results; however, long-term follow-up is lacking, and the safety and efficacy concerns of genome editing remain.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
144
|
Single-gene imaging links genome topology, promoter-enhancer communication and transcription control. Nat Struct Mol Biol 2020; 27:1032-1040. [PMID: 32958948 PMCID: PMC7644657 DOI: 10.1038/s41594-020-0493-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Transcription activation by distal enhancers is essential for cell-fate specification and maintenance of cellular identities. How long-range gene regulation is physically achieved, especially within complex regulatory landscapes of non-binary enhancer-promoter configurations, remains elusive. Recent nanoscopy advances have quantitatively linked promoter kinetics and ~100- to 200-nm-sized clusters of enhancer-associated regulatory factors (RFs) at important developmental genes. Here, we further dissect mechanisms of RF clustering and transcription activation in mouse embryonic stem cells. RF recruitment into clusters involves specific molecular recognition of cognate DNA and chromatin-binding sites, suggesting underlying cis-element clustering. Strikingly, imaging of tagged genomic loci, with ≤1 kilobase and ~20-nanometer precision, in live cells, reveals distal enhancer clusters over the extended locus in frequent close proximity to target genes-within RF-clustering distances. These high-interaction-frequency enhancer-cluster 'superclusters' create nano-environments wherein clustered RFs activate target genes, providing a structural framework for relating genome organization, focal RF accumulation and transcription activation.
Collapse
|
145
|
Perreault AA, Brown JD, Venters BJ. Erythropoietin Regulates Transcription and YY1 Dynamics in a Pre-established Chromatin Architecture. iScience 2020; 23:101583. [PMID: 33089097 PMCID: PMC7559257 DOI: 10.1016/j.isci.2020.101583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional architecture of the genome plays an essential role in establishing and maintaining cell identity. However, the magnitude and temporal kinetics of changes in chromatin structure that arise during cell differentiation remain poorly understood. Here, we leverage a murine model of erythropoiesis to study the relationship between chromatin conformation, the epigenome, and transcription in erythroid cells. We discover that acute transcriptional responses induced by erythropoietin (EPO), the hormone necessary for erythroid differentiation, occur within an invariant chromatin topology. Within this pre-established landscape, Yin Yang 1 (YY1) occupancy dynamically redistributes to sites in proximity of EPO-regulated genes. Using HiChIP, we identify chromatin contacts mediated by H3K27ac and YY1 that are enriched for enhancer-promoter interactions of EPO-responsive genes. Taken together, these data are consistent with an emerging model that rapid, signal-dependent transcription occurs in the context of a pre-established chromatin architecture. EPO induces rapid RNA Pol II response at a key subset of genes YY1 is redistributed in the genome following 1 h EPO stimulation CTCF and YY1 bind different locations pre and post 1 h EPO stimulation E-P loops mediated by H3K27ac are largely invariant in response to EPO
Collapse
Affiliation(s)
- Andrea A Perreault
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bryan J Venters
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
146
|
Luppino JM, Park DS, Nguyen SC, Lan Y, Xu Z, Yunker R, Joyce EF. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat Genet 2020; 52:840-848. [PMID: 32572210 PMCID: PMC7416539 DOI: 10.1038/s41588-020-0647-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 01/10/2023]
Abstract
The human genome can be segmented into topologically associating domains (TADs), which have been proposed to spatially sequester genes and regulatory elements through chromatin looping. Interactions between TADs have also been suggested, presumably because of variable boundary positions across individual cells. However, the nature, extent and consequence of these dynamic boundaries remain unclear. Here, we combine high-resolution imaging with Oligopaint technology to quantify the interaction frequencies across both weak and strong boundaries. We find that chromatin intermingling across population-defined boundaries is widespread but that the extent of permissibility is locus-specific. Cohesin depletion, which abolishes domain formation at the population level, does not induce ectopic interactions but instead reduces interactions across all boundaries tested. In contrast, WAPL or CTCF depletion increases inter-domain contacts in a cohesin-dependent manner. Reduced chromatin intermingling due to cohesin loss affects the topology and transcriptional bursting frequencies of genes near boundaries. We propose that cohesin occasionally bypasses boundaries to promote incorporation of boundary-proximal genes into neighboring domains.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Park
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuxuan Xu
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Yunker
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
147
|
Goodman JV, Yamada T, Yang Y, Kong L, Wu DY, Zhao G, Gabel HW, Bonni A. The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nat Commun 2020; 11:3419. [PMID: 32647123 PMCID: PMC7347877 DOI: 10.1038/s41467-020-17065-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The development and function of the brain require tight control of gene expression. Genome architecture is thought to play a critical regulatory role in gene expression, but the mechanisms governing genome architecture in the brain in vivo remain poorly understood. Here, we report that conditional knockout of the chromatin remodeling enzyme Chd4 in granule neurons of the mouse cerebellum increases accessibility of gene regulatory sites genome-wide in vivo. Conditional knockout of Chd4 promotes recruitment of the architectural protein complex cohesin preferentially to gene enhancers in granule neurons in vivo. Importantly, in vivo profiling of genome architecture reveals that conditional knockout of Chd4 strengthens interactions among developmentally repressed contact domains as well as genomic loops in a manner that tightly correlates with increased accessibility, enhancer activity, and cohesin occupancy at these sites. Collectively, our findings define a role for chromatin remodeling in the control of genome architecture organization in the mammalian brain.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lingchun Kong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
148
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
149
|
Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell 2020; 79:207-220.e8. [DOI: 10.1016/j.molcel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
150
|
Bakker R, Mani M, Carthew RW. The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts. eLife 2020; 9:e56076. [PMID: 32568073 PMCID: PMC7340504 DOI: 10.7554/elife.56076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data help further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting.
Collapse
Affiliation(s)
- Rachael Bakker
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|