101
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
102
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo E, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. eLife 2024; 13:RP91783. [PMID: 39041323 PMCID: PMC11265796 DOI: 10.7554/elife.91783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.
Collapse
Affiliation(s)
- Trine Line Hauge Okholm
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology & Immunology, University of California, San FranciscoSan FranciscoUnited States
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | | | | | | | - Søren Vang
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eugene Yeo
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus UniversityAarhusDenmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center (BiRC), Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
103
|
Wang Q, Qin B, Yu H, Hu Y, Yu H, Zhong J, Liu J, Yao C, Zeng J, Fan J, Diao L. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024; 551:246-253. [PMID: 38843987 DOI: 10.1016/j.neuroscience.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, 6 Seventh Branch Road, Panxi, Jiangbei District, Chongqing 400021, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi 30007, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jie Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jiawei Zeng
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jingjing Fan
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China.
| |
Collapse
|
104
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
105
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
106
|
Nejadi Orang F, Abdoli Shadbad M. CircRNA and lncRNA-associated competing endogenous RNA networks in medulloblastoma: a scoping review. Cancer Cell Int 2024; 24:248. [PMID: 39010056 PMCID: PMC11251335 DOI: 10.1186/s12935-024-03427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Medulloblastoma is one of the common primary central nervous system (CNS) malignancies in pediatric patients. The main treatment is surgical resection preceded and/or followed by chemoradiotherapy. However, their serious side effects necessitate a better understanding of medulloblastoma biology to develop novel therapeutic options. MAIN BODY Circular RNA (circRNA) and long non-coding RNA (lncRNA) regulate gene expression via microRNA (miRNA) pathways. Although growing evidence has highlighted the significance of circRNA and lncRNA-associated competing endogenous RNA (ceRNA) networks in cancers, no study has comprehensively investigated them in medulloblastoma. For this aim, the Web of Science, PubMed, Scopus, and Embase were systematically searched to obtain the relevant papers published before 16 September 2023, adhering to the PRISMA-ScR statement. HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, and TP73-AS1 are the oncogenic lncRNAs, and Nkx2-2as is a tumor-suppressive lncRNA that develop lncRNA-associated ceRNA networks in medulloblastoma. CircSKA3 and circRNA_103128 are upregulated oncogenic circRNAs that develop circRNA-associated ceRNA networks in medulloblastoma. CONCLUSION In summary, this study has provided an overview of the existing evidence on circRNA and lncRNA-associated ceRNA networks and their impact on miRNA and mRNA expression involved in various signaling pathways of medulloblastoma. Suppressing the oncogenic ceRNA networks and augmenting tumor-suppressive ceRNA networks can provide ample opportunities for medulloblastoma treatment.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
107
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
108
|
Papaioannou D, Urs AP, Buisson R, Petri A, Kulkarni R, Nicolet D, Woodward L, Goda C, Mrózek K, Behbehani GK, Kauppinen S, Eisfeld AK, Aifantis I, Singh G, Dorrance AM, Garzon R. circPCMTD1 : A protein-coding circular RNA that regulates DNA damage response in BCR/ABL -positive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601046. [PMID: 39005285 PMCID: PMC11244931 DOI: 10.1101/2024.06.27.601046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.
Collapse
|
109
|
Smukowski SN, Danyko C, Somberg J, Kaufman EJ, Course MM, Postupna N, Barker-Haliski M, Keene CD, Valdmanis PN. mRNA and circRNA mislocalization to synapses are key features of Alzheimer's disease. PLoS Genet 2024; 20:e1011359. [PMID: 39074152 PMCID: PMC11309398 DOI: 10.1371/journal.pgen.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/08/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3β, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.
Collapse
Affiliation(s)
- Samuel N. Smukowski
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Cassidy Danyko
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Fred Hutch Cancer Center, Basic Sciences Division, University of Washington, Seattle, Washington, United States of America
| | - Jenna Somberg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Eli J. Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Meredith M. Course
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul N. Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
110
|
Zhao H, Xiong Y, Zhou Z, Xu Q, Zi Y, Zheng X, Chen S, Xiao X, Gong L, Xu H, Liu L, Lu H, Cui Y, Shao S, Zhang J, Ma J, Zhou Q, Ma D, Li X. A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis. Clin Transl Med 2024; 14:e1759. [PMID: 38997803 PMCID: PMC11245404 DOI: 10.1002/ctm2.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCβ. CONCLUSIONS We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) β in preeclampsia.
Collapse
Affiliation(s)
- Huanqiang Zhao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yu Xiong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zixiang Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qixin Xu
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yang Zi
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xiujie Zheng
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Shiguo Chen
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xirong Xiao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lili Gong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huangfang Xu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lidong Liu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huiqing Lu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yutong Cui
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuyi Shao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaotian Li
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
111
|
Sharma NK, Dwivedi P, Bhushan R, Maurya PK, Kumar A, Dakal TC. Engineering circular RNA for molecular and metabolic reprogramming. Funct Integr Genomics 2024; 24:117. [PMID: 38918231 DOI: 10.1007/s10142-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The role of messenger RNA (mRNA) in biological systems is extremely versatile. However, it's extremely short half-life poses a fundamental restriction on its application. Moreover, the translation efficiency of mRNA is also limited. On the contrary, circular RNAs, also known as circRNAs, are a common and stable form of RNA found in eukaryotic cells. These molecules are synthesized via back-splicing. Both synthetic circRNAs and certain endogenous circRNAs have the potential to encode proteins, hence suggesting the potential of circRNA as a gene expression machinery. Herein, we aim to summarize all engineering aspects that allow exogenous circular RNA (circRNA) to prolong the time that proteins are expressed from full-length RNA signals. This review presents a systematic engineering approach that have been devised to efficiently assemble circRNAs and evaluate several aspects that have an impact on protein production derived from. We have also reviewed how optimization of the key components of circRNAs, including the topology of vector, 5' and 3' untranslated sections, entrance site of the internal ribosome, and engineered aptamers could be efficiently impacting the translation machinery for molecular and metabolic reprogramming. Collectively, molecular and metabolic reprogramming present a novel way of regulating distinctive cellular features, for instance growth traits to neoplastic cells, and offer new possibilities for therapeutic inventions.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India.
| | - Pragya Dwivedi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
112
|
Li Z, Sarker B, Zhao F, Zhou T, Zhang J, Xu C. COL: a pipeline for identifying putatively functional back-splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566217. [PMID: 38014194 PMCID: PMC10680571 DOI: 10.1101/2023.11.08.566217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Circular RNAs (circRNAs) are a class of generally non-coding RNAs produced by back- splicing. Although the vast majority of circRNAs are likely to be products of splicing error and thereby confer no benefits to organisms, a small number of circRNAs have been found to be functional. Identifying other functional circRNAs from the sea of mostly non-functional circRNAs is an important but difficult task. Because available experimental methods for this purpose are of low throughput or versality and existing computational methods have limited reliability or applicability, new methods are needed. We hypothesize that functional back- splicing events that generate functional circRNAs (i) exhibit substantially higher back-splicing rates than expected from the total splicing amounts, (ii) have conserved splicing motifs, and (iii) show unusually high back-splicing levels. We confirm these features in back-splicing shared among human, macaque, and mouse, which should enrich functional back-splicing. Integrating the three features, we design a computational pipeline named COL for identifying putatively functional back-splicing. Different from the methods that require multiple samples, COL can predict functional back-splicing using a single sample. Under the same data requirement, COL has a lower false positive rate than that of the commonly used method that is based on the back- splicing level alone. We conclude that COL is an efficient and versatile method for rapid identification of putatively functional back-splicing and circRNAs that can be experimentally validated. COL is available at https://github.com/XuLabSJTU/COL .
Collapse
|
113
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo GW, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557527. [PMID: 37745562 PMCID: PMC10515936 DOI: 10.1101/2023.09.14.557527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Circular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses. Using expression-coupled motif analyses of mRNA expression data from various knockdown experiments, we identify an 11-mer motif within circHIPK3, which is also enriched in genes that become downregulated upon circHIPK3 depletion. By mining eCLIP datasets, we find that the 11-mer motif constitutes a strong binding site for IGF2BP2 and validate this circHIPK3-IGF2BP2 interaction experimentally using RNA-immunoprecipitation and competition assays in bladder cancer cell lines. Our results suggest that circHIPK3 and IGF2BP2 mRNA targets compete for binding. Since the identified 11-mer motif found in circHIPK3 is enriched in upregulated genes following IGF2BP2 knockdown, and since IGF2BP2 depletion conversely globally antagonizes the effect of circHIPK3 knockdown on target genes, our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2- STAT3 mRNA binding and thereby STAT3 mRNA levels. However, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Finally, we show that circHIPK3 expression correlates with overall survival of patients with bladder cancer. Our results are consistent with a model where relatively few cellular circHIPK3 molecules function as inducers of IGF2BP2 condensation thereby regulating STAT3 and other key factors for cell proliferation and potentially cancer progression.
Collapse
|
114
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
115
|
Sun H, Xie Y, Wu X, Hu W, Chen X, Wu K, Wang H, Zhao S, Shi Q, Wang X, Cui B, Wu W, Fan R, Rao J, Wang R, Wang Y, Zhong Y, Yu H, Zhou BS, Shen S, Liu Y. circRNAs as prognostic markers in pediatric acute myeloid leukemia. Cancer Lett 2024; 591:216880. [PMID: 38621457 DOI: 10.1016/j.canlet.2024.216880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) arise from precursor mRNA processing through back-splicing and have been increasingly recognized for their functions in various cancers including acute myeloid leukemia (AML). However, the prognostic implications of circRNA in AML remain unclear. We conducted a comprehensive genome-wide analysis of circRNAs using RNA-seq data in pediatric AML. We revealed a group of circRNAs associated with inferior outcomes, exerting effects on cancer-related pathways. Several of these circRNAs were transcribed directly from genes with established functions in AML, such as circRUNX1, circWHSC1, and circFLT3. Further investigations indicated the increased number of circRNAs and linear RNAs splicing were significantly correlated with inferior clinical outcomes, highlighting the pivotal role of splicing dysregulation. Subsequent analysis identified a group of upregulated RNA binding proteins in AMLs associated with high number of circRNAs, with TROVE2 being a prominent candidate, suggesting their involvement in circRNA associated prognosis. Through the integration of drug sensitivity data, we pinpointed 25 drugs that could target high-risk AMLs characterized by aberrant circRNA transcription. These findings underscore prognostic significance of circRNAs in pediatric AML and offer an alternative perspective for treating high-risk cases in this malignancy.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoqiao Shi
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Fan
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhong
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binbing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Liu
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
116
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
117
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
118
|
Shi Y, Shen F, Chen X, Sun M, Zhang P. Current understanding of circular RNAs in preeclampsia. Hypertens Res 2024; 47:1607-1619. [PMID: 38605141 DOI: 10.1038/s41440-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Trauma Medicine, Soochow University, Suzhou, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
119
|
Zhu K, Gou F, Zhao Z, Xu K, Song J, Jiang H, Zhang F, Yang Y, Li J. Circ_0005615 enhances multiple myeloma progression through interaction with EIF4A3 to regulate MAP3K4 m6A modification mediated by ALKBH5. Leuk Res 2024; 141:107451. [PMID: 38663164 DOI: 10.1016/j.leukres.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 01/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are associated with development and progression of multiple myeloma (MM). However, the role and mechanism of circ_0005615 in MM have not been elucidated. METHODS Circ_0005615 was determined by GEO database. quantitative RT-PCR was performed to confirm the expression of circ_0005615 in peripheral blood of MM patients and MM cells. The roles of circ_0005615 in MM were analyzed using CCK8, transwell invasion, cell apoptosis and tumor xenograft experiments. Bioinformatics tools, RIP and RNA pull down assays were conducted to explore the downstream of circ_0005615. Furthermore, the mechanism was investigated by quantitative RT-PCR, western blot, dot blot and meRIP-PCR assays. RESULTS Circ_0005615 was upregulated in MM. Overexpression of circ_0005615 promoted cell viability and invasion, and suppressed apoptosis in vitro, which were opposite when circ_0005615 was knockdowned. Mechanistically, EIF4A3, a RNA-binding protein (RBP), could directly bind to circ_0005615 and ALKBH5, where ALKBH5 could directly combine with MAP3K4, forming a circ_0005615- EIF4A3-ALKBH5-MAP3K4 module. Furthermore, circ_0005615 overexpression increased m6A methylation of MAP3K4 by inhibiting ALKBH5, leading to decreased MAP3K4. Further functional experiments indicated that ALKBH5 overexpression weakened the promoting roles of circ_0005615 overexpression in MAP3K4 m6A methylation and tumor progression in MM. The above functions and mechanism were also verified in vivo. CONCLUSIONS Elevated circ_0005615 decreased MAP3K4 mediated by ALKBH5 through interacting with EIF4A3, thereby accelerating MM progression. Circ_0005615 might be a promising biomarker and target of MM.
Collapse
Affiliation(s)
- Kai Zhu
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Fengquan Gou
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Ziwen Zhao
- Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Ke Xu
- Anhui University of Science and Technology, Taifeng Street 168, Shannan New District, Huainan 232001, China
| | - Jian Song
- Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Hongyi Jiang
- Bengbu Medical College, No. 2600 Donghai Avenue, Bengbu 233030, China
| | - Feng Zhang
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Yanli Yang
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China
| | - Jiajia Li
- The First Affiliated Hospital of Bengbu Medical College, Department of Hematology, Chang Huai Road 287, Bengbu 233004, China.
| |
Collapse
|
120
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
121
|
Li S, Wang J, Ren G. CircRNA: An emerging star in plant research: A review. Int J Biol Macromol 2024; 272:132800. [PMID: 38825271 DOI: 10.1016/j.ijbiomac.2024.132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CircRNAs are a class of covalently closed non-coding RNA formed by linking the 5' terminus and the 3' terminus after reverse splicing. CircRNAs are widely found in eukaryotes, and they are highly conserved, with spatio-temporal expression specificity and stability. CircRNAs can act as miRNA sponges to regulate the expression of downstream target genes, regulating the transcription of parental genes and some can even be translated into peptides or proteins. Research on circRNAs in plants is still in its infancy compared to that in animals. With the deepening of research, the results of a variety of plant circRNAs suggest that they play an important role in growth and development, and tolerance towards abiotic stresses such as salt, drought, low temperature, high temperature and other adverse environments. In this review paper, we elaborated the molecular characteristics, mechanism of action, function and bioinformatics databases of plant circRNAs, combined with the progress of circRNA research in animals, discussed the potential mechanism of action of plant circRNAs, and proposed the unsolved problems and prospects for future application of plant circRNAs.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
122
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
123
|
Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation. Exp Mol Med 2024; 56:1272-1280. [PMID: 38871818 PMCID: PMC11263353 DOI: 10.1038/s12276-024-01220-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs without a 5' cap structure and a 3' poly(A) tail typically present in linear mRNAs of eukaryotic cells. CircRNAs are predominantly generated through a back-splicing process within the nucleus. CircRNAs have long been considered non-coding RNAs seemingly devoid of protein-coding potential. However, many recent studies have challenged this idea and have provided substantial evidence that a subset of circRNAs can associate with polysomes and indeed be translated. Therefore, in this review, we primarily highlight the 5' cap-independent internal initiation of translation that occurs on circular RNAs. Several molecular features of circRNAs, including the internal ribosome entry site, N6-methyladenosine modification, and the exon junction complex deposited around the back-splicing junction after back-splicing event, play pivotal roles in their efficient internal translation. We also propose a possible relationship between the translatability of circRNAs and their stability, with a focus on nonsense-mediated mRNA decay and nonstop decay, both of which are well-characterized mRNA surveillance mechanisms. An in-depth understanding of circRNA translation will reshape and expand our current knowledge of proteomics.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
124
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
125
|
Luo Y, Deng L. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder. J Chem Inf Model 2024; 64:4359-4372. [PMID: 38745420 DOI: 10.1021/acs.jcim.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accumulating evidence has indicated that the expression of circular RNAs (circRNAs) can affect the cellular sensitivity to drugs and significantly influence drug efficacy. However, traditional experimental approaches for validating these associations are resource-intensive and time-consuming. To address this challenge, we propose a computational framework termed DPMGCDA leveraging dual perspective learning and path-masked graph autoencoder to predict circRNA-drug sensitivity associations. Initially, we construct circRNA-circRNA fusion similarity networks and drug-drug fusion similarity networks using similarity network fusion, ensuring a comprehensive integration of information. Based on the above, we built the circRNA homogeneous graph, the drug homogeneous graph, and the circRNA-drug heterogeneous graph. Next, we form the initial node features in the circRNA-drug heterogeneous graph from the homogeneous graph-level perspective and the combined feature-level perspective and complete the prediction of potential associations using the path-masked graph autoencoder in both perspectives. The predictions under both perspectives are finally combined to obtain the final prediction score. Transductive setting experiments and inductive setting experiments all demonstrate that our method, DPMGCDA, outperforms state-of-the-art approaches. Additionally, we verify the necessity of employing dual perspective learning through ablation tests and analyze the effective encoding capability of the path-masked graph autoencoder for features through embedding visualization. Moreover, case studies on four drugs corroborate DPMGCDA's ability to identify potential circRNAs associated with new drugs.
Collapse
Affiliation(s)
- Yue Luo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
126
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
127
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, Zhao W, Hu G, Yang Q. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer 2024; 23:102. [PMID: 38755678 PMCID: PMC11097450 DOI: 10.1186/s12943-024-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Sun
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
128
|
Geng Y, Zheng X, Zhang D, Wei S, Feng J, Wang W, Zhang L, Wu C, Hu W. CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1α-mediated glycometabolism alteration. Biol Direct 2024; 19:36. [PMID: 38715141 PMCID: PMC11075259 DOI: 10.1186/s13062-024-00478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Luo Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
129
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
130
|
Deng LQ, Shi CJ, Zhou ST, Zeng WQ, Xian YF, Wang YY, Fu WM, Lin HL, Liu W, Zhang JF. EIF4A3-negatively driven circular RNA β-catenin (circβ-catenin) promotes colorectal cancer progression via miR-197-3p/CTNND1 regulatory axis. Br J Cancer 2024; 130:1517-1528. [PMID: 38459187 PMCID: PMC11058807 DOI: 10.1038/s41416-024-02612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Circβ-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS The qRT-PCR examination was used to detect the expression of circβ-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circβ-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circβ-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circβ-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS In the present study, circβ-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circβ-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circβ-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS Our findings illustrated a novel mechanism of circβ-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Li-Qiang Deng
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China
| | - Chuan-Jian Shi
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China
| | - Shu-Ting Zhou
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei-Qiang Zeng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu-Yan Wang
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Han-Li Lin
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
| | - Wei Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jin-Fang Zhang
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
131
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
132
|
Qiu M, Chen Y, Zeng C. Biological functions of circRNA in regulating the hallmarks of gastrointestinal cancer (Review). Int J Oncol 2024; 64:49. [PMID: 38488023 PMCID: PMC10997371 DOI: 10.3892/ijo.2024.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Circular RNA (circRNA) was first observed in the cytoplasm of eukaryotic cells in 1979, but it was not characterized in detail until 2012, when high‑throughput sequencing technology was more advanced and available. Consequently, the mechanism of circRNA formation and its biological function have been progressively elucidated by researchers. circRNA is abundant in eukaryotic cells and exhibits a certain degree of organization, timing and disease‑specificity. Additionally, it is poorly degradable, meeting the characteristics of an ideal clinical biomarker. In the present review, the recent research progress of circRNAs in digestive tract malignant tumors was primarily discussed. This included the roles, biological functions and clinical significance of circRNA, providing references for its research value and clinical potential in gastrointestinal cancer.
Collapse
Affiliation(s)
- Mengjun Qiu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
133
|
Wang Z, Zhang YX, Shi JZ, Yan Y, Zhao LL, Kou JJ, He YY, Xie XM, Zhang SJ, Pang XB. RNA m6A methylation and regulatory proteins in pulmonary arterial hypertension. Hypertens Res 2024; 47:1273-1287. [PMID: 38438725 DOI: 10.1038/s41440-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/12/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024]
Abstract
m6A (N6‑methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.
Collapse
Affiliation(s)
- Zhe Wang
- School of Pharmacy, Henan University, Henan, China
| | - Yi-Xuan Zhang
- Department of Anesthesiology, Huaihe Hospital of Henan University, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Henan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Henan, China
| | - Jie-Jian Kou
- Department of Pharmacy, Huaihe Hospital of Henan University, Henan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Henan, China.
| | - Si-Jin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
134
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
135
|
Liang W, Liu W, Xiong XP, Li JW, Li JL, Perera RJ, Zhou R. The circular RNA circATP8B(2) regulates ROS production and antiviral immunity in Drosophila. Cell Rep 2024; 43:113973. [PMID: 38507406 PMCID: PMC11081091 DOI: 10.1016/j.celrep.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
We identified and validated a collection of circular RNAs (circRNAs) in Drosophila melanogaster. We show that depletion of the pro-viral circRNA circATP8B(2), but not its linear siblings, compromises viral infection both in cultured Drosophila cells and in vivo. In addition, circATP8B(2) is enriched in the fly gut, and gut-specific depletion of circATP8B(2) attenuates viral replication in an oral infection model. Furthermore, circATP8B(2) depletion results in increased levels of reactive oxygen species (ROS) and enhanced expression of dual oxidase (Duox), which produces ROS. Genetic and pharmacological manipulations of circATP8B(2)-depleted flies that reduce ROS levels rescue the viral replication defects elicited by circATP8B(2) depletion. Mechanistically, circATP8B(2) associates with Duox, and circATP8B(2)-Duox interaction is crucial for circATP8B(2)-mediated modulation of Duox activity. In addition, Gαq, a G protein subunit required for optimal Duox activity, acts downstream of circATP8B(2). We conclude that circATP8B(2) regulates antiviral defense by modulating Duox expression and Duox-dependent ROS production.
Collapse
Affiliation(s)
- Weihong Liang
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Wei Liu
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Xiao-Peng Xiong
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer W Li
- Department of Medicine, Brown University, Providence, RI 02912, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Ranjan J Perera
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rui Zhou
- Departments of Medicine, Biological Chemistry, & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
136
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
137
|
Liu Y, Zhao X, Seitz A, Hooijsma AA, Ravanbakhsh R, Sheveleva S, de Jong D, Koerts J, Dzikiewicz-Krawczyk A, van den Berg A, Ziel-Swier LJYM, Kluiver J. Circular ZDHHC11 supports Burkitt lymphoma growth independent of its miR-150 binding capacity. Sci Rep 2024; 14:8730. [PMID: 38627588 PMCID: PMC11021472 DOI: 10.1038/s41598-024-59443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
We previously showed that MYC promoted Burkitt lymphoma (BL) growth by inhibiting the tumor suppressor miR-150, resulting in release of miR-150 targets MYB and ZDHHC11. The ZDHHC11 gene encodes three different transcripts including a mRNA (pcZDHHC11), a linear long non-coding RNA (lncZDHHC11) and a circular RNA (circZDHHC11). All transcripts contain the same region with 18 miR-150 binding sites. Here we studied the relevance of circZDHHC11, including this miR-150 binding site region, for growth of BL cells. CircZDHHC11 was mainly present in the cytoplasmic fraction in BL cells and its localization was not altered upon miR-150 overexpression. Knockdown of circZDHHC11 caused a strong inhibition of BL growth without affecting the expression levels of MYC, MYB, miR-150 and other genes. Overexpression of circZDHHC11 neither affected cell growth, nor rescued the phenotype induced by miR-150 overexpression. Genomic deletion of the miR-150 binding site region did not affect growth, nor did it change the effect of circZDHHC11 knockdown. This indicated that the miR-150 binding site region is dispensable for the growth promoting role of circZDHHC11. To conclude, our results show that circZDHHC11 is a crucial factor supporting BL cell growth independent of its ability to sponge miR-150.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Cancer Hospital Academy of Medical Sciences, Peking Union Medical College, Dongcheng, China
| | - Xing Zhao
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Annie A Hooijsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Reyhaneh Ravanbakhsh
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Sofia Sheveleva
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Lotteke J Y M Ziel-Swier
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
138
|
Fuchs Wightman F, Lukin J, Giusti S, Soutschek M, Bragado L, Pozzi B, Pierelli M, González P, Fededa J, Schratt G, Fujiwara R, Wilusz J, Refojo D, de la Mata M. Influence of RNA circularity on Target RNA-Directed MicroRNA Degradation. Nucleic Acids Res 2024; 52:3358-3374. [PMID: 38381063 PMCID: PMC11014252 DOI: 10.1093/nar/gkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Jerónimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Sebastián A Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Michael Soutschek
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - María L Pierelli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Paula González
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Juan P Fededa
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Gerhard Schratt
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Damián Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Manuel de la Mata
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires 1428, Argentina
| |
Collapse
|
139
|
Ni L, Yamada T, Nakatani K. Utility of oligonucleotide in upregulating circular RNA production in a cellular model. Sci Rep 2024; 14:8096. [PMID: 38582789 PMCID: PMC10998836 DOI: 10.1038/s41598-024-58663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Circular RNAs (circRNAs), are a covalently closed, single-stranded RNA without 5'- and 3'-termini, commonly stem from the exons of precursor mRNAs (pre-mRNAs). They have recently garnered interest, with studies uncovering their pivotal roles in regulating various aspects of cell functions and disease progressions. A notable feature of circRNA lies in the mechanism of its biogenesis involving a specialized form of splicing: back-splicing. A splicing process that relies on interactions between introns flanking the circularizing exon to bring the up and downstream splice sites in proximity through the formation of a prerequisite hairpin structure, allowing the spliceosomes to join the two splice sites together to produce a circular RNA molecule. Based on this mechanism, we explored the feasibility of facilitating the formation of such a prerequisite hairpin structure by utilizing a newly designed oligonucleotide, CircuLarIzation Promoting OligoNucleotide (CLIP-ON), to promote the production of circRNA in cells. CLIP-ON was designed to hybridize with and physically bridge two distal sequences in the flanking introns of the circularizing exons. The feasibility of CLIP-ON was confirmed in HeLa cells using a model pre-mRNA, demonstrating the applicability of CLIP-ON as a trans-acting modulator to upregulate the production of circRNAs in a cellular environment.
Collapse
Affiliation(s)
- Lu Ni
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
140
|
Margvelani G, Welden JR, Maquera AA, Van Eyk JE, Murray C, Miranda Sardon SC, Stamm S. Influence of FTDP-17 mutants on circular tau RNAs. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167036. [PMID: 38286213 DOI: 10.1016/j.bbadis.2024.167036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations.
Collapse
Affiliation(s)
- Giorgi Margvelani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Justin R Welden
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Andrea Arizaca Maquera
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | | | - Sandra C Miranda Sardon
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
141
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
142
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
143
|
Sun L, Bin S, Huang C, Wang Q. CircROR1 upregulates CCNE1 expression to promote melanoma invasion and metastasis by recruiting KAT2A. Exp Dermatol 2024; 33:e15071. [PMID: 38566477 DOI: 10.1111/exd.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Litong Sun
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shizhen Bin
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
144
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
145
|
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J, Ricart-Altimiras E, Kraemer AI, Kandalaft LE, Speiser DE, Nesvizhskii AI, Müller M, Bassani-Sternberg M. Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides. Nat Commun 2024; 15:2357. [PMID: 38490980 PMCID: PMC10943130 DOI: 10.1038/s41467-024-46408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs lacking the 5' cap and the poly-A tail. Nevertheless, it has been demonstrated that certain circRNAs can undergo active translation. Therefore, aberrantly expressed circRNAs in human cancers could be an unexplored source of tumor-specific antigens, potentially mediating anti-tumor T cell responses. This study presents an immunopeptidomics workflow with a specific focus on generating a circRNA-specific protein fasta reference. The main goal of this workflow is to streamline the process of identifying and validating human leukocyte antigen (HLA) bound peptides potentially originating from circRNAs. We increase the analytical stringency of our workflow by retaining peptides identified independently by two mass spectrometry search engines and/or by applying a group-specific FDR for canonical-derived and circRNA-derived peptides. A subset of circRNA-derived peptides specifically encoded by the region spanning the back-splice junction (BSJ) are validated with targeted MS, and with direct Sanger sequencing of the respective source transcripts. Our workflow identifies 54 unique BSJ-spanning circRNA-derived peptides in the immunopeptidome of melanoma and lung cancer samples. Our approach enlarges the catalog of source proteins that can be explored for immunotherapy.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Almeida Oliveira
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Emma Ricart-Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Markus Müller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
146
|
Guo R, Zhang K, Zang H, Guo S, Liu X, Jing X, Song Y, Li K, Wu Y, Jiang H, Fu Z, Chen D. Dynamics and regulatory role of circRNAs in Asian honey bee larvae following fungal infection. Appl Microbiol Biotechnol 2024; 108:261. [PMID: 38472661 DOI: 10.1007/s00253-024-13102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.
Collapse
Affiliation(s)
- Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China.
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China.
| | - Kaiyao Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Haibing Jiang
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| |
Collapse
|
147
|
Tretti Parenzan C, Molin AD, Longo G, Gaffo E, Buratin A, Cani A, Boldrin E, Serafin V, Guglielmelli P, Vannucchi AM, Cazzaniga G, Biondi A, Locatelli F, Meyer LH, Buldini B, te Kronnie G, Bresolin S, Bortoluzzi S. Functional relevance of circRNA aberrant expression in pediatric acute leukemia with KMT2A::AFF1 fusion. Blood Adv 2024; 8:1305-1319. [PMID: 38029383 PMCID: PMC10918493 DOI: 10.1182/bloodadvances.2023011291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT Circular RNAs (circRNAs) are emerging molecular players in leukemogenesis and promising therapeutic targets. In KMT2A::AFF1 (MLL::AF4)-rearranged leukemia, an aggressive disease compared with other pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL), data about circRNAs are limited. Here, we disclose the circRNA landscape of infant patients with KMT2A::AFF1 translocated BCP-ALL showing dysregulated, mostly ectopically expressed, circRNAs in leukemia cells. Most of these circRNAs, apart from circHIPK3 and circZNF609, previously associated with oncogenic behavior in ALL, are still uncharacterized. An in vitro loss-of-function screening identified an oncogenic role of circFKBP5, circKLHL2, circNR3C1, and circPAN3 in KMT2A::AFF1 ALL, whose silencing affected cell proliferation and apoptosis. Further study in an extended cohort disclosed a significantly correlated expression of these oncogenic circRNAs and their putative involvement in common regulatory networks. Moreover, it showed that circAFF1 upregulation occurs in a subset of cases with HOXA KMT2A::AFF1 ALL. Collectively, functional analyses and patient data reveal oncogenic circRNA upregulation as a relevant mechanism that sustains the malignant cell phenotype in KMT2A::AFF1 ALL.
Collapse
Affiliation(s)
- Caterina Tretti Parenzan
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
| | - Anna Dal Molin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgia Longo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alessia Buratin
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Alice Cani
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
| | - Elena Boldrin
- Department of Biology, University of Padova, Padova, Italy
- Ulm University Medical Center, Department of Pediatric and Adolescent Medicine, Ulm, Germany
| | - Valentina Serafin
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Paola Guglielmelli
- Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | | | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Lueder H. Meyer
- Ulm University Medical Center, Department of Pediatric and Adolescent Medicine, Ulm, Germany
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | | | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | | |
Collapse
|
148
|
He H, Wei Y, Chen Y, Zhao X, Shen X, Zhu Q, Yin H. High expression circRALGPS2 in atretic follicle induces chicken granulosa cell apoptosis and autophagy via encoding a new protein. J Anim Sci Biotechnol 2024; 15:42. [PMID: 38468340 PMCID: PMC10926623 DOI: 10.1186/s40104-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The reproductive performance of chickens mainly depends on the development of follicles. Abnormal follicle development can lead to decreased reproductive performance and even ovarian disease among chickens. Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer. In recent years, the involvement of circRNAs in follicle development and atresia regulation has been confirmed. RESULTS In the present study, we used healthy and atretic chicken follicles for circRNA RNC-seq. The results showed differential expression of circRALGPS2. It was then confirmed that circRALGPS2 can translate into a protein, named circRALGPS2-212aa, which has IRES activity. Next, we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1. CONCLUSIONS Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.
Collapse
Affiliation(s)
- Haorong He
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuqi Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
149
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
150
|
Babayev M, Silveyra P. Role of circular RNAs in lung cancer. Front Genet 2024; 15:1346119. [PMID: 38501058 PMCID: PMC10944888 DOI: 10.3389/fgene.2024.1346119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Lung cancer remains a global public health concern with significant research focus on developing better diagnosis/prognosis biomarkers and therapeutical targets. Circular RNAs (circRNAs) are a type of single-stranded RNA molecules that covalently closed and have ubiquitous expression. These molecules have been implicated in a variety of disease mechanisms, including lung cancer, as they exhibit oncogenic or tumor suppressor characteristics. Recent research has shown an important role that circRNAs play at different stages of lung cancer, particularly in lung adenocarcinoma. In this review, we summarize the latest research on circRNAs and their roles within lung cancer diagnosis, as well as on disease mechanisms. We also discuss the knowledge gaps on these topics and possible future research directions.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN, United States
| |
Collapse
|