101
|
Ayer A, Fazakerley DJ, Suarna C, Maghzal GJ, Sheipouri D, Lee KJ, Bradley MC, Fernández-Del-Rio L, Tumanov S, Kong SM, van der Veen JN, Yang A, Ho JWK, Clarke SG, James DE, Dawes IW, Vance DE, Clarke CF, Jacobs RL, Stocker R. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol 2021; 46:102127. [PMID: 34521065 PMCID: PMC8435697 DOI: 10.1016/j.redox.2021.102127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases. Mitochondrial CoQ deficiency results in oxidative stress and a range of pathologies The drivers of mitochondrial CoQ deficiency remain largely unknown PEMT deficiency is the first identified positive regulator of mitochondrial CoQ PEMT deficiency increases CoQ by increasing the mitochondrial SAM-to-SAH ratio PEMT deficiency prevents insulin resistance by increasing mitochondrial CoQ
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia; Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Cacang Suarna
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Diba Sheipouri
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Kevin J Lee
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Lucía Fernández-Del-Rio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Stephanie My Kong
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Jelske N van der Veen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrian Yang
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Laboratory for Data Discovery for Health, Hong Kong Science Park, Hong Kong SAR, China
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dennis E Vance
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, United States
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
102
|
Glycine-Serine-Threonine Metabolic Axis Delays Intervertebral Disc Degeneration through Antioxidant Effects: An Imaging and Metabonomics Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5579736. [PMID: 34484565 PMCID: PMC8416401 DOI: 10.1155/2021/5579736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Although intervertebral disc degeneration (IDD) can be described as different stages of change through biological methods, this long and complex process cannot be defined in stages by single or simple combination of biological techniques. Under the background of the development of nuclear magnetic resonance (NMR) technology and the emerging metabonomics, we based on animal models and expanded to the study of clinical human degeneration models. The characteristics of different stages of IDD were analyzed by omics. Omics imaging combined with histology, cytology, and proteomics was used for screening of the intervertebral disc (IVD) of research subjects. Furthermore, mass spectrometry nontargeted metabolomics was used to explore profile of metabolites at different stages of the IDD process, to determine differential metabolic pathways and metabolites. NMR spectroscopy was used to qualitatively and quantitatively identify markers of degeneration. NMR was combined with mass spectrometry metabolomics to explore metabolic pathways. Metabolic pathways were determined through protein molecular biology and histocytology of the different groups. Distinguishing advantages of magnetic resonance spectroscopy (MRS) for analysis of metabolites and effective reflection of structural integrity and water molecule metabolism through diffusion tensor imaging (DTI) were further used to verify the macrometabolism profile during degeneration. A corresponding model of in vitro metabolomics and in vivo omics imaging was established. The findings of this study show that a series of metabolic pathways associated with the glycine-serine-threonine (Gly-Ser-Thr) metabolic axis affects carbohydrate patterns and energy utilization efficiency and ultimately delays disc degeneration through antioxidant effects.
Collapse
|
103
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
104
|
Untargeted Metabolomics Analysis Revealed Lipometabolic Disorders in Perirenal Adipose Tissue of Rabbits Subject to a High-Fat Diet. Animals (Basel) 2021; 11:ani11082289. [PMID: 34438746 PMCID: PMC8388361 DOI: 10.3390/ani11082289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simply Summary A high-fat diet is widely recognized as a significant modifiable risk for metabolic diseases. In this study, untargeted metabolomics, combined with liquid chromatography and high-resolution mass spectrometry, was used to evaluate perirenal adipose tissue metabolic changes. Our study revealed 206 differential metabolites. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a high-fat diet causes significant lipometabolic disorders; these metabolites may inhibit oxygen respiration by increasing adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thereby increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes. Abstract A high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes. Histological observations showed that the adipocytes cells and density of PAT were significantly increased in HFD rabbits. Our study revealed 206 differential metabolites (21 up-regulated and 185 down-regulated); 47 differential metabolites (13 up-regulated and 34 down-regulated), comprising mainly phospholipids, fatty acids, steroid hormones and amino acids, were chosen as potential biomarkers to help explain metabolic disorders caused by HFD. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a HFD caused significant lipometabolic disorders. These metabolites may inhibit oxygen respiration by increasing the adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thus increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes.
Collapse
|
105
|
Zee BM, Poels KE, Yao CH, Kawabata KC, Wu G, Duy C, Jacobus WD, Senior E, Endress JE, Jambhekar A, Lovitch SB, Ma J, Dhall A, Harris IS, Blanco MA, Sykes DB, Licht JD, Weinstock DM, Melnick A, Haigis MC, Michor F, Shi Y. Combined epigenetic and metabolic treatments overcome differentiation blockade in acute myeloid leukemia. iScience 2021; 24:102651. [PMID: 34151238 PMCID: PMC8192696 DOI: 10.1016/j.isci.2021.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.
Collapse
Affiliation(s)
- Barry M. Zee
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Kamrine E. Poels
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimihito C. Kawabata
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - William D. Jacobus
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth Senior
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Ashwini Jambhekar
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Scott B. Lovitch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jiexian Ma
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Abhinav Dhall
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Isaac S. Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - M. Andres Blanco
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan D. Licht
- Division of Hematology and Oncology, University of Florida Health Care Center, Gainesville, FL 32610, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Biology Program, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ari Melnick
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| |
Collapse
|
106
|
Hsu CL, Lo YC, Kao CF. H3K4 Methylation in Aging and Metabolism. EPIGENOMES 2021; 5:14. [PMID: 34968301 PMCID: PMC8594702 DOI: 10.3390/epigenomes5020014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
107
|
Hwang I, Tang D, Paik J. Oxidative stress sensing and response in neural stem cell fate. Free Radic Biol Med 2021; 169:74-83. [PMID: 33862161 PMCID: PMC9594080 DOI: 10.1016/j.freeradbiomed.2021.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.
Collapse
Affiliation(s)
- Inah Hwang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Deanna Tang
- University of Chicago, Chicago, IL, 60637, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
108
|
Horita DA, Hwang S, Stegall JM, Friday WB, Kirchner DR, Zeisel SH. Two methods for assessment of choline status in a randomized crossover study with varying dietary choline intake in people: isotope dilution MS of plasma and in vivo single-voxel magnetic resonance spectroscopy of liver. Am J Clin Nutr 2021; 113:1670-1678. [PMID: 33668062 PMCID: PMC8168360 DOI: 10.1093/ajcn/nqaa439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Choline deficiency has numerous negative health consequences; although the preponderance of the US population consumes less than the recommended Adequate Intake (AI), clinical assessment of choline status is difficult. Further, several pathways involved in primary metabolism of choline are estrogen-sensitive and the AI for premenopausal women is lower than that for men. OBJECTIVES We sought to determine whether in vivo magnetic resonance spectroscopy (MRS) of liver and/or isotope-dilution MS of plasma could identify biomarkers reflective of choline intake (preregistered primary outcomes 1 and 2, secondary outcome 1). Determination of whether biomarker concentrations showed sex dependence was a post hoc outcome. This substudy is a component of a larger project to identify a clinically useful biomarker panel for assessment of choline status. METHODS In a double-blind, randomized, crossover trial, people consumed 3 diets, representative of ∼100%, ∼50%, and ∼25% of the choline AI, for 2-wk periods. We measured the concentrations of choline and several metabolites using 1H single-voxel MRS of liver in vivo and using 2H-labeled isotope dilution MS of several choline metabolites in extracted plasma. RESULTS Plasma concentrations of 2H9-choline, unlabeled betaine, and 2H9-betaine, and the isotopic enrichment ratio (IER) of betaine showed highly significant between-diet effects (q < 0.0001), with unlabeled betaine concentration decreasing 32% from highest to lowest choline intake. Phosphatidylcholine IER was marginally significant (q = 0.03). Unlabeled phosphatidylcholine plasma concentrations did not show between-diet effects (q = 0.34). 2H9 (trimethyl)-phosphatidylcholine plasma concentrations (q = 0.07) and MRS-measured total soluble choline species liver concentrations (q = 0.07) showed evidence of between-diet effects but this was not statistically significant. CONCLUSIONS Although MRS is a more direct measure of choline status, variable spectral quality limited interpretation. MS analysis of plasma showed clear correlation of plasma betaine concentration, but not plasma phosphatidylcholine concentration, with dietary choline intake. Plasma betaine concentrations also correlate with sex status (premenopausal women, postmenopausal women, men).This trial was registered at clinicaltrials.gov as NCT03726671.
Collapse
Affiliation(s)
- David A Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Sunil Hwang
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Julie M Stegall
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Walter B Friday
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - David R Kirchner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
109
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
110
|
Barreto SG, Pandol SJ. Young-Onset Carcinogenesis - The Potential Impact of Perinatal and Early Life Metabolic Influences on the Epigenome. Front Oncol 2021; 11:653289. [PMID: 33996575 PMCID: PMC8116793 DOI: 10.3389/fonc.2021.653289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The last decade has witnessed a significant rise in cancers in young adults. This spectrum of solid organ cancers occurring in individuals under the age of 40 years (some reports extending the age-group to <50 years) in whom aetiology of cancer cannot be traced back to pre-existing familial cancer syndromes, is referred to as termed young-, or early- onset cancers. The underlying causes for young-onset carcinogenesis have remained speculative. We recently proposed a hypothesis to explain the causation of this entity. We propose that the risk for young-onset cancer begins in the perinatal period as a result of the exposure of the foetus to stressors, including maternal malnutrition, smoking or alcohol, with the consequent epigenomic events triggered to help the foetus cope/adapt. Exposure to the same stressors, early in the life of that individual, facilitates a re-activation of these 'responses designed to be protective' but ultimately resulting in a loss of regulation at a metabolic and/or genetic level culminating in the evolution of the neoplastic process. In this manuscript, we will provide a rationale for this hypothesis and present evidence to further support it by clarifying the pathways involved, including elucidating a role for Acetyl-CoA and its effect on the epigenome. We present strategies and experimental models that can be used to test the hypothesis. We believe that a concerted effort by experts in different, but complementary fields, such as epidemiology, genetics, and epigenetics united towards the common goal of deciphering the underlying cause for young-onset cancers is the urgent need. Such efforts might serve to prove, or disprove, the presented hypothesis. However, the more important aim is to develop strategies to reverse the disturbing trend of the rise in young-onset cancers.
Collapse
Affiliation(s)
- Savio George Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Center, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Los Angeles, SA, Australia
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
111
|
Chung KW. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021; 10:cells10040880. [PMID: 33924316 PMCID: PMC8068994 DOI: 10.3390/cells10040880] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
During aging, body adiposity increases with changes in the metabolism of lipids and their metabolite levels. Considering lipid metabolism, excess adiposity with increased lipotoxicity leads to various age-related diseases, including cardiovascular disease, cancer, arthritis, type 2 diabetes, and Alzheimer's disease. However, the multifaceted nature and complexities of lipid metabolism make it difficult to delineate its exact mechanism and role during aging. With advances in genetic engineering techniques, recent studies have demonstrated that changes in lipid metabolism are associated with aging and age-related diseases. Lipid accumulation and impaired fatty acid utilization in organs are associated with pathophysiological phenotypes of aging. Changes in adipokine levels contribute to aging by modulating changes in systemic metabolism and inflammation. Advances in lipidomic techniques have identified changes in lipid profiles that are associated with aging. Although it remains unclear how lipid metabolism is regulated during aging, or how lipid metabolites impact aging, evidence suggests a dynamic role for lipid metabolism and its metabolites as active participants of signaling pathways and regulators of gene expression. This review describes recent advances in our understanding of lipid metabolism in aging, including established findings and recent approaches.
Collapse
Affiliation(s)
- Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46214, Korea
| |
Collapse
|
112
|
Singh M, Hardin SJ, George AK, Eyob W, Stanisic D, Pushpakumar S, Tyagi SC. Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Front Physiol 2021; 11:617953. [PMID: 33708132 PMCID: PMC7940193 DOI: 10.3389/fphys.2020.617953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
113
|
Kovács K, Farkas Z, Bajić D, Kalapis D, Daraba A, Almási K, Kintses B, Bódi Z, Notebaart RA, Poyatos JF, Kemmeren P, Holstege FCP, Pál C, Papp B. Suboptimal Global Transcriptional Response Increases the Harmful Effects of Loss-of-Function Mutations. Mol Biol Evol 2021; 38:1137-1150. [PMID: 33306797 PMCID: PMC7947755 DOI: 10.1093/molbev/msaa280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fitness impact of loss-of-function mutations is generally assumed to reflect the loss of specific molecular functions associated with the perturbed gene. Here, we propose that rewiring of the transcriptome upon deleterious gene inactivation is frequently nonspecific and mimics stereotypic responses to external environmental change. Consequently, transcriptional response to gene deletion could be suboptimal and incur an extra fitness cost. Analysis of the transcriptomes of ∼1,500 single-gene deletion Saccharomyces cerevisiae strains supported this scenario. First, most transcriptomic changes are not specific to the deleted gene but are rather triggered by perturbations in functionally diverse genes. Second, gene deletions that alter the expression of dosage-sensitive genes are especially harmful. Third, by elevating the expression level of downregulated genes, we could experimentally mitigate the fitness defect of gene deletions. Our work shows that rewiring of genomic expression upon gene inactivation shapes the harmful effects of mutations.
Collapse
Affiliation(s)
- Károly Kovács
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Zoltán Farkas
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Djordje Bajić
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
- Logic of Genomic Systems Laboratory, Department of Systems Biology, CNB-CSIC, Madrid, Spain
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT
| | - Dorottya Kalapis
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Andreea Daraba
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Karola Almási
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Bálint Kintses
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Bódi
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, Department of Systems Biology, CNB-CSIC, Madrid, Spain
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Csaba Pál
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Biological Research Centre, Synthetic and Systems Biology Unit, Institute of Biochemistry, Szeged, Hungary
| |
Collapse
|
114
|
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one‑carbon metabolism in cancer (Review). Int J Oncol 2021; 58:158-170. [PMID: 33491748 PMCID: PMC7864012 DOI: 10.3892/ijo.2020.5158] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Serine/glycine biosynthesis and one‑carbon metabolism are crucial in sustaining cancer cell survival and rapid proliferation, and of high clinical relevance. Excessive activation of serine/glycine biosynthesis drives tumorigenesis and provides a single carbon unit for one‑carbon metabolism. One‑carbon metabolism, which is a complex cyclic metabolic network based on the chemical reaction of folate compounds, provides the necessary proteins, nucleic acids, lipids and other biological macromolecules to support tumor growth. Moreover, one‑carbon metabolism also maintains the redox homeostasis of the tumor microenvironment and provides substrates for the methylation reaction. The present study reviews the role of key enzymes with tumor‑promoting functions and important intermediates that are physiologically relevant to tumorigenesis in serine/glycine/one‑carbon metabolism pathways. The related regulatory mechanisms of action of the key enzymes and important intermediates in tumors are also discussed. It is hoped that investigations into these pathways will provide new translational opportunities for human cancer drug development, dietary interventions, and biomarker identification.
Collapse
Affiliation(s)
- Sijing Pan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ming Fan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhangnan Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xia Li
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| | - Huijuan Wang
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| |
Collapse
|
115
|
de Polo A, Labbé DP. Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prev Res (Phila) 2021; 14:403-414. [PMID: 33509805 DOI: 10.1158/1940-6207.capr-20-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Despite several epidemiologic and preclinical studies supporting the role of diet in cancer progression, the complexity of the diet-cancer link makes it challenging to deconvolute the underlying mechanisms, which remain scantly elucidated. This review focuses on genomic instability as one of the cancer hallmarks affected by diet-dependent metabolic alterations. We discuss how altered dietary intake of metabolites of the one-carbon metabolism, including methionine, folate, and vitamins B and C, can impact the methylation processes and thereby tumorigenesis. We present the concept that the protumorigenic effect of certain diets, such as the Western diet, is in part due to a diet-induced erosion of the DNA repair capacity caused by altered epigenetic and epitranscriptomic landscapes, while the protective effect of other dietary patterns, such as the Mediterranean diet, can be partly explained by their ability to sustain a proficient DNA repair. In particular, considering that diet-dependent alterations of the one-carbon metabolism can impact the rate of methylation processes, changes in dietary patterns can affect the activity of writers and erasers of histone and RNA methyl marks and consequently impair their role in ensuring a proficient DNA damage repair.
Collapse
Affiliation(s)
- Anna de Polo
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - David P Labbé
- Division of Urology, Department of Surgery, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
116
|
Blitzblau HG, Consiglio AL, Teixeira P, Crabtree DV, Chen S, Konzock O, Chifamba G, Su A, Kamineni A, MacEwen K, Hamilton M, Tsakraklides V, Nielsen J, Siewers V, Shaw AJ. Production of 10-methyl branched fatty acids in yeast. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:12. [PMID: 33413611 PMCID: PMC7791843 DOI: 10.1186/s13068-020-01863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite the environmental value of biobased lubricants, they account for less than 2% of global lubricant use due to poor thermo-oxidative stability arising from the presence of unsaturated double bonds. Methyl branched fatty acids (BFAs), particularly those with branching near the acyl-chain mid-point, are a high-performance alternative to existing vegetable oils because of their low melting temperature and full saturation. RESULTS We cloned and characterized two pathways to produce 10-methyl BFAs isolated from actinomycetes and γ-proteobacteria. In the two-step bfa pathway of actinomycetes, BfaB methylates Δ9 unsaturated fatty acids to form 10-methylene BFAs, and subsequently, BfaA reduces the double bond to produce a fully saturated 10-methyl branched fatty acid. A BfaA-B fusion enzyme increased the conversion efficiency of 10-methyl BFAs. The ten-methyl palmitate production (tmp) pathway of γ-proteobacteria produces a 10-methylene intermediate, but the TmpA putative reductase was not active in E. coli or yeast. Comparison of BfaB and TmpB activities revealed a range of substrate specificities from C14-C20 fatty acids unsaturated at the Δ9, Δ10 or Δ11 position. We demonstrated efficient production of 10-methylene and 10-methyl BFAs in S. cerevisiae by secretion of free fatty acids and in Y. lipolytica as triacylglycerides, which accumulated to levels more than 35% of total cellular fatty acids. CONCLUSIONS We report here the characterization of a set of enzymes that can produce position-specific methylene and methyl branched fatty acids. Yeast expression of bfa enzymes can provide a platform for the large-scale production of branched fatty acids suitable for industrial and consumer applications.
Collapse
Affiliation(s)
- Hannah G Blitzblau
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA.
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA.
| | - Andrew L Consiglio
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Paulo Teixeira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | | | - Shuyan Chen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Oliver Konzock
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Gamuchirai Chifamba
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Austin Su
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
| | - Annapurna Kamineni
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Kyle MacEwen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Maureen Hamilton
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Vasiliki Tsakraklides
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Joe Shaw
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Manus Biosynthesis, 1030 Massachusetts Ave. #300, Cambridge, MA, 02138, USA
| |
Collapse
|
117
|
Susila H, Nasim Z, Gawarecka K, Jung JY, Jin S, Youn G, Ahn JH. PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 modulates flowering in a florigen-independent manner by regulating SVP. Development 2021; 148:dev.193870. [PMID: 33268452 DOI: 10.1242/dev.193870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 (PECT1) regulates phosphatidylethanolamine biosynthesis and controls the phosphatidylethanolamine:phosphatidylcholine ratio in Arabidopsis thaliana Previous studies have suggested that PECT1 regulates flowering time by modulating the interaction between phosphatidylcholine and FLOWERING LOCUS T (FT), a florigen, in the shoot apical meristem (SAM). Here, we show that knockdown of PECT1 by artificial microRNA in the SAM (pFD::amiR-PECT1) accelerated flowering under inductive and even non-inductive conditions, in which FT transcription is almost absent, and in ft-10 twin sister of ft-1 double mutants under both conditions. Transcriptome analyses suggested that PECT1 affects flowering by regulating SHORT VEGETATIVE PHASE (SVP) and GIBBERELLIN 20 OXIDASE 2 (GA20ox2). SVP misexpression in the SAM suppressed the early flowering of pFD::amiR-PECT1 plants. pFD::amiR-PECT1 plants showed increased gibberellin (GA) levels in the SAM, concomitant with the reduction of REPRESSOR OF GA1-3 levels. Consistent with this, GA treatment had little effect on flowering time of pFD::amiR-PECT1 plants and the GA antagonist paclobutrazol strongly affected flowering in these plants. Together, these results suggest that PECT1 also regulates flowering time through a florigen-independent pathway, modulating SVP expression and thus regulating GA production.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | | | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| |
Collapse
|
118
|
Abstract
The mechanisms of epigenetic gene regulation-histone modifications, chromatin remodeling, DNA methylation, and noncoding RNA-use metabolites as enzymatic cofactors and substrates in reactions that allow chromatin formation, nucleotide biogenesis, transcription, RNA processing, and translation. Gene expression responds to demands from cellular processes that use specific metabolites and alters or maintains cellular metabolic status. However, the roles of metabolites-particularly nucleotides-as regulatory molecules in epigenetic regulation and biological processes remain largely unknown. Here we review the crosstalk between gene expression, nucleotide metabolism, and cellular processes, and explore the role of metabolism in epigenetics as a critical regulator of biological events.
Collapse
|
119
|
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 2020; 295:18390-18405. [PMID: 33122193 PMCID: PMC7939465 DOI: 10.1074/jbc.ra120.014248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ganesh Kadamur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India; School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
120
|
Hansen ASL, Dunham MJ, Arsovska D, Zhang J, Keasling JD, Herrgard MJ, Jensen MK. Dietary Change Enables Robust Growth-Coupling of Heterologous Methyltransferase Activity in Yeast. ACS Synth Biol 2020; 9:3408-3415. [PMID: 33179905 DOI: 10.1021/acssynbio.0c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic modifications of living organisms and proteins are made possible by a catalogue of molecular and synthetic biology tools, yet proper screening assays for genetic variants of interest continue to lag behind. Synthetic growth-coupling (GC) of enzyme activities offers a simple, inexpensive way to track such improvements. In this follow-up study we present the optimization of a recently established GC design for screening of heterologous methyltransferases (MTases) and related pathways in the yeast Saccharomyces cerevisiae. Specifically, upon testing different media compositions and genetic backgrounds, improved GC of different heterologous MTase activities is obtained. Furthermore, we demonstrate the strength of the system by screening a library of catechol O-MTase variants converting protocatechuic acid into vanillic acid. We demonstrated high correlation (R2 = 0.775) between vanillic acid and cell density as a proxy for MTase activity. We envision that the improved MTase GC can aid evolution-guided optimization of biobased production processes for methylated compounds with yeast in the future.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Dushica Arsovska
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Markus J. Herrgard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
121
|
Kumar M, Skillman K, Duraisingh MT. Linking nutrient sensing and gene expression in Plasmodium falciparum blood-stage parasites. Mol Microbiol 2020; 115:891-900. [PMID: 33236377 DOI: 10.1111/mmi.14652] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, caused by infection of humans with parasites of the genus Plasmodium. The complex life cycle of Plasmodium parasites is shared between two hosts, with infection of multiple cell types, and the parasite needs to adapt for survival and transmission through significantly different metabolic environments. Within the blood-stage alone, parasites encounter changing levels of key nutrients, including sugars, amino acids, and lipids, due to differences in host dietary nutrition, cellular tropism, and pathogenesis. In this review, we consider the mechanisms that the most lethal of malaria parasites, Plasmodium falciparum, uses to sense nutrient levels and elicit changes in gene expression during blood-stage infections. These changes are brought about by several metabolic intermediates and their corresponding sensor proteins. Sensing of distinct nutritional signals can drive P. falciparum to alter the key blood-stage processes of proliferation, antigenic variation, and transmission.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kristen Skillman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
122
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|
123
|
Abstract
Significance: In humans, imbalances in the reduction-oxidation (redox) status of cells are associated with many pathological states. In addition, many therapeutics and prophylactics used as interventions for diverse pathologies either directly modulate oxidant levels or otherwise influence endogenous cellular redox systems. Recent Advances: The cellular machineries that maintain redox homeostasis or that function within antioxidant defense systems rely heavily on the regulated reactivities of sulfur atoms either within or derived from the amino acids cysteine and methionine. Recent advances have substantially advanced our understanding of the complex and essential chemistry of biological sulfur-containing molecules. Critical Issues: The redox machineries that maintain cellular homeostasis under diverse stresses can consume large amounts of energy to generate reducing power and/or large amounts of sulfur-containing nutrients to replenish or sustain intracellular stores. By understanding the metabolic pathways underlying these responses, one can better predict how to protect cells from specific stresses. Future Directions: Here, we summarize the current state of knowledge about the impacts of different stresses on cellular metabolism of sulfur-containing molecules. This analysis suggests that there remains more to be learned about how cells use sulfur chemistry to respond to stresses, which could in turn lead to advances in therapeutic interventions for some exposures or conditions.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
124
|
Bhatia M, Thakur J, Suyal S, Oniel R, Chakraborty R, Pradhan S, Sharma M, Sengupta S, Laxman S, Masakapalli SK, Bachhawat AK. Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one-carbon metabolism. J Biol Chem 2020; 295:16037-16057. [PMID: 32934008 PMCID: PMC7681022 DOI: 10.1074/jbc.ra120.015129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/12/2020] [Indexed: 01/05/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) links the folate cycle to the methionine cycle in one-carbon metabolism. The enzyme is known to be allosterically inhibited by SAM for decades, but the importance of this regulatory control to one-carbon metabolism has never been adequately understood. To shed light on this issue, we exchanged selected amino acid residues in a highly conserved stretch within the regulatory region of yeast MTHFR to create a series of feedback-insensitive, deregulated mutants. These were exploited to investigate the impact of defective allosteric regulation on one-carbon metabolism. We observed a strong growth defect in the presence of methionine. Biochemical and metabolite analysis revealed that both the folate and methionine cycles were affected in these mutants, as was the transsulfuration pathway, leading also to a disruption in redox homeostasis. The major consequences, however, appeared to be in the depletion of nucleotides. 13C isotope labeling and metabolic studies revealed that the deregulated MTHFR cells undergo continuous transmethylation of homocysteine by methyltetrahydrofolate (CH3THF) to form methionine. This reaction also drives SAM formation and further depletes ATP reserves. SAM was then cycled back to methionine, leading to futile cycles of SAM synthesis and recycling and explaining the necessity for MTHFR to be regulated by SAM. The study has yielded valuable new insights into the regulation of one-carbon metabolism, and the mutants appear as powerful new tools to further dissect out the intersection of one-carbon metabolism with various pathways both in yeasts and in humans.
Collapse
Affiliation(s)
- Muskan Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Jyotika Thakur
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Shradha Suyal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Ruchika Oniel
- Institute for Stem Cell Science and Regenerative Medicine (inStem), NCBS-TIFR Campus, Bangalore, India
| | - Rahul Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shalini Pradhan
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Shantanu Sengupta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), NCBS-TIFR Campus, Bangalore, India
| | - Shyam Kumar Masakapalli
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
125
|
Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020; 2:1190-1203. [PMID: 33046909 DOI: 10.1038/s42255-020-00285-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
Collapse
Affiliation(s)
- Ruben Boon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Giorgia G Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
126
|
Lerner AM, Hepperla AJ, Keele GR, Meriesh HA, Yumerefendi H, Restrepo D, Zimmerman S, Bear JE, Kuhlman B, Davis IJ, Strahl BD. An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation. Genome Res 2020; 30:1605-1617. [PMID: 33020206 PMCID: PMC7605256 DOI: 10.1101/gr.264283.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022]
Abstract
Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification associated with transcription and DNA repair. Although the effects of H3K36 methylation have been studied, the genome-wide dynamics of H3K36me deposition and removal are not known. We established rapid and reversible optogenetic control for Set2, the sole H3K36 methyltransferase in yeast, by fusing the enzyme with the light-activated nuclear shuttle (LANS) domain. Light activation resulted in efficient Set2-LANS nuclear localization followed by H3K36me3 deposition in vivo, with total H3K36me3 levels correlating with RNA abundance. Although genes showed disparate levels of H3K36 methylation, relative rates of H3K36me3 accumulation were largely linear and consistent across genes, suggesting that H3K36me3 deposition occurs in a directed fashion on all transcribed genes regardless of their overall transcription frequency. Removal of H3K36me3 was highly dependent on the demethylase Rph1. However, the per-gene rate of H3K36me3 loss weakly correlated with RNA abundance and followed exponential decay, suggesting H3K36 demethylases act in a global, stochastic manner. Altogether, these data provide a detailed temporal view of H3K36 methylation and demethylation that suggests transcription-dependent and -independent mechanisms for H3K36me deposition and removal, respectively.
Collapse
Affiliation(s)
- Andrew M Lerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Hashem A Meriesh
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York 10965, USA
| | - David Restrepo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Seth Zimmerman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ian J Davis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
127
|
Hamilton PJ, Chen EY, Tolstikov V, Peña CJ, Picone JA, Shah P, Panagopoulos K, Strat AN, Walker DM, Lorsch ZS, Robinson HL, Mervosh NL, Kiraly DD, Sarangarajan R, Narain NR, Kiebish MA, Nestler EJ. Chronic stress and antidepressant treatment alter purine metabolism and beta oxidation within mouse brain and serum. Sci Rep 2020; 10:18134. [PMID: 33093530 PMCID: PMC7582177 DOI: 10.1038/s41598-020-75114-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a complex condition with unclear pathophysiology. Molecular disruptions within limbic brain regions and the periphery contribute to depression symptomatology and a more complete understanding the diversity of molecular changes that occur in these tissues may guide the development of more efficacious antidepressant treatments. Here, we utilized a mouse chronic social stress model for the study of MDD and performed metabolomic, lipidomic, and proteomic profiling on serum plus several brain regions (ventral hippocampus, nucleus accumbens, and medial prefrontal cortex) of susceptible, resilient, and unstressed control mice. To identify how commonly used tricyclic antidepressants impact the molecular composition in these tissues, we treated stress-exposed mice with imipramine and repeated our multi-OMIC analyses. Proteomic analysis identified three serum proteins reduced in susceptible animals; lipidomic analysis detected differences in lipid species between resilient and susceptible animals in serum and brain; and metabolomic analysis revealed dysfunction of purine metabolism, beta oxidation, and antioxidants, which were differentially associated with stress susceptibility vs resilience by brain region. Antidepressant treatment ameliorated stress-induced behavioral abnormalities and affected key metabolites within outlined networks, most dramatically in the ventral hippocampus. This work presents a resource for chronic social stress-induced, tissue-specific changes in proteins, lipids, and metabolites and illuminates how molecular dysfunctions contribute to individual differences in stress sensitivity.
Collapse
Affiliation(s)
- Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA. .,Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Emily Y Chen
- BERG LLC, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Punit Shah
- BERG LLC, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | | - Ana N Strat
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Hannah L Robinson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Nicholas L Mervosh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | | | - Niven R Narain
- BERG LLC, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| |
Collapse
|
128
|
Giese GE, Walker MD, Ponomarova O, Zhang H, Li X, Minevich G, Walhout AJ. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 2020; 9:60259. [PMID: 33016879 PMCID: PMC7561351 DOI: 10.7554/elife.60259] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as ‘B12-mechanism-I’. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as ‘B12-mechanism-II’. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.
Collapse
Affiliation(s)
- Gabrielle E Giese
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Melissa D Walker
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Olga Ponomarova
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Hefei Zhang
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Xuhang Li
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Albertha Jm Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
129
|
Zhang T, Bauer C, Newman AC, Uribe AH, Athineos D, Blyth K, Maddocks ODK. Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nat Metab 2020; 2:1062-1076. [PMID: 32747794 PMCID: PMC7614128 DOI: 10.1038/s42255-020-0253-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Cancer cells have high demands for non-essential amino acids (NEAAs), which are precursors for anabolic and antioxidant pathways that support cell survival and proliferation. It is well-established that cancer cells consume the NEAA cysteine, and that cysteine deprivation can induce cell death; however, the specific factors governing acute sensitivity to cysteine starvation are poorly characterized. Here, we show that that neither expression of enzymes for cysteine synthesis nor availability of the primary precursor methionine correlated with acute sensitivity to cysteine starvation. We observed a strong correlation between efflux of the methionine-derived metabolite methylthioadenosine (MTA) and sensitivity to cysteine starvation. MTA efflux results from genetic deletion of methylthioadenosine phosphorylase (MTAP), which is frequently deleted in cancers. We show that MTAP loss upregulates polyamine metabolism which, concurrently with cysteine withdrawal, promotes elevated reactive oxygen species and prevents cell survival. Our results reveal an unexplored metabolic weakness at the intersection of polyamine and cysteine metabolism.
Collapse
Affiliation(s)
- Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Novartis Institutes for BioMedical Research, Shanghai, China
| | - Christin Bauer
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- AstraZeneca R&D, Cambridge, UK
| | - Alice C Newman
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | | | - Karen Blyth
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
130
|
Vanderkruk B, Hoffman BG. Metabolism as a central regulator of β-cell chromatin state. FEBS J 2020; 288:3683-3693. [PMID: 32926557 DOI: 10.1111/febs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are critical mediators of glucose homeostasis in the body, and proper cellular nutrient metabolism is critical to β-cell function. Several interacting signaling networks that uniquely control β-cell metabolism produce essential substrates and co-factors for catalytic reactions, including reactions that modify chromatin. Chromatin modifications, in turn, regulate gene expression. The reactions that modify chromatin are therefore well-positioned to adjust gene expression programs according to nutrient availability. It follows that dysregulation of nutrient metabolism in β-cells may impact chromatin state and gene expression through altering the availability of these substrates and co-factors. Metabolic disorders such as type 2 diabetes (T2D) can significantly alter metabolite levels in cells. This suggests that a driver of β-cell dysfunction during T2D may be the altered availability of substrates or co-factors necessary to maintain β-cell chromatin state. Induced changes in the β-cell chromatin modifications may then lead to dysregulation of gene expression, in turn contributing to the downward cascade of events that leads to the loss of functional β-cell mass, and loss of glucose homeostasis, that occurs in T2D.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
131
|
Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites 2020; 10:metabo10090370. [PMID: 32942543 PMCID: PMC7570292 DOI: 10.3390/metabo10090370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Renal diets are recommended for dogs with chronic kidney disease (CKD). This study examined the effects of foods with added betaine and fiber on the plasma and fecal metabolome and fecal microbiome in dogs with early stage CKD. At baseline, several metabolites differed between healthy dogs and those with CKD. Dogs with CKD (n = 28) received a control food, low soluble fiber plus betaine food (0.5% betaine, 0.39% oat beta-glucan, and 0.27% short-chain fructooligosaccharides (scFOS)), or high soluble fiber plus betaine food (0.5% betaine, 0.59% oat beta-glucan, and 0.41% scFOS) each for 10 weeks in different sequences. Consumption of test foods led to several favorable, significant changes in the plasma metabolome, including decreases of several uremic toxins and other deleterious metabolites, and increases in favorable metabolites compared with the control food. Only 7 fecal metabolites significantly changed with consumption of the test foods compared with the control food, largely increases in polyphenols and lignans. Few changes were seen in the fecal microbiome, though some taxa that significantly changed in response to the test foods have beneficial effects on health, with some negatively correlating with uremic toxins. Overall, foods with added betaine and soluble fiber showed positive effects on the plasma and fecal metabolomes.
Collapse
|
132
|
The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 2020; 21:737-753. [PMID: 32908249 DOI: 10.1038/s41576-020-0270-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
Collapse
|
133
|
Haws SA, Leech CM, Denu JM. Metabolism and the Epigenome: A Dynamic Relationship. Trends Biochem Sci 2020; 45:731-747. [DOI: 10.1016/j.tibs.2020.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
|
134
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
135
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol 2020; 219:jcb.201907022. [PMID: 31690618 PMCID: PMC7039202 DOI: 10.1083/jcb.201907022] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Perturbations in cellular metabolism are ubiquitous in cancer. Here Reina-Campos et al. review the role of one-carbon metabolism in tumorigenesis. The serine glycine and one-carbon pathway (SGOCP) is a crucially important metabolic network for tumorigenesis, of unanticipated complexity, and with implications in the clinic. Solving how this network is regulated is key to understanding the underlying mechanisms of tumor heterogeneity and therapy resistance. Here, we review its role in cancer by focusing on key enzymes with tumor-promoting functions and important products of the SGOCP that are of physiological relevance for tumorigenesis. We discuss the regulatory mechanisms that coordinate the metabolic flux through the SGOCP and their deregulation, as well as how the actions of this metabolic network affect other cells in the tumor microenvironment, including endothelial and immune cells.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
136
|
Sênos Demarco R, Clémot M, Jones DL. The impact of ageing on lipid-mediated regulation of adult stem cell behavior and tissue homeostasis. Mech Ageing Dev 2020; 189:111278. [PMID: 32522455 DOI: 10.1016/j.mad.2020.111278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Adult stem cells sustain tissue homeostasis throughout life and provide an important reservoir of cells capable of tissue repair in response to stress and tissue damage. Age-related changes to stem cells and/or the specialized niches that house them have been shown to negatively impact stem cell maintenance and activity. In addition, metabolic inputs have surfaced as another crucial layer in the control of stem cell behavior (Chandel et al., 2016; Folmes and Terzic, 2016; Ito and Suda, 2014; Mana et al., 2017; Shyh-Chang and Ng, 2017). Here, we will present a brief review of how lipid metabolism influences adult stem cell behavior under homeostatic conditions and speculate on how changes in lipid metabolism may impact stem cell ageing. This review considers the future of lipid metabolism research in stem cells, with the long-term goal of identifying mechanisms that could be targeted to counter or slow the age-related decline in stem cell function.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA
| | - Marie Clémot
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Molecular Biology Institute, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
137
|
Humphries BA, Cutter AC, Buschhaus JM, Chen YC, Qyli T, Palagama DSW, Eckley S, Robison TH, Bevoor A, Chiang B, Haley HR, Sahoo S, Spinosa PC, Neale DB, Boppisetti J, Sahoo D, Ghosh P, Lahann J, Ross BD, Yoon E, Luker KE, Luker GD. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res 2020; 22:60. [PMID: 32503622 PMCID: PMC7275541 DOI: 10.1186/s13058-020-01301-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC). METHODS We enforced mitochondrial fission and fusion states through chemical or genetic approaches and measured migration and invasion of TNBC cells in 2D and 3D in vitro models. We also utilized kinase translocation reporters (KTRs) to identify single cell effects of mitochondrial state on signaling cascades, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK, commonly activated in TNBC. Furthermore, we determined effects of fission and fusion states on metastasis, bone destruction, and signaling in mouse models of breast cancer. RESULTS Enforcing mitochondrial fission through chemical or genetic approaches inhibited migration, invasion, and metastasis in TNBC. Breast cancer cells with predominantly fissioned mitochondria exhibited reduced activation of Akt and ERK both in vitro and in mouse models of breast cancer. Treatment with leflunomide, a potent activator of mitochondrial fusion proteins, overcame inhibitory effects of fission on migration, signaling, and metastasis. Mining existing datasets for breast cancer revealed that increased expression of genes associated with mitochondrial fission correlated with improved survival in human breast cancer. CONCLUSIONS In TNBC, mitochondrial fission inhibits cellular processes and signaling pathways associated with cancer progression and metastasis. These data suggest that therapies driving mitochondrial fission may benefit patients with breast cancer.
Collapse
Affiliation(s)
- Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Johanna M Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Forbes Institute for Cancer Discovery, University of Michigan, Ann Arbor, MI, USA
| | - Tonela Qyli
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Dilrukshika S W Palagama
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Samantha Eckley
- Unit for Laboratory Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tanner H Robison
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Avinash Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Benjamin Chiang
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Henry R Haley
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Saswat Sahoo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Phillip C Spinosa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dylan B Neale
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jagadish Boppisetti
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Debashis Sahoo
- Department of Pediatrics, Department of Computer Science and Engineering, Jacob's School of Engineering, Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, Department of Cellular and Molecular Medicine, Rebecca and John Moore Comprehensive Cancer Center, Veterans Affairs Medical Center, University of California San Diego, La Jolla, CA, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian D Ross
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Eusik Yoon
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
138
|
Diehl KL, Muir TW. Chromatin as a key consumer in the metabolite economy. Nat Chem Biol 2020; 16:620-629. [PMID: 32444835 DOI: 10.1038/s41589-020-0517-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
In eukaryotes, chromatin remodeling and post-translational modifications (PTMs) shape the local chromatin landscape to establish permissive and repressive regions within the genome, orchestrating transcription, replication, and DNA repair in concert with other epigenetic mechanisms. Though cellular nutrient signaling encompasses a huge number of pathways, recent attention has turned to the hypothesis that the metabolic state of the cell is communicated to the genome through the type and concentration of metabolites in the nucleus that are cofactors for chromatin-modifying enzymes. Importantly, both epigenetic and metabolic dysregulation are hallmarks of a range of diseases, and this metabolism-chromatin axis may yield a well of new therapeutic targets. In this Perspective, we highlight emerging themes in the inter-regulation of the genome and metabolism via chromatin, including nonenzymatic histone modifications arising from chemically reactive metabolites, the expansion of PTM diversity from cofactor-promiscuous chromatin-modifying enzymes, and evidence for the existence and importance of subnucleocytoplasmic metabolite pools.
Collapse
Affiliation(s)
- Katharine L Diehl
- Department of Chemistry, Princeton University, Princeton, NJ, USA. .,Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
139
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
140
|
Haws SA, Yu D, Ye C, Wille CK, Nguyen LC, Krautkramer KA, Tomasiewicz JL, Yang SE, Miller BR, Liu WH, Igarashi K, Sridharan R, Tu BP, Cryns VL, Lamming DW, Denu JM. Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol Cell 2020; 78:210-223.e8. [PMID: 32208170 PMCID: PMC7191556 DOI: 10.1016/j.molcel.2020.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Coral K Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Long C Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kimberly A Krautkramer
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Shany E Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Blake R Miller
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wallace H Liu
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent L Cryns
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - John M Denu
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
141
|
Leung J, Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. FRONTIERS IN PLANT SCIENCE 2020; 11:181. [PMID: 32194593 PMCID: PMC7066317 DOI: 10.3389/fpls.2020.00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 05/23/2023]
Abstract
Epigenetics refers to the mode of inheritance independent of mutational changes in the DNA. Early evidence has revealed methylation, acetylation, and phosphorylation of histones, as well as methylation of DNA as part of the underlying mechanisms. The recent awareness that many human diseases have in fact an epigenetic basis, due to unbalanced diets, has led to a resurgence of interest in how epigenetics might be connected with, or even controlled by, metabolism. The Next-Generation genomic technologies have now unleashed torrents of results exposing a wondrous array of metabolites that are covalently attached to selective sites on histones, DNA and RNA. Metabolites are often cofactors or targets of chromatin-modifying enzymes. Many metabolites themselves can be acetylated or methylated. This indicates that the acetylome and methylome can actually be deep and pervasive networks to ensure the nuclear activities are coordinated with the metabolic status of the cell. The discovery of novel histone marks also raises the question on the types of pathways by which their corresponding metabolites are replenished, how they are corralled to the specific histone residues and how they are recognized. Further, atypical cytosines and uracil have also been found in eukaryotic genomes. Although these new and extensive connections between metabolism and epigenetics have been established mostly in animal models, parallels must exist in plants, inasmuch as many of the basic components of chromatin and its modifying enzymes are conserved. Plants are chemical factories constantly responding to stress. Plants, therefore, should lend themselves readily for identifying new endogenous metabolites that are also modulators of nuclear activities in adapting to stress.
Collapse
Affiliation(s)
- Jeffrey Leung
- Institut Jean-Pierre Bourgin, ERL3559 CNRS, INRAE, Versailles, France
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
142
|
Pawlik G, Renne MF, Kol MA, de Kroon AIPM. The topology of the ER-resident phospholipid methyltransferase Opi3 of Saccharomyces cerevisiae is consistent with in trans catalysis. J Biol Chem 2020; 295:2473-2482. [PMID: 31932304 PMCID: PMC7039565 DOI: 10.1074/jbc.ra119.011102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipid N-methyltransferases (PLMTs) synthesize phosphatidylcholine by methylating phosphatidylethanolamine using S-adenosylmethionine as a methyl donor. Eukaryotic PLMTs are integral membrane enzymes located in the endoplasmic reticulum (ER). Recently Opi3, a PLMT of the yeast Saccharomyces cerevisiae was proposed to perform in trans catalysis, i.e. while localized in the ER, Opi3 would methylate lipid substrates located in the plasma membrane at membrane contact sites. Here, we tested whether the Opi3 active site is located at the cytosolic side of the ER membrane, which is a prerequisite for in trans catalysis. The membrane topology of Opi3 (and its human counterpart, phosphatidylethanolamine N-methyltransferase, expressed in yeast) was addressed by topology prediction algorithms and by the substituted cysteine accessibility method. The results of these analyses indicated that Opi3 (as well as phosphatidylethanolamine N-methyltransferase) has an N-out C-in topology and contains four transmembrane domains, with the fourth forming a re-entrant loop. On the basis of the sequence conservation between the C-terminal half of Opi3 and isoprenyl cysteine carboxyl methyltransferases with a solved crystal structure, we identified amino acids critical for Opi3 activity by site-directed mutagenesis. Modeling of the structure of the C-terminal part of Opi3 was consistent with the topology obtained by the substituted cysteine accessibility method and revealed that the active site faces the cytosol. In conclusion, the location of the Opi3 active site identified here is consistent with the proposed mechanism of in trans catalysis, as well as with conventional catalysis in cis.
Collapse
Affiliation(s)
- Grzegorz Pawlik
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Matthijs A Kol
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
143
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
144
|
Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. The Skin Epilipidome in Stress, Aging, and Inflammation. Front Endocrinol (Lausanne) 2020; 11:607076. [PMID: 33551998 PMCID: PMC7859619 DOI: 10.3389/fendo.2020.607076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.
Collapse
Affiliation(s)
- Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian Gruber,
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
145
|
Johnson JM, Verkerke ARP, Maschek JA, Ferrara PJ, Lin CT, Kew KA, Neufer PD, Lodhi IJ, Cox JE, Funai K. Alternative splicing of UCP1 by non-cell-autonomous action of PEMT. Mol Metab 2020; 31:55-66. [PMID: 31918922 PMCID: PMC6889607 DOI: 10.1016/j.molmet.2019.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Phosphatidylethanolamine methyltransferase (PEMT) generates phosphatidylcholine (PC), the most abundant phospholipid in the mitochondria and an important acyl chain donor for cardiolipin (CL) biosynthesis. Mice lacking PEMT (PEMTKO) are cold-intolerant when fed a high-fat diet (HFD) due to unclear mechanisms. The purpose of this study was to determine whether PEMT-derived phospholipids are important for the function of uncoupling protein 1 (UCP1) and thus for maintenance of core temperature. METHODS To test whether PEMT-derived phospholipids are important for UCP1 function, we examined cold-tolerance and brown adipose (BAT) mitochondria from PEMTKO mice with or without HFD feeding. We complemented these studies with experiments on mice lacking functional CL due to tafazzin knockdown (TAZKD). We generated several conditional mouse models to study the tissue-specific roles of PEMT, including mice with BAT-specific knockout of PEMT (PEMT-BKO). RESULTS Chow- and HFD-fed PEMTKO mice completely lacked UCP1 protein in BAT, despite a lack of difference in mRNA levels, and the mice were accordingly cold-intolerant. While HFD-fed PEMTKO mice exhibited reduced mitochondrial CL content, this was not observed in chow-fed PEMTKO mice or TAZKD mice, indicating that the lack of UCP1 was not attributable to CL deficiency. Surprisingly, the PEMT-BKO mice exhibited normal UCP1 protein levels. Knockout of PEMT in the adipose tissue (PEMT-AKO), liver (PEMT-LKO), or skeletal muscle (PEMT-MKO) also did not affect UCP1 protein levels, suggesting that lack of PEMT in other non-UCP1-expressing cells communicates to BAT to suppress UCP1. Instead, we identified an untranslated UCP1 splice variant that was triggered during the perinatal period in the PEMTKO mice. CONCLUSIONS PEMT is required for UCP1 splicing that yields functional protein. This effect is derived by PEMT in nonadipocytes that communicates to BAT during embryonic development. Future research will focus on identifying the non-cell-autonomous PEMT-dependent mechanism of UCP1 splicing.
Collapse
Affiliation(s)
- Jordan M Johnson
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - J Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Metabolomics Core Research Facility, University of Utah, 15 N. Medical Dr. East RM A306, Salt Lake City, UT, 84112, USA; Department of Biochemistry, University of Utah, 15 N. Medical Dr. East RM 4100, Salt Lake City, UT, 84112, USA
| | - Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Kimberly A Kew
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA; Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - P Darrell Neufer
- East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - James E Cox
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Metabolomics Core Research Facility, University of Utah, 15 N. Medical Dr. East RM A306, Salt Lake City, UT, 84112, USA; Department of Biochemistry, University of Utah, 15 N. Medical Dr. East RM 4100, Salt Lake City, UT, 84112, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, 15 N. 2030 E, Salt Lake City, UT, 84112, USA; Department of Nutrition & Integrative Physiology, University of Utah, 250 S. 1850 E., RM 214, Salt Lake City, UT, 84112, USA; Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT, 84108, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, 115 Heart Drive, 4101 ECHI, Greenville, NC, 27834, USA; Molecular Medicine Program, University of Utah, 15 N. 2030 E. RM 4145, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
146
|
Samgina TA, Azarova YE, Kanishchev YV, Lazarenko VA, Nazarenko PM, Polonikov AV. The Role of Phosphatidylethanolamine-N-methyltransferase (PEMT) Gene rs12449964 Polymorphism in the Development of Acute Pancreatitis and its Complications. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2019; 29:21-25. [DOI: 10.22416/1382-4376-2019-29-5-21-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background. Acute pancreatitis is considered to be an important issue in modern medicine. The phosphatidylethanolamine-N-methyltransferase enzyme plays a significant role in the regulation of lipid metabolism by catalyzing the process of methylation of phosphatidylethanolamine to phosphatidylcholine. These lipids are key components of mitochondrial and cell membranes, providing their fluid and plastic properties and participating in the transport of fats, fatty acids and cholesterol. Along with its function in the synthesis of phosphatidylcholine, the methylation of phosphatidylethanolamine promotes the turnover of S-adenosylmethionine for the synthesis of cysteine and glutathione through transulphurisation. PEMT is a gene encoding the phosphatidylethanolamine-N-methyltransferase enzyme.Aim. To determine the role of PEMT C/T rs12449964 polymorphism in the risk of developing acute pancreatitis and its complications among Russian residents in Central Russia.Materials and methods. Whole blood samples were collected from 502 unrelated patients with acute non-biliary pancreatitis (97 women and 405 men) of Russian nationality who had been admitted to the surgical departments of the city of Kursk from 2015 to 2018, as well as from 513 unrelated individuals of Russian nationality without gastrointestinal diseases (101 women and 412 men). The average age of patients and healthy individuals was 48.9 ± 13.1 and 47.89 ± 12.1 years, respectively. Genomic DNA was isolated by a standard phenol-chloroform extraction method. Genotyping of rs12449964 polymorphism was performed using real-time PCR by allelic discrimination using a CFX96 Bio-Rad Laboratories amplifier (USA) with TaqMan probes and commercial TaqMan SNP Genotyping Assays reagents purchased from Applied Biosystems (USA).Results. The study has shown that the frequency of the C allele and the C/C PEMT C/T rs12449964 genotype was higher in the group of patients with acute pancreatitis, while the C/T genotype was predominant in the control group. C/T — T/T genotypes demonstrated a protective effect on the development of infected pancreatic necrosis, purulent necrotic peripancreatitis and severe acute pancreatitis.Conclusions. The disruption of phosphatidylethanolamine methylation processes increases the sensitivity of cells to oxidative stress, which can lead to the development of acute pancreatitis.
Collapse
|
147
|
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019; 18:e13034. [PMID: 31460700 PMCID: PMC6826121 DOI: 10.1111/acel.13034] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Collapse
Affiliation(s)
- Andrey A. Parkhitko
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Patrick Jouandin
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Stephanie E. Mohr
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Norbert Perrimon
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
- Howard Hughes Medical InstituteBostonMassachusetts
| |
Collapse
|
148
|
Walvekar AS, Laxman S. Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast. Front Microbiol 2019; 10:2624. [PMID: 31798560 PMCID: PMC6874139 DOI: 10.3389/fmicb.2019.02624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Studies using a fungal model, Saccharomyces cerevisiae, have been instrumental in advancing our understanding of sulfur metabolism in eukaryotes. Sulfur metabolites, particularly methionine and its derivatives, induce anabolic programs in yeast, and drive various processes integral to metabolism (one-carbon metabolism, nucleotide synthesis, and redox balance). Thereby, methionine also connects these processes with autophagy and epigenetic regulation. The direct involvement of methionine-derived metabolites in diverse chemistries such as transsulfuration and methylation reactions comes from the elegant positioning and safe handling of sulfur through these molecules. In this mini-review, we highlight studies from yeast that reveal how this amino acid holds a unique position in both metabolism and cell signaling, and illustrate cell fate decisions that methionine governs. We further discuss the interconnections between sulfur and NADPH metabolism, and highlight critical nodes around methionine metabolism that are promising for antifungal drug development.
Collapse
Affiliation(s)
| | - Sunil Laxman
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
149
|
Methylation-related metabolic effects of D4 dopamine receptor expression and activation. Transl Psychiatry 2019; 9:295. [PMID: 31719518 PMCID: PMC6851363 DOI: 10.1038/s41398-019-0630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 11/16/2022] Open
Abstract
D4 dopamine receptor (D4R) activation uniquely promotes methylation of plasma membrane phospholipids, utilizing folate-derived methyl groups provided by methionine synthase (MS). We evaluated the impact of D4R expression on folate-dependent phospholipid methylation (PLM) and MS activity, as well as cellular redox and methylation status, in transfected CHO cells expressing human D4R variants containing 2, 4, or 7 exon III repeats (D4.2R, D4.4R, D4.7R). Dopamine had no effect in non-transfected CHO cells, but increased PLM to a similar extent for both D4.2R- and D4.4R-expressing cells, while the maximal increase was for D4.7R was significantly lower. D4R expression in CHO cells decreased basal MS activity for all receptor subtypes and conferred dopamine-sensitive MS activity, which was greater with a higher number of repeats. Consistent with decreased MS activity, D4R expression decreased basal levels of methylation cycle intermediates methionine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH), as well as cysteine and glutathione (GSH). Conversely, dopamine stimulation increased GSH, SAM, and the SAM/SAH ratio, which was associated with a more than 2-fold increase in global DNA methylation. Our findings illustrate a profound influence of D4R expression and activation on MS activity, coupled with the ability of dopamine to modulate cellular redox and methylation status. These previously unrecognized signaling activities of the D4R provide a unique link between neurotransmission and metabolism.
Collapse
|
150
|
Abstract
Cells can take up cysteine or synthesize it de novo from methionine, but synthesis alone does not meet the high demands of cancer cells to proliferate. In this issue, Zhu et al. (2019) identify the SAH:SAM ratio, indicative of the cellular methylation state, as limiting for effective cysteine synthesis and the growth of some tumors.
Collapse
|