101
|
Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 2011; 31:2225-37. [PMID: 21307259 PMCID: PMC6633036 DOI: 10.1523/jneurosci.3730-10.2011] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 11/23/2010] [Indexed: 01/09/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson's disease. Little is known about its involvement in the pathogenesis of Parkinson's disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.
Collapse
Affiliation(s)
| | - Steven B. Condliffe
- Istituto di Neuroscienze/Consiglio Nazionale delle Ricerche, 20129 Milan, Italy
| | - Matthias Bauer
- Department of Protein Science and
- Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Karsten Boldt
- Department of Protein Science and
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Silvia De Astis
- Department of Medical Pharmacology, Istituto di Neuroscienze/Consiglio Nazionale delle Ricerche and Fondazione Filarete, University of Milan, 20129 Milan, Italy, and
| | - Andrea Meixner
- Department of Protein Science and
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, D-80333 Munich, Germany
| | | | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Christian Johannes Gloeckner
- Department of Protein Science and
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Michela Matteoli
- Department of Medical Pharmacology, Istituto di Neuroscienze/Consiglio Nazionale delle Ricerche and Fondazione Filarete, University of Milan, 20129 Milan, Italy, and
| | - Carlo Sala
- Istituto di Neuroscienze/Consiglio Nazionale delle Ricerche, 20129 Milan, Italy
| | - Marius Ueffing
- Department of Protein Science and
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
102
|
Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. J Neurosci 2011; 30:17111-21. [PMID: 21159981 DOI: 10.1523/jneurosci.1760-10.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the medial superior olive (MSO) process microsecond interaural time differences, the major cue for localizing low-frequency sounds, by comparing the relative arrival time of binaural, glutamatergic excitatory inputs. This coincidence detection mechanism is additionally shaped by highly specialized glycinergic inhibition. Traditionally, it is assumed that the binaural inputs are conveyed by many independent fibers, but such an anatomical arrangement may decrease temporal precision. Short-term depression on the other hand might enhance temporal fidelity during ongoing activity. For the first time we show that binaural coincidence detection in MSO neurons may require surprisingly few but strong inputs, challenging long-held assumptions about mammalian coincidence detection. This study exclusively uses adult gerbils for in vitro electrophysiology, single-cell electroporation and immunohistochemistry to characterize the size and short-term plasticity of inputs to the MSO. We find that the excitatory and inhibitory inputs to the MSO are well balanced both in strength and short-term dynamics, redefining this fastest of all mammalian coincidence detector circuits.
Collapse
|
103
|
Chanda S, Oh S, Xu-Friedman MA. Calcium imaging of auditory nerve fiber terminals in the cochlear nucleus. J Neurosci Methods 2011; 195:24-9. [PMID: 21108967 PMCID: PMC3019277 DOI: 10.1016/j.jneumeth.2010.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/16/2022]
Abstract
One important model for understanding neuronal computation is how auditory information is transformed at the synapses made by auditory nerve (AN) fibers on the bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). This transformation is influenced by synaptic plasticity, the mechanisms of which have been studied primarily using postsynaptic electrophysiology. However, it is also important to make direct measurements of the presynaptic terminal to consider presynaptic mechanisms. Here we introduce a technique for doing that using calcium imaging of presynaptic AN terminals, by injecting dextran-conjugated fluorophores into the cochlea. To measure the calcium transients, we used calcium-sensitive fluorophores, and measured the changes in fluorescence upon stimulation. As an example of the application of this technique, we showed that activation of GABA(B) receptors reduces presynaptic calcium influx. This technique could be further extended to study the effects of activity- and other neuromodulator-dependent plasticities on AN terminals.
Collapse
Affiliation(s)
- Soham Chanda
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sangrok Oh
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Matthew A. Xu-Friedman
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
104
|
Wang Y, Ren C, Manis PB. Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons. Hear Res 2010; 270:101-9. [PMID: 20850512 PMCID: PMC2997871 DOI: 10.1016/j.heares.2010.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 09/03/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
Abstract
The majority of auditory nerve fibers exhibit prominent spontaneous activity in the absence of sound. More than half of all auditory nerve fibers in CBA mice have spontaneous firing rates higher than 20 spikes/s, with some fibers exceeding 100 spikes/s. We tested whether and to what extent endbulb synapses are depressed by activity between 10 and 100 Hz, within the spontaneous firing rates of auditory nerve fibers. In contrast to rate-dependent depression seen at rates >100 Hz, we found that the extent of depression was essentially rate-independent (∼35%) between 10 and 100 Hz. Neither cyclothiazide nor γ-d-glutamylglycine altered the rate-independent depression, arguing against receptor desensitization and/or vesicle depletion as major contributors for the depression. When endbulb synaptic transmission was more than half-blocked with the P/Q Ca(2+) channel blocker ω-agatoxin IVA, depression during 25 and 100 Hz trains was significantly attenuated, indicating P/Q Ca(2+) channel inactivation may contribute to low frequency synaptic depression. Following conditioning with a 100 Hz Poisson train, the EPSC paired-pulse ratio was increased, suggesting a reduced release probability. This in turn should reduce subsequent depletion-based synaptic depression at higher activation rates. To probe whether this conditioning of the synapse improves the reliability of postsynaptic responses, we tested the firing reliability of bushy neurons to 200 Hz stimulation after conditioning the endbulb with a 25 Hz or 100 Hz stimulus train. Although immediately following the conditioning train, bushy cells responded to minimal suprathreshold stimulation less reliably, the firing reliability eventually settled to the same level (<50%) regardless of the presence or absence of the preconditioning. However, when multiple presynaptic fibers were activated simultaneously, the postsynaptic response reliability did not drop significantly below 90%. These results suggest that single endbulb terminals do not reliably trigger action potentials in bushy cells under "normal" operating conditions. We conclude that the endbulb synapses are chronically depressed even by low rates of spontaneous activity, and are more resistant to further depression when challenged with a higher rate of activity. However, there seems to be no beneficial effect as assessed by the firing reliability of postsynaptic neurons for transmitting information about higher rates of activity.
Collapse
Affiliation(s)
- Yong Wang
- Division of Otolaryngology and the Program in Neuroscience, School of Medicine, Salt Lake City, University of Utah, UT 84132, USA.
| | | | | |
Collapse
|
105
|
Helmich RC, Siebner HR, Giffin N, Bestmann S, Rothwell JC, Bloem BR. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. Brain 2010; 133:3519-29. [PMID: 21126994 DOI: 10.1093/brain/awq315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Episodic ataxia type 2 and familial hemiplegic migraine are two rare hereditary disorders that are linked to dysfunctional ion channels and are characterized clinically by paroxysmal neurological symptoms. Impaired regulation of cerebral excitability is thought to play a role in the occurrence of these paroxysms, but the underlying mechanisms are poorly understood. Normal ion channels are crucial for coordinating neuronal firing in response to facilitatory input. Thus, we hypothesized that channel dysfunction in episodic ataxia type 2 and familial hemiplegic migraine may impair the ability to adjust cerebral excitability after facilitatory events. We tested this hypothesis in patients with episodic ataxia type 2 (n = 6), patients with familial hemiplegic migraine (n = 7) and healthy controls (n = 13). All subjects received a high-frequency burst (10 pulses at 20 Hz) of transcranial magnetic stimulation to transiently increase the excitability of the motor cortex. Acute burst-induced excitability changes were probed at 50, 250, 500 and 1000 ms after the end of the burst. This was done using single-pulse transcranial magnetic stimulation to assess corticospinal excitability, and paired-pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50 ms after the burst. In contrast, patients with episodic ataxia type 2 showed an abnormally prolonged increase in corticospinal excitability that was still present 250 ms after the transcranial magnetic stimulation burst. Furthermore, while controls showed a decrease in intracortical facilitation during the 1 s period following the transcranial magnetic stimulation burst, patients with episodic ataxia type 2 had increased intracortical facilitation 1000 ms after the burst. Intracortical inhibition was unaltered between groups. Patients with familial hemiplegic migraine were not significantly different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may set the stage for the emergence of paroxysmal neural dysfunction in this disorder.
Collapse
Affiliation(s)
- Rick C Helmich
- Radboud University Nijmegen Medical Center, Department of Neurology, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
106
|
Xue L, Wu LG. Post-tetanic potentiation is caused by two signalling mechanisms affecting quantal size and quantal content. J Physiol 2010; 588:4987-94. [PMID: 21041528 DOI: 10.1113/jphysiol.2010.196964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A high-frequency action potential train induces post-tetanic potentiation (PTP) of transmission at many synapses by increasing the intra-terminal calcium concentration, which may increase the quantal content by activation of protein kinase C (PKC). A recent study found that an increase of the mEPSC size, caused by compound vesicle fusion, parallels PTP, suggesting that the quantal size increase also contributes to the PTP generation. However, the strength of this suggestion is somewhat undermined by recent studies suggesting that vesicles responsible for spontaneous and evoked EPSCs may originate from different pools. Furthermore, it is unclear whether the quantal size increase is also mediated by PKC. The present work addressed these issues at a large calyx of Held synapse. We found that PTP was caused by both a PKC-dependent increase of the quantal content and a PKC-independent increase of the quantal size. In addition, we found that mEPSCs and EPSCs were subjected to similar up- and down-regulation, which verifies the basic assumption of quantal analysis--the same mechanism controls the quantal size of spontaneous and evoked release. This verification supports the use of quantal analysis at central synapses. However, unlike the traditional quantal analysis that attributes the quantal size change to a postsynaptic mechanism, the present work, together with one of our previous studies, suggests that the quantal size increase is caused by a presynaptic mechanism, the compound fusion among vesicles that forms large compound vesicles.
Collapse
Affiliation(s)
- Lei Xue
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bldg 35, Bethesda, MD 20892, USA
| | | |
Collapse
|
107
|
Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel. Proc Natl Acad Sci U S A 2010; 107:18694-9. [PMID: 20937883 DOI: 10.1073/pnas.1009500107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics, computational power, and strength of neural circuits are essential for encoding and processing information in the CNS and rely on short and long forms of synaptic plasticity. In a model system, residual calcium (Ca(2+)) in presynaptic terminals can act through neuronal Ca(2+) sensor proteins to cause Ca(2+)-dependent facilitation (CDF) of P/Q-type channels and induce short-term synaptic facilitation. However, whether this is a general mechanism of plasticity at intact central synapses and whether mutations associated with human disease affect this process have not been described to our knowledge. In this report, we find that, in both exogenous and native preparations, gain-of-function missense mutations underlying Familial Hemiplegic Migraine type 1 (FHM-1) occlude CDF of P/Q-type Ca(2+) channels. In FHM-1 mutant mice, the alteration of P/Q-type channel CDF correlates with reduced short-term synaptic facilitation at cerebellar parallel fiber-to-Purkinje cell synapses. Two-photon imaging suggests that P/Q-type channels at parallel fiber terminals in FHM-1 mice are in a basally facilitated state. Overall, the results provide evidence that FHM-1 mutations directly affect both P/Q-type channel CDF and synaptic plasticity and that together likely contribute toward the pathophysiology underlying FHM-1. The findings also suggest that P/Q-type channel CDF is an important mechanism required for normal synaptic plasticity at a fast synapse in the mammalian CNS.
Collapse
|
108
|
Ariel P, Ryan TA. Optical mapping of release properties in synapses. Front Neural Circuits 2010; 4. [PMID: 20802854 PMCID: PMC2928663 DOI: 10.3389/fncir.2010.00018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 11/13/2022] Open
Abstract
Synapses are important functional units that determine how information flows through the brain. Understanding their biophysical properties and the molecules that underpin them is an important goal of cellular neuroscience. Thus, it is of interest to develop protocols that allow easy measurement of synaptic parameters in model systems that permit molecular manipulations. Here, we used a sensitive and high-time resolution optical approach that allowed us to characterize two functional parameters critical to presynaptic efficacy: vesicle fusion probability (Pv) and readily-releasable pool size (RRP). We implemented two different approaches to determine the RRP size that were in broad agreement: depletion of the RRP by high-frequency stimulation and saturation of the calcium sensor during single action potential stimuli. Our methods are based on reporters that provide a robust, quantitative, purely presynaptic readout and present a new avenue to study molecules that affect synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Pablo Ariel
- Department of Biochemistry, Weill Cornell Medical College New York, NY, USA
| | | |
Collapse
|
109
|
Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nat Neurosci 2010; 13:838-44. [PMID: 20562869 DOI: 10.1038/nn.2576] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/12/2010] [Indexed: 11/08/2022]
Abstract
Ca(2+) is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca(2+) coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca(2+) nanodomains around Ca(2+) channels, where exocytosis is triggered. Bulk Ca(2+) outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca(2+)-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca(2+) simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca(2+)-dependent endocytosis undergo major developmental changes at this fast central synapse.
Collapse
|
110
|
Khanbabaie R, Nesse WH, Longtin A, Maler L. Kinetics of fast short-term depression are matched to spike train statistics to reduce noise. J Neurophysiol 2010; 103:3337-48. [PMID: 20357065 DOI: 10.1152/jn.00117.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-term depression (STD) is observed at many synapses of the CNS and is important for diverse computations. We have discovered a form of fast STD (FSTD) in the synaptic responses of pyramidal cells evoked by stimulation of their electrosensory afferent fibers (P-units). The dynamics of the FSTD are matched to the mean and variance of natural P-unit discharge. FSTD exhibits switch-like behavior in that it is immediately activated with stimulus intervals near the mean interspike interval (ISI) of P-units (approximately 5 ms) and recovers immediately after stimulation with the slightly longer intervals (>7.5 ms) that also occur during P-unit natural and evoked discharge patterns. Remarkably, the magnitude of evoked excitatory postsynaptic potentials appear to depend only on the duration of the previous ISI. Our theoretical analysis suggests that FSTD can serve as a mechanism for noise reduction. Because the kinetics of depression are as fast as the natural spike statistics, this role is distinct from previously ascribed functional roles of STD in gain modulation, synchrony detection or as a temporal filter.
Collapse
Affiliation(s)
- Reza Khanbabaie
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | |
Collapse
|
111
|
Moldavan MG, Allen CN. Retinohypothalamic tract synapses in the rat suprachiasmatic nucleus demonstrate short-term synaptic plasticity. J Neurophysiol 2010; 103:2390-9. [PMID: 20220078 DOI: 10.1152/jn.00695.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity-dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT-SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca(2+) channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation.
Collapse
Affiliation(s)
- Mykhaylo G Moldavan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
112
|
Müller M, Goutman JD, Kochubey O, Schneggenburger R. Interaction between facilitation and depression at a large CNS synapse reveals mechanisms of short-term plasticity. J Neurosci 2010; 30:2007-16. [PMID: 20147529 PMCID: PMC6634054 DOI: 10.1523/jneurosci.4378-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/09/2009] [Accepted: 12/10/2009] [Indexed: 01/06/2023] Open
Abstract
The two fundamental forms of short-term plasticity, short-term depression and facilitation, coexist at most synapses, but little is known about their interaction. Here, we studied the interplay between short-term depression and facilitation at calyx of Held synapses. Stimulation at a "low" frequency of 10 or 20 Hz, which is in the range of the spontaneous activity of these auditory neurons in vivo, induced synaptic depression. Surprisingly, an instantaneous increase of the stimulation frequency to 100 or 200 Hz following the low-frequency train uncovered a robust facilitation of EPSCs relative to the predepressed amplitude level. This facilitation decayed rapidly ( approximately 30 ms) and depended on presynaptic residual Ca(2+), but it was not caused by Ca(2+) current facilitation. To probe the release probability of the remaining readily releasable vesicles following the low-frequency train we made presynaptic Ca(2+) uncaging experiments in the predepressed state of the synapse. We found that low-frequency stimulation depletes the fast-releasable vesicle pool (FRP) down to approximately 40% of control and that the remaining FRP vesicles are released with approximately 2-fold slower release kinetics, indicating a hitherto unknown intrinsic heterogeneity among FRP vesicles. Thus, vesicles with an intrinsically lower release probability predominate after low frequency stimulation and undergo facilitation during the onset of subsequent high-frequency trains. Facilitation in the predepressed state of the synapse might help to stabilize the amount of transmitter release at the onset of high-frequency firing at these auditory synapses.
Collapse
Affiliation(s)
- Martin Müller
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan D. Goutman
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
113
|
Tadross MR, Yue DT. Systematic mapping of the state dependence of voltage- and Ca2+-dependent inactivation using simple open-channel measurements. ACTA ACUST UNITED AC 2010; 135:217-27. [PMID: 20142518 PMCID: PMC2828911 DOI: 10.1085/jgp.200910309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The state from which channel inactivation occurs is both biologically and mechanistically critical. For example, preferential closed-state inactivation is potentiated in certain Ca(2+) channel splice variants, yielding an enhancement of inactivation during action potential trains, which has important consequences for short-term synaptic plasticity. Mechanistically, the structural substrates of inactivation are now being resolved, yielding a growing library of molecular snapshots, ripe for functional interpretation. For these reasons, there is an increasing need for experimentally direct and systematic means of determining the states from which inactivation proceeds. Although many approaches have been devised, most rely upon numerical models that require detailed knowledge of channel-state topology and gating parameters. Moreover, prior strategies have only addressed voltage-dependent forms of inactivation (VDI), and have not been readily applicable to Ca(2+)-dependent inactivation (CDI), a vital form of regulation in numerous contexts. Here, we devise a simple yet systematic approach, applicable to both VDI and CDI, for semiquantitative mapping of the states from which inactivation occurs, based only on open-channel measurements. The method is relatively insensitive to the specifics of channel gating and does not require detailed knowledge of state topology or gating parameters. Rather than numerical models, we derive analytic equations that permit determination of the states from which inactivation occurs, based on direct manipulation of data. We apply this methodology to both VDI and CDI of Ca(V)1.3 Ca(2+) channels. VDI is found to proceed almost exclusively from the open state. CDI proceeds equally from the open and nearby closed states, but is disfavored from deep closed states distant from the open conformation. In all, these outcomes substantiate and enrich conclusions of our companion paper in this issue (Tadross et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308) that deduces endpoint mechanisms of VDI and CDI in Ca(V)1.3. More broadly, the methods introduced herein can be readily generalized for the analysis of other channel types.
Collapse
Affiliation(s)
- Michael R Tadross
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
114
|
Liu X, Yang PS, Yang W, Yue DT. Enzyme-inhibitor-like tuning of Ca(2+) channel connectivity with calmodulin. Nature 2010; 463:968-72. [PMID: 20139964 PMCID: PMC3553577 DOI: 10.1038/nature08766] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/04/2009] [Indexed: 11/23/2022]
Abstract
Ca2+ channels and calmodulin are two prominent signaling hubs1 that synergistically impact functions as diverse as cardiac excitability2, synaptic plasticity3, and gene transcription4. It is thereby fitting that these hubs are in some sense coordinated, as the opening of CaV1-2 Ca2+ channels are regulated by a single calmodulin (CaM) constitutively complexed with channels5. The Ca2+-free form of CaM (apoCaM) is already preassociated with the IQ domain on the channel carboxy terminus, and subsequent Ca2+ binding to this ‘resident’ CaM drives conformational changes that then trigger regulation of channel opening6. Another potential avenue for channel-CaM coordination could arise from the absence of Ca2+ regulation in channels lacking a preassociated CaM6,7. Natural fluctuations in CaM levels might then influence the fraction of regulatable channels, and thereby the overall strength of Ca2+ feedback. However, the prevailing view has been that the ultra-strong affinity of channels for apoCaM ensures their saturation with CaM8, yielding a significant form of concentration independence between Ca2+ channels and CaM. Here, we reveal significant exceptions to this autonomy, by combining electrophysiology to characterize channel regulation, with optical FRET sensor determination of free apoCaM concentration in live cells9. This approach translates quantitative CaM biochemistry from the traditional test-tube context, into the realm of functioning holochannels within intact cells. From this perspective, we find that long splice forms of CaV1.3 and CaV1.4 channels include a distal carboxy tail10-12 that resembles an enzyme competitive inhibitor, which retunes channel affinity for apoCaM so that natural CaM variations affect the strength of Ca2+ feedback modulation. Given the ubiquity of these channels13,14, the connection between ambient CaM levels and Ca2+ entry via channels is broadly significant for Ca2+ homeostasis. Strategies like ours promise key advances for the in situ analysis of signaling molecules resistant to in vitro reconstitution, such as Ca2+ channels.
Collapse
Affiliation(s)
- Xiaodong Liu
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
115
|
Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci 2009; 29:13883-97. [PMID: 19889999 DOI: 10.1523/jneurosci.2457-09.2009] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuroligins are cell adhesion molecules involved in synapse formation and/or function. Neurons express four neuroligins (NL1-NL4), of which NL1 is specific to excitatory and NL2 to inhibitory synapses. Excitatory and inhibitory synapses include numerous subtypes. However, it is unknown whether NL1 performs similar functions in all excitatory and NL2 in all inhibitory synapses, or whether they regulate the formation and/or function of specific subsets of synapses. To address this central question, we performed paired recordings in primary somatosensory cortex of mice lacking NL1 or NL2. Using this system, we examined neocortical microcircuits formed by reciprocal synapses between excitatory neurons and two subtypes of inhibitory interneurons, namely, fast-spiking and somatostatin-positive interneurons. We find that the NL1 deletion had little effect on inhibitory synapses, whereas the NL2 deletion decreased (40-50%) the unitary (cell-to-cell) IPSC amplitude evoked from single fast-spiking interneurons. Strikingly, the NL2 deletion had no effect on IPSC amplitude evoked from single somatostatin-positive inhibitory interneurons. Moreover, the frequency of unitary synaptic connections between individual fast-spiking and somatostatin-positive interneurons and excitatory neurons was unchanged. The decrease in unitary IPSC amplitude originating from fast-spiking interneurons in NL2-deficient mice was due to a multiplicative and uniform downscaling of the amplitude distribution, which in turn was mediated by a decrease in both synaptic quantal amplitude and quantal content, the latter inferred from an increase in the coefficient of variation. Thus, NL2 is not necessary for establishing unitary inhibitory synaptic connections but is selectively required for "scaling up" unitary connections originating from a subset of interneurons.
Collapse
|
116
|
Benton MD, Raman IM. Stabilization of Ca current in Purkinje neurons during high-frequency firing by a balance of Ca-dependent facilitation and inactivation. Channels (Austin) 2009; 3:393-401. [PMID: 19806011 PMCID: PMC2897944 DOI: 10.4161/chan.3.6.9838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Purkinje neurons fire spontaneous action potentials at ∼50 spikes/sec and generate more than 100 spikes/sec during cerebellum-mediated behaviors. Many voltage-gated channels, including Ca channels, can inactivate and/or facilitate with repeated stimulation, raising the question of how these channels respond to regular, rapid trains of depolarizations. To test whether Ca currents are modulated during firing, we recorded voltage-clamped Ca currents, predominantly carried by P-type Ca channels, from acutely dissociated mouse Purkinje neurons at 30-33°C (1 mM Ca). With 0.5 mM intracellular EGTA, 1-second trains of either spontaneous action potential waveforms or brief depolarizing steps at 50 Hz evoked Ca tail currents that were stable, remaining within 5% of the first tail current throughout the train. Higher frequency trains (100 and 200 Hz) elicited a maximal inactivation of <10%. To test whether this stability of Ca currents resulted from a lack of modulation or from an equilibrium between facilitation and inactivation, we manipulated the permeant ion (Ca vs. Ba) and Ca buffering (0.5 vs. 10 mM EGTA). With low buffering, Ba accelerated the initial inactivation evoked by 1-second trains, but reduced its extent at 200 Hz, consistent with an early calcium-dependent facilitation (CDF) and late calcium-dependent inactivation (CDI) at high frequencies. Increasing the Ca buffer favored CDF. These data suggest that stable Ca current amplitudes result from a balance of CDF, CDI, and voltage-dependent inactivation. This modest net Ca-dependent modulation may contribute to the ability of Purkinje neurons to sustain long periods of regular firing and synaptic transmission.
Collapse
Affiliation(s)
- Mark D. Benton
- Interdepartmental Neuroscience Program; Northwestern University; Evanston, IL USA
| | - Indira M. Raman
- Interdepartmental Neuroscience Program; Northwestern University; Evanston, IL USA,Department of Neurobiology and Physiology; Northwestern University; Evanston, IL USA,Correspondence to: Indira M. Raman;
| |
Collapse
|
117
|
Young SM, Neher E. Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 2009; 63:482-96. [PMID: 19709630 DOI: 10.1016/j.neuron.2009.07.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/12/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
A multitude of synaptic proteins interact at the active zones of nerve terminals to achieve the high temporal precision of neurotransmitter release in synchrony with action potentials. Though synaptotagmin has been recognized as the Ca2+ sensor for synchronous release, it may have additional roles of action. We address this question at the calyx of Held, a giant presynaptic terminal, that allows biophysical dissection of multiple roles of molecules in synaptic transmission. Using high-level expression recombinant adenoviruses, in conjunction with a stereotactic surgery in postnatal day 1 rats, we overcame the previous inability to molecular perturb the calyx by overexpression of a mutated synaptotagmin. We report that this mutation leaves intrinsic Ca2+ sensitivity of vesicles intact while it destabilizes the readily releasable pool of vesicles and loosens the tight coupling between Ca2+ influx and release, most likely by interfering with the correct positioning of vesicles with respect to Ca2+ channels.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Goettingen, Germany.
| | | |
Collapse
|
118
|
Abstract
Endocytosis is essential in maintaining exocytosis at secretory cells. Rapid endocytosis with a time course less than a few seconds is widely observed at nerve terminals and non-neuronal secretory cells. It is generally assumed that rapid endocytosis recycles vesicles within the readily releasable pool (RRP) via a kiss-and-run mechanism that involves rapid opening and closure of a fusion pore at the release site. The present work suggests that both rapid (tau less than approximately 2 s) and slow (tau = approximately 10-20 s) endocytosis do not recycle vesicles to the RRP but to a recycling pool at least a few times larger than the RRP at a nerve terminal, the calyx of Held in rat brainstem. Challenging the long-held view that rapid endocytosis offers a rapid, local vesicle recycling within the RRP, our finding calls for reconsideration of the function and the underlying mechanism of rapid endocytosis. We suggest that rapid endocytosis provides the nerve terminal the ability to recycle vesicles rapidly via the recycling pool and to maintain the normal morphology of the nerve terminal, including the release site, by rapidly clearing the fused vesicle membrane from the release site during intense firing.
Collapse
|
119
|
Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L, Wu LG. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 2009; 12:1003-1010. [PMID: 19633667 PMCID: PMC4887276 DOI: 10.1038/nn.2355] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/01/2009] [Indexed: 11/08/2022]
Abstract
Although endocytosis maintains synaptic transmission, how endocytosis is initiated is unclear. We found that calcium influx initiated all forms of endocytosis at a single nerve terminal in rodents, including clathrin-dependent slow endocytosis, bulk endocytosis, rapid endocytosis and endocytosis overshoot (excess endocytosis), with each being evoked with a correspondingly higher calcium threshold. As calcium influx increased, endocytosis gradually switched from very slow endocytosis to slow endocytosis to bulk endocytosis to rapid endocytosis and to endocytosis overshoot. The calcium-induced endocytosis rate increase was a result of the speeding up of membrane invagination and fission. Pharmacological experiments suggested that the calcium sensor mediating these forms of endocytosis is calmodulin. In addition to its role in recycling vesicles, calcium/calmodulin-initiated endocytosis facilitated vesicle mobilization to the readily releasable pool, probably by clearing fused vesicle membrane at release sites. Our findings provide a unifying mechanism for the initiation of various forms of endocytosis that are critical in maintaining exocytosis.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Benjamin D McNeil
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jianhua Xu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Junmei Fan
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lei Xue
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ernestina Melicoff
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Li Bai
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
120
|
Tolnai S, Englitz B, Scholbach J, Jost J, Rübsamen R. Spike transmission delay at the calyx of Held in vivo: rate dependence, phenomenological modeling, and relevance for sound localization. J Neurophysiol 2009; 102:1206-17. [PMID: 19515955 DOI: 10.1152/jn.00275.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmission at central synapses exhibits rapid changes in response amplitude under different patterns of stimulation. Whether the delay associated with the transmission of action potentials is similarly modifiable is important for temporally precise computations. We address this question at the calyx of Held of the medial nucleus of the trapezoid body (MNTB) in Mongolian gerbils in vivo using extracellular recordings. Here the pre- and postsynaptic activity can be observed simultaneously, allowing the definition of an action potential transmission delay (ATD) from the pre- to the postsynaptic side. We find the ATD to increase as a function of spike rate (10-40%). The temporal dynamics of the ATD increase exhibit an exponential shape with activity-dependent time constants ( approximately 15-25 ms). Recovery dynamics of ATD were mono- (20-70 ms) or biexponential with fast (3-20 ms) and slow time constants (50-500 ms). Using a phenomenological model to capture ATD dynamics, we estimated DeltaATD = 5-30 micros per transmitted action potential. Using vocalizations and cage noise stimuli, we confirm that substantial changes in ATD occur in natural situations. Because the ATD changes cover the behaviorally relevant range of interaural time differences in gerbils, these results could provide constraints for models of sound localization.
Collapse
Affiliation(s)
- Sandra Tolnai
- Institute of Biology II, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
121
|
Short term memory may be the depletion of the readily releasable pool of presynaptic neurotransmitter vesicles of a metastable long term memory trace pattern. Cogn Neurodyn 2009; 3:263-9. [PMID: 19484378 DOI: 10.1007/s11571-009-9085-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.
Collapse
|
122
|
Lee CCJ, Anton M, Poon CS, McRae GJ. A kinetic model unifying presynaptic short-term facilitation and depression. J Comput Neurosci 2009; 26:459-73. [PMID: 19093195 PMCID: PMC2766601 DOI: 10.1007/s10827-008-0122-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Short-term facilitation and depression refer to the increase and decrease of synaptic strength under repetitive stimuli within a timescale of milliseconds to seconds. This phenomenon has been attributed to primarily presynaptic mechanisms such as calcium-dependent transmitter release and presynaptic vesicle depletion. Previous modeling studies that aimed to integrate the complex short-term facilitation and short-term depression data derived from varying synapses have relied on computer simulation or abstract mathematical approaches. Here, we propose a unified theory of synaptic short-term plasticity based on realistic yet tractable and testable model descriptions of the underlying intracellular biochemical processes. Analysis of the model equations leads to a closed-form solution of the resonance frequency, a function of several critical biophysical parameters, as the single key indicator of the propensity for synaptic facilitation or depression under repetitive stimuli. This integrative model is supported by a broad range of transient and frequency response experimental data including those from facilitating, depressing or mixed-mode synapses. Specifically, the theory predicts that high calcium initial concentration and large gain of calcium action result in low resonance frequency and hence depressing behavior. In contrast, for synapses that are less sensitive to calcium or have higher recovery rate, resonance frequency becomes higher and thus facilitation prevails. The notion of resonance frequency therefore allows valuable quantitative parametric assessment of the contributions of various presynaptic mechanisms to the directionality of synaptic short-term plasticity. Thus, the model provides the reasons behind the switching behavior between facilitation and depression observed in experiments. New experiments are also suggested to control the short-term synaptic signal processing through adjusting the resonance frequency and bandwidth.
Collapse
Affiliation(s)
- Chuang-Chung J. Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mihai Anton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gregory J. McRae
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
123
|
He L, Xue L, Xu J, McNeil BD, Bai L, Melicoff E, Adachi R, Wu LG. Compound vesicle fusion increases quantal size and potentiates synaptic transmission. Nature 2009; 459:93-7. [PMID: 19279571 PMCID: PMC2768540 DOI: 10.1038/nature07860] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/07/2009] [Accepted: 02/03/2009] [Indexed: 11/10/2022]
Abstract
Exocytosis at synapses involves fusion between vesicles and the plasma membrane. Although compound fusion between vesicles was proposed to occur at ribbon-type synapses, whether it exists, how it is mediated, and what role it plays at conventional synapses remain unclear. Here we report the existence of compound fusion, its underlying mechanism, and its role at a nerve terminal containing conventional active zones in rats and mice. We found that high potassium application and high frequency firing induced giant capacitance up-steps, reflecting exocytosis of vesicles larger than regular ones, followed by giant down-steps, reflecting bulk endocytosis. These intense stimuli also induced giant vesicle-like structures, as observed with electron microscopy, and giant miniature excitatory postsynaptic currents (mEPSCs), reflecting more transmitter release. Calcium and its sensor for vesicle fusion, synaptotagmin, were required for these giant events. After high frequency firing, calcium/synaptotagmin-dependent mEPSC size increase was paralleled by calcium/synaptotagmin-dependent post-tetanic potentiation. These results suggest a new route of exocytosis and endocytosis composed of three steps. First, calcium/synaptotagmin mediates compound fusion between vesicles. Second, exocytosis of compound vesicles increases quantal size, which increases synaptic strength and contributes to the generation of post-tetanic potentiation. Third, exocytosed compound vesicles are retrieved via bulk endocytosis. We suggest that this vesicle cycling route be included in models of synapses in which only vesicle fusion with the plasma membrane is considered.
Collapse
Affiliation(s)
- Liming He
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Santos MS, Li H, Voglmaier SM. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience 2009; 158:189-203. [PMID: 18472224 PMCID: PMC2667334 DOI: 10.1016/j.neuroscience.2008.03.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/25/2008] [Accepted: 03/08/2008] [Indexed: 11/27/2022]
Abstract
Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle pools, and the release of glutamate in response to changing physiological requirements.
Collapse
Affiliation(s)
- M S Santos
- Department of Psychiatry, University of California School of Medicine, 401 Parnassus Avenue, LPPI-A101, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
125
|
Leão RM, von Gersdorff H. Synaptic vesicle pool size, release probability and synaptic depression are sensitive to Ca2+ buffering capacity in the developing rat calyx of Held. Braz J Med Biol Res 2009; 42:94-104. [PMID: 19219302 PMCID: PMC2878365 DOI: 10.1590/s0100-879x2009000100014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/12/2009] [Indexed: 11/21/2022] Open
Abstract
The calyx of Held, a specialized synaptic terminal in the medial nucleus of the trapezoid body, undergoes a series of changes during postnatal development that prepares this synapse for reliable high frequency firing. These changes reduce short-term synaptic depression during tetanic stimulation and thereby prevent action potential failures during a stimulus train. We measured presynaptic membrane capacitance changes in calyces from young postnatal day 5-7 (p5-7) or older (p10-12) rat pups to examine the effect of calcium buffer capacity on vesicle pool size and the efficiency of exocytosis. Vesicle pool size was sensitive to the choice and concentration of exogenous Ca2+ buffer, and this sensitivity was much stronger in younger animals. Pool size and exocytosis efficiency in p5-7 calyces were depressed by 0.2 mM EGTA to a greater extent than with 0.05 mM BAPTA, even though BAPTA is a 100-fold faster Ca2+ buffer. However, this was not the case for p10-12 calyces. With 5 mM EGTA, exocytosis efficiency was reduced to a much larger extent in young calyces compared to older calyces. Depression of exocytosis using pairs of 10-ms depolarizations was reduced by 0.2 mM EGTA compared to 0.05 mM BAPTA to a similar extent in both age groups. These results indicate a developmentally regulated heterogeneity in the sensitivity of different vesicle pools to Ca2+ buffer capacity. We propose that, during development, a population of vesicles that are tightly coupled to Ca2+ channels expands at the expense of vesicles more distant from Ca2+ channels.
Collapse
Affiliation(s)
- R M Leão
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
126
|
Kline DD. Plasticity in glutamatergic NTS neurotransmission. Respir Physiol Neurobiol 2008; 164:105-11. [PMID: 18524694 PMCID: PMC2666915 DOI: 10.1016/j.resp.2008.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 01/10/2023]
Abstract
Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.
Collapse
Affiliation(s)
- David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| |
Collapse
|
127
|
Müller M, Felmy F, Schneggenburger R. A limited contribution of Ca2+ current facilitation to paired-pulse facilitation of transmitter release at the rat calyx of Held. J Physiol 2008; 586:5503-20. [PMID: 18832426 DOI: 10.1113/jphysiol.2008.155838] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested that transmitter release facilitation at synapses is largely mediated by presynaptic Ca(2+) current facilitation, but the exact contribution of Ca(2+) current facilitation has not been determined quantitatively. Here, we determine the contribution of Ca(2+) current facilitation, and of an increase in the residual free Ca(2+) concentration ([Ca(2+)](i)) in the nerve terminal, to paired-pulse facilitation of transmitter release at the calyx of Held. Under conditions of low release probability imposed by brief presynaptic voltage-clamp steps, transmitter release facilitation at short interstimulus intervals (4 ms) was 227 +/- 31% of control, Ca(2+) current facilitation was 113 +/- 4% of control, and the peak residual [Ca(2+)](i) was 252 +/- 18 nm over baseline. By inferring the 'local' [Ca(2+)](i) transients that drive transmitter release during these voltage-clamp stimuli with the help of a kinetic release model, we estimate that Ca(2+) current facilitation contributes to approximately 40% to paired-pulse facilitation of transmitter release. The remaining component of facilitation strongly depends on the build-up, and on the decay of the residual free [Ca(2+)](i), but cannot be explained by linear summation of the residual free [Ca(2+)](i), and the back-calculated 'local' [Ca(2+)](i) signal, which only accounts for approximately 10% of the total release facilitation. Further voltage-clamp experiments designed to compensate for Ca(2+) current facilitation demonstrated that about half of the observed transmitter release facilitation remains in the absence of Ca(2+) current facilitation. Our results indicate that paired-pulse facilitation of transmitter release at the calyx of Held is driven by at least two distinct mechanisms: Ca(2+) current facilitation, and a mechanism independent of Ca(2+) current facilitation that closely tracks the time course of residual free [Ca(2+)](i).
Collapse
Affiliation(s)
- Martin Müller
- Laboratory of Synaptic Mechanisms, Ecole Polytechnique Fédérale de Lausanne, Brain-Mind Institute, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
128
|
Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008; 59:882-901. [PMID: 18817729 DOI: 10.1016/j.neuron.2008.09.005] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
|
129
|
Neher E, Sakaba T. Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release. Neuron 2008; 59:861-72. [DOI: 10.1016/j.neuron.2008.08.019] [Citation(s) in RCA: 652] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022]
|
130
|
Chávez AE, Diamond JS. Diverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina. J Neurosci 2008; 28:7919-28. [PMID: 18667624 PMCID: PMC2575372 DOI: 10.1523/jneurosci.0784-08.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 11/21/2022] Open
Abstract
Synaptic inhibition shapes visual signaling in the inner retina, but the physiology of most amacrine cells, the interneurons that mediate this inhibition, is poorly understood. Discerning the function of most individual amacrine cell types is a daunting task, because few molecular or morphological markers specifically distinguish between approximately two dozen different amacrine cell types. Here, we examine a functional subset of amacrine cells by pharmacologically isolating glycinergic inhibition and evoking feedback IPSCs in a single cell type, the rod bipolar cell (RBC), with brief glutamate applications in the inner plexiform layer. We find that glycinergic amacrine cells innervating RBCs receive excitatory inputs from ON and OFF bipolar cells primarily via NMDA receptors (NMDARs) and Ca2+-impermeable AMPA-type glutamate receptors. Glycine release from amacrine cells is triggered by Ca2+ influx through both voltage-gated Ca2+ (Ca(v)) channels and NMDARs. These intracellular Ca2+signals are amplified by Ca2+-induced Ca2+ release via both ryanodine and IP3 receptors, which are activated independently by Ca2+ influx through Ca(v) channels and NMDARs, respectively. Glycinergic feedback signaling depends strongly, although not completely, on voltage-gated Na+ channels, and the spatial extent of feedback inhibition is expanded by gap junction connections between glycinergic amacrine cells. These results indicate that a diversity of mechanisms underlie glycinergic feedback inhibition onto RBCs, yet they highlight several physiological themes that appear to distinguish amacrine cell function.
Collapse
Affiliation(s)
- Andrés E Chávez
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701, USA.
| | | |
Collapse
|
131
|
Wang Y, Manis PB. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 2008; 100:1255-64. [PMID: 18632895 DOI: 10.1152/jn.90715.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endbulb of Held synapses between the auditory nerve fibers (ANF) and cochlear nucleus bushy neurons convey fine temporal information embedded in the incoming acoustic signal. The dynamics of synaptic depression and recovery is a key in regulating synaptic transmission at the endbulb synapse. We studied short-term synaptic depression and recovery in mature (P22-38) CBA mice with stimulation rates that were comparable to sound-driven activities recorded in vivo. Synaptic depression in mature mice is less severe ( approximately 40% at 100 Hz) than reported for immature animals and the depression is predominately due to depletion of releasable vesicles. Recovery from depression depends on the rate of activity and accumulation of intracellular Ca2+ at the presynaptic terminal. With a regular stimulus train at 100 Hz in 2 mM external [Ca2+], the recovery from depletion was slow (tauslow, approximately 2 s). In contrast, a fast (taufast, approximately 25 ms), Ca2+-dependent recovery followed by a slower recovery (tauslow, approximately 2 s) was seen when stimulus rates or external [Ca2+] increased. In normal [Ca2+], recovery from a 100-Hz Poisson-like train is rapid, suggesting that Poisson-like trains produce a higher internal [Ca2+] than regular trains. Moreover, the fast recovery was slowed by approximately twofold in the presence of calmidazolium, a Ca2+/calmodulin inhibitor. Our results suggest that endbulb synapses from high spontaneous firing rate auditory nerve fibers normally operate in a depressed state. The accelerated synaptic recovery during high rates of activity is likely to ensure that reliable synaptic transmission can be achieved at the endbulb synapse.
Collapse
Affiliation(s)
- Yong Wang
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
132
|
McCamphill PK, Dunn TW, Syed NI. Serotonin modulates transmitter release at central Lymnaea synapses through a G-protein-coupled and cAMP-mediated pathway. Eur J Neurosci 2008; 27:2033-42. [PMID: 18412624 DOI: 10.1111/j.1460-9568.2008.06180.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuromodulation is central to all nervous system function, although the precise mechanisms by which neurotransmitters affect synaptic efficacy between central neurons remain to be fully elucidated. In this study, we examined the neuromodulatory action of serotonin [5-hydroxytryptamine (5-HT)] at central synapses between identified neurons from the pond snail Lymnaea stagnalis. Using whole-cell voltage-clamp and sharp electrode recording, we show that 5-HT strongly depresses synaptic strength between cultured, cholinergic neuron visceral dorsal 4 (VD4 - presynaptic) and its serotonergic target left pedal dorsal 1 (LPeD1 - postsynaptic). This inhibition was accompanied by a reduction in synaptic depression, but had no effect on postsynaptic input resistance, indicating a presynaptic origin. In addition, serotonin inhibited the presynaptic calcium current (I(Ca)) on a similar time course as the change in synaptic transmission. Introduction of a non-condensable GDP analog, GDP-beta-S, through the presynaptic pipette inhibited the serotonin-mediated effect on I(Ca.) Similar results were obtained with a membrane-impermeable inactive cAMP analog, 8OH-cAMP. Furthermore, stimulation of the serotonergic postsynaptic cell also inhibited presynaptic currents, indicating the presence of a negative feedback loop between LPeD1 and VD4. Taken together, this study provides direct evidence for a negative feedback mechanism, whereby the activity of a presynaptic respiratory central pattern-generating neuron is regulated by its postsynaptic target cell. We demonstrate that either serotonin or LPeD1 activity-induced depression of presynaptic transmitter release from VD4 involves voltage-gated calcium channels and is mediated through a G-protein-coupled and cAMP-mediated system.
Collapse
Affiliation(s)
- P K McCamphill
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
133
|
Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. J Physiol 2008; 586:3129-46. [PMID: 18450780 PMCID: PMC2538789 DOI: 10.1113/jphysiol.2008.152124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/30/2008] [Indexed: 02/03/2023] Open
Abstract
Sustained activity at most central synapses is accompanied by a number of short-term changes in synaptic strength which act over a range of time scales. Here we examine experimental data and develop a model of synaptic depression at the calyx of Held synaptic terminal that combines many of these mechanisms (acting at differing sites and across a range of time scales). This new model incorporates vesicle recycling, facilitation, activity-dependent vesicle retrieval and multiple mechanisms affecting calcium channel activity and release probability. It can accurately reproduce the time course of experimentally measured short-term depression across different stimulus frequencies and exhibits a slow decay in EPSC amplitude during sustained stimulation. We show that the slow decay is a consequence of vesicle release inhibition by multiple mechanisms and is accompanied by a partial recovery of the releasable vesicle pool. This prediction is supported by patch-clamp data, using long duration repetitive EPSC stimulation at up to 400 Hz. The model also explains the recovery from depression in terms of interaction between these multiple processes, which together generate a stimulus-history-dependent recovery after repetitive stimulation. Given the high rates of spontaneous activity in the auditory pathway, the model also demonstrates how these multiple interactions cause chronic synaptic depression under in vivo conditions. While the magnitude of the depression converges to the same steady state for a given frequency, the time courses of onset and recovery are faster in the presence of spontaneous activity. We conclude that interactions between multiple sources of short-term plasticity can account for the complex kinetics during high frequency stimulation and cause stimulus-history-dependent recovery at this relay synapse.
Collapse
Affiliation(s)
- Matthias H Hennig
- ANC, School of Informatics, University of Edinburgh, 5 Forrest Hill, Edinburgh, EH1 2QL, UK.
| | | | | | | |
Collapse
|
134
|
Garcia-Perez E, Lo DC, Wesseling JF. Kinetic isolation of a slowly recovering component of short-term depression during exhaustive use at excitatory hippocampal synapses. J Neurophysiol 2008; 100:781-95. [PMID: 18579659 DOI: 10.1152/jn.90429.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examines the kinetics of the longest lasting form of short-term depression at excitatory hippocampal synapses. After initial depletion of the readily releasable pool (RRP), continued 20-Hz stimulation was found to be fast enough to maximally drive presynaptic neurotransmitter exocytosis; maximal is defined here as the rate needed to maintain the RRP in a nearly empty steady state. Induction of depression proceeded in two distinct phases. The first was caused by RRP depletion, whereas the second is shown to reflect the progressive reduction of the overall rate at which new vesicles are supplied to the RRP and is termed "supply-rate depression." Supply-rate depression is identified further with the emergence, during heavy use, of a rate-limiting vesicle trafficking step that slows the timing of RRP replenishment by switching from a fast (tau congruent with 7 s) to a slow (tau congruent with 1 min) vesicle supply mechanism. Both mechanisms apparently follow first-order kinetics. After the induction of the maximum amount of depression, individual synapses were able to output only <1 quantum of neurotransmitter per synapse per second, matching previous predictions based on cell biological measurements of synaptic vesicle cycling. Surprisingly, the onset of supply-rate depression occurred with a marked delay, not having a detectable impact on synaptic function until after several seconds of continuous use. The delayed onset is not consistent with traditional vesicle trafficking models, but may be important for limiting the impact of supply-rate depression to pathological episodes and might function as a native antiepilepsy device.
Collapse
Affiliation(s)
- Elizabeth Garcia-Perez
- Departamento de Neurociencias, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pio XII, 55, 31008 Pamplona, Spain
| | | | | |
Collapse
|
135
|
Cens T, Leyris JP, Charnet P. Introduction into Cav2.1 of the homologous mutation of Cav1.2 causing the Timothy syndrome questions the role of V421 in the phenotypic definition of P-type Ca2+ channel. Pflugers Arch 2008; 457:417-30. [DOI: 10.1007/s00424-008-0534-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/17/2008] [Accepted: 05/15/2008] [Indexed: 01/06/2023]
|
136
|
Yang H, Xu-Friedman MA. Relative roles of different mechanisms of depression at the mouse endbulb of Held. J Neurophysiol 2008; 99:2510-21. [PMID: 18367696 PMCID: PMC2905879 DOI: 10.1152/jn.01293.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several mechanisms can underlie short-term synaptic depression, including vesicle depletion, receptor desensitization, and changes in presynaptic release probability. To determine which mechanisms affect depression under physiological conditions, we studied the synapse formed by auditory nerve fibers onto bushy cells in the anteroventral cochlear nucleus (the "endbulb of Held") using voltage-clamp recordings of brain slices from P15-P21 mice near physiological temperatures. Depression of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) excitatory postsynaptic currents (EPSCs) showed two phases of recovery. The fast component of depression for the AMPA EPSC was eliminated by cyclothiazide and aniracetam, suggesting it results from desensitization. The fast component of depression for the NMDA EPSC was reduced by the low-affinity antagonist l-AP5, suggesting it results from saturation. The remaining depression in AMPA and NMDA components is identical and therefore presynaptic in origin. It is likely to result from presynaptic vesicle depletion. Recovery from depression after trains of activity was slowed by the application of EGTA-AM, suggesting that the endbulb has a residual-calcium-dependent form of recovery. We developed a model that incorporates depletion, desensitization, and calcium-dependent recovery. This model replicated experimental findings over a range of experimental conditions. The model further indicated that desensitization plays only a minor role during prolonged activity, in large part because presynaptic release is so depleted. Thus depletion appears to be the dominant mechanism of depression at the endbulb during normal activity. Furthermore, calcium-dependent recovery at the endbulb is critical to prevent complete rundown during high activity and to preserve the reliability of information transmission.
Collapse
Affiliation(s)
- Hua Yang
- University of Buffalo, Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
137
|
Mochida S, Few AP, Scheuer T, Catterall WA. Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 2008; 57:210-6. [PMID: 18215619 DOI: 10.1016/j.neuron.2007.11.036] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/25/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mutation of the IQ-like motif in the C terminus that blocks Ca(2+)/CaS-dependent facilitation of the P/Q-type Ca(2+) current markedly reduces facilitation of synaptic transmission. Deletion of the nearby calmodulin-binding domain, which inhibits CaS-dependent inactivation, substantially reduces depression of synaptic transmission. These results demonstrate that residual Ca(2+) in presynaptic terminals can act through CaS-dependent regulation of Ca(V)2.1 channels to induce short-term synaptic facilitation and rapid synaptic depression. Activity-dependent regulation of presynaptic Ca(V)2.1 channels by CaS proteins may therefore be a primary determinant of short-term synaptic plasticity and information-processing in the nervous system.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
138
|
Mori MX, Vander Kooi CW, Leahy DJ, Yue DT. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+. Structure 2008; 16:607-20. [PMID: 18400181 PMCID: PMC2363160 DOI: 10.1016/j.str.2008.01.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/12/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022]
Abstract
Calmodulin (CaM) regulation of Ca(2+) channels is central to Ca(2+) signaling. Ca(V)1 versus Ca(V)2 classes of these channels exhibit divergent forms of regulation, potentially relating to customized CaM/IQ interactions among different channels. Here we report the crystal structures for the Ca(2+)/CaM IQ domains of both Ca(V)2.1 and Ca(V)2.3 channels. These highly similar structures emphasize that major CaM contacts with the IQ domain extend well upstream of traditional consensus residues. Surprisingly, upstream mutations strongly diminished Ca(V)2.1 regulation, whereas downstream perturbations had limited effects. Furthermore, our Ca(V)2 structures closely resemble published Ca(2+)/CaM-Ca(V)1.2 IQ structures, arguing against Ca(V)1/2 regulatory differences based solely on contrasting CaM/IQ conformations. Instead, alanine scanning of the Ca(V)2.1 IQ domain, combined with structure-based molecular simulation of corresponding CaM/IQ binding energy perturbations, suggests that the C lobe of CaM partially dislodges from the IQ element during channel regulation, allowing exposed IQ residues to trigger regulation via isoform-specific interactions with alternative channel regions.
Collapse
Affiliation(s)
- Masayuki X. Mori
- Ca Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Craig W. Vander Kooi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel J. Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David T. Yue
- Ca Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Ca Signals Laboratory, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
139
|
Koike-Tani M, Kanda T, Saitoh N, Yamashita T, Takahashi T. Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. J Physiol 2008; 586:2263-75. [PMID: 18339695 DOI: 10.1113/jphysiol.2007.142547] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paired-pulse facilitation (PPF) and depression (PPD) are forms of short-term plasticity that are generally thought to reflect changes in transmitter release probability. However, desensitization of postsynaptic AMPA receptors (AMPARs) significantly contributes to PPD at many glutamatergic synapses. To clarify the involvement of AMPAR desensitization in synaptic PPD, we compared PPD with AMPAR desensitization, induced by paired-pulse glutamate application in patches excised from postsynaptic cells at the calyx of Held synapse of developing rats. We found that AMPAR desensitization contributed significantly to PPD before the onset of hearing (P10-12), but that its contribution became negligible after hearing onset. During postnatal development (P7-21) the recovery of AMPARs from desensitization became faster. Concomitantly, glutamate sensitivity of AMPAR desensitization declined. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated a developmental decline of GluR1 expression that correlated with speeding of the recovery of AMPARs from desensitization. Transmitter release probability declined during the second postnatal week (P7-14). Manipulation of the extracellular Ca2+/Mg2+ ratio, to match release probability at P7-8 and P13-15 synapses, revealed that the release probability is also an important factor determining the involvement of AMPAR desensitization in PPD. We conclude that the extent of involvement of AMPAR desensitization in short-term synaptic depression is determined by both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Maki Koike-Tani
- Doshisha University Faculty of Life and Medical Sciences, 619-0225, Japan
| | | | | | | | | |
Collapse
|
140
|
Baufreton J, Bevan MD. D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J Physiol 2008; 586:2121-42. [PMID: 18292127 DOI: 10.1113/jphysiol.2008.151118] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Reciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern 'pathological' activity in STN neurons. Electrically evoked GABA(A) receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.e. IPSCs evoked at frequencies between 1 and 50 Hz exhibited depression that increased with the frequency of activity. Dopamine, the D(2)-like dopamine receptor agonist quinpirole and external media containing a low [Ca(2+)] reduced both the magnitude of IPSCs evoked at 1-50 Hz and synaptic depression at 10-50 Hz. Dopamine/quinpirole also reduced the frequency but not the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. D(1)-like and D(4) agonists were ineffective and D(2/3) but not D4 receptor antagonists reversed the effects of dopamine or quinpirole. Together these data suggest that presynaptic D(2/3) dopamine receptors modulate the short-term dynamics of GABAergic transmission in the STN by lowering the initial probability of transmitter release. Simulated GABA(A) receptor-mediated synaptic conductances representative of control or modulated transmission were then generated in STN neurons using the dynamic clamp technique. Dopamine-modulated transmission was less effective at resetting autonomous activity or generating rebound burst firing than control transmission. The data therefore support the conclusion that dopamine acting at presynaptic D(2)-like receptors reduces the propensity for GABAergic transmission to generate correlated, bursting activity in STN neurons.
Collapse
Affiliation(s)
- Jérôme Baufreton
- Northwestern University, Department of Physiology, Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
141
|
Nakamura T, Yamashita T, Saitoh N, Takahashi T. Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of Held. J Physiol 2008; 586:2253-61. [PMID: 18238813 DOI: 10.1113/jphysiol.2007.142521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-binding to calmodulin (CaM) causes facilitation and/or inactivation of recombinant Ca2+ channels. At the rat calyx of Held, before hearing onset, presynaptic Ca2+ currents (IpCa) undergo Ca2+/CaM-dependent inactivation during repetitive activation at around 1 Hz, implying that this may be a major cause of short-term synaptic depression. However, it remains open whether the Ca2+/CaM-dependent inactivation of IpCa persists in more mature animals. To address this question, we tested the effect of CaM inhibitors on the activity-dependent modulation of IpCa in calyces, before (postnatal day (P) 7-9) and after (P13-15) hearing onset. Our results indicate that the CaM-dependent IpCa inactivation during low-frequency stimulation, and the ensuing synaptic depression, occur only at calyces in the prehearing period. However, CaM immunoreactivity in P8 and P14 calyces was equally strong. Even at P13-15, high frequency stimulation (200-500 Hz) could induce IpCa inactivation, which was attenuated by EGTA (10 mM) or a CaM inhibitor peptide loaded into the terminal. Furthermore, the CaM inhibitor peptide attenuated a transient facilitation of IpCa preceding inactivation observed at 500 Hz stimulation, whereas it had no effect on sustained IpCa facilitations during trains of 50-200 Hz stimulation. These results suggest that the Ca2+/CaM-dependent IpCa modulation requires a high intraterminal Ca2+ concentration, which can be attained at immature calyces during low frequency stimulation, but only during unusually high frequency stimulation at calyceal terminals in the posthearing period.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Doshisha University, Faculty of Life and Medical Sciences, Kyoto 619-0225, Japan
| | | | | | | |
Collapse
|
142
|
A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 2008; 451:830-4. [PMID: 18235447 DOI: 10.1038/nature06529] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 12/06/2007] [Indexed: 12/25/2022]
Abstract
Ca2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.
Collapse
|
143
|
Williams SR, Atkinson SE. Pathway-specific use-dependent dynamics of excitatory synaptic transmission in rat intracortical circuits. J Physiol 2007; 585:759-77. [PMID: 17947318 PMCID: PMC2375532 DOI: 10.1113/jphysiol.2007.138453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/16/2007] [Indexed: 11/08/2022] Open
Abstract
Information processing in neuronal networks is determined by the use-dependent dynamics of synaptic transmission. Here we characterize the dynamic properties of excitatory synaptic transmission in two major intracortical pathways that target the output neurons of the neocortex, by recording unitary EPSPs from layer 5 pyramidal neurons evoked in response to action potential trains of increasing complexity in presynaptic layer 2/3 or layer 5 pyramidal neurons. We find that layer 2/3 to layer 5 synaptic transmission is dominated by frequency-dependent depression when generated at fixed frequencies of > 10 Hz. Synaptic depression evolved on a spike-by-spike basis in response to action potential trains that possessed a broad range of interspike intervals, but a low mean frequency (10 Hz). Layer 2/3 to layer 2/3 and layer 2/3 to layer 5 synapses were incapable of sustained release during prolonged, complex trains of presynaptic action potential firing (mean frequency, 48 Hz). By contrast, layer 5 to layer 5 synapses operated effectively across a wide range of frequencies, exhibiting increased efficacy at frequencies > 10 Hz. Furthermore, layer 5 to layer 5 synapses sustained release throughout the duration of prolonged, complex spike trains. The use-dependent properties of synaptic transmission could be modulated by pharmacologically changing the probability of release and by induction of long-term depression. The dynamic properties of intracortical excitatory synapses are therefore pathway-specific. We suggest that the synaptic output of layer 5 pyramidal neurons is ideally suited to control the neocortical network across a wide range of frequencies and for sustained periods of time, a behaviour that helps to explain the pivotal role played by layer 5 neurons in the genesis of periods of network 'up' states and epileptiform activity in the neocortex.
Collapse
Affiliation(s)
- Stephen R Williams
- Neurobiology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK.
| | | |
Collapse
|
144
|
Xie M, Li X, Han J, Vogt DL, Wittemann S, Mark MD, Herlitze S. Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavbeta4 versus Cavbeta2 subunits to synaptic terminals. ACTA ACUST UNITED AC 2007; 178:489-502. [PMID: 17664337 PMCID: PMC2064847 DOI: 10.1083/jcb.200702072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ channel β subunits determine the transport and physiological properties of high voltage–activated Ca2+ channel complexes. Our analysis of the distribution of the Cavβ subunit family members in hippocampal neurons correlates their synaptic distribution with their involvement in transmitter release. We find that exogenously expressed Cavβ4b and Cavβ2a subunits distribute in clusters and localize to synapses, whereas Cavβ1b and Cavβ3 are homogenously distributed. According to their localization, Cavβ2a and Cavβ4b subunits modulate the synaptic plasticity of autaptic hippocampal neurons (i.e., Cavβ2a induces depression, whereas Cavβ4b induces paired-pulse facilitation [PPF] followed by synaptic depression during longer stimuli trains). The induction of PPF by Cavβ4b correlates with a reduction in the release probability and cooperativity of the transmitter release. These results suggest that Cavβ subunits determine the gating properties of the presynaptic Ca2+ channels within the presynaptic terminal in a subunit-specific manner and may be involved in organization of the Ca2+ channel relative to the release machinery.
Collapse
Affiliation(s)
- Mian Xie
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
GTP-independent rapid and slow endocytosis at a central synapse. Nat Neurosci 2007; 11:45-53. [PMID: 18066059 DOI: 10.1038/nn2021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/01/2007] [Indexed: 11/08/2022]
Abstract
Vesicle endocytosis is essential for maintaining synaptic transmission. Its key step, membrane scission, is thought to be mediated by the GTPase dynamin in all forms of endocytosis at synapses. Our findings indicate that GTP-independent and probably dynamin-independent endocytosis co-exist with GTP- and dynamin-dependent endocytosis at the same synaptic nerve terminal, the calyx of Held, in rats. This previously undescribed form of endocytosis could be slow (tens of seconds) and/or rapid (a few seconds), similar to GTP- and dynamin-dependent endocytosis. It was activated during intense stimulation, whereas GTP- and dynamin-dependent endocytosis dominated during mild stimulation. These results establish a new model, in which vesicles are divided into two pools depending on their requirement for GTP and dynamin for retrieval. The GTP- and dynamin-dependent pool has higher priority for release and retrieval, but limited capacity, saturation of which leads to release and thus retrieval of GTP- and dynamin-independent vesicles.
Collapse
|
146
|
Stevens CF, Williams JH. Discharge of the readily releasable pool with action potentials at hippocampal synapses. J Neurophysiol 2007; 98:3221-9. [PMID: 17942621 PMCID: PMC2201901 DOI: 10.1152/jn.00857.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A readily releasable pool (RRP) of synaptic vesicles has been identified at hippocampal synapses with application of hypertonic solution. RRP size correlates with important properties of synaptic function such as release probability. However, a discrepancy in RRP size has been reported depending on the method used to evoke synaptic release. This study was undertaken to determine quantitative relationships between the RRP defined with hypertonic solution and that released with trains of action potentials. We find that asynchronous release at cell culture synapses contributes significantly to the discharge of the RRP with trains of action potentials and that RRP size is the same when elicited by either nerve stimuli or hypertonic challenge.
Collapse
Affiliation(s)
- Charles F Stevens
- Molecular Neurobiology Lab, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
147
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
148
|
Innocenti B, Heidelberger R. Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse. J Neurophysiol 2007; 99:25-36. [PMID: 17989244 DOI: 10.1152/jn.00737.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Time-resolved capacitance measurements in combination with fluorescence measurements of internal calcium suggested three kinetic components of release in acutely isolated cone photoreceptors of the tiger salamander. A 45-fF releasable pool, corresponding to about 1,000 vesicles, was identified. This pool could be depleted with a time constant of a few hundred milliseconds and its recovery from depletion was quite rapid (tau approximately 1 s). The fusion of vesicles in this pool was blocked by low-millimolar EGTA. Endocytosis was sufficiently slow that it is likely that refilling of the releasable pool occurred from preformed vesicles. A second, slower component of release (tau(depletion) approximately 3 s) was identified that was approximately twice the size of the releasable pool. This pool may serve as a first reserve pool that replenishes the releasable pool. Computer simulations indicate that the properties of the releasable and first reserve pools are sufficient to maintain synaptic signaling for several seconds in the face of near-maximal stimulations and in the absence of other sources of vesicles. Along with lower rates of depletion, additional mechanisms, such as replenishment from distal reserve pools and the fast recycling of vesicles, may further contribute to the maintenance of graded, tonic release from cone photoreceptors.
Collapse
Affiliation(s)
- Barbara Innocenti
- The W. M. Keck Center for the Neurobiology of Learning and Memory, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77025, USA.
| | | |
Collapse
|
149
|
Wykes RCE, Bauer CS, Khan SU, Weiss JL, Seward EP. Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 2007; 27:5236-48. [PMID: 17494710 PMCID: PMC6672387 DOI: 10.1523/jneurosci.3545-06.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Robust CDI of N-type channels was observed in response to prolonged step depolarizations, as well as repetitive stimulation with either brief step depolarizations or action potential-like voltage stimuli. Adenoviral expression of Ca2+-insensitive calmodulin mutants eliminated CDI of N-type channels. This is the first demonstration of CaM-dependent CDI of a native N-type channel. CDI of P/Q-type channels was by comparison modest and insensitive to expression of CaM mutants. Cloning of the C terminus of the Ca(V)2.1 alpha1 subunit from chromaffin cells revealed multiple splice variants lacking structural motifs required for CaM-dependent CDI. The physiological relevance of CDI on stimulus-coupled exocytosis was revealed by combining perforated-patch voltage-clamp recordings of pharmacologically isolated Ca2+ currents with membrane capacitance measurements of exocytosis. Increasing stimulus intensity to invoke CDI resulted in a significant decrease in the exocytotic efficiency of N-type channels compared with P/Q-type channels. Our results reveal unexpected diversity in CaM regulation of native Ca(V)2 channels and suggest that the ability of individual Ca2+ channel subtypes to undergo CDI may be tailored by alternative splicing to meet the specific requirements of a particular cellular function.
Collapse
Affiliation(s)
- Robert C. E. Wykes
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia S. Bauer
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Saeed U. Khan
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Jamie L. Weiss
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth P. Seward
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
150
|
Awatramani GB, Boyd JD, Delaney KR, Murphy TH. Effective release rates at single rat Schaffer collateral-CA1 synapses during sustained theta-burst activity revealed by optical imaging. J Physiol 2007; 582:583-95. [PMID: 17463045 PMCID: PMC2075339 DOI: 10.1113/jphysiol.2007.130286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand how information is coded at single hippocampal synapses during high-frequency activity, we imaged NMDA receptor-mediated Ca(2+) responses in spines of CA1 neurons using two-photon microscopy. Although discrete quantal events were not readily apparent during continuous theta-burst stimulation (TBS), we found that the steady-state dendritic Ca(2+) response was spatially restricted (half-width < 1 microm), voltage dependent and sensitive to MK-801, indicating that that it was mediated by activation of NMDA receptors at single synapses. Partial antagonism of NMDA receptors caused a similar reduction of NMDA EPSCs (measured at the soma) and local dendritic Ca(2+) signals, suggesting that, like EPSCs, the steady-state Ca(2+) signal was made up of a linear addition of quantal events. Statistical analyses of the steady-response suggested that the quantal size did not change dramatically during TBS. Deconvolution of TBS-evoked Ca(2+) responses revealed a heterogeneous population of synapses differing in their capacity to signal high-frequency information, with an average effective steady-state release rate of approximately 2.6 vesicles synapse(-1)s(-1). To assess how the optically determined release rates compare with population measures we analysed the rate of decay of peak EPSCs during train stimulation. From these studies, we estimated a unitary vesicular replenishment rate of 0.02 s(-1), which corresponds to an average release rate of approximately 0.8-2 vesicles s(-1) at individual synapses. Additionally, extracellular recordings from single Schaffer collaterals revealed that spikes propagate reliably during TBS. Hence, during high-frequency activity, Schaffer collaterals conduct spikes with high fidelity, but release quanta with relatively lower efficiency, leaving NMDA receptor function largely intact and synapse specific. Heterogeneity in release rates between synapses suggests that similar patterns of presynaptic action potentials could trigger different forms of plasticity at individual synapses.
Collapse
Affiliation(s)
- G B Awatramani
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|