101
|
Wang Y, Ling X, Zhang C, Zou J, Luo B, Luo Y, Jia X, Jia G, Zhang M, Hu J, Liu T, Wang Y, Lu K, Li D, Ma J, Liu C, Su Z. Modular characterization of SARS-CoV-2 nucleocapsid protein domain functions in nucleocapsid-like assembly. MOLECULAR BIOMEDICINE 2023; 4:16. [PMID: 37211575 DOI: 10.1186/s43556-023-00129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/09/2023] [Indexed: 05/23/2023] Open
Abstract
SARS-CoV-2 and its variants, with the Omicron subvariant XBB currently prevailing the global infections, continue to pose threats on public health worldwide. This non-segmented positive-stranded RNA virus encodes the multi-functional nucleocapsid protein (N) that plays key roles in viral infection, replication, genome packaging and budding. N protein consists of two structural domains, NTD and CTD, and three intrinsically disordered regions (IDRs) including the NIDR, the serine/arginine rich motif (SRIDR), and the CIDR. Previous studies revealed functions of N protein in RNA binding, oligomerization, and liquid-liquid phase separation (LLPS), however, characterizations of individual domains and their dissected contributions to N protein functions remain incomplete. In particular, little is known about N protein assembly that may play essential roles in viral replication and genome packing. Here, we present a modular approach to dissect functional roles of individual domains in SARS-CoV-2 N protein that reveals inhibitory or augmented modulations of protein assembly and LLPS in the presence of viral RNAs. Intriguingly, full-length N protein (NFL) assembles into ring-like architecture whereas the truncated SRIDR-CTD-CIDR (N182-419) promotes filamentous assembly. Moreover, LLPS droplets of NFL and N182-419 are significantly enlarged in the presence of viral RNAs, and we observed filamentous structures in the N182-419 droplets using correlative light and electron microscopy (CLEM), suggesting that the formation of LLPS droplets may promote higher-order assembly of N protein for transcription, replication and packaging. Together this study expands our understanding of the multiple functions of N protein in SARS-CoV-2.
Collapse
Affiliation(s)
- Yan Wang
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Xiaobin Ling
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Junchao Hu
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Ting Liu
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Yuanfeiyi Wang
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Kefeng Lu
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cong Liu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, 610044, Sichuan, China.
| |
Collapse
|
102
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
103
|
Alsuwairi FA, Alsaleh AN, Alsanea MS, Al-Qahtani AA, Obeid D, Almaghrabi RS, Alahideb BM, AlAbdulkareem MA, Mutabagani MS, Althawadi SI, Altamimi SA, Alshukairi AN, Alhamlan FS. Association of SARS-CoV-2 Nucleocapsid Protein Mutations with Patient Demographic and Clinical Characteristics during the Delta and Omicron Waves. Microorganisms 2023; 11:1288. [PMID: 37317262 PMCID: PMC10224071 DOI: 10.3390/microorganisms11051288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations' associations with clinical outcomes.
Collapse
Affiliation(s)
- Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma N. Alsaleh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dalia Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Public Health Laboratories, Public Health Authority, Riyadh 13351, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maha A. AlAbdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maysoon S. Mutabagani
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sahar I. Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sara A. Altamimi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
104
|
Akaishi T, Fujiwara K, Ishii T. Trinucleotide Substitutions at Two Locations in the SARS-CoV-2 Nucleocapsid (N) Gene. TOHOKU J EXP MED 2023; 260:21-27. [PMID: 36792177 DOI: 10.1620/tjem.2023.j010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The genomes of sarbecoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), incorporate mutations with short sequence exchanges based on unknown processes. Currently, the presence of such short-sequence exchanges among the genomes of different SARS-CoV-2 lineages remains uncertain. In the present study, multiple SARS-CoV-2 genome sequences from different clades or sublineages were collected from an international mass sequence database and compared to identify the presence of short sequence exchanges. Initial screening with multiple sequence alignments identified two locations with trinucleotide substitutions, both in the nucleocapsid (N) gene. The first exchange from 5'-GAT-3' to 5'-CTA-3' at nucleotide positions 28,280-28,282 resulted in a change in the amino acid from aspartic acid (D) to leucine (L), which was predominant in clade GRY (Alpha). The second exchange from 5'-GGG-3' to 5'-AAC-3' at nucleotide positions 28,881-28,883 resulted in an amino acid change from arginine and glycine (RG) to lysine and arginine (KR), which was predominant in GR (Gamma), GRY (Alpha), and GRA (Omicron). Both trinucleotide substitutions occurred before June 2020. The sequence identity rate between these lineages suggests that coincidental succession of single-nucleotide substitutions is unlikely. Basic local alignment search tool sequence search revealed the absence of intermediating mutations based on single-base substitutions or overlapping indels before the emergence of these trinucleotide substitutions. These findings suggest that trinucleotide substitutions could have developed via an en bloc exchange. In summary, trinucleotide substitutions at two locations in the SARS-CoV-2 N gene were identified. This mutation may provide insights into the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
- COVID-19 Testing Center, Tohoku University
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
- COVID-19 Testing Center, Tohoku University
| |
Collapse
|
105
|
Sil S, Keegan S, Ettefa F, Denes LT, Boeke JD, Holt LJ. Condensation of LINE-1 is critical for retrotransposition. eLife 2023; 12:e82991. [PMID: 37114770 PMCID: PMC10202459 DOI: 10.7554/elife.82991] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Collapse
Affiliation(s)
- Srinjoy Sil
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Sarah Keegan
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Farida Ettefa
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Lance T Denes
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
106
|
Zhu P, Stanisheuski S, Franklin R, Vogel A, Vesely CH, Reardon P, Sluchanko NN, Beckman JS, Karplus PA, Mehl RA, Cooley RB. Autonomous Synthesis of Functional, Permanently Phosphorylated Proteins for Defining the Interactome of Monomeric 14-3-3ζ. ACS CENTRAL SCIENCE 2023; 9:816-835. [PMID: 37122473 PMCID: PMC10141581 DOI: 10.1021/acscentsci.3c00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 05/03/2023]
Abstract
14-3-3 proteins are dimeric hubs that bind hundreds of phosphorylated "clients" to regulate their function. Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study 14-3-3 function in cellular-like environments, but a previous genetic code expansion (GCE) system to translationally install nonhydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with CH2, site-specifically into proteins has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into Escherichia coli a six-step biosynthetic pathway that produces nhpSer from phosphoenolpyruvate. Using this autonomous "PermaPhos" expression system, we produce three biologically relevant proteins with nhpSer and confirm that nhpSer mimics the effects of phosphoserine for activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein, promoting 14-3-3/client complexation, and monomerizing 14-3-3 dimers. Then, to understand the biological function of these phosphorylated 14-3-3ζ monomers (containing nhpSer at Ser58), we isolate its interactome from HEK293T lysates and compare it with that of wild-type 14-3-3ζ. These data identify two new subsets of 14-3-3 client proteins: (i) those that selectively bind dimeric 14-3-3ζ and (ii) those that selectively bind monomeric 14-3-3ζ. We discover that monomeric-but not dimeric-14-3-3ζ interacts with cereblon, an E3 ubiquitin-ligase adaptor protein of pharmacological interest.
Collapse
Affiliation(s)
- Phillip Zhu
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Stanislau Stanisheuski
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Rachel Franklin
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Amber Vogel
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Cat Hoang Vesely
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Patrick Reardon
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Nikolai N. Sluchanko
- A.N.
Bach Institute of Biochemistry, Federal Research Center of Biotechnology
of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Joseph S. Beckman
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- e-MSion
Inc., 2121 NE Jack London
St., Corvallis, Oregon 97330, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Richard B. Cooley
- Department
of Biochemistry and Biophysics, Oregon State
University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| |
Collapse
|
107
|
Tayeb-Fligelman E, Bowler JT, Tai CE, Sawaya MR, Jiang YX, Garcia G, Griner SL, Cheng X, Salwinski L, Lutter L, Seidler PM, Lu J, Rosenberg GM, Hou K, Abskharon R, Pan H, Zee CT, Boyer DR, Li Y, Anderson DH, Murray KA, Falcon G, Cascio D, Saelices L, Damoiseaux R, Arumugaswami V, Guo F, Eisenberg DS. Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat Commun 2023; 14:2379. [PMID: 37185252 PMCID: PMC10127185 DOI: 10.1038/s41467-023-37865-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Jeannette T Bowler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Christen E Tai
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sawaya
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Yi Xiao Jiang
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Sarah L Griner
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Xinyi Cheng
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Lukasz Salwinski
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Liisa Lutter
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Paul M Seidler
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA, 90089-9121, USA
| | - Jiahui Lu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Gregory M Rosenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Ke Hou
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Romany Abskharon
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Hope Pan
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Chih-Te Zee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - David R Boyer
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Yan Li
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel H Anderson
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Kevin A Murray
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA
| | - Genesis Falcon
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
| | - Lorena Saelices
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Feng Guo
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - David S Eisenberg
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA.
- Howard Hughes Medical Institute, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
108
|
Tan X, Cai K, Li J, Yuan Z, Chen R, Xiao H, Xu C, Hu B, Qin Y, Ding B. Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Rep 2023; 42:112286. [PMID: 36952345 PMCID: PMC9998290 DOI: 10.1016/j.celrep.2023.112286] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
ER-phagy is a form of autophagy that is mediated by ER-phagy receptors and selectively degrades endoplasmic reticulum (ER). Coronaviruses have been shown to use the ER as a membrane source to establish their double-membrane vesicles (DMVs). However, whether viruses modulate ER-phagy to drive viral DMV formation and its underlying molecular mechanisms remains largely unknown. Here, we demonstrate that coronavirus subverts ER-phagy by hijacking the ER-phagy receptors FAM134B and ATL3 into p62 condensates, resulting in increased viral replication. Mechanistically, we show that viral protein ORF8 binds to and undergoes condensation with p62. FAM134B and ATL3 interact with homodimer of ORF8 and are aggregated into ORF8/p62 liquid droplets, leading to ER-phagy inhibition. ORF8/p62 condensates disrupt ER-phagy to facilitate viral DMV formation and activate ER stress. Together, our data highlight how coronavirus modulates ER-phagy to drive viral replication by hijacking ER-phagy receptors.
Collapse
Affiliation(s)
- Xuan Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Jiajia Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
109
|
Zhao H, Wu D, Hassan SA, Nguyen A, Chen J, Piszczek G, Schuck P. A conserved oligomerization domain in the disordered linker of coronavirus nucleocapsid proteins. SCIENCE ADVANCES 2023; 9:eadg6473. [PMID: 37018390 PMCID: PMC10075959 DOI: 10.1126/sciadv.adg6473] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023]
Abstract
The nucleocapsid (N-)protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a key role in viral assembly and scaffolding of the viral RNA. It promotes liquid-liquid phase separation (LLPS), forming dense droplets that support the assembly of ribonucleoprotein particles with as-of-yet unknown macromolecular architecture. Combining biophysical experiments, molecular dynamics simulations, and analysis of the mutational landscape, we describe a heretofore unknown oligomerization site that contributes to LLPS, is required for the assembly of higher-order protein-nucleic acid complexes, and is coupled to large-scale conformational changes of N-protein upon nucleic acid binding. The self-association interface is located in a leucine-rich sequence of the intrinsically disordered linker between N-protein folded domains and formed by transient helices assembling into trimeric coiled-coils. Critical residues stabilizing hydrophobic and electrostatic interactions between adjacent helices are highly protected against mutations in viable SARS-CoV-2 genomes, and the oligomerization motif is conserved across related coronaviruses, thus presenting a target for antiviral therapeutics.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
110
|
Lee E, Redzic JS, Saviola AJ, Li X, Ebmeier CC, Kutateladze T, Hansen KC, Zhao R, Ahn N, Sluchanko NN, Eisenmesser E. Molecular insight into the specific interactions of the SARS-Coronavirus-2 nucleocapsid with RNA and host protein. Protein Sci 2023; 32:e4603. [PMID: 36807437 PMCID: PMC10019451 DOI: 10.1002/pro.4603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | | | - Tatiana Kutateladze
- Department of PharmacologySchool of Medicine, University of Colorado DenverAuroraColoradoUSA
| | - Kirk Charles Hansen
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| | - Natalie Ahn
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado DenverAuroraColoradoUSA
| |
Collapse
|
111
|
Mao S, Cai X, Niu S, Wei J, Jiang N, Deng H, Wang W, Zhang J, Shen S, Ma Y, Wu X, Peng Q, Huang A, Wang D. TRIM21 promotes ubiquitination of SARS-CoV-2 nucleocapsid protein to regulate innate immunity. J Med Virol 2023; 95:e28719. [PMID: 37185839 DOI: 10.1002/jmv.28719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.
Collapse
Affiliation(s)
- Shenglan Mao
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Siqiang Niu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Ning Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shimei Shen
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanyan Ma
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
112
|
Ma X, Wang Y, Gao Y, Wang Y, Yan A, Chen J, Zhang L, Wang P, Zhao J, Liu Z. Structural characteristics of the SARS-CoV-2 Omicron lineages BA.1 and BA.2 virions. Signal Transduct Target Ther 2023; 8:131. [PMID: 36941247 PMCID: PMC10026235 DOI: 10.1038/s41392-023-01385-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Xiaoyu Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanzhu Gao
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiantao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Centre, Guangzhou, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Laboratory, Bio-Island, Guangzhou, China.
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
113
|
Quek RT, Hardy KS, Walker SG, Nguyen DT, de Almeida
Magalhães T, Salic A, Gopalakrishnan SM, Silver PA, Mitchison TJ. Screen for Modulation of Nucleocapsid Protein Condensation Identifies Small Molecules with Anti-Coronavirus Activity. ACS Chem Biol 2023; 18:583-594. [PMID: 36795767 PMCID: PMC9942534 DOI: 10.1021/acschembio.2c00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation have been implicated in multiple diseases. Modulation of condensate dynamics by small molecules has therapeutic potential, but so far, few condensate modulators have been disclosed. The SARS-CoV-2 nucleocapsid (N) protein forms phase-separated condensates that are hypothesized to play critical roles in viral replication, transcription, and packaging, suggesting that N condensation modulators might have anti-coronavirus activity across multiple strains and species. Here, we show that N proteins from all seven human coronaviruses (HCoVs) vary in their tendency to undergo phase separation when expressed in human lung epithelial cells. We developed a cell-based high-content screening platform and identified small molecules that both promote and inhibit condensation of SARS-CoV-2 N. Interestingly, these host-targeted small molecules exhibited condensate-modulatory effects across all HCoV Ns. Some have also been reported to exhibit antiviral activity against SARS-CoV-2, HCoV-OC43, and HCoV-229E viral infections in cell culture. Our work reveals that the assembly dynamics of N condensates can be regulated by small molecules with therapeutic potential. Our approach allows for screening based on viral genome sequences alone and might enable rapid paths to drug discovery with value for confronting future pandemics.
Collapse
Affiliation(s)
- Rui Tong Quek
- Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, Massachusetts 02115,
United States
| | - Kierra S. Hardy
- Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, Massachusetts 02115,
United States
| | - Stephen G. Walker
- Drug Discovery Science and Technology,
AbbVie Inc., North Chicago, Illinois 60064, United
States
| | - Dan T. Nguyen
- Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, Massachusetts 02115,
United States
| | | | - Adrian Salic
- Department of Cell Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
| | | | - Pamela A. Silver
- Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, Massachusetts 02115,
United States
| | - Timothy J. Mitchison
- Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts 02115, United
States
| |
Collapse
|
114
|
Zhang ZY, Ju CY, Wu LZ, Yan H, Hong WB, Chen HZ, Yang PB, Wang BR, Gou T, Chen XY, Jiang ZH, Wang WJ, Lin T, Li FN, Wu Q. Therapeutic potency of compound RMY-205 for pulmonary fibrosis induced by SARS-CoV-2 nucleocapsid protein. Cell Chem Biol 2023; 30:261-277.e8. [PMID: 36889311 PMCID: PMC9990178 DOI: 10.1016/j.chembiol.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor β receptor I (TβRI), to disrupt the interaction of TβRI-FK506 Binding Protein12 (FKBP12), which led to activation of TβRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TβRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cui-Yu Ju
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Liu-Zheng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Han Yan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Bin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peng-Bo Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bao-Rui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Gou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao-Yan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tianwei Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
115
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
116
|
Vidal LEL, Figueira-Mansur J, Jurgilas PB, Argondizzo APC, Pestana CP, Martins FO, da Silva Junior HC, Miguez M, Loureiro BO, Marques CDFS, Trinta KS, da Silva LBR, de Mello MB, da Silva ED, Bastos RC, Esteves G. Process development and characterization of recombinant nucleocapsid protein for its application on COVID-19 diagnosis. Protein Expr Purif 2023; 207:106263. [PMID: 36921810 PMCID: PMC10012136 DOI: 10.1016/j.pep.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2). The nucleocapsid (N) protein from Sars-CoV-2 is a highly immunogenic antigen and responsible for genome packing. Serological assays are important tools to detect previous exposure to SARS-CoV-2, complement epidemiological studies, vaccine evaluation and also in COVID-19 surveillance. SARS-CoV-2 N (r2N) protein was produced in Escherichia coli, characterized, and the immunological performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and beads-based array immunoassay. r2N protein oligomers were evidenced when it is associated to nucleic acid. Benzonase treatment reduced host nucleic acid associated to r2N protein, but crosslinking assay still demonstrates the presence of higher-order oligomers. Nevertheless, after RNase treatment the higher-order oligomers reduced, and dimer form increased, suggesting RNA contributes to the oligomer formation. Structural analysis revealed nucleic acid did not interfere with the thermal stability of the recombinant protein. Interestingly, nucleic acid was able to prevent r2N protein aggregation even with increasing temperature while the protein benzonase treated begin aggregation process above 55 °C. In immunological characterization, ELISA performed with 233 serum samples presented a sensitivity of 97.44% (95% Confidence Interval, CI, 91.04%, 99.69%) and a specificity of 98.71% (95% CI, 95.42%, 99.84%) while beads-based array immunoassay carried out with 217 samples showed 100% sensitivity and 98.6% specificity. The results exhibited an excellent immunological performance of r2N protein in serologic assays showing that, even in presence of nucleic acid, it can be used as a component of an immunoassay for the sensitive and specific detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Luãnna Elisa Liebscher Vidal
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil.
| | - Janaina Figueira-Mansur
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Patrícia Barbosa Jurgilas
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Ana Paula Correa Argondizzo
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Cristiane Pinheiro Pestana
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Fernanda Otaviano Martins
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Haroldo Cid da Silva Junior
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Mariana Miguez
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Bernardo Oliveira Loureiro
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Christiane de Fátima Silva Marques
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Karen Soares Trinta
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Leila Botelho Rodrigues da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Marcelle Bral de Mello
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Edimilson Domingos da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Renata Chagas Bastos
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Gabriela Esteves
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
117
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
118
|
Ma P, Gu K, Wen R, Li C, Zhou C, Zhao Y, Li H, Lei C, Yang X, Wang H. Guanylate-binding protein 1 restricts avian coronavirus infectious bronchitis virus-infected HD11 cells. Poult Sci 2023; 102:102398. [PMID: 36580763 PMCID: PMC9731647 DOI: 10.1016/j.psj.2022.102398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Infectious Bronchitis Virus (IBV), a coronavirus, is a key avian pathogen that causes acute and highly infectious viral respiratory diseases. IBV is an enveloped, positive-sense RNA virus, and the host factors that restrict infection and replication of the virus remain poorly understood. Guanylate-binding protein 1 (GBP1), an interferon-gamma (IFN-γ)-inducible guanosine triphosphatase (GTPase), is a major player in host immunity and provides defense against viral replication. However, the role of chicken GBP1 (chGBP1) in the IBV-life cycle is not well understood. Therefore, this study aimed to reveal the potential role of IFN-γ-induced chGBP1 in mediating host anti-IBV infection responses. We identified the host restriction factor, chGBP1, in IBV-infected chicken macrophages HD11 cell lines. We showed that chGBP1 was upregulated by treatment with both IFN-γ and IBV in HD11 cells. chGBP1 inhibited IBV replication in a dose-dependent manner and enhanced IFN-γ anti-IBV activity. Importantly, the GTPase domain of chGBP1 played a pivotal role in its anti-IBV activity. Furthermore, chGBP1 interacts with IBV Nucleocapsids protein to degrade IBV-N protein through the autophagy pathway. Taken together, our results demonstrate a critical role of chGBP1 in anti-IBV in macrophages HD11 cells.
Collapse
Affiliation(s)
- Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
119
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
120
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
121
|
Zheng Y, Gao C. Phase Separation: The Robust Modulator of Innate Antiviral Signaling and SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020243. [PMID: 36839515 PMCID: PMC9962166 DOI: 10.3390/pathogens12020243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.
Collapse
|
122
|
Sato R, Tomioka Y, Sakuma C, Nakagawa M, Kurosawa Y, Shiba K, Arakawa T, Akuta T. Detection of concentration-dependent conformational changes in SARS-CoV-2 nucleoprotein by agarose native gel electrophoresis. Anal Biochem 2023; 662:114995. [PMID: 36427555 PMCID: PMC9681993 DOI: 10.1016/j.ab.2022.114995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The nucleoprotein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is abundantly expressed during infection, making it a diagnostic target protein. We analyzed the structure of the NP in solution using a recombinant protein produced in E. coli. A codon-optimized Profinity eXact™-tagged NP cDNA was cloned into pET-3d vector and transformed into E. coli T7 Express. The recombinant protein was first purified via chromatographic step using an affinity tag-based system that was followed by tag cleavage with sodium fluoride, resulting in proteolytic removal of the N-terminal tag sequence. The digested sample was then loaded directly onto a size exclusion chromatography run in the presence of L-Arg-HCl, resulting in removal of host nucleic acids and endotoxin. The molecular mass of the main NP fraction was determined by mass photometry as a dimeric form of NP, consistent with the blue native PAGE results. Interestingly, analysis of the purified NP by our newly developed agarose native gel electrophoresis revealed that it behaved like an acidic protein at low concentration despite its alkaline isoelectric point (theoretical pI = 10) and displayed a unique character of concentration-dependent charge and shape changes. This study should shed light into the behavior of NP in the viral life cycle.
Collapse
Affiliation(s)
- Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan; Abwiz Bio Inc., 9823 Pacific Heights Blvd., Suite J, San Diego, CA, 92121, USA.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo, 6570036, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA, 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| |
Collapse
|
123
|
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023; 42:111968. [PMID: 36640305 PMCID: PMC9790868 DOI: 10.1016/j.celrep.2022.111968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The leap of retroviruses and coronaviruses from animal hosts to humans has led to two ongoing pandemics and tens of millions of deaths worldwide. Retrovirus and coronavirus nucleocapsid proteins have been studied extensively as potential drug targets due to their central roles in virus replication, among which is their capacity to bind their respective genomic RNAs for packaging into nascent virions. This review focuses on fundamental studies of these nucleocapsid proteins and how their intrinsic abilities to condense through liquid-liquid phase separation (LLPS) contribute to viral replication. Therapeutic targeting of these condensates and methodological advances are also described to address future questions on how phase separation contributes to viral replication.
Collapse
Affiliation(s)
- Bao-An Chau
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Venessa Chen
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alan W Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leslie J Parent
- Division of Infectious Diseases and Epidemiology, Departments of Medicine and Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
124
|
Tugaeva KV, Sysoev AA, Kapitonova AA, Smith JLR, Zhu P, Cooley RB, Antson AA, Sluchanko NN. Human 14-3-3 Proteins Site-selectively Bind the Mutational Hotspot Region of SARS-CoV-2 Nucleoprotein Modulating its Phosphoregulation. J Mol Biol 2023; 435:167891. [PMID: 36427566 PMCID: PMC9683861 DOI: 10.1016/j.jmb.2022.167891] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of SARS-CoV-2 nucleoprotein recruits human cytosolic 14-3-3 proteins playing a well-recognized role in replication of many viruses. Here we use genetic code expansion to demonstrate that 14-3-3 binding is triggered by phosphorylation of SARS-CoV-2 nucleoprotein at either of two pseudo-repeats centered at Ser197 and Thr205. According to fluorescence anisotropy measurements, the pT205-motif,presentin SARS-CoV-2 but not in SARS-CoV, is preferred over the pS197-motif by all seven human 14-3-3 isoforms, which collectively display an unforeseen pT205/pS197 peptide binding selectivity hierarchy. Crystal structures demonstrate that pS197 and pT205 are mutually exclusive 14-3-3-binding sites, whereas SAXS and biochemical data obtained on the full protein-protein complex indicate that 14-3-3 binding occludes the Ser/Arg-rich region of the nucleoprotein, inhibiting its dephosphorylation. This Ser/Arg-rich region is highly prone to mutations, as exemplified by the Omicron and Delta variants, with our data suggesting that the strength of 14-3-3/nucleoprotein interaction can be linked with the replicative fitness of the virus.
Collapse
Affiliation(s)
- Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey A Sysoev
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Jake L R Smith
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Phillip Zhu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
125
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
126
|
Dang M, Li T, Song J. ATP and nucleic acids competitively modulate LLPS of the SARS-CoV2 nucleocapsid protein. Commun Biol 2023; 6:80. [PMID: 36681763 PMCID: PMC9862227 DOI: 10.1038/s42003-023-04480-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Tongyang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
127
|
SARS-CoV-2 N protein mediates intercellular nucleic acid dispersion, a feature reduced in Omicron. iScience 2023; 26:105995. [PMID: 36687314 PMCID: PMC9841735 DOI: 10.1016/j.isci.2023.105995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.
Collapse
|
128
|
Cheng N, Liu M, Li W, Sun B, Liu D, Wang G, Shi J, Li L. Protein post-translational modification in SARS-CoV-2 and host interaction. Front Immunol 2023; 13:1068449. [PMID: 36713387 PMCID: PMC9880545 DOI: 10.3389/fimmu.2022.1068449] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
SARS-CoV-2 can cause lung diseases, such as pneumonia and acute respiratory distress syndrome, and multi-system dysfunction. Post-translational modifications (PTMs) related to SARS-CoV-2 are conservative and pathogenic, and the common PTMs are glycosylation, phosphorylation, and acylation. The glycosylation of SARS-CoV-2 mainly occurs on spike (S) protein, which mediates the entry of the virus into cells through interaction with angiotensin-converting enzyme 2. SARS-CoV-2 utilizes glycans to cover its epitopes and evade the immune response through glycosylation of S protein. Phosphorylation of SARS-CoV-2 nucleocapsid (N) protein improves its selective binding to viral RNA and promotes viral replication and transcription, thereby increasing the load of the virus in the host. Succinylated N and membrane(M) proteins of SARS-CoV-2 synergistically affect virus particle assembly. N protein regulates its affinity for other proteins and the viral genome through acetylation. The acetylated envelope (E) protein of SARS-CoV-2 interacts with bromodomain-containing protein 2/4 to influence the host immune response. Both palmitoylation and myristoylation sites on S protein can affect the virus infectivity. Papain-like protease is a domain of NSP3 that dysregulates host inflammation by deubiquitination and impinges host IFN-I antiviral immune responses by deISGylation. Ubiquitination of ORF7a inhibits host IFN-α signaling by blocking STAT2 phosphorylation. The methylation of N protein can inhibit the formation of host stress granules and promote the binding of N protein to viral RNA, thereby promoting the production of virus particles. NSP3 macrodomain can reverse the ADP-ribosylation of host proteins, and inhibit the cascade immune response with IFN as the core, thereby promoting the intracellular replication of SARS-CoV-2. On the whole, PTMs have fundamental roles in virus entry, replication, particle assembly, and host immune response. Mutations in various SARS-CoV-2 variants, which lead to changes in PTMs at corresponding sites, cause different biological effects. In this paper, we mainly reviewed the effects of PTMs on SARS-CoV-2 and host cells, whose application is to inform the strategies for inhibiting viral infection and facilitating antiviral treatment and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Nana Cheng
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Mingzhu Liu
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Wanting Li
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - BingYue Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Dandan Liu
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jingwei Shi
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
129
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
130
|
The humoral immune response more than one year after SARS-CoV-2 infection: low detection rate of anti-nucleocapsid antibodies via Euroimmun ELISA. Infection 2023; 51:83-90. [PMID: 35648370 PMCID: PMC9159036 DOI: 10.1007/s15010-022-01830-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Antibody assays against SARS-CoV-2 are used in sero-epidemiological studies to estimate the proportion of a population with past infection. IgG antibodies against the spike protein (S-IgG) allow no distinction between infection and vaccination. We evaluated the role of anti-nucleocapsid-IgG (N-IgG) to identify individuals with infection more than one year past infection. METHODS S- and N-IgG were determined using the Euroimmun enzyme-linked immunosorbent assay (ELISA) in two groups: a randomly selected sample from the population of Stuttgart, Germany, and individuals with PCR-proven SARS-CoV-2 infection. Participants were five years or older. Demographics and comorbidities were registered from participants above 17 years. RESULTS Between June 15, 2021 and July 14, 2021, 454 individuals from the random sample participated, as well as 217 individuals with past SARS-CoV-2 infection. Mean time from positive PCR test result to antibody testing was 458.7 days (standard deviation 14.6 days) in the past infection group. In unvaccinated individuals, the seroconversion rate for S-IgG was 25.5% in the random sample and 75% in the past infection group (P = < 0.001). In vaccinated individuals, the mean signal ratios for S-IgG were higher in individuals with prior infection (6.9 vs 11.2; P = < 0.001). N-IgG were only detectable in 17.1% of participants with past infection. Predictors for detectable N-IgG were older age, male sex, fever, wheezing and in-hospital treatment for COVID-19 and cardiovascular comorbidities. CONCLUSION N-IgG is not a reliable marker for SARS-CoV-2 infection after more than one year. In future, other diagnostic tests are needed to identify individuals with past natural infection.
Collapse
|
131
|
Miyake Y, Hara Y, Umeda M, Banerjee I. Influenza A Virus: Cellular Entry. Subcell Biochem 2023; 106:387-401. [PMID: 38159235 DOI: 10.1007/978-3-031-40086-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The frequent emergence of pathogenic viruses with pandemic potential has posed a significant threat to human health and economy, despite enormous advances in our understanding of infection mechanisms and devising countermeasures through developing various prophylactic and therapeutic strategies. The recent coronavirus disease (COVID-19) pandemic has re-emphasised the importance of rigorous research on virus infection mechanisms and highlighted the need for our preparedness for potential pandemics. Although viruses cannot self-replicate, they tap into host cell factors and processes for their entry, propagation and dissemination. Upon entering the host cells, viruses ingeniously utilise the innate biological functions of the host cell to replicate themselves and maintain their existence in the hosts. Influenza A virus (IAV), which has a negative-sense, single-stranded RNA as its genome, is no exception. IAVs are enveloped viruses with a lipid bilayer derived from the host cell membrane and have a surface covered with the spike glycoprotein haemagglutinin (HA) and neuraminidase (NA). Viral genome is surrounded by an M1 shell, forming a "capsid" in the virus particle. IAV particles use HA to recognise sialic acids on the cell surface of lung epithelial cells for their attachment. After attachment to the cell surface, IAV particles are endocytosed and sorted into the early endosomes. Subsequently, as the early endosomes mature into late endosomes, the endosomal lumen becomes acidified, and the low pH of the late endosomes induces conformational reaggangements in the HA to initiate fusion between the endosomal and viral membranes. Upon fusion, the viral capsid disintegrates and the viral ribonucleoprotein (vRNP) complexes containing the viral genome are released into the cytosol. The process of viral capsid disintegration is called "uncoating". After successful uncoating, the vRNPs are imported into the nucleus by importin α/β (IMP α/β), where viral replication and transcription take place and the new vRNPs are assembled. Recently, we have biochemically elucidated the molecular mechanisms of the processes of viral capsid uncoating subsequent viral genome dissociation. In this chapter, we present the molecular details of the viral uncoating process.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan.
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Umeda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India.
| |
Collapse
|
132
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
133
|
Yun JS, Song H, Kim NH, Cha SY, Hwang KH, Lee JE, Jeong CH, Song SH, Kim S, Cho ES, Kim HS, Yook JI. Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein. Mol Cells 2022; 45:911-922. [PMID: 36572560 PMCID: PMC9794558 DOI: 10.14348/molcells.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/28/2022] Open
Abstract
A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.
Collapse
Affiliation(s)
- Jun Seop Yun
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyeeun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - So Young Cha
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kyu Ho Hwang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jae Eun Lee
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Cheol-Hee Jeong
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Seonghun Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
134
|
Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/ α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics 2022; 15:pharmaceutics15010114. [PMID: 36678743 PMCID: PMC9867332 DOI: 10.3390/pharmaceutics15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
An efficient and simple approach has been developed for the synthesis of eight dialkyl/aryl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(aryl)methyl]phosphonates through the Pudovik-type reaction of dialkyl/arylphosphite with imines, obtained from 5-phenyl-1,3,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Five of them were hydrolyzed to lead to the corresponding phosphonic acids. Selected synthesized compounds were screened for their in vitro antiviral activity against the avian bronchitis virus (IBV). In the MTT cytotoxicity assay, the dose-response curve showed that all test compounds were safe in the range concentration of 540-1599 µM. The direct contact of novel synthesized compounds with IBV showed that the diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethoxyphenyl)methyl]phosphonate (5f) (at 33 µM) and the [(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl)methyl] phosphonic acid (6a) (at 1.23 µM) strongly inhibited the IBV infectivity, indicating their high virucidal activity. However, virus titers from IBV-infected Vero cells remained unchanged in response to treatment with the lowest non-cytotoxic concentrations of synthesized compounds suggesting their incapacity to inhibit the virus replication inside the host cell. Lack of antiviral activity might presumably be ascribed to their polarity that hampers their diffusion across the lipophilic cytoplasmic membrane. Therefore, the interactions of 5f and 6a were analyzed against the main coronavirus protease, papain-like protease, and nucleocapsid protein by molecular docking methods. Nevertheless, the novel 1,3,4-oxadiazole-based α-aminophosphonic acids and α-amino-phosphonates hold potential for developing new hygienic virucidal products for domestic, chemical, and medical uses.
Collapse
|
135
|
Morse M, Sefcikova J, Rouzina I, Beuning PJ, Williams M. Structural domains of SARS-CoV-2 nucleocapsid protein coordinate to compact long nucleic acid substrates. Nucleic Acids Res 2022; 51:290-303. [PMID: 36533523 PMCID: PMC9841419 DOI: 10.1093/nar/gkac1179] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the ∼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.
Collapse
Affiliation(s)
- Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jana Sefcikova
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Mark C Williams
- To whom correspondence should be addressed. Tel: +1 617 373 5705;
| |
Collapse
|
136
|
Shapira T, Vimalanathan S, Rens C, Pichler V, Peña-Díaz S, Jordana G, Rees W, Winkler DFH, Sarai I, Steiner T, Jean F, Pelech S, Av-Gay Y. Inhibition of glycogen synthase kinase-3-beta (GSK3β) blocks nucleocapsid phosphorylation and SARS-CoV-2 replication. MOLECULAR BIOMEDICINE 2022; 3:43. [PMID: 36508083 PMCID: PMC9742639 DOI: 10.1186/s43556-022-00111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022] Open
Abstract
GSK3β has been proposed to have an essential role in Coronaviridae infections. Screening of a targeted library of GSK3β inhibitors against both SARS-CoV-2 and HCoV-229E to identify broad-spectrum anti-Coronaviridae inhibitors resulted in the identification of a high proportion of active compounds with low toxicity to host cells. A selected lead compound, T-1686568, showed low micromolar, dose-dependent activity against SARS-CoV-2 and HCoV-229E. T-1686568 showed efficacy in viral-infected cultured cells and primary 2D organoids. T-1686568 also inhibited SARS-CoV-2 variants of concern Delta and Omicron. Importantly, while inhibition by T-1686568 resulted in the overall reduction of viral load and protein translation, GSK3β inhibition resulted in cellular accumulation of the nucleocapsid protein relative to the spike protein. Following identification of potential phosphorylation sites of Coronaviridae nucleocapsid, protein kinase substrate profiling assays combined with Western blotting analysis of nine host kinases showed that the SARS-CoV-2 nucleocapsid could be phosphorylated by GSK3β and PKCa. GSK3β phosphorylated SARS-CoV-2 nucleocapsid on the S180/S184, S190/S194 and T198 phospho-sites, following previous priming in the adjacent S188, T198 and S206, respectively. Such inhibition presents a compelling target for broad-spectrum anti-Coronaviridae compound development, and underlies the mechanism of action of GSK3β host-directed therapy against this class of obligate intracellular pathogens.
Collapse
Affiliation(s)
- Tirosh Shapira
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Selvarani Vimalanathan
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Celine Rens
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Virginia Pichler
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Sandra Peña-Díaz
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Grace Jordana
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - William Rees
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Dirk F. H. Winkler
- grid.292479.3Kinexus Bioinformatics Corporation, Suite 1 – 8755 Ash Street, Vancouver, BC V6P 6T3 Canada
| | - Iqbal Sarai
- grid.292479.3Kinexus Bioinformatics Corporation, Suite 1 – 8755 Ash Street, Vancouver, BC V6P 6T3 Canada
| | - Theodore Steiner
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - François Jean
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| | - Steven Pelech
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.292479.3Kinexus Bioinformatics Corporation, Suite 1 – 8755 Ash Street, Vancouver, BC V6P 6T3 Canada
| | - Yossef Av-Gay
- grid.17091.3e0000 0001 2288 9830Division of Infectious Disease, Department of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
137
|
Chen YM, Wei JL, Qin RS, Hou JP, Zang GC, Zhang GY, Chen TT. Folic acid: a potential inhibitor against SARS-CoV-2 nucleocapsid protein. PHARMACEUTICAL BIOLOGY 2022; 60:862-878. [PMID: 35594385 PMCID: PMC9132477 DOI: 10.1080/13880209.2022.2063341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Coronavirus disease 2019 is a global pandemic. Studies suggest that folic acid has antiviral effects. Molecular docking shown that folic acid can act on SARS-CoV-2 Nucleocapsid Phosphoprotein (SARS-CoV-2 N). OBJECTIVE To identify novel molecular therapeutic targets for SARS-CoV-2. MATERIALS AND METHODS Traditional Chinese medicine targets and virus-related genes were identified with network pharmacology and big data analysis. Folic acid was singled out by molecular docking, and its potential target SARS-CoV-2 N was identified. Inhibition of SARS-CoV-2 N of folic acid was verified at the cellular level. RESULTS In total, 8355 drug targets were potentially involved in the inhibition of SARS-CoV-2. 113 hub genes were screened by further association analysis between targets and virus-related genes. The hub genes related compounds were analysed and folic acid was screened as a potential new drug. Moreover, molecular docking showed folic acid could target on SARS-CoV-2 N which inhibits host RNA interference (RNAi). Therefore, this study was based on RNAi to verify whether folic acid antagonises SARS-CoV-2 N. Cell-based experiments shown that RNAi decreased mCherry expression by 81.7% (p < 0.001). This effect was decreased by 8.0% in the presence of SARS-CoV-2 N, indicating that SARS-CoV-2 N inhibits RNAi. With increasing of folic acid concentration, mCherry expression decreased, indicating that folic acid antagonises the regulatory effect of SARS-CoV-2 N on host RNAi. DISCUSSION AND CONCLUSIONS Folic acid may be an antagonist of SARS-CoV-2 N, but its effect on viruses unclear. In future, the mechanisms of action of folic acid against SARS-CoV-2 N should be studied.
Collapse
Affiliation(s)
- Yu-meng Chen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
| | - Jin-lai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rui-si Qin
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
| | - Jin-ping Hou
- General Surgery of Neonatal Surgery, Liangjiang District, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Guang-chao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
| | - Guang-yuan Zhang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
| | - Ting-ting Chen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
138
|
Vesely CH, Reardon PN, Yu Z, Barbar E, Mehl RA, Cooley RB. Accessing isotopically labeled proteins containing genetically encoded phosphoserine for NMR with optimized expression conditions. J Biol Chem 2022; 298:102613. [PMID: 36265582 PMCID: PMC9678770 DOI: 10.1016/j.jbc.2022.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.
Collapse
Affiliation(s)
- Cat Hoang Vesely
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ryan A Mehl
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Richard B Cooley
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
139
|
Calder LJ, Calcraft T, Hussain S, Harvey R, Rosenthal PB. Electron cryotomography of SARS-CoV-2 virions reveals cylinder-shaped particles with a double layer RNP assembly. Commun Biol 2022; 5:1210. [PMID: 36357779 PMCID: PMC9648435 DOI: 10.1038/s42003-022-04183-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
SARS-CoV-2 is a lipid-enveloped Betacoronavirus and cause of the Covid-19 pandemic. To study the three-dimensional architecture of the virus, we perform electron cryotomography (cryo-ET) on SARS-Cov-2 virions and three variants revealing particles of regular cylindrical morphology. The ribonucleoprotein particles packaging the genome in the virion interior form a dense, double layer assembly with a cylindrical shape related to the overall particle morphology. This organisation suggests structural interactions important to virus assembly.
Collapse
Affiliation(s)
- Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Thomas Calcraft
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Saira Hussain
- grid.451388.30000 0004 1795 1830Worldwide Influenza Centre, The Francis Crick Institute, NW1 1AT London, UK ,grid.451388.30000 0004 1795 1830RNA Virus Replication Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Ruth Harvey
- grid.451388.30000 0004 1795 1830Worldwide Influenza Centre, The Francis Crick Institute, NW1 1AT London, UK
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
140
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
141
|
Carlson CR, Adly AN, Bi M, Howard CJ, Frost A, Cheng Y, Morgan DO. Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. J Biol Chem 2022; 298:102560. [PMID: 36202211 PMCID: PMC9529352 DOI: 10.1016/j.jbc.2022.102560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.
Collapse
Affiliation(s)
| | - Armin N Adly
- Department of Physiology, University of California, San Francisco, California, USA
| | - Maxine Bi
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Conor J Howard
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - Yifan Cheng
- Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, California, USA.
| |
Collapse
|
142
|
Yaron TM, Heaton BE, Levy TM, Johnson JL, Jordan TX, Cohen BM, Kerelsky A, Lin TY, Liberatore KM, Bulaon DK, Van Nest SJ, Koundouros N, Kastenhuber ER, Mercadante MN, Shobana-Ganesh K, He L, Schwartz RE, Chen S, Weinstein H, Elemento O, Piskounova E, Nilsson-Payant BE, Lee G, Trimarco JD, Burke KN, Hamele CE, Chaparian RR, Harding AT, Tata A, Zhu X, Tata PR, Smith CM, Possemato AP, Tkachev SL, Hornbeck PV, Beausoleil SA, Anand SK, Aguet F, Getz G, Davidson AD, Heesom K, Kavanagh-Williamson M, Matthews DA, tenOever BR, Cantley LC, Blenis J, Heaton NS. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Sci Signal 2022; 15:eabm0808. [PMID: 36282911 PMCID: PMC9830954 DOI: 10.1126/scisignal.abm0808] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.
Collapse
Affiliation(s)
- Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine/Memorial Sloan Kettering Cancer Center/The Rockefeller University, New York, NY 10021, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tristan X. Jordan
- New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin M. Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Katarina M. Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Danielle K. Bulaon
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Samantha J. Van Nest
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nikos Koundouros
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Edward R. Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marisa N. Mercadante
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kripa Shobana-Ganesh
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA
| | - Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robert E. Schwartz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Harel Weinstein
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA 92868, USA
| | - Joseph D. Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T. Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | - François Aguet
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate Heesom
- Proteomics Facility, University of Bristol, Bristol, BS8 1TD, UK
| | | | - David A. Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
143
|
Rapid Reversible Osmoregulation of Cytoplasmic Biomolecular Condensates of Human Interferon-α-Induced Antiviral MxA GTPase. Int J Mol Sci 2022; 23:ijms232112739. [PMID: 36361529 PMCID: PMC9655878 DOI: 10.3390/ijms232112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
We previously discovered that exogenously expressed GFP-tagged cytoplasmic human myxovirus resistance protein (MxA), a major antiviral effector of Type I and III interferons (IFNs) against several RNA- and DNA-containing viruses, existed in the cytoplasm in phase-separated membraneless biomolecular condensates of varying sizes and shapes with osmotically regulated disassembly and reassembly. In this study we investigated whether cytoplasmic IFN-α-induced endogenous human MxA structures were also biomolecular condensates, displayed hypotonic osmoregulation and the mechanisms involved. Both IFN-α-induced endogenous MxA and exogenously expressed GFP-MxA formed cytoplasmic condensates in A549 lung and Huh7 hepatoma cells which rapidly disassembled within 1-2 min when cells were exposed to 1,6-hexanediol or to hypotonic buffer (~40-50 mOsm). Both reassembled into new structures within 1-2 min of shifting cells to isotonic culture medium (~330 mOsm). Strikingly, MxA condensates in cells continuously exposed to culture medium of moderate hypotonicity (in the range one-fourth, one-third or one-half isotonicity; range 90-175 mOsm) first rapidly disassembled within 1-3 min, and then, in most cells, spontaneously reassembled 7-15 min later into new structures. This spontaneous reassembly was inhibited by 2-deoxyglucose (thus, was ATP-dependent) and by dynasore (thus, required membrane internalization). Indeed, condensate reassembly was preceded by crowding of the cytosolic space by large vacuole-like dilations (VLDs) derived from internalized plasma membrane. Remarkably, the antiviral activity of GFP-MxA against vesicular stomatitis virus survived hypoosmolar disassembly and subsequent reassembly. The data highlight the exquisite osmosensitivity of MxA condensates, and the preservation of antiviral activity in the face of hypotonic stress.
Collapse
|
144
|
Amahong K, Zhang W, Zhou Y, Zhang S, Yin J, Li F, Xu H, Yan T, Yue Z, Liu Y, Hou T, Qiu Y, Tao L, Han L, Zhu F. CovInter: interaction data between coronavirus RNAs and host proteins. Nucleic Acids Res 2022; 51:D546-D556. [PMID: 36200814 PMCID: PMC9825556 DOI: 10.1093/nar/gkac834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
Coronavirus has brought about three massive outbreaks in the past two decades. Each step of its life cycle invariably depends on the interactions among virus and host molecules. The interaction between virus RNA and host protein (IVRHP) is unique compared to other virus-host molecular interactions and represents not only an attempt by viruses to promote their translation/replication, but also the host's endeavor to combat viral pathogenicity. In other words, there is an urgent need to develop a database for providing such IVRHP data. In this study, a new database was therefore constructed to describe the interactions between coronavirus RNAs and host proteins (CovInter). This database is unique in (a) unambiguously characterizing the interactions between virus RNA and host protein, (b) comprehensively providing experimentally validated biological function for hundreds of host proteins key in viral infection and (c) systematically quantifying the differential expression patterns (before and after infection) of these key proteins. Given the devastating and persistent threat of coronaviruses, CovInter is highly expected to fill the gap in the whole process of the 'molecular arms race' between viruses and their hosts, which will then aid in the discovery of new antiviral therapies. It's now free and publicly accessible at: https://idrblab.org/covinter/.
Collapse
Affiliation(s)
| | | | | | - Song Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Hongquan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zixuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Lin Tao
- Correspondence may also be addressed to Lin Tao.
| | - Lianyi Han
- Correspondence may also be addressed to Lianyi Han.
| | - Feng Zhu
- To whom correspondence should be addressed. Tel: +86 189 8946 6518; Fax: +86 571 8820 8444;
| |
Collapse
|
145
|
Laine L, Skön M, Väisänen E, Julkunen I, Österlund P. SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Front Immunol 2022; 13:1016108. [PMID: 36248817 PMCID: PMC9561549 DOI: 10.3389/fimmu.2022.1016108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study.
Collapse
Affiliation(s)
- Larissa Laine
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- *Correspondence: Larissa Laine,
| | - Marika Skön
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
146
|
Wu C, Holehouse AS, Leung DW, Amarasinghe GK, Dutch RE. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu Rev Virol 2022; 9:285-306. [PMID: 35709511 PMCID: PMC11331907 DOI: 10.1146/annurev-virology-093020-013659] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses frequently carry out replication in specialized compartments within cells. The effect of these structures on virus replication is poorly understood. Recent research supports phase separation as a foundational principle for organization of cellular components with the potential to influence viral replication. In this review, phase separation is described in the context of formation of viral replication centers, with an emphasis on the nonsegmented negative-strand RNA viruses. Consideration is given to the interplay between phase separation and the critical processes of viral transcription and genome replication, and the role of these regions in pathogen-host interactions is discussed. Finally, critical questions that must be addressed to fully understand how phase separation influences viral replication and the viral life cycle are presented, along with information about new approaches that could be used to make important breakthroughs in this emerging field.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Science and Engineering Living Systems, Washington University, St. Louis, Missouri, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA;
| |
Collapse
|
147
|
Mohler K, Moen J, Rogulina S, Rinehart J. Cell type-independent profiling of interactions between intracellular pathogens and the human phosphoproteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509702. [PMID: 36203552 PMCID: PMC9536036 DOI: 10.1101/2022.09.27.509702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interactions between proteins from intracellular pathogens and host proteins in an infected cell are often mediated by post-translational modifications encoded in the host proteome. Identifying protein modifications, such as phosphorylation, that dictate these interactions remains a defining challenge in unraveling the molecular mechanisms of pathogenesis. We have developed a platform in engineered bacteria that displays over 110,000 phosphorylated human proteins coupled to a fluorescent reporter system capable of identifying the host-pathogen interactome of phosphoproteins (H-PIP). This resource broadly enables cell-type independent interrogation and discovery of proteins from intracellular pathogens capable of binding phosphorylated human proteins. As an example of the H-PIP platform, we generated a unique, high-resolution SARS-CoV-2 interaction network which expanded our knowledge of viral protein function and identified understudied areas of host pathology.
Collapse
|
148
|
Li S, Zandi R. Biophysical Modeling of SARS-CoV-2 Assembly: Genome Condensation and Budding. Viruses 2022; 14:2089. [PMID: 36298645 PMCID: PMC9611094 DOI: 10.3390/v14102089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spurred unprecedented and concerted worldwide research to curtail and eradicate this pathogen. SARS-CoV-2 has four structural proteins: Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S), which self-assemble along with its RNA into the infectious virus by budding from intracellular lipid membranes. In this paper, we develop a model to explore the mechanisms of RNA condensation by structural proteins, protein oligomerization and cellular membrane-protein interactions that control the budding process and the ultimate virus structure. Using molecular dynamics simulations, we have deciphered how the positively charged N proteins interact and condense the very long genomic RNA resulting in its packaging by a lipid envelope decorated with structural proteins inside a host cell. Furthermore, considering the length of RNA and the size of the virus, we find that the intrinsic curvature of M proteins is essential for virus budding. While most current research has focused on the S protein, which is responsible for viral entry, and it has been motivated by the need to develop efficacious vaccines, the development of resistance through mutations in this crucial protein makes it essential to elucidate the details of the viral life cycle to identify other drug targets for future therapy. Our simulations will provide insight into the viral life cycle through the assembly of viral particles de novo and potentially identify therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Siyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
149
|
Schiavina M, Pontoriero L, Tagliaferro G, Pierattelli R, Felli IC. The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Biomolecules 2022; 12:1302. [PMID: 36139141 PMCID: PMC9496478 DOI: 10.3390/biom12091302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Novel and efficient strategies need to be developed to interfere with the SARS-CoV-2 virus. One of the most promising pharmaceutical targets is the nucleocapsid protein (N), responsible for genomic RNA packaging. N is composed of two folded domains and three intrinsically disordered regions (IDRs). The globular RNA binding domain (NTD) and the tethered IDRs are rich in positively charged residues. The study of the interaction of N with polyanions can thus help to elucidate one of the key driving forces responsible for its function, i.e., electrostatics. Heparin, one of the most negatively charged natural polyanions, has been used to contrast serious cases of COVID-19 infection, and we decided to study its interaction with N at the molecular level. We focused on the NTR construct, which comprises the NTD and two flanking IDRs, and on the NTD construct in isolation. We characterized this interaction using different nuclear magnetic resonance approaches and isothermal titration calorimetry. With these tools, we were able to identify an extended surface of NTD involved in the interaction. Moreover, we assessed the importance of the IDRs in increasing the affinity for heparin, highlighting how different tracts of these flexible regions modulate the interaction.
Collapse
Affiliation(s)
| | | | | | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Isabella C. Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
150
|
Fan S, Sun W, Fan L, Wu N, Sun W, Ma H, Chen S, Li Z, Li Y, Zhang J, Yan J. The highly conserved RNA-binding specificity of nucleocapsid protein facilitates the identification of drugs with broad anti-coronavirus activity. Comput Struct Biotechnol J 2022; 20:5040-5044. [PMID: 36097552 PMCID: PMC9454191 DOI: 10.1016/j.csbj.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
The binding of SARS-CoV-2 nucleocapsid (N) protein to both the 5'- and 3'-ends of genomic RNA has different implications arising from its binding to the central region during virion assembly. However, the mechanism underlying selective binding remains unknown. Herein, we performed the high-throughput RNA-SELEX (HTR-SELEX) to determine the RNA-binding specificity of the N proteins of various SARS-CoV-2 variants as well as other β-coronaviruses and showed that N proteins could bind two unrelated sequences, both of which were highly conserved across all variants and species. Interestingly, both sequences are virtually absent from the human transcriptome; however, they exhibit a highly enriched, mutually complementary distribution in the coronavirus genome, highlighting their varied functions in genome packaging. Our results provide mechanistic insights into viral genome packaging, thereby increasing the feasibility of developing drugs with broad-spectrum anti-coronavirus activity by targeting RNA binding by N proteins.
Collapse
Affiliation(s)
- Shaorong Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, The Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wenju Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
| | - Ligang Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, The Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
- Department of Precision Diagnostic and Therapeutic Technology, The City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, China
| | - Nan Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, The Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
| | - Haiqian Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
| | - Siyuan Chen
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Zitong Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Jilin Zhang
- Department of Biomedical Sciences, The Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Jian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, The Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
- Department of Precision Diagnostic and Therapeutic Technology, The City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, China
| |
Collapse
|