101
|
Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, Wagner M, Schäfer K, Wang G, Koerdt SN, Stum M, Jaiswal S, RajBhandary UL, Thomas U, Aberle H, Burgess RW, Yang XL, Dieterich D, Storkebaum E. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 2015; 6:7520. [PMID: 26138142 PMCID: PMC4506996 DOI: 10.1038/ncomms8520] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/16/2015] [Indexed: 01/06/2023] Open
Abstract
Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
Collapse
Affiliation(s)
- Sven Niehues
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Julia Bussmann
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Georg Steffes
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Ines Erdmann
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Litao Sun
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Marina Wagner
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Kerstin Schäfer
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Guangxia Wang
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Sophia N Koerdt
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Morgane Stum
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hermann Aberle
- Functional Cell Morphology Lab, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Xiang-Lei Yang
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Daniela Dieterich
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Erik Storkebaum
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
102
|
Griffin LB, Sakaguchi R, McGuigan D, Gonzalez MA, Searby C, Züchner S, Hou YM, Antonellis A. Impaired function is a common feature of neuropathy-associated glycyl-tRNA synthetase mutations. Hum Mutat 2015; 35:1363-71. [PMID: 25168514 DOI: 10.1002/humu.22681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 11/09/2022]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal-dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.
Collapse
Affiliation(s)
- Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Sun A, Liu X, Zheng M, Sun Q, Huang Y, Fan D. A novel mutation of the glycyl-tRNA synthetase (GARS) gene associated with Charcot-Marie-Tooth type 2D in a Chinese family. Neurol Res 2015; 37:782-7. [PMID: 26000875 DOI: 10.1179/1743132815y.0000000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To explore the clinical features of a novel glycyl-tRNA synthetase (GARS) gene mutation in a family with Charcot-Marie-Tooth disease type 2D (CMT2D). METHODS Exome capture with the next-generation sequencing technique was used to detect gene mutations. The mutations were verified by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique combined with DNA sequencing. RESULTS In this pedigree, eight members were affected; seven males and one female. The affected members initially manifested with the onset of hand muscle weakness and atrophy in adolescence followed by gradual development of distal lower limb involvement and minor sensory involvement. Electrophysiological studies revealed that this disease mainly involves axonal damage. Genetic detection showed that all affected family members had a heterozygous missense mutation, c.999G>T (p.E333D), of the GARS gene. CONCLUSIONS The c.999G>T mutation is a novel mutation of the GARS gene that has not been previously reported. The phenotype of this family is CMT2D, which is first reported in Chinese population.
Collapse
|
104
|
Grice SJ, Sleigh JN, Motley WW, Liu JL, Burgess RW, Talbot K, Cader MZ. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet 2015; 24:4397-406. [PMID: 25972375 PMCID: PMC4492401 DOI: 10.1093/hmg/ddv176] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA and
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK,
| |
Collapse
|
105
|
Motley WW, Griffin LB, Mademan I, Baets J, De Vriendt E, De Jonghe P, Antonellis A, Jordanova A, Scherer SS. A novel AARS mutation in a family with dominant myeloneuropathy. Neurology 2015; 84:2040-7. [PMID: 25904691 DOI: 10.1212/wnl.0000000000001583] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. METHODS We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. RESULTS All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. CONCLUSION A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes.
Collapse
Affiliation(s)
- William W Motley
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Laurie B Griffin
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Inès Mademan
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Jonathan Baets
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Els De Vriendt
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Peter De Jonghe
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Anthony Antonellis
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Albena Jordanova
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium
| | - Steven S Scherer
- From the Department of Neurology (W.W.M., S.S.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; the Cellular and Molecular Biology Program (L.B.G., A.A.), Medical Science Training Program (L.B.G.), and the Departments of Human Genetics (A.A.) and Neurology (A.A.), University of Michigan Medical School, Ann Arbor; the Neurogenetics Group (I.M., J.B., P.D.J.) and the Molecular Neurogenomics Group (E.D.V., A.J.), VIB, Department of Molecular Genetics, University of Antwerp; the Neurogenetics Laboratory (I.M., J.B., E.D.V., P.D.J., A.J.), Institute Born-Bunge, University of Antwerp; and the Department of Neurology (J.B., P.D.J.), Antwerp University Hospital, Belgium.
| |
Collapse
|
106
|
Abstract
Folding of transmembrane and secretory proteins occurs in the lumen of the endoplasmic reticulum (ER) before transportation to the cell surface and is monitored by the unfolded protein response (UPR) signaling pathway. The accumulation of unfolded proteins in the ER activates the UPR that restores ER homeostasis by regulating gene expression that leads to an increase in the protein-folding capacity of the ER and a decrease in the ER protein-folding load. However, prolonged UPR activity has been associated with cell death in multiple pathological conditions, including neurodegeneration. Here, we report a spontaneous recessive mouse mutation that causes progressive cerebellar granule cell death and peripheral motor axon degeneration. By positional cloning, we identify the mutation in this strain as a retrotransposon insertion in the Clcc1 gene, which encodes a putative chloride channel localized to the ER. Furthermore, we demonstrate that the C3H/HeSnJ inbred strain has late onset cerebellar degeneration due to this mutation. Interestingly, acute knockdown of Clcc1 expression in cultured cells increases sensitivity to ER stress. In agreement, GRP78, the major HSP70 family chaperone in the ER, is upregulated in Clcc1-deficient granule cells in vivo, and ubiquitinated proteins accumulate in these neurons before their degeneration. These data suggest that disruption of chloride homeostasis in the ER disrupts the protein-folding capacity of the ER, leading to eventual neuron death.
Collapse
|
107
|
Datt M, Sharma A. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases. BMC Genomics 2014; 15:1063. [PMID: 25476837 PMCID: PMC4298046 DOI: 10.1186/1471-2164-15-1063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer. Results We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated. Conclusion This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
108
|
Wei N, Shi Y, Truong LN, Fisch KM, Xu T, Gardiner E, Fu G, Hsu YSO, Kishi S, Su AI, Wu X, Yang XL. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Mol Cell 2014; 56:323-332. [PMID: 25284223 DOI: 10.1016/j.molcel.2014.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 11/26/2022]
Abstract
Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage.
Collapse
Affiliation(s)
- Na Wei
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yi Shi
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathleen M Fisch
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Xu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elisabeth Gardiner
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guangsen Fu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yun-Shiuan Olivia Hsu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shuji Kishi
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiaohua Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
109
|
Seo AJ, Park BS, Jeong NY, Kim D, Kim S, Park C, Jung J, Huh Y. Adenoviral-mediated mouse model of motor impairment in distal spinal muscular atrophy type V. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.950330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
110
|
Seburn KL, Morelli KH, Jordanova A, Burgess RW. Lack of neuropathy-related phenotypes in hint1 knockout mice. J Neuropathol Exp Neurol 2014; 73:693-701. [PMID: 24918641 PMCID: PMC4098130 DOI: 10.1097/nen.0000000000000085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in HINT1, the gene encoding histidine triad nucleotide-binding protein 1 (HINT1), cause a recessively inherited peripheral neuropathy that primarily involves motor dysfunction and is usually associated with neuromyotonia (i.e. prolonged muscle contraction resulting from hyperexcitability of peripheral nerves). Because these mutations are hypothesized to cause loss of function, we analyzed Hint1 knockout mice for their relevance as a disease model. Mice lacking Hint1 appeared normal and yielded normal behavioral test results or motor performance, although they moved more slowly and for a smaller fraction of time in an open-field arena than wild-type mice. Muscles, neuromuscular junctions, and nodes of Ranvier were anatomically normal and did not show evidence of degeneration or regeneration. Axon numbers and myelination in peripheral nerves were normal at ages 4 and 13 months. Axons were slightly smaller than those in wild-type mice at age 4 months, but this did not cause a decrease in conduction velocity, and no differences in axon diameters were detected at 13 months. With electromyography, we were unable to detect neuromyotonia even after using supraphysiologic stimuli and stressors such as reduced temperature or 3,4-diaminopyridine to block potassium channels. Therefore, we conclude that Hint1 knockout mice may be useful for studying the biochemical activities of HINT1, but these mice do not provide a disease model or a means for investigating the basis of HINT1-associated neuropathy and neuromyotonia.
Collapse
Affiliation(s)
| | - Kathryn H. Morelli
- The Jackson Laboratory, Bar Harbor, Maine
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine
| | - Albena Jordanova
- VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Robert W. Burgess
- The Jackson Laboratory, Bar Harbor, Maine
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
111
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
112
|
Ermanoska B, Motley WW, Leitão-Gonçalves R, Asselbergh B, Lee LH, De Rijk P, Sleegers K, Ooms T, Godenschwege TA, Timmerman V, Fischbeck KH, Jordanova A. CMT-associated mutations in glycyl- and tyrosyl-tRNA synthetases exhibit similar pattern of toxicity and share common genetic modifiers in Drosophila. Neurobiol Dis 2014; 68:180-9. [PMID: 24807208 DOI: 10.1016/j.nbd.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/17/2014] [Accepted: 04/27/2014] [Indexed: 01/29/2023] Open
Abstract
Aminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease. The CMT-causing mutations in tyrosyl- and glycyl-tRNA synthetases (YARS and GARS, respectively) alter the activity of the proteins in a range of ways (some mutations do not impact charging function, while others abrogate it), making a loss of function in tRNA charging unlikely to be the cause of disease pathology. It is currently unknown which cellular mechanisms are triggered by the mutant enzymes and how this leads to neurodegeneration. Here, by expressing two pathogenic mutations (G240R, P234KY) in Drosophila, we generated a model for GARS-associated neuropathy. We observed compromised viability, and behavioral, electrophysiological and morphological impairment in flies expressing the cytoplasmic isoform of mutant GARS. Their features recapitulated several hallmarks of CMT pathophysiology and were similar to the phenotypes identified in our previously described Drosophila model of YARS-associated neuropathy. Furthermore, CG8316 and CG15599 - genes identified in a retinal degeneration screen to modify mutant YARS, also modified the mutant GARS phenotypes. Our study presents genetic evidence for common mutant-specific interactions between two CMT-associated aminoacyl-tRNA synthetases, lending support for a shared mechanism responsible for the synthetase-induced peripheral neuropathies.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ricardo Leitão-Gonçalves
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Centralized Service Facility, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - LaTasha H Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Peter De Rijk
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Kristel Sleegers
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Tinne Ooms
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Vincent Timmerman
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albena Jordanova
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
113
|
Sleigh JN, Burgess RW, Gillingwater TH, Cader MZ. Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. J Neurosci Methods 2014; 227:159-65. [PMID: 24530702 DOI: 10.1016/j.jneumeth.2014.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The neuromuscular junction (NMJ) is a specialised synapse formed between a lower motor neuron and a skeletal muscle fibre, and is an early pathological target in numerous nervous system disorders, including amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy (SMA). Being able to accurately visualise and quantitatively characterise the NMJ in rodent models of neurological conditions, particularly during the early stages of disease, is thus of clear importance. NEW METHOD We present a method for dissection of rodent deep lumbrical muscles located in the hind-paw, and describe how to perform immunofluorescent morphological analysis of their NMJs. RESULTS These techniques allow the temporal assessment of a number of developmental and pathological NMJ phenotypes in lumbrical muscles. COMPARISON WITH EXISTING METHODS Small muscles, such as the distal hind-limb lumbrical muscles, possess a major advantage over larger muscles, such as gastrocnemius, in that they can be whole-mounted and the entire innervation pattern visualised. This reduces preparation time and ambiguity when evaluating important neuromuscular phenotypes. CONCLUSIONS Together, these methods will allow the reader to perform a detailed and accurate analysis of the neuromuscular system in rodent models of disease in order to identify pertinent features of neuropathology.
Collapse
Affiliation(s)
- James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | - Thomas H Gillingwater
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
114
|
The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. Int J Cell Biol 2014; 2014:787956. [PMID: 24639874 PMCID: PMC3932222 DOI: 10.1155/2014/787956] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial respiratory chain (RC) disorders are a group of genetically and clinically heterogeneous diseases. This is because protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis and maintenance of mitochondria, including mitochondrial DNA (mtDNA) replication, transcription, and translation, require nuclear-encoded genes. In the past decade, a growing number of syndromes associated with dysfunction of mtDNA translation have been reported. This paper reviews the current knowledge of mutations affecting mitochondrial aminoacyl tRNAs synthetases and their role in the pathogenic mechanisms underlying the different clinical presentations.
Collapse
|
115
|
Sleigh JN, Grice SJ, Burgess RW, Talbot K, Cader MZ. Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet 2013; 23:2639-50. [PMID: 24368416 DOI: 10.1093/hmg/ddt659] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterized by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function GARS mutations to lower motor neuron degeneration remain unidentified. The neuromuscular junction (NMJ) appears to be an early target for pathology in a number of peripheral nerve diseases and becomes denervated at later stages in two mouse models of CMT2D. We therefore performed a detailed longitudinal examination of NMJs in the distal lumbrical muscles and the proximal transversus abdominis (TVA) muscles of wild-type and Gars mutant mice. We determined that mutant lumbrical NMJs display a persistent defect in maturation that precedes a progressive, age-dependent degeneration. Conversely, the TVA remains relatively unaffected, with only a subtle, short-lived impairment in pre- and post-synaptic development and no reduction in lower motor neuron connectivity to muscle. Together, these observations suggest that mutant Gars is associated with compromised development of the NMJ prior to synaptic degeneration and highlight the neuromuscular synapse as an important site of early, selective pathology in CMT2D mice.
Collapse
|
116
|
Guitart T, Picchioni D, Piñeyro D, Ribas de Pouplana L. Human mitochondrial disease-like symptoms caused by a reduced tRNA aminoacylation activity in flies. Nucleic Acids Res 2013; 41:6595-608. [PMID: 23677612 PMCID: PMC3711456 DOI: 10.1093/nar/gkt402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.
Collapse
Affiliation(s)
- Tanit Guitart
- Institute for Research in Biomedicine (IRB Barcelona), Gene Translation Laboratory, c/Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain
| | | | | | | |
Collapse
|
117
|
Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 2013; 9:145-53. [PMID: 23416400 DOI: 10.1038/nchembio.1158] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/28/2012] [Indexed: 12/25/2022]
Abstract
Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
118
|
Bogdanik LP, Sleigh JN, Tian C, Samuels ME, Bedard K, Seburn KL, Burgess RW. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease. Dis Model Mech 2013; 6:780-92. [PMID: 23519028 PMCID: PMC3634660 DOI: 10.1242/dmm.010942] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/06/2013] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.
Collapse
Affiliation(s)
| | - James N. Sleigh
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Mark E. Samuels
- Department of Medicine, Montreal University, Montreal, Quebec, H3T 1C5, Canada
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | - Robert W. Burgess
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
119
|
Wallen RC, Antonellis A. To charge or not to charge: mechanistic insights into neuropathy-associated tRNA synthetase mutations. Curr Opin Genet Dev 2013; 23:302-9. [PMID: 23465884 DOI: 10.1016/j.gde.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for the first step of protein translation--attaching amino acids to cognate tRNA molecules. Interestingly, ARS gene mutations have been implicated in tissue-specific human diseases, including inherited peripheral neuropathies. To date, five loci encoding an ARS have been implicated in peripheral neuropathy, and alleles at each locus show loss-of-function characteristics. The majority of the phenotypes are autosomal dominant, and each of the implicated enzymes acts as an oligomer, indicating that a dominant-negative effect should be considered. On the basis of current data, impaired tRNA charging is likely to be a central component of ARS-related neuropathy. Future efforts should focus on testing this notion and developing strategies for restoring ARS function in the peripheral nerve.
Collapse
Affiliation(s)
- Rachel C Wallen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
120
|
Yao P, Fox PL. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 2013; 5:332-43. [PMID: 23427196 PMCID: PMC3598075 DOI: 10.1002/emmm.201100626] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/30/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous 'house-keeping' enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
121
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
122
|
Schwenzer H, Zoll J, Florentz C, Sissler M. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:247-92. [PMID: 23824528 DOI: 10.1007/128_2013_457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC, 15 rue René Descartes, 67084, Strasbourg Cedex, France,
| | | | | | | |
Collapse
|
123
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012; 3:204-14. [PMID: 23293578 DOI: 10.1159/000343487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
124
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012. [PMID: 23293578 DOI: 10.1159/000343487/msy-0003-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
125
|
Vester A, Velez-Ruiz G, McLaughlin HM, Lupski JR, Talbot K, Vance JM, Züchner S, Roda RH, Fischbeck KH, Biesecker LG, Nicholson G, Beg AA, Antonellis A. A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mutat 2012; 34:191-9. [PMID: 22930593 DOI: 10.1002/humu.22210] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/24/2012] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for ligating amino acids to cognate tRNA molecules. Mutations in four genes encoding an ARS have been implicated in inherited peripheral neuropathy with an axonal pathology, suggesting that all ARS genes are relevant candidates for disease in patients with related phenotypes. Here, we present results from a mutation screen of the histidyl-tRNA synthetase (HARS) gene in a large cohort of patients with peripheral neuropathy. These efforts revealed a rare missense variant (c.410G>A/p.Arg137Gln) that resides at a highly conserved amino acid, represents a loss-of-function allele when evaluated in yeast complementation assays, and is toxic to neurons when expressed in a worm model. In addition to the patient with peripheral neuropathy, p.Arg137Gln HARS was detected in three individuals by genome-wide exome sequencing. These findings suggest that HARS is the fifth ARS locus associated with axonal peripheral neuropathy. Implications for identifying ARS alleles in human populations and assessing them for a role in neurodegenerative phenotypes are discussed.
Collapse
Affiliation(s)
- Aimée Vester
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Robledo RF, Seburn KL, Nicholson A, Peters LL. Strain-specific hyperkyphosis and megaesophagus in Add1 null mice. Genesis 2012; 50:882-91. [PMID: 22926980 DOI: 10.1002/dvg.22342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/02/2012] [Accepted: 08/16/2012] [Indexed: 11/08/2022]
Abstract
The three adducin proteins (α, β, and γ) share extensive sequence, structural, and functional homology. Heterodimers of α- and β-adducin are vital components of the red cell membrane skeleton, which is required to maintain red cell elasticity and structural integrity. In addition to anemia, targeted deletion of the α-adducin gene (Add1) reveals unexpected, strain-dependent non-erythroid phenotypes. On an inbred 129 genetic background, Add1 null mice show abnormal inward curvature of the cervicothoracic spine with complete penetrance. More surprisingly, a subset of 129-Add1 null mice develop severe megaesophagus, while examination of peripheral nerves reveals a reduced number of axons in 129-Add1 null mice at four months of age. These unforeseen phenotypes, described here, reveal new functions for adducin and provide new models of mammalian disease.
Collapse
|
127
|
Abstract
Identifying genes involved in behavioural disorders in man is a challenge as the cause is often multigenic and the phenotype is modulated by environmental cues. Mouse mutants are a valuable tool for identifying novel pathways underlying specific neurological phenotypes and exploring the influence both genetic and non-genetic factors. Many human variants causing behavioural disorders are not gene deletions but changes in levels of expression or activity of a gene product; consequently, large-scale mouse ENU mutagenesis has the advantage over the study of null mutants in that it generates a range of point mutations that frequently mirror the subtlety and heterogeneity of human genetic lesions. ENU mutants have provided novel and clinically relevant functional information on genes that influence many aspects of mammalian behaviour, from neuropsychiatric endophenotypes to circadian rhythms. This review will highlight some of the most important findings that have been made using this method in several key areas of neurological disease research.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
128
|
Zhu X, Libby RT, de Vries WN, Smith RS, Wright DL, Bronson RT, Seburn KL, John SWM. Mutations in a P-type ATPase gene cause axonal degeneration. PLoS Genet 2012; 8:e1002853. [PMID: 22912588 PMCID: PMC3415440 DOI: 10.1371/journal.pgen.1002853] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 01/13/2023] Open
Abstract
Neuronal loss and axonal degeneration are important pathological features of many neurodegenerative diseases. The molecular mechanisms underlying the majority of axonal degeneration conditions remain unknown. To better understand axonal degeneration, we studied a mouse mutant wabbler-lethal (wl). Wabbler-lethal (wl) mutant mice develop progressive ataxia with pronounced neurodegeneration in the central and peripheral nervous system. Previous studies have led to a debate as to whether myelinopathy or axonopathy is the primary cause of neurodegeneration observed in wl mice. Here we provide clear evidence that wabbler-lethal mutants develop an axonopathy, and that this axonopathy is modulated by Wlds and Bax mutations. In addition, we have identified the gene harboring the disease-causing mutations as Atp8a2. We studied three wl alleles and found that all result from mutations in the Atp8a2 gene. Our analysis shows that ATP8A2 possesses phosphatidylserine translocase activity and is involved in localization of phosphatidylserine to the inner leaflet of the plasma membrane. Atp8a2 is widely expressed in the brain, spinal cord, and retina. We assessed two of the mutant alleles of Atp8a2 and found they are both nonfunctional for the phosphatidylserine translocase activity. Thus, our data demonstrate for the first time that mutation of a mammalian phosphatidylserine translocase causes axon degeneration and neurodegenerative disease. Axonal degeneration is an important pathological feature of many neurodegenerative diseases, such as Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. In most of these disease conditions, molecular mechanisms of axonal degeneration remain largely unknown. Spontaneous mouse mutants are important in human disease studies. Identification of a disease-causing gene in mice can lead to the identification of the human ortholog as the disease gene in humans. This approach has the power to identify unexpected genes and pathways involved in disease. Our study centered on wabbler lethal (wl) mutant mice, which display axonal degeneration in both the central and peripheral nervous systems. We identified the disease-causing gene in mice with different wl mutations. The mutations are in Atp8a2, a gene encoding a phosphatidylserine translocase. This protein functions to keep phosphatidylserine enriched to the inner leaflet of the plasma membrane. Our study demonstrates a new role for phospholipid asymmetry in maintaining axon health, and it also reveals a novel function for phosphatidyleserine translocase in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianjun Zhu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
| | - Richard T. Libby
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wilhelmine N. de Vries
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
| | - Richard S. Smith
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
| | - Dana L. Wright
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Kevin L. Seburn
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Simon W. M. John
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- The Howard Hughes Medical Institute, Bar Harbor, Maine, United States of America
- Department of Ophthalmology, Tufts University of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
129
|
Satoh M, Ceribelli A, Chan EKL. Common pathways of autoimmune inflammatory myopathies and genetic neuromuscular disorders. Clin Rev Allergy Immunol 2012; 42:16-25. [PMID: 22083460 DOI: 10.1007/s12016-011-8286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been shown that many hereditary motor neuron diseases are caused by mutation of RNA processing enzymes. Survival of motor neuron 1 (SMN1) is well-known as a causative gene for spinal muscular atrophy (SMA) and mutations of glycyl- and tyrosyl-tRNA synthetases are identified as a cause of distal SMA and Charcot-Marie-Tooth disease. Why and how the dysfunction of these ubiquitously expressed genes involved in RNA processing can cause a specific neurological disorder is not well understood. Interestingly, SMN complex has been identified recently as a new target of autoantibodies in polymyositis (PM). Autoantibodies in systemic rheumatic diseases are clinically useful biomarkers associated with a particular diagnosis, subset of a disease, or certain clinical characteristics. Many autoantibodies produced in patients with polymyositis/dermatomyositis (PM/DM) target RNA-protein complexes such as aminoacyl tRNA synthetases. It is interesting to note these same RNA-protein complexes recognized by autoantibodies in PM/DM are also responsible for genetic neuromuscular disease. Certain RNA-protein complexes are also targets of autoantibodies in paraneoplastic neurological disorders. Thus, there are several interesting associations between RNA-processing enzymes and neuromuscular disorders. Although pathogenetic roles of autoantibodies to intracellular antigens are generally considered unlikely, understanding the mechanisms of antigen selection in a particular disease and specific neurological symptoms caused by disruption of ubiquitous RNA-processing enzyme may help identify a common path in genetic neuromuscular disorders and autoimmunity in inflammatory myopathies.
Collapse
Affiliation(s)
- Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610-0221, USA.
| | | | | |
Collapse
|
130
|
Gentil BJ, Cooper L. Molecular basis of axonal dysfunction and traffic impairments in CMT. Brain Res Bull 2012; 88:444-53. [PMID: 22595495 DOI: 10.1016/j.brainresbull.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders. It comprises a group of diseases caused by mutations in genes involved in Schwann cells homeostasis and neuronal function that affect the peripheral nerves. So far mutations in more than 33 genes have been identified causing either the demyelinating form (CMT1) or the axonal form (CMT2). Genes involving a large variety of unrelated functions may lead to the same phenotype when mutated. Our review will focus on the common link between genes causing axonal phenotypes like MFN2, KIF1B, DYNC1H1, Rab7, TRPV4, ARSs, NEFL, HSPB1, MPZ, and HSPB8. While KIF1B and DYNC1H1, two genes coding for molecular motors, are directly linked to axonal transport, the involvement of the other CMT2-causing genes in this function is less obvious. However, the last years have seen a growing list of evidence demonstrating that intracellular trafficking and mitochondrial dynamics might be dysfunctional in CMT2, and these mechanisms might present a common link between dissimilar CMT2-causing genes. The involvement of impaired transport in the pathogenesis of other rare neurological diseases or recessive CMT2 is also discussed.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada.
| | | |
Collapse
|
131
|
Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat Chem Biol 2012; 8:547-54. [PMID: 22504299 DOI: 10.1038/nchembio.937] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022]
Abstract
Interferon-γ (IFN-γ) engenders strong antiproliferative responses, in part through activation of p53. However, the long-known IFN-γ-dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly(ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells. The IFN-γ-dependent poly(ADP-ribosyl)ation of DNA-PKcs (which activates its kinase function) and concomitant activation of the tumor suppressor p53 were specifically prevented by Trp-SA, an analog of Trp-AMP that disrupted the TrpRS-DNA-PKcs-PARP-1 complex. The connection of TrpRS to p53 signaling in vivo was confirmed in a vertebrate system. These and further results suggest an unexpected evolutionary expansion of the protein synthesis apparatus to a nuclear role that links major signaling pathways.
Collapse
|
132
|
Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A 2012; 109:E640-7. [PMID: 22345558 DOI: 10.1073/pnas.1200194109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although adaptive systems of immunity against tumor initiation and destruction are well investigated, less understood is the role, if any, of endogenous factors that have conventional functions. Here we show that glycyl-tRNA synthetase (GRS), an essential component of the translation apparatus, circulates in serum and can be secreted from macrophages in response to Fas ligand that is released from tumor cells. Through cadherin (CDH)6 (K-cadherin), GRS bound to different ERK-activated tumor cells, and released phosphatase 2A (PP2A) from CDH6. The activated PP2A then suppressed ERK signaling through dephosphorylation of ERK and induced apoptosis. These activities were inhibited by blocking GRS with a soluble fragment of CDH6. With in vivo administration of GRS, growth of tumors with a high level of CDH6 and ERK activation were strongly suppressed. Our results implicate a conventional cytoplasmic enzyme in translation as an intrinsic component of the defense against ERK-activated tumor formation.
Collapse
|
133
|
Poitelon Y, Kozlov S, Devaux J, Vallat JM, Jamon M, Roubertoux P, Rabarimeriarijaona S, Baudot C, Hamadouche T, Stewart CL, Levy N, Delague V. Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). Neuromolecular Med 2012; 14:40-52. [PMID: 22331516 DOI: 10.1007/s12017-012-8168-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/18/2012] [Indexed: 01/03/2023]
Abstract
In 2002, we identified LMNA as the first gene responsible for an autosomal recessive axonal form of Charcot-Marie-Tooth disease, AR-CMT2A. All patients were found to be homozygous for the same mutation in the LMNA gene, p.Arg298Cys. In order to investigate the physiopathological mechanisms underlying AR-CMT2A, we have generated a knock-in mouse model for the Lmna p.Arg298Cys mutation. We have explored these mice through an exhaustive series of behavioral tests and histopathological analyses, but were not able to find any peripheral nerve phenotype, even at 18 months of age. Interestingly at the molecular level, however, we detect a downregulation of the Lmna gene in all tissues tested from the homozygous knock-in mouse Lmna (R298C/R298C) (skeletal muscle, heart, peripheral nerve, spinal cord and cerebral trunk). Importantly, we further reveal a significant upregulation of Pmp22, specifically in the sciatic nerves of Lmna (R298C/R298C) mice. These results indicate that, despite the absence of a perceptible phenotype, abnormalities exist in the peripheral nerves of Lmna (R298C/R298C) mice that are absent from other tissues. Although the mechanisms leading to deregulation of Pmp22 in Lmna (R298C/R298C) mice are still unclear, our results support a relation between Lmna and Pmp22 and constitute a first step toward understanding AR-CMT2A physiopathology.
Collapse
Affiliation(s)
- Yannick Poitelon
- UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Inserm, 13385 Marseille cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot-Marie-Tooth neuropathies and hereditary spastic paraplegias. Exp Neurol 2012; 246:14-25. [PMID: 22285450 DOI: 10.1016/j.expneurol.2012.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/29/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
In this review we focus on Charcot-Marie-Tooth (CMT) neuropathies and hereditary spastic paraplegias (HSPs). Although these diseases differ in whether they primarily affect the peripheral or central nervous system, both are genetically determined, progressive, long axonopathies that affect motor and sensory pathways. This commonality suggests that there might be similarities in the molecular pathology underlying these conditions, and here we compare the molecular genetics and cellular pathology of the two groups.
Collapse
Affiliation(s)
- Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium.
| | | | | |
Collapse
|
135
|
Charcot-Marie-Tooth-linked mutant GARS is toxic to peripheral neurons independent of wild-type GARS levels. PLoS Genet 2011; 7:e1002399. [PMID: 22144914 PMCID: PMC3228828 DOI: 10.1371/journal.pgen.1002399] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/13/2011] [Indexed: 01/19/2023] Open
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is a dominantly inherited peripheral neuropathy caused by missense mutations in the glycyl-tRNA synthetase gene (GARS). In addition to GARS, mutations in three other tRNA synthetase genes cause similar neuropathies, although the underlying mechanisms are not fully understood. To address this, we generated transgenic mice that ubiquitously over-express wild-type GARS and crossed them to two dominant mouse models of CMT2D to distinguish loss-of-function and gain-of-function mechanisms. Over-expression of wild-type GARS does not improve the neuropathy phenotype in heterozygous Gars mutant mice, as determined by histological, functional, and behavioral tests. Transgenic GARS is able to rescue a pathological point mutation as a homozygote or in complementation tests with a Gars null allele, demonstrating the functionality of the transgene and revealing a recessive loss-of-function component of the point mutation. Missense mutations as transgene-rescued homozygotes or compound heterozygotes have a more severe neuropathy than heterozygotes, indicating that increased dosage of the disease-causing alleles results in a more severe neurological phenotype, even in the presence of a wild-type transgene. We conclude that, although missense mutations of Gars may cause some loss of function, the dominant neuropathy phenotype observed in mice is caused by a dose-dependent gain of function that is not mitigated by over-expression of functional wild-type protein.
Collapse
|
136
|
Bogdanik LP, Burgess RW. A valid mouse model of AGRIN-associated congenital myasthenic syndrome. Hum Mol Genet 2011; 20:4617-33. [PMID: 21890498 DOI: 10.1093/hmg/ddr396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are inherited diseases affecting the neuromuscular junction (NMJ). Mutations in AGRIN (AGRN) and other genes in the AGRIN signaling pathway cause CMS, and gene targeting studies in mice confirm the importance of this pathway for NMJ formation. However, these mouse mutations are complete loss-of-function alleles that result in an embryonic failure of NMJ formation, and homozygous mice do not survive postpartum. Therefore, mouse models of AGRIN-related CMS that would allow preclinical testing or studies of postnatal disease progression are lacking. Using chemical mutagenesis in mice, we identified a point mutation in Agrn that results in a partial loss-of-function allele, creating a valid model of CMS. The mutation changes phenylalanine 1061 to serine in the SEA domain of AGRIN, a poorly characterized motif shared by other extracellular proteoglycans. NMJs in homozygous mice progressively degrade postnataly. Severity differs with genetic background, in different muscles, and in different regions within a muscle in a pattern matching mouse models of motor neuron disease. Mutant NMJs have decreased acetylcholine receptor density and an increased subsynaptic reticulum, evident by electron microscopy. Synapses eventually denervate and the muscles atrophy. Molecularly, several factors contribute to the partial loss of AGRIN's function. The mutant protein is found at NMJs, but is processed differently than wild-type, with decreased glycosylation, changes in sensitivity to the protease neurotrypsin and other proteolysis, and less efficient externalization and secretion. Therefore, the Agrn point mutation is a model for CMS caused by Agrn mutations and potentially other related neuromuscular diseases.
Collapse
|
137
|
Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci U S A 2011; 108:12307-12. [PMID: 21737751 DOI: 10.1073/pnas.1104293108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The question of how dispersed mutations in one protein engender the same gain-of-function phenotype is of great interest. Here we focus on mutations in glycyl-tRNA synthetase (GlyRS) that cause an axonal form of Charcot-Marie-Tooth (CMT) diseases, the most common hereditary peripheral neuropathies. Because the disease phenotype is dominant, and not correlated with defects in the role of GlyRS in protein synthesis, the mutant proteins are considered to be neomorphs that gain new functions from altered protein structure. Given that previous crystal structures showed little conformational difference between dimeric wild-type and CMT-causing mutant GlyRSs, the mutant proteins were investigated in solution by hydrogen-deuterium exchange (monitored by mass spectrometry) and small-angle X-ray scattering to uncover structural changes that could be suppressed by crystal packing interactions. Significantly, each of five spatially dispersed mutations induced the same conformational opening of a consensus area that is mostly buried in the wild-type protein. The identified neomorphic surface is thus a candidate for making CMT-associated pathological interactions, and a target for disease correction. Additional result showed that a helix-turn-helix WHEP domain that was appended to GlyRS in metazoans can regulate the neomorphic structural change, and that the gain of function of the CMT mutants might be due to the loss of function of the WHEP domain as a regulator. Overall, the results demonstrate how spatially dispersed and seemingly unrelated mutations can perpetrate the same localized effect on a protein.
Collapse
|
138
|
Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A 2011; 108:6543-8. [PMID: 21464306 DOI: 10.1073/pnas.1103471108] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perrault syndrome is a genetically heterogeneous recessive disorder characterized by ovarian dysgenesis and sensorineural hearing loss. In a nonconsanguineous family with five affected siblings, linkage analysis and genomic sequencing revealed the genetic basis of Perrault syndrome to be compound heterozygosity for mutations in the mitochondrial histidyl tRNA synthetase HARS2 at two highly conserved amino acids, L200V and V368L. The nucleotide substitution creating HARS2 p.L200V also created an alternate splice leading to deletion of 12 codons from the HARS2 message. Affected family members thus carried three mutant HARS2 transcripts. Aminoacylation activity of HARS2 p.V368L and HARS2 p.L200V was reduced and the deletion mutant was not stably expressed in mammalian mitochondria. In yeast, lethality of deletion of the single essential histydyl tRNA synthetase HTS1 was fully rescued by wild-type HTS1 and by HTS1 p.L198V (orthologous to HARS2 p.L200V), partially rescued by HTS1 p.V381L (orthologous to HARS2 p.V368L), and not rescued by the deletion mutant. In Caenorhabditis elegans, reduced expression by RNAi of the single essential histydyl tRNA synthetase hars-1 severely compromised fertility. Together, these data suggest that Perrault syndrome in this family was caused by reduction of HARS2 activity. These results implicate aberrations of mitochondrial translation in mammalian gonadal dysgenesis. More generally, the relationship between HARS2 and Perrault syndrome illustrates how causality may be demonstrated for extremely rare inherited mutations in essential, highly conserved genes.
Collapse
|
139
|
Leitão-Gonçalves R, Ermanoska B, Jacobs A, De Vriendt E, Timmerman V, Lupski JR, Callaerts P, Jordanova A. Drosophila as a platform to predict the pathogenicity of novel aminoacyl-tRNA synthetase mutations in CMT. Amino Acids 2011; 42:1661-8. [PMID: 21384131 DOI: 10.1007/s00726-011-0868-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/17/2011] [Indexed: 01/06/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is the major form of inherited peripheral neuropathy in humans. CMT is clinically and genetically heterogeneous and four aminoacyl-tRNA synthetases have been implicated in disease etiology. Mutations in the YARS gene encoding a tyrosyl-tRNA synthetase (TyrRS) lead to Dominant Intermediate CMT type C (DI-CMTC). Three dominant YARS mutations were so far associated with DI-CMTC. To further expand the spectrum of CMT causing genetic defects in this tRNA synthetase, we performed DNA sequencing of YARS coding regions in a cohort of 181 patients with various types of peripheral neuropathy. We identified a novel K265N substitution that in contrast to all previously described mutations is located at the anticodon recognition domain of the enzyme. Further genetic analysis revealed that this variant represents a benign substitution. Using our recently developed DI-CMTC Drosophila model, we tested in vivo the pathogenicity of this new YARS variant. We demonstrated that the developmental and behavioral defects induced by all DI-CMTC causing mutations were not present upon ubiquitous or panneuronal TyrRS K265N expression. Thus, in line with our genetic studies, functional analysis confirmed that the K265N substitution does not induce toxicity signs in Drosophila. The consistency observed throughout this work underscores the robustness of our DI-CMTC animal model and identifies Drosophila as a valid read-out platform to ascertain the pathogenicity of novel mutations to be identified in the future.
Collapse
Affiliation(s)
- Ricardo Leitão-Gonçalves
- Department of Molecular Genetics, VIB, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW This article reviews clinical, genetic, and therapeutic advances in spinal muscular atrophies (SMAs), inherited disorders characterized by motor neuron loss and muscle weakness. RECENT FINDINGS There has been progress in defining the clinical and genetic features of at least 16 distinct forms of SMA. The genes associated with 14 of these disorders have been identified in the last decade, including four within the last year: TRPV4, ATP7A, VRK1, and HSPB3. Genetic testing is now available for many SMAs, providing important diagnostic and prognostic information. Cell and animal models of SMAs have been used to further understand how mutations in SMA-associated genes, which code for proteins involved in diverse functions such as transcriptional regulation, RNA processing, and cytoskeletal dynamics, lead to motor neuron dysfunction and loss. In the last year, there has also been remarkable progress in preclinical therapeutics development for proximal SMA using gene therapy, antisense oligonucleotides, and small molecules. SUMMARY The advances in the clinical and genetic characterization of different forms of SMAs have important implications for clinical evaluation and management of patients. The identification of multiple, novel SMA-causing genes will lead to an improved understanding of motor neuron disease biology and may provide novel targets for therapeutics development.
Collapse
|
141
|
An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol Cell Neurosci 2010; 46:432-43. [PMID: 21115117 DOI: 10.1016/j.mcn.2010.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 01/09/2023] Open
Abstract
Mutations in glycyl-, tyrosyl-, and alanyl-tRNA synthetases (GARS, YARS and AARS respectively) cause autosomal dominant Charcot-Marie-Tooth disease, and mutations in Gars cause a similar peripheral neuropathy in mice. Aminoacyl-tRNA synthetases (ARSs) charge amino acids onto their cognate tRNAs during translation; however, the pathological mechanism(s) of ARS mutations remains unclear. To address this, we tested possible mechanisms using mouse models. First, amino acid mischarging was discounted by examining the recessive "sticky" mutation in alanyl-tRNA synthetase (Aars(sti)), which causes cerebellar neurodegeneration through a failure to efficiently correct mischarging of tRNA(Ala). Aars(sti/sti) mice do not have peripheral neuropathy, and they share no phenotypic features with the Gars mutant mice. Next, we determined that the Wallerian Degeneration Slow (Wlds) mutation did not alter the Gars phenotype. Therefore, no evidence for misfolding of GARS itself or other proteins was found. Similarly, there were no indications of general insufficiencies in protein synthesis caused by Gars mutations based on yeast complementation assays. Mutant GARS localized differently than wild type GARS in transfected cells, but a similar distribution was not observed in motor neurons derived from wild type mouse ES cells, and there was no evidence for abnormal GARS distribution in mouse tissue. Both GARS and YARS proteins were present in sciatic axons and Schwann cells from Gars mutant and control mice, consistent with a direct role for tRNA synthetases in peripheral nerves. Unless defects in translation are in some way restricted to peripheral axons, as suggested by the axonal localization of GARS and YARS, we conclude that mutations in tRNA synthetases are not causing peripheral neuropathy through amino acid mischarging or through a defect in their known function in translation.
Collapse
|
142
|
Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, Writzl K, Ventura K, Cheng EY, Ferriero DM, Basel-Vanagaite L, Eggens VRC, Krägeloh-Mann I, De Meirleir L, King M, Graham JM, von Moers A, Knoers N, Sztriha L, Korinthenberg R, Dobyns WB, Baas F, Poll-The BT. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. ACTA ACUST UNITED AC 2010; 134:143-56. [PMID: 20952379 DOI: 10.1093/brain/awq287] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pontocerebellar hypoplasia is a group of autosomal recessive neurodegenerative disorders with prenatal onset. The common characteristics are cerebellar hypoplasia with variable atrophy of the cerebellum and the ventral pons. Supratentorial involvement is reflected by variable neocortical atrophy, ventriculomegaly and microcephaly. Mutations in the transfer RNA splicing endonuclease subunit genes (TSEN54, TSEN2, TSEN34) were found to be associated with pontocerebellar hypoplasia types 2 and 4. Mutations in the mitochondrial transfer RNA arginyl synthetase gene (RARS2) were associated with pontocerebellar hypoplasia type 6. We studied a cohort of 169 patients from 141 families for mutations in these genes, of whom 106 patients tested positive for mutations in one of the TSEN genes or the RARS2 gene. In order to delineate the neuroradiological and clinical phenotype of patients with mutations in these genes, we compared this group with 63 patients suspected of pontocerebellar hypoplasia who were negative on mutation analysis. We found a strong correlation (P < 0.0005) between TSEN54 mutations and a dragonfly-like cerebellar pattern on magnetic resonance imaging, in which the cerebellar hemispheres are flat and severely reduced in size and the vermis is relatively spared. Mutations in TSEN54 are clinically associated with dyskinesia and/or dystonia and variable degrees of spasticity, in some cases with pure generalized spasticity. Nonsense or splice site mutations in TSEN54 are associated with a more severe phenotype of more perinatal symptoms, ventilator dependency and early death. In addition, we present ten new mutations in TSEN54, TSEN2 and RARS2. Furthermore, we show that pontocerebellar hypoplasia type 1 together with elevated cerebrospinal fluid lactate may be caused by RARS2 mutations.
Collapse
Affiliation(s)
- Yasmin Namavar
- Department of Genome Analysis, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
McLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, Iyer R, Cruz P, Cherukuri PF, Hansen NF, Mullikin JC, Biesecker LG, Wilson TE, Ionasescu V, Nicholson G, Searby C, Talbot K, Vance JM, Züchner S, Szigeti K, Lupski JR, Hou YM, Green ED, Antonellis A, Antonellis A. Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 2010; 87:560-6. [PMID: 20920668 DOI: 10.1016/j.ajhg.2010.09.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/01/2010] [Accepted: 09/15/2010] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease comprises a genetically and clinically heterogeneous group of peripheral nerve disorders characterized by impaired distal motor and sensory function. Mutations in three genes encoding aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT disease primarily associated with an axonal pathology. ARSs are ubiquitously expressed, essential enzymes responsible for charging tRNA molecules with their cognate amino acids. To further explore the role of ARSs in CMT disease, we performed a large-scale mutation screen of the 37 human ARS genes in a cohort of 355 patients with a phenotype consistent with CMT. Here we describe three variants (p.Leu133His, p.Tyr173SerfsX7, and p.Ile302Met) in the lysyl-tRNA synthetase (KARS) gene in two patients from this cohort. Functional analyses revealed that two of these mutations (p.Leu133His and p.Tyr173SerfsX7) severely affect enzyme activity. Interestingly, both functional variants were found in a single patient with CMT disease and additional neurological and non-neurological sequelae. Based on these data, KARS becomes the fourth ARS gene associated with CMT disease, indicating that this family of enzymes is specifically critical for axon function.
Collapse
|
144
|
Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 2010; 11:668-74. [PMID: 20700144 DOI: 10.1038/nrm2956] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the course of evolution, eukaryotic aminoacyl-tRNA synthetases (aaRSs) progressively incorporated domains and motifs that have no essential connection to aminoacylation reactions. Their accretive addition to virtually all aaRSs correlates with the progressive evolution and complexity of eukaryotes. Based on recent experimental findings focused on a few of these additions and analysis of the aaRS proteome, we propose that they are markers for aaRS-associated functions beyond translation.
Collapse
Affiliation(s)
- Min Guo
- Min Guo, Xiang-Lei Yang and Paul Schimmel are at The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
145
|
Kawahara A, Stainier DYR. Noncanonical activity of seryl-transfer RNA synthetase and vascular development. Trends Cardiovasc Med 2010; 19:179-82. [PMID: 20211432 DOI: 10.1016/j.tcm.2009.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Seryl-transfer RNA synthetase (Sars) is one of the 20 aminoacyl-transfer RNA synthetases that are enzymes essential for protein synthesis; however, the developmental function of Sars has not been elucidated. In zebrafish, impairment of zygotic Sars function leads to a significant dilatation of the aortic arch vessels and aberrant branching of cranial and intersegmental vessels. This abnormal vascular branching in sars mutants can be suppressed by a form of Sars that lacks canonical function, indicating that a noncanonical activity of Sars regulates vascular development. Inhibition or knockdown of vascular endothelial growth factor (Vegf) signaling, which plays pivotal roles in the establishment of the vascular network, suppresses the abnormal vascular branching observed in sars mutants. Here, we discuss the possible functional relationship between Sars function and Vegf signaling.
Collapse
Affiliation(s)
- Atsuo Kawahara
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan.
| | | |
Collapse
|
146
|
Motley WW, Talbot K, Fischbeck KH. GARS axonopathy: not every neuron's cup of tRNA. Trends Neurosci 2010; 33:59-66. [PMID: 20152552 DOI: 10.1016/j.tins.2009.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
Charcot-Marie-Tooth disease type 2D, a hereditary axonal neuropathy, is caused by mutations in glycyl-tRNA synthetase (GARS). The mutations are distributed throughout the protein in multiple functional domains. In biochemical and cell culture experiments, some mutant forms of GARS have been indistinguishable from wild-type protein, suggesting that these in vitro tests might not adequately assess the aberrant activity responsible for axonal degeneration. Recently, mouse and fly models have offered new insights into the disease mechanism. There are still gaps in our understanding of how mutations in a ubiquitously expressed component of the translation machinery result in axonal neuropathy. Here, we review recent reports, weigh the evidence for and against possible mechanisms and suggest areas of focus for future work.
Collapse
Affiliation(s)
- William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | | | | |
Collapse
|
147
|
Cartoni R, Arnaud E, Médard JJ, Poirot O, Courvoisier DS, Chrast R, Martinou JC. Expression of mitofusin 2R94Q in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain 2010; 133:1460-9. [DOI: 10.1093/brain/awq082] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
148
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
149
|
Le Quesne JPC, Spriggs KA, Bushell M, Willis AE. Dysregulation of protein synthesis and disease. J Pathol 2010; 220:140-51. [PMID: 19827082 DOI: 10.1002/path.2627] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regulation of protein synthesis plays as important a role as transcriptional control in the control of gene expression. Once thought solely to act globally, translational control has now been shown to be able to control the expression of most genes specifically. Dysregulation of this process is associated with a range of pathological conditions, notably cancer and several neurological disorders, and can occur in many ways. These include alterations in the expression of canonical initiation factors, mutations in regulatory mRNA sequence elements in 5' and 3' untranslated regions (UTRs), such as upstream open reading frames (uORFs), internal ribosome entry segments (IRESs) and micro-RNA (miR) target sites, and the altered expression of trans-acting protein factors that bind to and regulate these elements. Translational control is increasingly open for study in both fresh and fixed tissue, and this rapidly developing field is yielding useful diagnostic and prognostic tools that will hopefully provide new targets for effective treatments.
Collapse
Affiliation(s)
- John P C Le Quesne
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | |
Collapse
|
150
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as amyotrophic lateral sclerosis, peripheral neuropathies, such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and the muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "quality-of-life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
|