101
|
Xu G, Su H, Lu L, Liu X, Zhao L, Tang B, Ming Z. Structural insights into the catalytic mechanism and ubiquitin recognition of USP34. J Mol Biol 2022; 434:167634. [PMID: 35588869 DOI: 10.1016/j.jmb.2022.167634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Huizhao Su
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Xiaomeng Liu
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
102
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
103
|
Assembly and function of branched ubiquitin chains. Trends Biochem Sci 2022; 47:759-771. [DOI: 10.1016/j.tibs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
104
|
Li K, Niu Y, Yuan Y, Qiu J, Shi Y, Zhong C, Qiu Z, Li K, Lin Z, Huang Z, Zhang C, Zuo D, He W, Yuan Y, Li B. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene 2022; 41:3197-3209. [DOI: 10.1038/s41388-022-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
|
105
|
Li S, Li R, Ahmad I, Liu X, Johnson SF, Sun L, Zheng YH. Cul3-KLHL20 E3 ubiquitin ligase plays a key role in the arms race between HIV-1 Nef and host SERINC5 restriction. Nat Commun 2022; 13:2242. [PMID: 35474067 PMCID: PMC9042822 DOI: 10.1038/s41467-022-30026-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
HIV-1 must counteract various host restrictions to establish productive infection. SERINC5 is a potent restriction factor that blocks HIV-1 entry from virions, but its activity is counteracted by Nef. The SERINC5 and Nef activities are both initiated from the plasma membrane, where SERINC5 is packaged into virions for viral inhibition or downregulated by Nef via lysosomal degradation. However, it is still unclear how SERINC5 is localized to and how its expression is regulated on the plasma membrane. We now report that Cullin 3-KLHL20, a trans-Golgi network (TGN)-localized E3 ubiquitin ligase, polyubiquitinates SERINC5 at lysine 130 via K33/K48-linked ubiquitination. The K33-linked polyubiquitination determines SERINC5 expression on the plasma membrane, and the K48-linked polyubiquitination contributes to SERINC5 downregulation from the cell surface. Our study reveals an important role of K130 polyubiquitination and K33/K48-linked ubiquitin chains in HIV-1 infection by regulating SERINC5 post-Golgi trafficking and degradation. SERINC5 is a host-restriction factor preventing HIV progeny entry, which is counteracted by interactions with HIV Nef. Here, Li et al. show that E3 ubiquitin ligase Cullin 3 polyubiquitinates SERINC5 at Lys 130 via K48- and K33-linked ubiquitin chains and provide evidence that this modification is not only required for its membrane localization and anti-viral activity but also relevant for Nef counteractive activity.
Collapse
Affiliation(s)
- Sunan Li
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rongrong Li
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Iqbal Ahmad
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomeng Liu
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Silas F Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yong-Hui Zheng
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
106
|
Naito M. Targeted Protein Degradation and Drug Discovery. J Biochem 2022; 172:61-69. [PMID: 35468190 DOI: 10.1093/jb/mvac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Targeted protein degradation attracts attention as a novel modality for drug discovery as well as for basic research. Various types of degrader molecules have been developed so far, which include PROTACs and SNIPERs, E3 modulators, hydrophobic tagging molecules, IAP antagonists, and deubiquitylase inhibitors. PROTACs and SNIPERs are chimeric degrader molecules consisting of a target ligand linked to another ligand that binds to an E3 ubiquitin ligase. In the cells, they recruit an E3 ligase to the target protein, thereby inducing ubiquitylation and proteasomal degradation of the target protein. Because of their modular structure, novel PROTACs and SNIPERs targeting proteins of your interest can be rationally developed by substituting target ligands. In this article, various compounds capable of inducing protein degradation were overviewed, including SNIPER compounds developed in our laboratory.
Collapse
Affiliation(s)
- Mikihiko Naito
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
107
|
Li Y, Wei JY, Liu H, Wang KJ, Jin SN, Su ZK, Wang HJ, Shi JX, Li B, Shang DS, Fang WG, Qin XX, Zhao WD, Chen YH. An oxygen-adaptive interaction between SNHG12 and occludin maintains blood-brain barrier integrity. Cell Rep 2022; 39:110656. [PMID: 35417709 DOI: 10.1016/j.celrep.2022.110656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022] Open
Abstract
Tight junctions (TJs) of brain microvascular endothelial cells (BMECs) play a pivotal role in maintaining the blood-brain barrier (BBB) integrity; however, precise regulation of TJs stability in response to physiological and pathological stimuli remains elusive. Here, using RNA immunoprecipitation with next-generation sequencing (RIP-seq) and functional characterization, we identify SNHG12, a long non-coding RNA (lncRNA), as being critical for maintaining the BBB integrity by directly interacting with TJ protein occludin. The interaction between SNHG12 and occludin is oxygen adaptive and could block Itch (an E3 ubiquitin ligase)-mediated ubiquitination and degradation of occludin in human BMECs. Genetic ablation of endothelial Snhg12 in mice results in occludin reduction and BBB leakage and significantly aggravates hypoxia-induced BBB disruption. The detrimental effects of hypoxia on BBB could be alleviated by exogenous SNHG12 overexpression in brain endothelium. Together, we identify a direct TJ modulator lncRNA SNHG12 that is critical for the BBB integrity maintenance and oxygen adaption.
Collapse
Affiliation(s)
- Yuan Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Kang-Ji Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Sheng-Nan Jin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Zheng-Kang Su
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Hui-Jie Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - De-Shu Shang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wen-Gang Fang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Xiao-Xue Qin
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, 110122 Shenyang, China.
| |
Collapse
|
108
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
109
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
110
|
BRCA1 mutations in high-grade serous ovarian cancer are associated with proteomic changes in DNA repair, splicing, transcription regulation and signaling. Sci Rep 2022; 12:4445. [PMID: 35292711 PMCID: PMC8924168 DOI: 10.1038/s41598-022-08461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances in the management of BRCA1 mutated high-grade serous ovarian cancer (HGSC), the physiology of these tumors remains poorly understood. Here we provide a comprehensive molecular understanding of the signaling processes that drive HGSC pathogenesis with the addition of valuable ubiquitination profiling, and their dependency on BRCA1 mutation-state directly in patient-derived tissues. Using a multilayered proteomic approach, we show the tight coordination between the ubiquitination and phosphorylation regulatory layers and their role in key cellular processes related to BRCA1-dependent HGSC pathogenesis. In addition, we identify key bridging proteins, kinase activity, and post-translational modifications responsible for molding distinct cancer phenotypes, thus providing new opportunities for therapeutic intervention, and ultimately advance towards a more personalized patient care.
Collapse
|
111
|
Marshall RS, Vierstra RD. A trio of ubiquitin ligases sequentially drives ubiquitylation and autophagic degradation of dysfunctional yeast proteasomes. Cell Rep 2022; 38:110535. [PMID: 35294869 DOI: 10.1016/j.celrep.2022.110535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
As central effectors of ubiquitin (Ub)-mediated proteolysis, proteasomes are regulated at multiple levels, including degradation of unwanted or dysfunctional particles via autophagy (termed proteaphagy). In yeast, inactive proteasomes are exported from the nucleus, sequestered into cytoplasmic aggresomes via the Hsp42 chaperone, extensively ubiquitylated, and then tethered to the expanding phagophore by the autophagy receptor Cue5. Here, we demonstrate the need for ubiquitylation driven by the trio of Ub ligases (E3s), San1, Rsp5, and Hul5, which together with their corresponding E2s work sequentially to promote nuclear export and Cue5 recognition. Whereas San1 functions prior to nuclear export, Rsp5 and Hul5 likely decorate aggresome-localized proteasomes in concert. Ultimately, topologically complex Ub chain(s) containing both K48 and K63 Ub-Ub linkages are assembled, mainly on the regulatory particle, to generate autophagy-competent substrates. Because San1, Rsp5, Hul5, Hsp42, and Cue5 also participate in general proteostasis, proteaphagy likely engages a fundamental mechanism for eliminating inactive/misfolded proteins.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| |
Collapse
|
112
|
Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, Chen GC. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep 2022; 38:110354. [PMID: 35196483 DOI: 10.1016/j.celrep.2022.110354] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yu Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hsing Shen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
113
|
Sun R, Guo Y, Li X, Li R, Shi J, Tan Z, Zhang L, Zhang L, Han J, Huang J. PRRSV Non-Structural Proteins Orchestrate Porcine E3 Ubiquitin Ligase RNF122 to Promote PRRSV Proliferation. Viruses 2022; 14:v14020424. [PMID: 35216017 PMCID: PMC8874583 DOI: 10.3390/v14020424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination plays a major role in immune regulation after viral infection. An alternatively spliced porcine E3 ubiquitin ligase RNF122 promoted PRRSV infection and upregulated in PRRSV-infected PAM cells was identified. We characterized the core promoter of RNF122, located between −550 to −470 bp upstream of the transcription start site (TSS), which displayed significant differential transcriptional activities in regulating the transcription and expression of RNF122. The transcription factor HLTF was inhibited by nsp1α and nsp7 of PRRSV, and the transcription factor E2F complex regulated by nsp9. Together, they modulated the transcription and expression of RNF122. RNF122 could mediate K63-linked ubiquitination to raise stability of PRRSV nsp4 protein and thus promote virus replication. Moreover, RNF122 also performed K27-linked and K48-linked ubiquitination of MDA5 to degrade MDA5 and inhibit IFN production, ultimately promoted virus proliferation. In this study, we illustrate a new immune escape mechanism of PRRSV that enhances self-stability and function of viral nsp4, thus, regulating RNF122 expression to antagonize IFNα/β production. The present study broadens our knowledge of PRRSV-coding protein modulating transcription, expression and modification of host protein to counteract innate immune signaling, and may provide novel insights for the development of antiviral drugs.
Collapse
Affiliation(s)
- Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Xiaoyang Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Ruiqiao Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
| | - Jun Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- Correspondence: (J.H.); (J.H.)
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (R.S.); (Y.G.); (X.L.); (R.L.); (J.S.); (Z.T.); (L.Z.); (L.Z.)
- Correspondence: (J.H.); (J.H.)
| |
Collapse
|
114
|
TRIM14 inhibits OPTN-mediated autophagic degradation of KDM4D to epigenetically regulate inflammation. Proc Natl Acad Sci U S A 2022; 119:2113454119. [PMID: 35145029 PMCID: PMC8851536 DOI: 10.1073/pnas.2113454119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Histone methylation regulates gene transcription through a variety of methylases and demethylases. The regulatory role of autophagy, an important process of protein degradation and recycling, in these histone modifiers is still unclear. We report that TRIM14 stabilized the histone demethylase KDM4D to facilitate the transcription of interleukin 12 (Il12) and Il23 by inhibiting histone H3K9 trimethylation in vitro and in vivo. Mechanistically, TRIM14 recruited the deubiquitinases USP14 and BRCC3 to remove the K63-linked ubiquitin chains of KDM4D and prevented it from undergoing optineurin-mediated autophagic degradation. This study is valuable not only for increasing our understanding of the cross-talk between autophagy and epigenetic regulation, but also for demonstrating the potential of TRIM14 as a target for therapeutic interventions for inflammation-related diseases. Autophagy is a fundamental cellular process of protein degradation and recycling that regulates immune signaling pathways via multiple mechanisms. However, it remains unclear how autophagy epigenetically regulates the immune response. Here, we identified TRIM14 as an epigenetic regulator that reduces histone H3K9 trimethylation by inhibiting the autophagic degradation of the histone demethylase KDM4D. TRIM14 recruited the deubiquitinases USP14 and BRCC3 to cleave the K63-linked ubiquitin chains of KDM4D, which prevented KDM4D from undergoing optineurin (OPTN)-mediated selective autophagy. Tripartite motif-containing 14 (TRIM14) deficiency in dendritic cells significantly impaired the expression of the KDM4D-directed proinflammatory cytokines interleukin 12 (Il12) and Il23 and protected mice from autoimmune inflammation. Taken together, these findings highlight the cross-talk between epigenetic regulation and autophagy and suggest TRIM14 is a potential target of therapeutic intervention for inflammation-related diseases.
Collapse
|
115
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
116
|
Ren S, Wang J, Xu A, Bao J, Cho WC, Zhu J, Shen J. Integrin α6 overexpression promotes lymphangiogenesis and lymphatic metastasis via activating the NF-κB signaling pathway in lung adenocarcinoma. Cell Oncol (Dordr) 2022; 45:57-67. [PMID: 35025009 DOI: 10.1007/s13402-021-00648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE It has been reported that tumor-associated lymphangiogenesis plays an important role in lymph node metastasis and contributes to the poor survival of lung adenocarcinoma (LUAD) patients. As yet, however, the molecular mechanism underlying LUAD-associated lymphangiogenesis has remained elusive. METHODS Immunohistochemistry (IHC) was used to determine the expression of integrin subunit alpha 6 (ITGA6) and the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1) in clinicopathologically characterized LUAD specimens. The effect of ITGA6 overexpression on lymphangiogenesis and lymphatic metastasis was examined by tube formation, scratch wound-healing, and cell migration assays in vitro and a popliteal lymph node metastasis model in vivo. Mechanistically, overexpression of ITGA6 and activation of NF-κB signaling were examined by real-time PCR, ubiquitination and dual-luciferase reporter assays. Finally, high ITGA6 expression in LUAD tissue samples was related to copy number variation (CNV) using the TCGA database. RESULTS We found that ITGA6 overexpression correlated with microlymphatic vessel density in LUAD specimens (p < 0.01). Importantly, by using a popliteal lymph node metastasis model, we found that ITGA6 upregulation significantly enhanced lymphangiogenesis and lymphatic metastasis in vivo (p < 0.05). In addition, we found that ITGA6 overexpression enhanced the capability of A549 and H1299 LUAD cells to induce tube formation and migration in human lymphatic endothelial cells (HLECs). Mechanistically, we found that ITGA6 sustained NF-κB activity via binding and promoting K63 polyubiquitination of TNF receptor-associated factor 2 (TRAF2). Finally, CNV analysis revealed ITGA6 amplification of 27.5% in the LUAD tissue samples in the TCGA database. CONCLUSIONS Taken together, our results uncover a plausible role for ITGA6 in mediating lymphangiogenesis and lymphatic metastasis and may provide a basis for targeting ITGA6 to treat LUAD lymphatic metastasis.
Collapse
Affiliation(s)
- Sijia Ren
- Taizhou Hospital, Zhejiang University, Taizhou, 317000, China
| | - Jing Wang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Anyi Xu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Jiaqian Bao
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Jinrong Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jianfei Shen
- Taizhou Hospital, Zhejiang University, Taizhou, 317000, China.
| |
Collapse
|
117
|
Ji F, Zhou M, Zhu H, Jiang Z, Li Q, Ouyang X, Lv Y, Zhang S, Wu T, Li L. Integrative Proteomic Analysis of Multiple Posttranslational Modifications in Inflammatory Response. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:163-176. [PMID: 33662623 PMCID: PMC9510875 DOI: 10.1016/j.gpb.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/06/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, particularly acetylation, phosphorylation, and ubiquitination, play critical roles in the host innate immune response. PTMs' dynamic changes and the crosstalk among them are complicated. To build a comprehensive dynamic network of inflammation-related proteins, we integrated data from the whole-cell proteome (WCP), acetylome, phosphoproteome, and ubiquitinome of human and mouse macrophages. Our datasets of acetylation, phosphorylation, and ubiquitination sites helped identify PTM crosstalk within and across proteins involved in the inflammatory response. Stimulation of macrophages by lipopolysaccharide (LPS) resulted in both degradative and non-degradative ubiquitination. Moreover, this study contributes to the interpretation of the roles of known inflammatory molecules and the discovery of novel inflammatory proteins.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Huihui Zhu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qirui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sainan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tian Wu
- Quzhou Second People's Hospital, Quzhou 324000, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
118
|
Masaki S, Watanabe T, Arai Y, Sekai I, Hara A, Kurimoto M, Otsuka Y, Masuta Y, Yoshikawa T, Takada R, Kamata K, Minaga K, Yamashita K, Kudo M. Expression levels of cellular inhibitor of apoptosis proteins and colitogenic cytokines are inversely correlated with the activation of interferon regulatory factor 4. Clin Exp Immunol 2022; 207:340-350. [PMID: 35553628 PMCID: PMC9113101 DOI: 10.1093/cei/uxac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/19/2023] Open
Abstract
Cellular inhibitors of apoptosis proteins 1 (cIAP1) and 2 (cIAP2) are involved in signaling pathways mediated by Toll-like receptors (TLRs) and tumor necrosis factor (TNF)-α. Excessive activation of TLRs and TNF-α underlies the immunopathogenesis of Crohn's disease (CD) and ulcerative colitis (UC). However, the roles played by cIAP1 and cIAP2 in the development of CD and UC remain poorly understood. In this study, we attempted to clarify the molecular link between cIAP1/cIAP2 and colonic inflammation. Human monocyte-derived dendritic cells (DCs) treated with siRNAs specific for cIAP1 or cIAP2 exhibited reduced pro-inflammatory cytokine responses upon stimulation with TLR ligands. Expression of cIAP1 and cIAP2 in human DCs was suppressed in the presence of interferon regulatory factor 4 (IRF4). This effect was associated with inhibition of cIAP1 and cIAP2 polyubiquitination. To verify these in vitro findings, we created mice overexpressing IRF4 in DCs and showed that these mice were resistant to trinitrobenzene sulfonic acid-induced colitis as compared with wild-type mice; these effects were accompanied by reduced expression levels of cIAP1 and cIAP2. Pro-inflammatory cytokine production by mesenteric lymph node cells upon stimulation with TLR ligands was reduced in mice with DC-specific IRF4 overexpression as compared with that in wild-type mice. Finally, in clinical samples of the colonic mucosa from patients with CD, there was a negative relationship between the percentage of IRF4+ DCs and percentages of cIAP1+ or cIAP2+ lamina propria mononuclear cells. These data suggest that the colitogenic roles of cIAP1 and cIAP2 are negatively regulated by IRF4.
Collapse
Affiliation(s)
- Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Correspondence: Tomohiro Watanabe, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
119
|
Ohtake F. Branched ubiquitin code: from basic biology to targeted protein degradation. J Biochem 2022; 171:361-366. [PMID: 35037035 DOI: 10.1093/jb/mvac002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Protein ubiquitylation regulates numerous pathways, and the diverse information encoded by various forms of ubiquitylation is known as the ubiquitin code. Recent studies revealed that branched ubiquitin chains are abundant in mammalian cells and regulate important pathways. They include proteasomal degradation of misfolded and disease-causing proteins, regulation of NF-B signaling, and apoptotic cell fate decisions. Targeted protein degradation through chemical degraders emerged as a transformative therapeutic paradigm aimed at inducing the disappearance of unwanted cellular proteins. To further improve the efficacy of target degradation and expand its applications, understanding the molecular mechanism of degraders' action from the view of ubiquitin code biology is required. In this review, I discuss the roles of the ubiquitin code in biological pathways and in chemically induced targeted protein degradation by focusing on the branched ubiquitin codes that we have characterized.
Collapse
Affiliation(s)
- Fumiaki Ohtake
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.,Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
120
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
121
|
Ubiquitinated gasdermin D mediates arsenic-induced pyroptosis and hepatic insulin resistance in rat liver. Food Chem Toxicol 2021; 160:112771. [PMID: 34920032 DOI: 10.1016/j.fct.2021.112771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
As an environmental toxicant, arsenic exposure may cause insulin resistance (IR). Previous studies have shown that pyroptosis plays an important role in the occurrence and development of IR. Although gasdermin D (GSDMD) functions as an executor of pyroptosis, the relationship between GSDMD-mediated pyroptosis and hepatic IR remains unclear. Here, we observed that sodium arsenite (NaAsO2) activated NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasomes, promoted GSDMD activation, induced pyroptosis and hepatic IR, while GSDMD knockdown attenuated pyroptosis and hepatic IR caused by NaAsO2. However, GSDMD interference did not affect NLRP3 activation. Ubiquitination modification is widely involved in protein regulation and intracellular signal transduction, and whether it regulates GSDMD and affects its degradation, and exerts effects on arsenic-induced pyroptosis remain unclear. We observed that NaAsO2 reduced the K48- and K63-linked ubiquitination of GSDMD, thereby inhibiting its degradation through the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP), causing GSDMD to accumulate and lyse into GSDMD-N, which promoted pyroptosis. In summary, we demonstrated that GSDMD participated in arsenic-induced hepatic IR. Moreover, NaAsO2 reduced GSDMD ubiquitination and decreased its intracellular degradation, aggravating pyroptosis and hepatic IR. We have revealed the molecular mechanism underpinning arsenic-induced IR, and we provide potential solutions for the prevention and treatment of type 2 diabetes (T2D).
Collapse
|
122
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
123
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
124
|
Roy M, Singh K, Shinde A, Singh J, Mane M, Bedekar S, Tailor Y, Gohel D, Vasiyani H, Currim F, Singh R. TNF-α-induced E3 ligase, TRIM15 inhibits TNF-α-regulated NF-κB pathway by promoting turnover of K63 linked ubiquitination of TAK1. Cell Signal 2021; 91:110210. [PMID: 34871740 DOI: 10.1016/j.cellsig.2021.110210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3-ligases are recruited at different steps of TNF-α-induced NF-κB activation; however, their role in temporal regulation of the pathway remains elusive. The study systematically identified TRIMs as potential feedback regulators of the TNF-α-induced NF-κB pathway. We further observed that TRIM15 is "late" response TNF-α-induced gene and inhibits the TNF-α-induced NF-κB pathway in several human cell lines. TRIM15 promotes turnover of K63-linked ubiquitin chains in a PRY/SPRY domain-dependent manner. TRIM15 interacts with TAK1 and inhibits its K63-linked ubiquitination, thus NF-κB activity. Further, TRIM15 interacts with TRIM8 and inhibits cytosolic translocation to antagonize TRIM8 modualted NF-κB. TRIM8 and TRIM15 also show functionally inverse correlation in psoriasis condition. In conclusion, TRIM15 is TNF-α-induced late response gene and inhibits TNF-α induced NF-κB pathway hence a feedback modulator to keep the proinflammatory NF-κB pathway under control.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Sawani Bedekar
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Yamini Tailor
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
125
|
Kiss L, James LC. The molecular mechanisms that drive intracellular neutralization by the antibody-receptor and RING E3 ligase TRIM21. Semin Cell Dev Biol 2021; 126:99-107. [PMID: 34823983 DOI: 10.1016/j.semcdb.2021.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
The cytosolic antibody receptor and RING E3 ligase TRIM21 targets intracellular, antibody-coated immune complexes for degradation and activates the immune system. Here we review how TRIM21 degrades diverse targets and how this activity can be exploited in molecular biology and for the development of new therapeutics. In addition, we compare what is known about TRIM21's mechanism to other TRIM proteins and RING E3 ligases.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, UK.
| | | |
Collapse
|
126
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
127
|
Guo Y, Li Q, Zhao G, Zhang J, Yuan H, Feng T, Ou D, Gu R, Li S, Li K, Lin P. Loss of TRIM31 promotes breast cancer progression through regulating K48- and K63-linked ubiquitination of p53. Cell Death Dis 2021; 12:945. [PMID: 34650049 PMCID: PMC8516922 DOI: 10.1038/s41419-021-04208-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most common cancer in the world. Relapse and metastasis are important factors endangering the life of breast cancer patients, but the mechanism is still unclear. The stabilization of p53 is essential for preventing carcinogenesis, and ubiquitination is one of the main ways to regulate the stability of p53. Tripartite motif-containing 31 (TRIM31) is a new member of the TRIM family and functions as an E3 ubiquitin ligase. It acts as a cancer promoter or suppressor in the malignant processes of multiple cancers. However, the function of TRIM31 in breast cancer progression remains unknown. In this study, we showed that TRIM31 is downregulated in breast cancer tissues and negatively correlated with breast cancer progression. Both gain- and loss-of-function assays indicated that TRIM31 inhibits the proliferation, colony formation, migration, and invasion of breast cancer cells. Further investigation demonstrated that TRIM31 directly interacts with p53, and inducing the K63-linked ubiquitination of p53 via its RING domain, Meanwhile, TRIM31 suppresses the MDM2-mediated K48-linked ubiquitination of p53 through competitive inhibiting the interaction of MDM2 and p53, leading to the p53 stabilization and activation. Knockdown of p53 reversed the inhibitory effects of TRIM31 on the growth and metastasis of breast cancer cells. Moreover, we found that the RING and coiled-coil (C-C) domains of TRIM31 were essential for its tumor suppressor function. Taken together, our findings reveal a novel mechanism by which TRIM31 suppresses breast cancer development through the stabilization and activation of p53 and define a promising therapeutic strategy for restoring TRIM31 to treat breast cancer.
Collapse
Affiliation(s)
- Yafei Guo
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Zhao
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Yuan
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyu Feng
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deqiong Ou
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gu
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siqi Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Hi-Tech Development, Keyuan 4 Road, Gaopeng Avenue, Chengdu, Sichuan, 610041, P. R. China.
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Hi-Tech Development, Keyuan 4 Road, Gaopeng Avenue, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
128
|
Fuseya Y, Iwai K. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Cells 2021; 10:cells10102706. [PMID: 34685685 PMCID: PMC8534859 DOI: 10.3390/cells10102706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.
Collapse
|
129
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
130
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
131
|
Wang S, Ma Q, Xie Z, Shen Y, Zheng B, Jiang C, Yuan P, An Q, Fan S, Jie Z. An Antioxidant Sesquiterpene Inhibits Osteoclastogenesis Via Blocking IPMK/TRAF6 and Counteracts OVX-Induced Osteoporosis in Mice. J Bone Miner Res 2021; 36:1850-1865. [PMID: 33956362 DOI: 10.1002/jbmr.4328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Excessive bone resorption induced by increased osteoclast activity in postmenopausal women often causes osteoporosis. Although the pharmacological treatment of osteoporosis has been extensively developed, a safer and more effective treatment is still needed. Here, we found that curcumenol (CUL), an antioxidant sesquiterpene isolated from Curcuma zedoaria, impaired receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in vitro, whereas the osteoblastogenesis of MC3T3-E1 cells was not affected. We further demonstrated that CUL treatment during RANKL-induced osteoclastogenesis promotes proteasomal degradation of TRAF6 by increasing its K48-linked polyubiquitination, leading to suppression of mitogen-activated protein kinases (MAPKs) and NF-κB pathways and the production of reactive oxygen species (ROS). We also showed that inositol polyphosphate multikinase (IPMK) binds with TRAF6 to reduce its K48-linked polyubiquitination under RANKL stimulation. Concurrently, IPMK deficiency inhibits osteoclast differentiation. The binding between IPMK and TRAF6 blocked by CUL treatment was found in our study. Finally, we confirmed that CUL treatment prevented ovariectomy (OVX)-induced bone loss in mice. In summary, our study demonstrates that CUL could impair the stability of TRAF6 enhanced by IPMK and suppress excessive osteoclast activity in estrogen-deficient mice to treat osteoporosis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qin An
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
132
|
The Role of microRNAs in NK Cell Development and Function. Cells 2021; 10:cells10082020. [PMID: 34440789 PMCID: PMC8391642 DOI: 10.3390/cells10082020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical use of natural killer (NK) cells is at the forefront of cellular therapy. NK cells possess exceptional antitumor cytotoxic potentials and can generate significant levels of proinflammatory cytokines. Multiple genetic manipulations are being tested to augment the anti-tumor functions of NK cells. One such method involves identifying and altering microRNAs (miRNAs) that play essential roles in the development and effector functions of NK cells. Unique miRNAs can bind and inactivate mRNAs that code for cytotoxic proteins. MicroRNAs, such as the members of the Mirc11 cistron, downmodulate ubiquitin ligases that are central to the activation of the obligatory transcription factors responsible for the production of inflammatory cytokines. These studies reveal potential opportunities to post-translationally enhance the effector functions of human NK cells while reducing unwanted outcomes. Here, we summarize the recent advances made on miRNAs in murine and human NK cells and their relevance to NK cell development and functions.
Collapse
|
133
|
Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X, Gong Y, Chen Q, Zhong B, Dai L, Qi S, Zhang Z, Zhang H, Hu H. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cell Mol Immunol 2021; 18:1981-1994. [PMID: 33184450 PMCID: PMC8322076 DOI: 10.1038/s41423-020-00564-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/27/2020] [Indexed: 02/05/2023] Open
Abstract
Activation of the TAK1 signalosome is crucial for mediating the innate immune response to pathogen invasion and is regulated by multiple layers of posttranslational modifications, including ubiquitination, SUMOylation, and phosphorylation; however, the underlying molecular mechanism is not fully understood. In this study, TRIM60 negatively regulated the formation and activation of the TAK1 signalosome. Deficiency of TRIM60 in macrophages led to enhanced MAPK and NF-κB activation, accompanied by elevated levels of proinflammatory cytokines but not IFN-I. Immunoprecipitation-mass spectrometry assays identified TAB2 as the target of TRIM60 for SUMOylation rather than ubiquitination, resulting in impaired formation of the TRAF6/TAB2/TAK1 complex and downstream MAPK and NF-κB pathways. The SUMOylation sites of TAB2 mediated by TRIM60 were identified as K329 and K562; substitution of these lysines with arginines abolished the SUMOylation of TAB2. In vivo experiments showed that TRIM60-deficient mice showed an elevated immune response to LPS-induced septic shock and L. monocytogenes infection. Our data reveal that SUMOylation of TAB2 mediated by TRIM60 is a novel mechanism for regulating the innate immune response, potentially paving the way for a new strategy to control antibacterial immune responses.
Collapse
Affiliation(s)
- Zhiwen Gu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Qi
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaomeng Wang
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Yanqiu Gong
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Qianqian Chen
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Zhong
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Lunzhi Dai
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA, 77030.
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
134
|
Deol KK, Strieter ER. The ubiquitin proteoform problem. Curr Opin Chem Biol 2021; 63:95-104. [PMID: 33813043 PMCID: PMC8384647 DOI: 10.1016/j.cbpa.2021.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
The diversity of ubiquitin modifications is immense. A protein can be monoubiquitylated, multi-monoubiquitylated, and polyubiquitylated with chains varying in size and shape. Ubiquitin itself can be adorned with other ubiquitin-like proteins and smaller functional groups. Considering different combinations of post-translational modifications can give rise to distinct biological outcomes, characterizing ubiquitylated proteoforms of a given protein is paramount. In this Opinion, we review recent advances in detecting and quantifying various ubiquitin proteoforms using mass spectrometry.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
135
|
Bai MT, Li Y, Hu ZL. Ragweed pollen induces allergic conjunctivitis immune tolerance in mice via regulation of the NF-κB signal pathway. Int J Ophthalmol 2021; 14:955-964. [PMID: 34282378 DOI: 10.18240/ijo.2021.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the feasibility and mechanism of immune tolerance in allergic conjunctivitis. METHODS The allergic conjunctivitis immune tolerance mice model was established by ragweed pollen (RW) and the related cytokines were detected. The mice were divided into 9 groups and the maslinic acid (MA) or PBS were given for different group after modeling. The expression levels of chemokine ligand 5 (CCL5) and P-65 in the conjunctival tissue were analyzed by immunohistochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The percentage of interleukin-17 (IL-17) and CD4+CD25+ in the splenocyte supernatant was analyzed by flow cytometry. Furthermore, the serum and splenocyte supernatant concentration of total-IgE, interleukin-10 (IL-10), and IL-17 was analyzed by enzyme linked immune response (ELISA). RESULTS After the model was established, symptoms of conjunctivitis were alleviated, the level of P-65, CCL5, IL-17, and total-IgE was raised, while the expression of IL-10, CD4+CD25+ was decreased. This result fully demonstrated that a typical IL-17/regulatory-T-cells (Treg cells) imbalance and NF-κB activation. When the NF-κB signal pathway was suppressed, it showed that there was a further relief of conjunctivitis in mice. At the same time, the expression of total-IgE, IL-17, and CCL5 was decreased and the expression of anti-inflammatory factor (IL-10, CD4+CD25+) was increased. CONCLUSION In the state of immune tolerance, symptoms of conjunctivitis in mice are alleviated, the Th-17 cells of allergic conjunctivitis mice are inhibited, and Treg cells activity is enhanced.
Collapse
Affiliation(s)
- Meng-Tian Bai
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Yunnan Eye Institute, Kunming 650032, Yunnan Province, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650032, Yunnan Province, China.,Provincial Innovation Team for Cataract and Ocular Fundus Disease, Fourth Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Expert Workstation of Yao Ke, Kunming 650032, Yunnan Province, China.,Department of Ophthalmology, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Yun Li
- Department of Oncology, Suining Central Hospital, Suining 629000, Sichuan Province, China
| | - Zhu-Lin Hu
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Yunnan Eye Institute, Kunming 650032, Yunnan Province, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmology, Kunming 650032, Yunnan Province, China.,Provincial Innovation Team for Cataract and Ocular Fundus Disease, Fourth Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Expert Workstation of Yao Ke, Kunming 650032, Yunnan Province, China
| |
Collapse
|
136
|
Gwon Y, Maxwell BA, Kolaitis RM, Zhang P, Kim HJ, Taylor JP. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 2021; 372:eabf6548. [PMID: 34739333 PMCID: PMC8574224 DOI: 10.1126/science.abf6548] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stress granules are dynamic, reversible condensates composed of RNA and protein that assemble in eukaryotic cells in response to a variety of stressors and are normally disassembled after stress is removed. The composition and assembly of stress granules is well understood, but little is known about the mechanisms that govern disassembly. Impaired disassembly has been implicated in some diseases including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Using cultured human cells, we found that stress granule disassembly was context-dependent: Specifically in the setting of heat shock, disassembly required ubiquitination of G3BP1, the central protein within the stress granule RNA-protein network. We found that ubiquitinated G3BP1 interacted with the endoplasmic reticulum–associated protein FAF2, which engaged the ubiquitin-dependent segregase p97/VCP (valosin-containing protein). Thus, targeting of G3BP1 weakened the stress granule–specific interaction network, resulting in granule disassembly.
Collapse
Affiliation(s)
- Youngdae Gwon
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brian A. Maxwell
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Regina-Maria Kolaitis
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
137
|
Sorada T, Morimoto D, Walinda E, Sugase K. Molecular recognition and deubiquitination of cyclic K48-linked ubiquitin chains by OTUB1. Biochem Biophys Res Commun 2021; 562:94-99. [PMID: 34049206 DOI: 10.1016/j.bbrc.2021.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
Conjugation of K48-linked ubiquitin chains to intracellular proteins mainly functions as a signal for proteasomal degradation. The conjugating enzyme E2-25K synthesizes not only canonical (noncyclic) but also cyclic K48-linked ubiquitin chains. Although the cyclic conformation is expected to repress molecular recognition by ubiquitin binding proteins due to restricting the flexibility of the ubiquitin subunits in a chain, multiple proteins are reported to associate with cyclic ubiquitin chains similar to noncyclic chains. However, the molecular mechanism of how cyclic ubiquitin chains are recognized remains unclear. Here we investigated the effect of cyclization on ubiquitin-chain cleavage and molecular recognition by a K48-linkage specific deubiquitinating enzyme OTUB1 for cyclic diubiquitin by NMR spectroscopic analyses. Compared to noncyclic diubiquitin, we observed slow but unambiguously detectable cleavage of cyclic diubiquitin to monoubiquitin by OTUB1. Intriguingly, upon ubiquitin chain cleavage, cyclic diubiquitin appeared to alter its "autoinhibited" conformation to an incompletely but partially accessible conformation, induced by interaction with OTUB1 via the ubiquitin-subunit specific recognition patches and adjacent surfaces. These data imply that cyclic ubiquitin chains may exist stably in cells in spite of the presence of deubiquitinating enzymes and that these chains can be recognized by intracellular proteins in a manner distinct from that of noncyclic ubiquitin chains.
Collapse
Affiliation(s)
- Tomoki Sorada
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku Yoshida Konoe-cho, Kyoto, 606-8501, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| |
Collapse
|
138
|
Mei P, Xie F, Pan J, Wang S, Gao W, Ge R, Gao B, Gao S, Chen X, Wang Y, Wu J, Ding C, Li J. E3 ligase TRIM25 ubiquitinates RIP3 to inhibit TNF induced cell necrosis. Cell Death Differ 2021; 28:2888-2899. [PMID: 33953350 PMCID: PMC8481267 DOI: 10.1038/s41418-021-00790-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/02/2022] Open
Abstract
Receptor interacting protein kinase 3 (RIP3 or RIPK3), the critical executor of cell programmed necrosis, plays essential roles in maintaining immune responses and appropriate tissue homeostasis. Although the E3 ligases CHIP and PELI1 are reported to promote RIP3 degradation, however, how post-translational modification regulates RIP3 activity and stability is poorly understood. Here, we identify the tripartite motif protein TRIM25 as a negative regulator of RIP3-dependent necrosis. TRIM25 directly interacts with RIP3 through its SPRY domain and mediates the K48-linked polyubiquitination of RIP3 on residue K501. The RING domain of TRIM25 facilitates the polyubiquitination chain on RIP3, thereby promoting proteasomal degradation of RIP3. Also, TRIM25 deficiency inhibited the ubiquitination of RIP3, thus promoting TNF-induced cell necrosis. Our current finding reveals the regulating mechanism of polyubiquitination on RIP3, which might be a potential therapeutic target for the intervention of RIP3-dependent necrosis-related diseases.
Collapse
Affiliation(s)
- Pucheng Mei
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Feiyan Xie
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Jiasong Pan
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Sen Wang
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Rui Ge
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Baocai Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
139
|
Pluska L, Jarosch E, Zauber H, Kniss A, Waltho A, Bagola K, von Delbrück M, Löhr F, Schulman BA, Selbach M, Dötsch V, Sommer T. The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains. EMBO J 2021; 40:e106094. [PMID: 33576509 PMCID: PMC7957398 DOI: 10.15252/embj.2020106094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Lukas Pluska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Ernst Jarosch
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Henrik Zauber
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Anita Waltho
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Katrin Bagola
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | | | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Selbach
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Charité – Universitätsmedizin BerlinBerlinGermany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Thomas Sommer
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Institute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
140
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
141
|
Chen YH, Huang TY, Lin YT, Lin SY, Li WH, Hsiao HJ, Yan RL, Tang HW, Shen ZQ, Chen GC, Wu KP, Tsai TF, Chen RH. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism. Nat Commun 2021; 12:1322. [PMID: 33637724 PMCID: PMC7910580 DOI: 10.1038/s41467-021-21715-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Tung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsin Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Jung Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Wen Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
142
|
Kiss L, Clift D, Renner N, Neuhaus D, James LC. RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nat Commun 2021; 12:1220. [PMID: 33619271 PMCID: PMC7900206 DOI: 10.1038/s41467-021-21443-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Attachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
143
|
Morimoto D, Walinda E, Takashima S, Nishizawa M, Iwai K, Shirakawa M, Sugase K. Structural Dynamic Heterogeneity of Polyubiquitin Subunits Affects Phosphorylation Susceptibility. Biochemistry 2021; 60:573-583. [PMID: 33616406 DOI: 10.1021/acs.biochem.0c00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyubiquitin is a multifunctional protein tag formed by the covalent conjugation of ubiquitin molecules. Due to the high rigidity of the ubiquitin fold, the ubiquitin moieties in a polyubiquitin chain appear to be structurally equivalent to each other. It is therefore unclear how a specific ubiquitin moiety in a chain may be preferentially recognized by some proteins, such as the kinase PINK1. Here we show that there is structural dynamic heterogeneity in the two ubiquitin moieties of K48-linked diubiquitin by NMR spectroscopic analyses. Our analyses capture subunit-asymmetric structural fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are almost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed subunit-specific structural fluctuations may be an important factor that distinguishes individual ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational modifications.
Collapse
Affiliation(s)
- Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shingo Takashima
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Mayu Nishizawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
144
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
145
|
Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, Demizu Y, Naito M, Saeki Y, Tanaka K, Ohtake F. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell 2021; 81:1411-1424.e7. [PMID: 33567268 DOI: 10.1016/j.molcel.2021.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.
Collapse
Affiliation(s)
- Ai Kaiho-Soma
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshino Akizuki
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takuji Shoda
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasuko Kawase
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan; Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
146
|
Abstract
Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.
Collapse
|
147
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
148
|
MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIP L. Commun Biol 2021; 4:80. [PMID: 33469115 PMCID: PMC7815719 DOI: 10.1038/s42003-020-01603-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mind bomb 2 (MIB2) is an E3 ligase involved in Notch signalling and attenuates TNF-induced apoptosis through ubiquitylation of receptor-interacting protein kinase 1 (RIPK1) and cylindromatosis. Here we show that MIB2 bound and conjugated K48– and K63–linked polyubiquitin chains to a long-form of cellular FLICE-inhibitory protein (cFLIPL), a catalytically inactive homologue of caspase 8. Deletion of MIB2 did not impair the TNF-induced complex I formation that mediates NF-κB activation but significantly enhanced formation of cytosolic death-inducing signalling complex II. TNF-induced RIPK1 Ser166 phosphorylation, a hallmark of RIPK1 death-inducing activity, was enhanced in MIB2 knockout cells, as was RIPK1 kinase activity-dependent and -independent apoptosis. Moreover, RIPK1 kinase activity-independent apoptosis was induced in cells expressing cFLIPL mutants lacking MIB2-dependent ubiquitylation. Together, these results suggest that MIB2 suppresses both RIPK1 kinase activity-dependent and -independent apoptosis, through suppression of RIPK1 kinase activity and ubiquitylation of cFLIPL, respectively. Nakabayashi et al find that the E3 ligase MIB2 ubiquitylates the apoptosis-inhibitor cFLIP and that deletion of MIB2 enhances both RIPK1 kinase-dependent and -independent apoptosis through an increase in RIPK1 kinase activity and impairment of ubiquitylation of cFLIPL, respectively.
Collapse
|
149
|
Lumpkin RJ, Ahmad AS, Blake R, Condon CJ, Komives EA. The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases. Mol Cell Proteomics 2021; 20:100019. [PMID: 33268465 PMCID: PMC7950132 DOI: 10.1074/mcp.ra120.002414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Cullin RING E3 ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs), and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contributes to polyubiquitylation but does not alter the sites of CKB ubiquitylation. Hydrogen–deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high-affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates. ARIH2 is required for ASB9CRL to polyubiquitylate 4/18 lysines on one creatine kinase subunit. HDX-MS reveals long-range allosteric opening of a cleft in CUL5 where the ARIH2 RBRL binds. HDX-MS reveals that neddylation of CUL5 alters the RBX2 conformation away from binding the E2∼NEDD8. HDX-MS reveals opening of the ARIH2 active site upon binding CUL5, thus releasing its autoinhibition.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Alla S Ahmad
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Rachel Blake
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Christopher J Condon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
150
|
Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, Saida K, Pajusalu S, Talvik I, D'Souza P, Bodurtha J, Mu W, Barañano KW, Miyake N, Wang R, Kempers M, Tamada T, Nishimura Y, Okada S, Kosho T, Dale R, Mitra A, Macnamara E, Matsumoto N, Inazawa J, Walkiewicz M, Õunap K, Tifft CJ, Aksentijevich I, Kastner DL, Rocha PP, Werner A. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. SCIENCE ADVANCES 2021; 7:7/4/eabe2116. [PMID: 33523931 PMCID: PMC7817106 DOI: 10.1126/sciadv.abe2116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
Reversible modification of proteins with linkage-specific ubiquitin chains is critical for intracellular signaling. Information on physiological roles and underlying mechanisms of particular ubiquitin linkages during human development are limited. Here, relying on genomic constraint scores, we identify 10 patients with multiple congenital anomalies caused by hemizygous variants in OTUD5, encoding a K48/K63 linkage-specific deubiquitylase. By studying these mutations, we find that OTUD5 controls neuroectodermal differentiation through cleaving K48-linked ubiquitin chains to counteract degradation of select chromatin regulators (e.g., ARID1A/B, histone deacetylase 2, and HCF1), mutations of which underlie diseases that exhibit phenotypic overlap with OTUD5 patients. Loss of OTUD5 during differentiation leads to less accessible chromatin at neuroectodermal enhancers and aberrant gene expression. Our study describes a previously unidentified disorder we name LINKED (LINKage-specific deubiquitylation deficiency-induced Embryonic Defects) syndrome and reveals linkage-specific ubiquitin cleavage from chromatin remodelers as an essential signaling mode that coordinates chromatin remodeling during embryogenesis.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotsugu Oda
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniela T Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Inga Talvik
- Department of Neurology and Rehabilitation, Tallinn Children's Hospital, Tallinn, Estonia
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joann Bodurtha
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Raymond Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA 92967, USA
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tomoko Tamada
- Department of Pediatrics, Hiroshima Prefectural Rehabilitation Center, Hiroshima, Japan
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano, Japan
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Magdalena Walkiewicz
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Cynthia J Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|