101
|
Rowland D, Roongthumskul Y, Lee JH, Cheon J, Bozovic D. Magnetic actuation of hair cells. APPLIED PHYSICS LETTERS 2011; 99:193701-1937013. [PMID: 22163368 PMCID: PMC3230637 DOI: 10.1063/1.3659299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state.
Collapse
|
102
|
Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci U S A 2011; 108:18390-5. [PMID: 22025702 DOI: 10.1073/pnas.1110036108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.
Collapse
|
103
|
Devarajan K, Staecker H, Detamore MS. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells. J Funct Biomater 2011; 2:249-70. [PMID: 24956306 PMCID: PMC4030941 DOI: 10.3390/jfb2030249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 12/13/2022] Open
Abstract
Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.
Collapse
Affiliation(s)
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | |
Collapse
|
104
|
Nadrowski B, Göpfert MC. Level-dependent auditory tuning: Transducer-based active processes in hearing and best-frequency shifts. Commun Integr Biol 2011; 2:7-10. [PMID: 19704854 DOI: 10.4161/cib.2.1.7299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 11/19/2022] Open
Abstract
Ears boost their sensitivity by means of active, force-generating processes that augment the minute vibrations induced by soft sounds. These processes can alter auditory frequency-tuning in a level-dependent way. In the antennal hearing organ of Drosophila, for example, the active process shifts the best frequency (BF) of the antennal sound receiver when the sound intensity is varied, tuning the receiver to conspecific songs. Here we show that this level-dependent tuning can be reproduced by an active transduction model as proposed for vertebrate hair cells and the Drosophila ear. We further show that the direction of the frequency shift depends on the system to which the molecular modules for auditory transduction connect: If this system is mass-less such as the sensory hair bundles of bullfrog saccular hair cells, the BF of the displacement response will increase as the sound intensity declines. Conversely, BF will decrease with declining intensity if the transduction modules couple to inertial systems such as the fly's antennal sound receiver or cupulae in the fish lateral line.
Collapse
Affiliation(s)
- Björn Nadrowski
- Department for Cellular Neurobiology; University of Göttingen; Max-Planck Institute for Experimental Medicine; Göttingen, Germany
| | | |
Collapse
|
105
|
Mahoney JL, Graugnard EM, Mire P, Watson GM. Evidence for involvement of TRPA1 in the detection of vibrations by hair bundle mechanoreceptors in sea anemones. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:729-42. [PMID: 21394510 DOI: 10.1007/s00359-011-0636-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
A homolog of TRPA1 was identified in the genome of the anemone, Nematostella vectensis (nv-TRPA1a), and predicted to possess six ankyrin repeat domains at the N-terminus and an ion channel domain near the C-terminus. Transmembrane segments of the ion channel domain are well conserved among several known TRPA1 polypeptides. Inhibitors of TRPA1 including ruthenium red decrease vibration-dependent discharge of nematocysts in N. vectensis and Haliplanella luciae. Activators of TRPA1 including URB-597 and polygodial increase nematocyst discharge in the absence of vibrations. Co-immunoprecipitation yields a band on SDS-PAGE gels at the predicted mass of the nv-TRPA1a polypeptide among other bands. Co-immunoprecipitation performed in the presence of antigenic peptide decreases the yield of this and several other polypeptides. In untreated controls, anti-nv-TRPA1a primarily labels the base of the hair bundle with some labeling also distributed along the length of stereocilia. Tissue immunolabeled in the presence of the antigenic peptide exhibits reduced labeling. Activating chemoreceptors for N-acetylated sugars induce immunolabel to distribute distally in stereocilia. In anemones, activating chemoreceptors for N-acetylated sugars induce hair bundles to elongate among several other structural and functional changes. Taken together, these results are consistent with the possibility that nv-TRPA1a participates in signal transduction of anemone hair bundles.
Collapse
Affiliation(s)
- Janna L Mahoney
- Department of Biology, University of Louisiana at Lafayette, USA
| | | | | | | |
Collapse
|
106
|
Adamek N, Geeves MA, Coluccio LM. Myo1c mutations associated with hearing loss cause defects in the interaction with nucleotide and actin. Cell Mol Life Sci 2011; 68:139-50. [PMID: 20640478 PMCID: PMC3014424 DOI: 10.1007/s00018-010-0448-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Three heterozygous missense mutations in the motor domain of myosin 1c (Myo1c), which mediates adaptation in the inner ear, are associated with bilateral sensorineural hearing loss in humans. With transient kinetic analyses, steady-state ATPase and motility assays, and homology modeling, we studied the interaction of these mutants with nucleotide and actin using a truncated construct, Myo1c(1IQ-SAH), which includes an artificial lever arm. Results indicate that mutation R156W, near switch 1, affects the nucleotide-binding pocket and the calcium binding by disrupting switch 1 movement. Mutation V252A, in the K helix of the upper 50 kDa domain, showed reduced actin affinity consistent with disruption of communication between the actin- and nucleotide-binding sites. T380M, in a Myo1c-specific insert in the HO linker, displayed aberrant changes in most kinetic parameters and uncoupling of the ATPase from motility. These data allow for an interpretation of how these mutations might affect adaptation.
Collapse
Affiliation(s)
- Nancy Adamek
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ UK
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ UK
| | - Lynne M. Coluccio
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472 USA
| |
Collapse
|
107
|
Ramunno-Johnson D, Strimbu C, Kao A, Fredrickson Hemsing L, Bozovic D. Effects of the somatic ion channels upon spontaneous mechanical oscillations in hair bundles of the inner ear. Hear Res 2010; 268:163-71. [DOI: 10.1016/j.heares.2010.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/28/2022]
|
108
|
Kang L, Gao J, Schafer WR, Xie Z, Xu XZS. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 2010; 67:381-91. [PMID: 20696377 DOI: 10.1016/j.neuron.2010.06.032] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2010] [Indexed: 11/30/2022]
Abstract
Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none have been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using Caenorhabditis elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of microseconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results indicate that TRP-4 functions as an essential pore-forming subunit of a native mechanotransduction channel.
Collapse
Affiliation(s)
- Lijun Kang
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
109
|
Goodyear RJ, Legan PK, Christiansen JR, Xia B, Korchagina J, Gale JE, Warchol ME, Corwin JT, Richardson GP. Identification of the hair cell soma-1 antigen, HCS-1, as otoferlin. J Assoc Res Otolaryngol 2010; 11:573-86. [PMID: 20809368 PMCID: PMC2975885 DOI: 10.1007/s10162-010-0231-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 08/05/2010] [Indexed: 02/06/2023] Open
Abstract
Hair cells, the mechanosensitive receptor cells of the inner ear, are critical for our senses of hearing and balance. The small number of these receptor cells in the inner ear has impeded the identification and characterization of proteins important for hair cell function. The binding specificity of monoclonal antibodies provides a means for identifying hair cell-specific proteins and isolating them for further study. We have generated a monoclonal antibody, termed hair cell soma-1 (HCS-1), which specifically immunolabels hair cells in at least five vertebrate classes, including sharks and rays, bony fish, amphibians, birds, and mammals. We used HCS-1 to immunoprecipitate the cognate antigen and identified it as otoferlin, a member of the ferlin protein family. Mutations in otoferlin underlie DFNB9, a recessive, nonsyndromic form of prelingual deafness characterized as an auditory neuropathy. Using immunocytochemistry, we find that otoferlin is associated with the entire basolateral membrane of the hair cells and with vesicular structures distributed throughout most of the hair cell cytoplasm. Biochemical assays indicate that otoferlin is tightly associated with membranes, as it is not solubilized by alterations in calcium or salt concentrations. HCS-1 immunolabeling does not co-localize with ribeye, a constituent of synaptic ribbons, suggesting that otoferlin may, in addition to its proposed function in synaptic vesicle release, play additional roles in hair cells.
Collapse
Affiliation(s)
- Richard J Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
111
|
Mochizuki E, Okumura K, Ishikawa M, Yoshimoto S, Yamaguchi J, Seki Y, Wada K, Yokohama M, Ushiki T, Tokano H, Ishii R, Shitara H, Taya C, Kitamura K, Yonekawa H, Kikkawa Y. Phenotypic and expression analysis of a novel spontaneous myosin VI null mutant mouse. Exp Anim 2010; 59:57-71. [PMID: 20224170 DOI: 10.1538/expanim.59.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In humans, hearing is a major factor in quality of life. Mouse models are important tools for the discovery of genes responsible for genetic hearing loss, often enabling analysis of the processes that regulate the onset of deafness in humans. Thus far, at least 400 deafness mutants have been discovered in laboratory mouse populations and used in the study of deafness. Here we report the discovery of a new spontaneous recessive Rinshoken shaker/waltzer (rsv) mutant derived from our in-house C57BL/6J stock, which exhibits circling and/or head-tossing behaviour and complete lack of auditory brain response to any sound pressure. The hearing and balance phenotypes are associated with structural defects, in particular, disorganisation and fusion of stereocilia in the inner ear hair cells. Two sets of intersubspecific N(2) mice were generated for the positional cloning of the rsv mutation. The mutant locus was mapped to a 4.8-Mb region of chromosome 9, which contains myosin VI (Myo6), a gene responsible for deafness in humans and Snell's waltzer mutation in mice. The rsv mutant showed reduced expressions of Myo6 mRNA and MYO6 protein in the inner ear. Moreover, no immunoreactivity was observed in the cochlear and vestibular hair cells in the rsv mutant mice. We sequenced the genomic region (30,154 bp) of Myo6, including all coding exons, a non-coding exon, UTRs and the Myo6 promoter; however, no mutation was discovered in these regions. We therefore speculate that loss of MYO6 expression might cause shaker/waltzer behaviour and deafness in the rsv mutant; also, loss of MYO6 expression might be the result of mutations in an unidentified regulatory region(s) of the gene.
Collapse
Affiliation(s)
- Eiji Mochizuki
- Department of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Strimbu C, Kao A, Tokuda J, Ramunno-Johnson D, Bozovic D. Dynamic state and evoked motility in coupled hair bundles of the bullfrog sacculus. Hear Res 2010; 265:38-45. [DOI: 10.1016/j.heares.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
113
|
Sul B, Iwasa KH. Effectiveness of hair bundle motility as the cochlear amplifier. Biophys J 2010; 97:2653-63. [PMID: 19917218 DOI: 10.1016/j.bpj.2009.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is approximately 10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear.
Collapse
Affiliation(s)
- Bora Sul
- Biophysics Section, Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
114
|
Abstract
Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and responds to minute physical displacements on a submillisecond timescale. The recent discovery of several molecular constituents of the mechanotransduction machinery of hair cells provides a new framework for the interpretation of biophysical data and necessitates revision of prevailing models of mechanotransduction.
Collapse
|
115
|
Strimbu C, Ramunno-Johnson D, Fredrickson L, Arisaka K, Bozovic D. Correlated movement of hair bundles coupled to the otolithic membrane in the bullfrog sacculus. Hear Res 2009; 256:58-63. [DOI: 10.1016/j.heares.2009.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/17/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
|
116
|
Sul B, Iwasa KH. Amplifying effect of a release mechanism for fast adaptation in the hair bundle. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:4-6. [PMID: 19603855 PMCID: PMC2723902 DOI: 10.1121/1.3143782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 05/28/2023]
Abstract
A "release" mechanism, which has been experimentally observed as the fast component in the hair bundle's response to mechanical stimulation, appears similar to common mechanical relaxation with a damping effect. This observation is puzzling because such a response is expected to have an amplifying role in the mechanoelectrical transduction process in hair cells. Here it is shown that a release mechanism can indeed have a role in amplification, if it is associated with negative stiffness due to the gating of the mechonoelectric transducer channel.
Collapse
Affiliation(s)
- Bora Sul
- Section on Biophysics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850-3211, USA.
| | | |
Collapse
|
117
|
Rabbitt RD, Clifford S, Breneman KD, Farrell B, Brownell WE. Power efficiency of outer hair cell somatic electromotility. PLoS Comput Biol 2009; 5:e1000444. [PMID: 19629162 PMCID: PMC2705677 DOI: 10.1371/journal.pcbi.1000444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.
Collapse
Affiliation(s)
- Richard D. Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Clifford
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Kathryn D. Breneman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Brenda Farrell
- Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Brownell
- Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
118
|
Zhang Y, Kim CK, Lee KJB, Park Y. A Brownian energy depot model of the basilar membrane oscillation with a braking mechanism. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 29:345-349. [PMID: 19593626 DOI: 10.1140/epje/i2009-10491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 05/26/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
High auditory sensitivity, sharp frequency selectivity, and spontaneous otoacoustic emissions are signatures of active amplification of the cochlea. The human ear can also detect very large amplitude sounds without being damaged, as long as the exposed time is not too long. The outer hair cells are believed to be the best candidate for the active force generator of the mammalian cochlea. In this paper, we propose a new model for the basilar membrane oscillation which describes both an active and a protective mechanism by employing an energy depot concept and a critical velocity of the basilar membrane. The compressive response of the basilar membrane at the characteristic frequency and the dynamic response to the stimulation are consistent with the experimental results. Although our model displays a Hopf bifurcation, our braking mechanism results in a hyper-compressive response to intense stimuli which is not generically observed near a Hopf bifurcation. Asymmetry seen in experimental recordings between the onset and the offset of the basilar membrane response to a sound burst is also observed in this model.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Physics and Applied Physics, Yonsei University, Seoul, Korea.
| | | | | | | |
Collapse
|
119
|
Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T, Lillo C, Dumont RA, Hintermann E, Sczaniecka A, Schwander M, Williams D, Kachar B, Gillespie PG, Müller U. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 2009; 62:375-87. [PMID: 19447093 DOI: 10.1016/j.neuron.2009.04.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/06/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
In hair cells, mechanotransduction channels are gated by tip links, the extracellular filaments that consist of cadherin 23 (CDH23) and protocadherin 15 (PCDH15) and connect the stereocilia of each hair cell. However, which molecules mediate cadherin function at tip links is not known. Here we show that the PDZ-domain protein harmonin is a component of the upper tip-link density (UTLD), where CDH23 inserts into the stereociliary membrane. Harmonin domains that mediate interactions with CDH23 and F-actin control harmonin localization in stereocilia and are necessary for normal hearing. In mice expressing a mutant harmonin protein that prevents UTLD formation, the sensitivity of hair bundles to mechanical stimulation is reduced. We conclude that harmonin is a UTLD component and contributes to establishing the sensitivity of mechanotransduction channels to displacement.
Collapse
Affiliation(s)
- Nicolas Grillet
- Department of Cell Biology, Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Synchrony through twice-frequency forcing for sensitive and selective auditory processing. Proc Natl Acad Sci U S A 2009; 106:10177-82. [PMID: 19520827 DOI: 10.1073/pnas.0901727106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male mosquitoes detect flying females using antennal hearing organs sensitive to nanoscale mechanical displacements and that harbor motile mechanosensory neurons. The mechanisms supporting neuronal motility, and their function in peripheral sensory processing, remain, however, puzzling. The mechanical and neural responses reveal a transition that unmasks the onset of synchronization between sensory neurons. This synchronization constitutes an unconventional, mechanically driven, process of communication between sensory neurons. Enhancing auditory sensitivity and selectivity, synchronization between mechanosensors in the mosquito arises from entrainment to twice-frequency forcing and is formally analogous to injection-locking in high-power laser technology. This discovery opens up the enticing possibility that other sensory systems, even nonsensory cell ensembles, coordinate their actions through mechanical signaling.
Collapse
|
121
|
Sengupta S, George M, Miller KK, Naik K, Chou J, Cheatham MA, Dallos P, Naramura M, Band H, Zheng J. EHD4 and CDH23 are interacting partners in cochlear hair cells. J Biol Chem 2009; 284:20121-9. [PMID: 19487694 DOI: 10.1074/jbc.m109.025668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadherin 23 (CDH23), a transmembrane protein localized near the tips of hair cell stereocilia in the mammalian inner ear, is important for delivering mechanical signals to the mechano-electric transducer channels. To identify CDH23-interacting proteins, a membrane-based yeast two-hybrid screen of an outer hair cell (OHC) cDNA library was performed. EHD4, a member of the C-terminal EH domain containing a protein family involved in endocytic recycling, was identified as a potential interactor. To confirm the interaction, we first demonstrated the EHD4 mRNA expression in hair cells using in situ hybridization. Next, we showed that EHD4 co-localizes and co-immunoprecipitates with CDH23 in mammalian cells. Interestingly, the co-immunoprecipitation was found to be calcium-sensitive. To investigate the role of EHD4 in hearing, compound action potentials were measured in EHD4 knock-out (KO) mice. Although EHD4 KO mice have normal hearing sensitivity, analysis of mouse cochlear lysates revealed a 2-fold increase in EHD1, but no increase in EHD2 or EHD3, in EHD4 KO cochleae compared with wild type, suggesting that a compensatory increase in EHD1 levels may account for the absence of a hearing defect in EHD4 KO mice. Taken together, these data indicate that EHD4 is a novel CDH23-interacting protein that could regulate CDH23 trafficking/localization in a calcium-sensitive manner.
Collapse
Affiliation(s)
- Soma Sengupta
- Department of Communication Sciences and Disorders, Hugh Knowles Center, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
ATP8B1 deficiency is caused by autosomal recessive mutations in ATP8B1, which encodes the putative phospatidylserine flippase ATP8B1 (formerly called FIC1). ATP8B1 deficiency is primarily characterized by cholestasis, but extrahepatic symptoms are also found. Because patients sometimes report reduced hearing capability, we investigated the role of ATP8B1 in auditory function. Here we show that ATP8B1/Atp8b1 deficiency, both in patients and in Atp8b1(G308V/G308V) mutant mice, causes hearing loss, associated with progressive degeneration of cochlear hair cells. Atp8b1 is specifically localized in the stereocilia of these hair cells. This indicates that the mechanosensory function and integrity of the cochlear hair cells is critically dependent on ATP8B1 activity, possibly through maintaining lipid asymmetry in the cellular membranes of stereocilia.
Collapse
|
123
|
Doll JC, Nahid H, Klejwa N, Kwon R, Coulthard SM, Petzold B, Goodman MB, Pruitt BL. SU-8 force sensing pillar arrays for biological measurements. LAB ON A CHIP 2009; 9:1449-54. [PMID: 19417913 PMCID: PMC2818990 DOI: 10.1039/b818622g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The generation and sensation of mechanical force plays a role in many dynamic biological processes, including touch sensation. This paper presents a two-axis micro strain gauge force sensor constructed from multiple layers of SU-8 and metal on quartz substrates. The sensor was designed to meet requirements for measuring tactile sensitivity and interaction forces exerted during locomotion by small organisms such as the nematode Caenorhabditis elegans. The device is transparent and compatible with light microscopes, allowing behavioral experiments to be combined with quantitative force measurements. For the first time, we have characterized the scale of interaction forces generated in wild-type C. elegans in probing and responding to their environment during locomotion. The device features sub-microN force resolution from 1 Hz to 1 kHz, >25 microN range, kHz acquisition rates and biocompatibility.
Collapse
Affiliation(s)
- Joseph C. Doll
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Harjee Nahid
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nathan Klejwa
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ronald Kwon
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Coulthard
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Bryan Petzold
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
124
|
Zheng J, Anderson CT, Miller KK, Cheatham M, Dallos P. Identifying components of the hair-cell interactome involved in cochlear amplification. BMC Genomics 2009; 10:127. [PMID: 19320974 PMCID: PMC2669096 DOI: 10.1186/1471-2164-10-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although outer hair cells (OHCs) play a key role in cochlear amplification, it is not fully understood how they amplify sound signals by more than 100 fold. Two competing or possibly complementary mechanisms, stereocilia-based and somatic electromotility-based amplification, have been considered. Lacking knowledge about the exceptionally rich protein networks in the OHC plasma membrane, as well as related protein-protein interactions, limits our understanding of cochlear function. Therefore, we focused on finding protein partners for two important membrane proteins: Cadherin 23 (cdh23) and prestin. Cdh23 is one of the tip-link proteins involved in transducer function, a key component of mechanoelectrical transduction and stereocilia-based amplification. Prestin is a basolateral membrane protein responsible for OHC somatic electromotility. RESULTS Using the membrane-based yeast two-hybrid system to screen a newly built cDNA library made predominantly from OHCs, we identified two completely different groups of potential protein partners using prestin and cdh23 as bait. These include both membrane bound and cytoplasmic proteins with 12 being de novo gene products with unknown function(s). In addition, some of these genes are closely associated with deafness loci, implying a potentially important role in hearing. The most abundant prey for prestin (38%) is composed of a group of proteins involved in electron transport, which may play a role in OHC survival. The most abundant group of cdh23 prey (55%) contains calcium-binding domains. Since calcium performs an important role in hair cell mechanoelectrical transduction and amplification, understanding the interactions between cdh23 and calcium-binding proteins should increase our knowledge of hair cell function at the molecular level. CONCLUSION The results of this study shed light on some protein networks in cochlear hair cells. Not only was a group of de novo genes closely associated with known deafness loci identified, but the data also indicate that the hair cell tip link interacts directly with calcium binding proteins. The OHC motor protein, prestin, also appears to be associated with electron transport proteins. These unanticipated results open potentially fruitful lines of investigation into the molecular basis of cochlear amplification.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Communication Sciences and Disorders, The Hugh Knowles Center, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
125
|
Ramunno-Johnson D, Strimbu CE, Fredrickson L, Arisaka K, Bozovic D. Distribution of frequencies of spontaneous oscillations in hair cells of the bullfrog sacculus. Biophys J 2009; 96:1159-68. [PMID: 19186151 DOI: 10.1016/j.bpj.2008.09.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022] Open
Abstract
Under in vitro conditions, free-standing hair bundles of the bullfrog (Rana catesbeiana) sacculus have exhibited spontaneous oscillations. We used a high-speed complementary metal oxide semiconductor camera to track the active movements of multiple hair cells in a single field of view. Our techniques enabled us to probe for correlations between pairs of cells, and to acquire records on over 100 actively oscillating bundles per epithelium. We measured the statistical distribution of oscillation periods of cells from different areas within the sacculus, and on different epithelia. Spontaneous oscillations exhibited a peak period of 33 ms (+29 ms, -14 ms) and uniform spatial distribution across the sacculus.
Collapse
Affiliation(s)
- D Ramunno-Johnson
- Department of Physics and Astronomy and California Nanosytems Institute University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
126
|
Windmill JFC, Bockenhauer S, Robert D. Time-resolved tympanal mechanics of the locust. J R Soc Interface 2009; 5:1435-43. [PMID: 18522928 DOI: 10.1098/rsif.2008.0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A salient characteristic of most auditory systems is their capacity to analyse the frequency of sound. Little is known about how such analysis is performed across the diversity of auditory systems found in animals, and especially in insects. In locusts, frequency analysis is primarily mechanical, based on vibrational waves travelling across the tympanal membrane. Different acoustic frequencies generate travelling waves that direct vibrations to distinct tympanal locations, where distinct groups of correspondingly tuned mechanosensory neurons attach. Measuring the mechanical tympanal response, for the first time, to acoustic impulses in the time domain, nanometre-range vibrational waves are characterized with high spatial and temporal resolutions. Conventional Fourier analysis is also used to characterize the response in the frequency domain. Altogether these results show that travelling waves originate from a particular tympanal location and travel across the membrane to generate oscillations in the exact region where mechanosensory neurons attach. Notably, travelling waves are unidirectional; no strong back reflection or wave resonance could be observed across the membrane. These results constitute a key step in understanding tympanal mechanics in general, and in insects in particular, but also in our knowledge of the vibrational behaviour of anisotropic media.
Collapse
Affiliation(s)
- J F C Windmill
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
127
|
How hair cells hear: the molecular basis of hair-cell mechanotransduction. Curr Opin Otolaryngol Head Neck Surg 2009; 16:445-51. [PMID: 18797287 DOI: 10.1097/moo.0b013e32830f4ac8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize our current knowledge regarding mechanotransduction by hair cells and to highlight unresolved questions. RECENT FINDINGS Despite over a quarter of a century of electrophysiological data describing hair-cell mechanotransduction, the molecular basis of this process is just now being revealed. Recent work has begun to identify candidate transduction complex molecules, and current work is aimed at confirming these hypotheses and identifying other proteins important for hair-cell function. SUMMARY Our senses of hearing and balance rely on the exquisite sensitivity of the hair cell and its transduction complex. Understanding the molecular basis for hair-cell mechanotransduction may provide us with the foundation for understanding the causes of, and perhaps the treatments for, auditory and vestibular deficits resulting from hair-cell dysfunction.
Collapse
|
128
|
Chen F, Nuttall AL. Comment on "Measuring power production in the mammalian cochlea" [Curr. Biol. 17, 1340 (2007)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:11-14. [PMID: 19173387 DOI: 10.1121/1.2950090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recently, a paper by Lakashkin et al. (2007) ("Power amplification in the mammalian cochlea," Curr. Biol. 17, 1340-1344) was published on how power can be measured in the mammalian cochlea. The general subject is of current widespread interest, so the question of whether the method used by Lakashkin et al. is valid may be of interest to the readers of this journal. Power generation in the cochlea can account for the extraordinary sensitivity of hearing. Lukashkin et al. claimed to provide a direct proof of cochlear power generation. A first-order spring-dashpot system was used to model the organ of Corti. The power flux direction can be derived from the sign of the phase difference between the force and displacement, which can be presented as a "hysteresis plot." Basilar membrane (BM) vibration near the characteristic frequency (CF) was measured while applying a low-frequency modulation tone together with the CF tone. A force was derived from the modulation profile of the BM CF vibration and when plotted versus the displacement at the modulation frequency, the function had a counterclockwise direction of hysteresis, suggesting power generation. In this letter, we present comments on the analysis in the report: (1) that it is not appropriate to analyze at the modulation frequency to derive the power generation at CF; (2) that the derivation of a force from just the displacement profile is not justified, followed by an alternative interpretation of the experimental data.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, NRCO4, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
129
|
Abstract
Recent work suggests that the auditory organ of Drosophila may serve as an excellent model system for understanding the complex mechanical signal processing that takes place in sensory hair cells of the vertebrate inner ear.
Collapse
Affiliation(s)
- Susanne Bechstedt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
130
|
Dallos P. Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 2008; 18:370-6. [PMID: 18809494 DOI: 10.1016/j.conb.2008.08.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 11/24/2022]
Abstract
Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, the outer hair cell and its constituent membrane protein, prestin. Cylindrical outer hair cells are motile and their somatic length changes are voltage driven and powered by prestin. One of the central outstanding problems in mammalian cochlear neurobiology is the relation between the two amplification processes.
Collapse
Affiliation(s)
- Peter Dallos
- Northwestern University, Departments of Neurobiology and Physiology and Communication Sciences and Disorders, The Hugh Knowles Center, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
131
|
Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear. Neuron 2008; 59:530-45. [PMID: 18760690 DOI: 10.1016/j.neuron.2008.07.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/01/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
The inner ear's performance is greatly enhanced by an active process defined by four features: amplification, frequency selectivity, compressive nonlinearity, and spontaneous otoacoustic emission. These characteristics emerge naturally if the mechanoelectrical transduction process operates near a dynamical instability, the Hopf bifurcation, whose mathematical properties account for specific aspects of our hearing. The active process of nonmammalian tetrapods depends upon active hair-bundle motility, which emerges from the interaction of negative hair-bundle stiffness and myosin-based adaptation motors. Taken together, these phenomena explain the four characteristics of the ear's active process. In the high-frequency region of the mammalian cochlea, the active process is dominated instead by the phenomenon of electromotility, in which the cell bodies of outer hair cells extend and contract as the protein prestin alters its membrane surface area in response to changes in membrane potential.
Collapse
Affiliation(s)
- A J Hudspeth
- Laboratory of Sensory Neuroscience and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
132
|
Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 2008; 18:1365-72. [PMID: 18789690 DOI: 10.1016/j.cub.2008.07.095] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND Like vertebrate hair cells, Drosophila auditory neurons are endowed with an active, force-generating process that boosts the macroscopic performance of the ear. The underlying force generator may be the molecular apparatus for auditory transduction, which, in the fly as in vertebrates, seems to consist of force-gated channels that occur in series with adaptation motors and gating springs. This molecular arrangement explains the active properties of the sensory hair bundles of inner-ear hair cells, but whether it suffices to explain the active macroscopic performance of auditory systems is unclear. RESULTS To relate transducer dynamics and auditory-system behavior, we have devised a simple model of the Drosophila hearing organ that consists only of transduction modules and a harmonic oscillator that represents the sound receiver. In vivo measurements show that this model explains the ear's active performance, quantitatively capturing displacement responses of the fly's antennal sound receiver to force steps, this receiver's free fluctuations, its response to sinusoidal stimuli, nonlinearity, and activity and cycle-by-cycle amplification, and properties of electrical compound responses in the afferent nerve. CONCLUSIONS Our findings show that the interplay between transduction channels and adaptation motors accounts for the entire macroscopic phenomenology of the active process in the Drosophila auditory system, extending transducer-based amplification from hair cells to fly ears and demonstrating that forces generated by transduction modules can suffice to explain active processes in ears.
Collapse
|
133
|
Roberts WM, Rutherford MA. Linear and nonlinear processing in hair cells. ACTA ACUST UNITED AC 2008; 211:1775-80. [PMID: 18490393 DOI: 10.1242/jeb.017616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanosensory hair cells in the ear are exquisitely responsive to minute sensory inputs, nearly to the point of instability. Active mechanisms bias the transduction apparatus and subsequent electrical amplification away from saturation in either the negative or positive direction, to an operating point where the response to small signals is approximately linear. An active force generator coupled directly to the transducer enhances sensitivity and frequency selectivity, and counteracts energy loss to viscous drag. Active electrical amplification further enhances gain and frequency selectivity. In both cases, nonlinear properties may maintain the system close to instability, as evidenced by small spontaneous oscillations, while providing a compressive nonlinearity that increases the cell's operating range. Transmitter release also appears to be frequency selective and biased to operate most effectively near the resting potential. This brief overview will consider the resting stability of hair cells, and their responses to small perturbations that correspond to soft sounds or small accelerations.
Collapse
Affiliation(s)
- William M Roberts
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
134
|
Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:811-20. [PMID: 18654787 DOI: 10.1007/s00359-008-0352-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
We investigated hair bundle mechanoreceptors in sea anemones for a homolog of cadherin 23. A candidate sequence was identified from the database for Nematostella vectensis that has a shared lineage with vertebrate cadherin 23s. This cadherin 23-like protein comprises 6,074 residues. It is an integral protein that features three transmembrane alpha-helices and a large extracellular loop with 44 contiguous, cadherin (CAD) domains. In the second half of the polypeptide, the CAD domains occur in a quadruple repeat pattern. Members of the same repeat group (i.e., CAD 18, 22, 26, and so on) share nearly identical amino acid sequences. An affinity-purified antibody was generated to a peptide from the C-terminus of the cadherin 23-like polypeptide. The peptide is expected to lie on the exoplasmic side of the plasma membrane. In LM, the immunolabel produced punctate fluorescence in hair bundles. In TEM, immunogold particles were observed medially and distally on stereocilia of hair bundles. Dilute solutions of the antibody disrupted vibration sensitivity in anemones. We conclude that the cadherin 23-like polypeptide likely contributes to the mechanotransduction apparatus of hair bundle mechanoreceptors of anemones.
Collapse
|
135
|
Abstract
Achieving the exquisite sensitivity and frequency selectivity of the mammalian ear requires active amplification of input sound. In this issue of Neuron, Dallos and colleagues demonstrate that the molecular motor prestin, which drives shape changes in the soma of mechanosensory hair cells, underlies mechanical feedback mechanisms for sound amplification in mammals.
Collapse
Affiliation(s)
- Ulrich Müller
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
136
|
Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WHY, Sengupta S, He DZZ, Zuo J. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 2008; 58:333-9. [PMID: 18466744 DOI: 10.1016/j.neuron.2008.02.028] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/14/2008] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
Abstract
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.
Collapse
Affiliation(s)
- Peter Dallos
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Shi X, Han W, Yamamoto H, Omelchenko I, Nuttall A. Nitric oxide and mitochondrial status in noise-induced hearing loss. Free Radic Res 2008; 41:1313-25. [PMID: 17963121 DOI: 10.1080/10715760701687117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
138
|
Kössl M, Möckel D, Weber M, Seyfarth EA. Otoacoustic emissions from insect ears: evidence of active hearing? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:597-609. [PMID: 18516607 DOI: 10.1007/s00359-008-0344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/23/2008] [Accepted: 05/03/2008] [Indexed: 11/28/2022]
Abstract
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.
Collapse
Affiliation(s)
- Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J.W. Goethe-Universität, Siesmayerstrasse 70, 60323, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
139
|
Abstract
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces depend on the presence of a motor protein in the lateral membrane of the cells. This protein, known as prestin, is a member of a transporter superfamily SLC26. The functional and structural properties of prestin are described in this review. Whether outer hair cell motility might account for sound amplification at all frequencies is also a critical question and is reviewed here.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Department of Physiology and UCL Ear Institute, University College London, London, United Kingdom.
| |
Collapse
|
140
|
Ren T, Gillespie PG. A mechanism for active hearing. Curr Opin Neurobiol 2007; 17:498-503. [PMID: 17707636 PMCID: PMC2259439 DOI: 10.1016/j.conb.2007.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
The remarkable sensitivity, frequency selectivity, and nonlinearity of the cochlea have been attributed to the putative 'cochlear amplifier', which consumes metabolic energy to amplify the cochlear mechanical response to sounds. Recent studies have demonstrated that outer hair cells actively generate force using somatic electromotility and active hair-bundle motion. However, the expected power gain of the cochlear amplifier has not been demonstrated experimentally, and the measured location of cochlear nonlinearity is inconsistent with the predicted location of the cochlear amplifier. We instead propose a 'cochlear transformer' mechanism to interpret cochlear performance.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, NRC 04, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
141
|
Gao J, Wang X, Wu X, Aguinaga S, Huynh K, Jia S, Matsuda K, Patel M, Zheng J, Cheatham M, He DZ, Dallos P, Zuo J. Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier. Proc Natl Acad Sci U S A 2007; 104:12542-7. [PMID: 17640919 PMCID: PMC1941505 DOI: 10.1073/pnas.0700356104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification.
Collapse
Affiliation(s)
- Jiangang Gao
- *Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Xiang Wang
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178; and
| | - Xudong Wu
- *Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Sal Aguinaga
- Departments of Communication Sciences and Disorders and
| | - Kristin Huynh
- Departments of Communication Sciences and Disorders and
| | - Shuping Jia
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178; and
| | - Keiji Matsuda
- Departments of Communication Sciences and Disorders and
| | - Manish Patel
- *Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jing Zheng
- Departments of Communication Sciences and Disorders and
| | | | - David Z. He
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178; and
| | - Peter Dallos
- Departments of Communication Sciences and Disorders and
- Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Jian Zuo
- *Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
142
|
Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 2007; 17:1000-6. [PMID: 17524645 DOI: 10.1016/j.cub.2007.05.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 11/23/2022]
Abstract
Hearing relies on dedicated mechanotransducer channels that convert sound-induced vibrations into electrical signals [1]. Linking this transduction to identified proteins has proven difficult because of the scarcity of native auditory transducers and their tight functional integration into ears [2-4]. We describe an in vivo paradigm for the noninvasive study of auditory transduction. By investigating displacement responses of the Drosophila sound receiver, we identify mechanical signatures that are consistent with a direct mechanotransducer gating in the fly's ear. These signatures include a nonlinear compliance that correlates with electrical nerve responses, shifts with adaptation, and conforms to the gating-spring model of vertebrate auditory transduction. Analyzing this gating compliance in terms of the gating-spring model reveals striking parallels between the transducer mechanisms for hearing in vertebrates and flies. Our findings provide first insights into the mechanical workings of invertebrate mechanotransducer channels and set the stage for using Drosophila to specifically search for, and probe the roles of, auditory transducer components.
Collapse
|
143
|
Shin JB, Streijger F, Beynon A, Peters T, Gadzala L, McMillen D, Bystrom C, Van der Zee CEEM, Wallimann T, Gillespie PG. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 2007; 53:371-86. [PMID: 17270734 PMCID: PMC1839076 DOI: 10.1016/j.neuron.2006.12.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/05/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to identify proteins of purified chicken vestibular bundles. In addition to cytoskeletal proteins, proteins involved in Ca(2+) regulation, and stress-response proteins, many of the most abundant bundle proteins that were identified by mass spectrometry were involved in ATP synthesis. After beta-actin, the cytosolic brain isoform of creatine kinase was the next most abundant bundle protein; at approximately 0.5 mM, creatine kinase is capable of maintaining high ATP levels despite 1 mM/s ATP consumption by the plasma-membrane Ca(2+)-ATPase. Consistent with this critical role in hair bundle function, the creatine kinase circuit is essential for high-sensitivity hearing as demonstrated by hearing loss in creatine kinase knockout mice.
Collapse
Affiliation(s)
- Jung-Bum Shin
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Parra LC, Pearlmutter BA. Illusory percepts from auditory adaptation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:1632-41. [PMID: 17407900 DOI: 10.1121/1.2431346] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phenomena resembling tinnitus and Zwicker phantom tone are seen to result from an auditory gain adaptation mechanism that attempts to make full use of a fixed-capacity channel. In the case of tinnitus, the gain adaptation enhances internal noise of a frequency band otherwise silent due to damage. This generates a percept of a phantom sound as a consequence of hearing loss. In the case of Zwicker tone, a frequency band is temporarily silent during the presentation of a notched broadband sound, resulting in a percept of a tone at the notched frequency. The model suggests a link between tinnitus and the Zwicker tone percept, in that it predicts different results for normal and tinnitus subjects due to a loss of instantaneous nonlinear compression. Listening experiments on 44 subjects show that tinnitus subjects (11 of 44) are significantly more likely to hear the Zwicker tone. This psychoacoustic experiment establishes the first empirical link between the Zwicker tone percept and tinnitus. Together with the modeling results, this supports the hypothesis that the phantom percept is a consequence of a central adaptation mechanism confronted with a degraded sensory apparatus.
Collapse
Affiliation(s)
- Lucas C Parra
- Biomedical Engineering Department, City College of New York, New York, NY 10031, USA.
| | | |
Collapse
|
145
|
Abstract
Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.
Collapse
Affiliation(s)
- Ellen A Lumpkin
- Departments of Neuroscience, Molecular Physiology & Biophysics and Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
146
|
De Saint Jan D, Westbrook GL. Disynaptic amplification of metabotropic glutamate receptor 1 responses in the olfactory bulb. J Neurosci 2007; 27:132-40. [PMID: 17202480 PMCID: PMC6672277 DOI: 10.1523/jneurosci.2439-06.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory systems often respond to rapid stimuli with high frequency and fidelity, as perhaps best exemplified in the auditory system. Fast synaptic responses are fundamental requirements to achieve this task. The importance of speed is less clear in the olfactory system. Moreover, olfactory bulb output mitral cells respond to a single stimulation of the sensory afferents with unusually long EPSPs, lasting several seconds. We examined the temporal characteristics, developmental regulation, and the mechanism generating these responses in mouse olfactory bulb slices. The slow EPSP appeared at postnatal days 10-11 and was mediated by metabotropic glutamate receptor 1 (mGluR1) and NMDA receptors. mGluR1 contribution was unexpected because its activation usually requires strong, high-frequency stimulation of inputs. However, dendritic release of glutamate from the intraglomerular network caused spillover-mediated recurrent activation of metabotropic glutamate receptors. We suggest that persistent responses in mitral cells amplify the incoming sensory information and, along with asynchronous inputs, drive odor-evoked slow temporal activity in the bulb.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
147
|
Ricci AJ, Kachar B. Hair cell mechanotransduction: the dynamic interplay between structure and function. CURRENT TOPICS IN MEMBRANES 2007; 59:339-74. [PMID: 25168142 DOI: 10.1016/s1063-5823(06)59012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hair cells are capable of detecting mechanical vibrations of molecular dimensions at frequencies in the 10s to 100s of kHz. This remarkable feat is accomplished by the interplay of mechanically gated ion channels located near the top of a complex and dynamic sensory hair bundle. The hair bundle is composed of a series of actin-filled stereocilia that has both active and passive mechanical components as well as a highly active turnover process, whereby the components of the hair bundle are rapidly and continually recycled. Hair bundle mechanical properties have significant impact on the gating of the mechanically activated channels, and delineating between attributes intrinsic to the ion channel and those imposed by the channel's microenvironment is often difficult. This chapter describes what is known and accepted regarding hair-cell mechanotransduction and what remains to be explored, particularly, in relation to the interplay between hair bundle properties and mechanotransducer channel response. The interplay between hair bundle dynamics and mechanotransduction are discussed.
Collapse
Affiliation(s)
- Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Bechara Kachar
- Section of Structural Biology, National Institutes of Deafness and Communicative Disorders, Bethesda, Maryland 20892
| |
Collapse
|
148
|
Effler JC, Iglesias PA, Robinson DN. A mechanosensory system controls cell shape changes during mitosis. Cell Cycle 2007; 6:30-5. [PMID: 17245114 PMCID: PMC4638380 DOI: 10.4161/cc.6.1.3674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Essential life processes are heavily controlled by a variety of positive and negative feedback systems. Cytokinesis failure, ultimately leading to aneuploidy, is appreciated as an early step in tumor formation in mammals and is deleterious for all cells. Further, the growing list of cancer predisposition mutations includes a number of genes whose proteins control mitosis and/or cytokinesis. Cytokinesis shape control is also an important part of pattern formation and cell-type specialization during multi-cellular development. Inherently mechanical, we hypothesized that mechanosensing and mechanical feedback are fundamental for cytokinesis shape regulation. Using mechanical perturbation, we identified a mechanosensory control system that monitors shape progression during cytokinesis. In this review, we summarize these findings and their implications for cytokinesis regulation and for understanding the cytoskeletal system architecture that governs shape control.
Collapse
Affiliation(s)
- Janet C. Effler
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering; Johns Hopkins University; Whiting School of Engineering; Baltimore, Maryland USA
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, Maryland USA
| |
Collapse
|
149
|
Phillips KR, Cyr JL. In situ binding assay to detect Myosin-1c interactions with hair-cell proteins. Methods Mol Biol 2007; 392:117-131. [PMID: 17951714 DOI: 10.1007/978-1-59745-490-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Myosin-1c is an unconventional myosin involved in hair-cell mechanotransduction, a process that underlies our senses of hearing and balance. To study the interaction of myosin-1c with other components of the hair-cell transduction complex, we have developed an in situ binding assay that permits visualization of myosin-1c binding to hair-cell proteins. In this chapter we describe in detail the methods needed for the expression and purification of recombinant myosin-1c fragments and their use in the in situ binding assay.
Collapse
Affiliation(s)
- Kelli R Phillips
- Sensory Neuroscience Research Center, Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | |
Collapse
|
150
|
Bechstedt S, Howard J. Models of Hair Cell Mechanotransduction. CURRENT TOPICS IN MEMBRANES 2007; 59:399-424. [DOI: 10.1016/s1063-5823(06)59015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|